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Abstract

In 2002, Fukaya [19] proposed a remarkable explanation of mirror symmetry detailing the Strominger—Yau—Zaslow
(SYZ) conjecture [47] by introducing two correspondences: one between the theory of pseudo-holomorphic curves
on a Calabi—Yau manifold X and the multivalued Morse theory on the base B of an SYZ fibration j: X — B, and
the other between deformation theory of the mirror X and the same multivalued Morse theory on B. In this paper,
we prove a reformulation of the main conjecture in Fukaya’s second correspondence, where multivalued Morse
theory on the base B is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques
of asymptotic analysis developed in [7, 9] to tropicalize the pre-dgBV algebra which governs smoothing of a
maximally degenerate Calabi—Yau log variety Ox* introduced in [8]. Then a comparison between this tropicalized
algebra with the dgBV algebra associated to the deformation theory of the semiflat part Xif € X allows us to extract
consistent scattering diagrams from appropriate Maurer—Cartan solutions.
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1. Introduction

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [47], Fukaya
[19] proposed two correspondences:

e Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections) on
a Calabi—Yau manifold X and the multivalued Morse theory on the base B of an SYZ fibration
p: X - E, and

e Correspondence II: between deformation theory of the mirror X and the same multivalued Morse
theory on the base B.

In this paper, we prove a reformulation of the main conjecture [19, Conj 5.3] in Fukaya’s Correspondence
II, where multivalued Morse theory on the SYZ base B is replaced by tropical geometry on the Legendre
dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [7] in a local setting;
the main result of the current paper is a global version of the main result in loc. cit. A crucial ingredient
in the proof is a precise link between tropical geometry on an integral affine manifold with singularities
and smoothing of maximally degenerate Calabi—Yau varieties.

The main conjecture [ 19, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a Maurer—
Cartan element of the Kodaira—Spencer differential graded Lie algebra (dglLa) associated to deformations
of the semiflat part X of X that is asymptotically close to a Fourier expansion ([19, Eq. (42)]), whose
Fourier modes are given by smoothings of distribution-valued 1-forms defined by moduli spaces of
gradient Morse flow trees which are expected to encode counting of nontrivial (Maslov index 0)
holomorphic disks bounded by Lagrangian torus fibers (see [19, Rem. 5.4]). Also, the complex structure
defined by this Maurer—Cartan element can be compactified to give a complex structure on X. At the
same time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound nontrivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has been
found [4, 10, 11, 12, 18, 20, 38, 39, 40].

The tropical counterpart of such gradient Morse flow trees are given by consistent scattering diagrams,
which were invented by Kontsevich—Soibelman [36] and extensively used in the Gross—Siebert program
[29] to solve the reconstruction problem in mirror symmetry, namely, the construction of the mirror X
from smoothing of a maximally degenerate Calabi—Yau variety °X. It is therefore natural to replace the
distribution-valued 1-form in each Fourier mode in the Fourier expansion [19, Eq. (42)] by a distribution-
valued 1-form associated to a wall-crossing factor of a consistent scattering diagram. This was exactly
how Fukaya’s conjecture [19, Conj. 5.3] was reformulated and proved in the local case in [7].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semiflat part X s with smoothings of the maximally degenerate Calabi—Yau variety
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OX. This is because consistent scattering diagrams were used by Gross—Siebert [28] to study the
deformation theory of the compact log variety X' (whose log structure is specified by slab functions),
instead of Xgr. For this purpose, we consider the open dense part

OX g = ' (Wo) € °X,

where u: 0X — B is the generalized moment map in [43] and Wy C B is an open dense subset such
that B \ Wy contains the tropical singular locus and all codimension 2 cells of B.

Equipping X ¢ with the trivial log structure, there is a semiflat differential graded Batalin—Vilkovisky
(dgBV) algebra PV** governing its smoothings, and the general fiber of a smoothing is given by the
semiflat Calabi—Yau X that appeared in Fukaya’s original conjecture [19, Conj. 5.3]. However, the
Maurer—Cartan elements of PV** cannot be compactified to give complex structures on X. On the
other hand, in our previous work [8] we constructed a Kodaira—Spencer—type pre-dgBV algebra PV**
which controls the smoothing of °X. A key observation is that a twisting of PV** by slab functions is
isomorphic to the restriction of PV** to * X (Lemma 5.10).

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer—Cartan
element ¢ of this twisted semiflat dgBV algebra that is asymptotically close to a Fourier expansion whose
Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This conjecture
follows from (the proof of) our main result, stated as Theorem 1.1 below, which is a combination of
Theorem 4.18, the construction in §5.3.2 and Theorem 5.24:

Theorem 1.1. There exists a solution ¢ to the classical Maurer—Cartan equation (4.11) giving rise
to a smoothing of the maximally degenerate Calabi—Yau log variety °X* over C[[q]], from which a
consistent scattering diagram D (¢) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem 1.1 is now in order. First, recall that the pre-dgBV algebra
PV** which governs smoothing of the maximally degenerate Calabi—Yau variety °X was constructed
in [8, Thm. 1.1 & §3.5], and we also proved a Bogomolov—Tian—Todorov—-type theorem [8, Thm. 1.2 &
§5] showing unobstructedness of the extended Maurer—Cartan equation (4.10), under the Hodge-to-de
Rham degeneracy Condition 4.16 and a holomorphic Poincaré Lemma Condition 4.14 (both proven in
[17,28]). In Theorem 4.18, we will further show how one can extract from the extended Maurer—Cartan
equation (4.10) a smoothing of °X, described as a solution ¢ € PV~1-!(B) to the classical Maurer—
Cartan equation (4.11)

5¢+%[¢,¢]+I=O,

together with a holomorphic volume form e/ w which satisfies the normalization condition

/ o w1, (1.1
T

where 7' is a nearby vanishing torus in the smoothing.

Next, we need to tropicalize the pre-dgBV algebra PV**. However, the original construction of
PV** in [8] using the Thom—Whitney resolution [14, 49] is too algebraic in nature. Here, we construct
a geometric resolution exploiting the affine manifold structure on B. Using the generalized moment
map u: °X — B [43] and applying the techniques of asymptotic analysis (in particular the notion of
asymptotic support) in [ 7], we define the sheaf T * of monodromy invariant tropical differential forms on
Bin §5.1. According to Definition 5.5, a tropical differential form can be regarded as a distribution-valued
form supported on polyhedral subsets of B. Using the sheaf T, we can take asymptotic expansions
of elements in PV** and hence connect differential geometric operations in dgBV/dglLa with tropical
geometry. In this manner, we can extract local scattering diagrams from Maurer—Cartan solutions as we
did in [7], but we need to glue them together to get a global object.
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To achieve this, we need the aforementioned comparison between PV** and the semiflat dgBV
algebra PV:;* which governs smoothing of the semiflat part °X := u~'(Wy) c °X equipped with
the trivial log structure. The key Lemma 5.10 says that the restriction of PV** to the semiflat part is
isomorphic to PV:f’* precisely after we twist the semiflat operator d, by elements corresponding to the
slab functions associated to the initial walls of the form:

@in = — Z Oyp® log(fv,p)agp;

vep

here, the sum is over vertices in codimension one cells p’s which intersect with the essential singular
locus S, (defined in §3.3), 6, , is a distribution-valued 1-form supported on a component of p \ &,
containing v, d i, is a holomorphic vector field and f,, ,’s are the slab functions associated to the initial

walls. We remark that slab functions were used to specify the log structure on °X as well as the local
models for smoothing °X in the Gross—Siebert program; see §2 for a review.

Now, the Maurer—Cartan solution ¢ € PV~!-!(B) obtained in Theorem 4.18 defines a new operator
5¢ on PV** which squares to zero. Applying the above comparison of dgBV algebras (Lemma 5.10)
and the gauge transformation from Lemma 5.11, we show that, after restricting to W, there is an
isomorphism

(PV11(W0), 3 = (PVZ (Wo). e + [0 + 64 1)

for some element ¢, where ‘s’ stands for scattering terms. From the description of 7 *, the element ¢,
to any fixed order k, is written locally as a finite sum of terms supported on codimension one walls/slabs
(Definitions 5.13 and 5.14. For the purpose of a brief discussion in this introduction, we will restrict
ourselves to a wall w below, though the same argument applies to a slab; see §5.3.2 for the details. In
a neighborhood Uy, of each wall w, the operator 9, + [¢in + s, -] is gauge equivalent to 9, via some
vector field 0y, € PVS_fl’O(WO), that is,

el®1og, 0701 =4, + [Pin + &5, -]

Employing the techniques for analyzing the gauge which we developed in [7, 9, 37], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor Oy, satisfying

[, -] Owlc, onUyNCy,
et™w |ci =9.
id onUyNC._,

where C. are the two chambers separated by w. Then from the fact that the volume form e/ w is
normalized as in equation (1.1), it follows that ¢; is closed under the semiflat BV operator A, and hence
we deduce that the wall-crossing factor @y, lies in the tropical vertex group. This defines a scattering
diagram 2 (¢) on the semiflat part Wy associated to ¢. Finally, we prove consistency of the scattering
diagram 2 (¢) in Theorem 5.24. We emphasize that the consistency is over the whole B even though
the diagram is only defined on W), because the Maurer—Cartan solution ¢ is globally defined on B.

Remark 1.2. Our notion of scattering diagrams (Definition 5.17) is a little bit more relaxed than the
usual notion defined in [36, 29] in two aspects: One is that we do not require the generator of the
exponents of the wall-crossing factor to be orthogonal to the wall.! The other is that we allow possibly
infinite number of walls/slabs approaching strata of the tropical singular locus. See the paragraph after
Definition 5.17 for more details. In practice, this simply means that we are considering a larger gauge
equivalence class (or equivalently, a weaker gauge equivalence), which is natural from the point of view
of both the Bogomolov-Tian—Todorov Theorem and mirror symmetry (in the A-side, this amounts to

1t seems reasonable to relax this orthogonality condition because one cannot require such a condition in more general settings
[5,37].
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flexibility in the choice of the almost complex structure). We also have a different, but more or less
equivalent, formulation of the consistency of a scattering diagram; see Definition 5.21 and §5.3.1.

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between the
semiflat part X and the maximally degenerate Calabi—Yau log variety °X T, we also find the correct
description of the Maurer—Cartan solutions near the singular locus, namely, they should be extendable to
the local models prescribed by the log structure (or slab functions), as was hinted by the Gross—Siebert
program. This is related to a remark by Fukaya [19, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between the
differential-geometric properties of the tropical dgBV algebra and the scattering (and other combinato-
rial) properties of tropical disks, which was speculated by Fukaya as well ([19, Pt. (1) after Conj. 5.3])
although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross—Siebert
program [27, 28, 29] and Katzarkov—Kontsevich—Pantev’s Hodge theoretic viewpoint [33] through
PV** (recall from [8] that a semi-infinite variation of Hodge structures can be constructed from PV**,
using the techniques of Barannikov—Kontsevich [3, 2] and Katzarkov—Kontsevich—Pantev [33]), we
obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. A future direction is to apply the framework in this paper and the works [7, 8] to develop
a local-to-global approach to understand genus 0 mirror symmetry. In view of the ideas of Seidel
[46] and Kontsevich [35], and also recent breakthroughs by Ganatra—Pardon—Shende [24, 25, 26] and
Gammage—Shende [22, 23], we expect that there is a sheaf of L., algebras on the A-side mirror to
(the L, enhancement of) PV** that can be constructed by gluing local models. More precisely, a large
volume limit of a Calabi—Yau manifold X can be specified by removing from it a normal crossing divisor
D which represents the Kihler class of X. This gives rise to a Weinstein manifold X \ D and produces
a mirror pair X \ D < %X at the large volume/complex structure limits.

In [23], Gammage—Shende constructed a Lagrangian skeleton A(®) c X \ D from a combinatorial
structure @ called fanifold, which can be extracted from the integral tropical manifold B equipped with
a polyhedral decomposition & (here, we assume that the gluing data s is trivial). They also proved
a Homological Mirror Symmetry statement at the large limits. We expect that an A-side analogue of
PV** can be constructed from the Lagrangian skeleton A(®) in X \ D, possibly together with a nice
and compatible SYZ fibration on X \ D, via gluing of local models. A local-to-global comparsion on the
A-side and isomorphisms between the local models on the two sides should then yield an isomorphism
of Frobenius manifolds.

Notation 1.4. We usually fix a rank s lattice K together with a strictly convex s-dimensional rational
polyhedral cone Or € Kgr = K®z R. We call Q := Or N K the universal monoid. We consider the
ring R := C[Q], a monomial element of which is written as g™ € R for m € Q, and the maximal
ideal m := C[Q \ {0}]. Then ¥R := R/m**! is an Artinian ring, and we denote by R := lim kR the
completion of R. We further equip R, ¥R and R with the natural monoid homomorphism Q — R,
m +— g™, which gives them the structure of a log ring (see [29, Definition 2.11]); the corresponding
log analytic spaces are denoted as ST, ¥ST and S7, respectively.

Furthermore, we let Qg = R®c N\ K, ngT = *R®c A\*Kc and Q;r = R ®c N\*Kc (here,
Kc = K ®; C) be the spaces of log de Rham differentials on ST, ¥S* and S respectively, where we
write 1 ® m = dlogq™ for m € K; these are equipped with the de Rham differential 0 satisfying
d(qg™) = q¢"dlog g™. We also denote by Bg: := R ®c K(\é, O+ and O, respectively, the spaces of log
derivations, which are equipped with a natural Lie bracket [-, -]. We write d,, for the element 1 ® n with
action d,(¢™) = (m,n)q™, where (m, n) is the natural pairing between K¢ and K.

2. Gross—Siebert’s cone construction of maximally degenerate Calabi—Yau varieties

This section is a brief review of Gross—Siebert’s construction of the maximally degenerate Calabi—Yau
variety °X from the affine manifold B and its log structures from slab functions [27, 28, 29].
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2.1. Integral tropical manifolds

We first recall the notion of integral tropical manifolds from [29, §1.1]. Given a lattice M of rank n, a
rational convex polyhedron o is a convex subset in My given by a finite intersection of rational (i.e.,
defined over Mg) affine half-spaces. We usually drop the attributes ‘rational’ and ‘convex’ for polyhedra.
A polyhedron o is said to be integral if all its vertices lie in M; a polytope is a compact polyhedron.
The group Aff(M) := M = GL(M) of integral affine transformations acts on the set of polyhedra in
Mp. Given a polyhedron o € Mg, let A g C MR be the smallest affine subspace containing o-, and
denote by A, := Asr N M the corresponding lattice. The relative interior int (o) refers to taking
the interior of o in A, . There is an identification T,» x = A g for the tangent space at x € int (o).
Write do = o \ int.(0). Then a face of o is the intersection of do with a supporting hyperplane.
Codimension one faces are called facets.

Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms onto faces (i.e., an integral affine morphism 7 — o which is
an isomorphism onto its image and identifies T with a face of o). An integral polyhedral complex is a
functor F: & — LPoly from a finite category & to LPoly such that every face of F(o) still lies in the
image of F, and there is at most one arrow T — ¢ for every pair 7,0 € 2. By abuse of notation, we
usually drop the notation F and write o € 9 to represent an integral polyhedron in the image of the
functor. From an integral polyhedral complex, we obtain a topological space B := li—n)l(ra@ o via gluing
of the polyhedra along faces. We further assume that:

1. the natural map o — B is injective for each o € &, so that o can be identified with a closed subset
of B called a cell, and a morphism 7 — o can be identified with an inclusion of subsets;

2. afinite intersection of cells is a cell; and

3. Bisan orientable connected topological manifold of dimension » without boundary which in addition
satisfies the condition that H' (B, Q) = 0.

Remark 2.1. The condition H' (B, Q) = 0 will be used only in Theorem 4.18 to ensure that H' (°X, ©) =
H'(B,C) = 0, where °X is the degenerate Calabi—Yau variety that we are going to construct.? This
corresponds to the condition that »; = 0 for smooth Calabi—Yau manifolds.

The set of k-dimensional cells is denoted by 2] and the k-skeleton by L<k]. For every r € 2,
we define its open star by

U; = U inte (0),

oDoT

which is an open subset of B containing int,. (7). A fan structure along T € P"*! is a continuous map
S;: Uy — RF such that

d S;I(O) = intee(7),

e for every o D 7, the restriction Sz l|in. (o) is an integral affine submersion onto its image (meaning
that it is induced by some epimorphism A, — W N Z¥ for some vector subspace W c R¥), and

e the collection of cones {K,0 := R50S: (00 N U;)} s>, forms a complete finite fan 2.

Two fan structures along 7t are equivalent if they differ by composition with an integral affine transfor-
mation of R¥. If S, is a fan structure along 7 and o D 7, then U, C U, and there is a fan structure
along o induced from S, via the composition:

U, — U, » RF » R,

where R — R¥/RS. (0 N U;) = R! is the quotient map.

2In his recent work [15], Felten was able to prove Theorem 4.18 without assuming that H'! (B, Q) = 0.
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Figure 1. The polyhedral decomposition.

Definition 2.2 ([29], Definition 1.2). An integral tropical manifold is an integral polyhedral complex
(B, P) together with a fan structure S, along each 7 € & such that whenever 7 C o, the fan structure
induced from S, is equivalent to S-.

Taking sufficiently small and mutually disjoint open subsets W, c U,, for v € 2!l and int,. (o) for
o € P thereisan integral affine structure on (J,, c goto1 Wy, UU - c o1 intre (7). We will further choose
the open subsets W,,’s and int,. (07)’s so that the affine structure is defined outside a closed subset I" of
codimension two in B, as in [27, §1.3]. This affine structure allows us to use parallel transport to identify
the tangent spaces T B for different points x outside the closed subset. For every 7, we choose a maximal
cell o O 7 and consider the lattice of normal vectors @, = A, /A, (we suppress the dependence on
o because we will see that A; is monodromy invariant under the monodromy transformation given by
any two vertices of 7 and any two maximal cells containing 7). We can identify @, with Z* via S, and
write the fan structure as S;: Uy — Q¢ g.

Example 2.3. We take a two-dimensional example from [, Ex. 6.74] to illustrate the above definitions.
Let E be the convex hull of the points

-1 3 -1 -1
po= -1, p1=|-1|, p2=|3 ], p3=|-1],
-1 -1 -1 3

so 2 is a 3-simplex. Take B (as a topological space) to be the boundary of E. The polyhedral decompo-
sition & is defined so that the integral points are vertices as shown in Figure 1.

Then we define affine coordinate charts on | ;¢ gin) inntre (07) U U, cot01 Wy, as follows. On intye (o),
we take ¥, : inte(07) = A4 g Which maps homeomorphically onto its image. At a vertex v treated as
a vector in R, we let v, : W,, ¢ R® — R3/Rv, where R®> — R?/Rv is the natural projection onto the
quotient. By [1, Prop. 6.81], this gives an integral affine manifold with singularities. The affine structure
can be extended to the complement of a subset I" consisting of 24 points lying on the six edges of &, with
each edge containing 4 points (colored in red in Figure 1). The fan structure S; can be defined similarly.

Locally near each singular point p € I" contained in an edge p, the affine structure is described as a
gluing of two affine charts Uy ¢ R? \ {0} x Rs¢ and Uy € R? \ 0 x R« as in [30, §3.2]. The change of
coordinates from U to Uy is given by the restriction of the map Y from (R \ {0}) X R to itself defined by

(.y) {(x,y), x<0

(x,x+y), x>0.
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Uy U Un

Figure 2. Affine coordinate charts.

Figure 3. The polyhedral decomposition on a facet.

The fan structure S,,: U, — R is given as S, (x, y) = x and the fan ¥, is the toric fan for P!. Figure 2
below illustrates the situation.

With the structure of an integral tropical manifold, the corners and edges in Figure | are flattened
via the affine coordinate charts, and we can view (B, %) as the 2-sphere equipped with a polyhedral
decomposition and with 24 affine singularities. Such an affine structure with singularities also appears
in the base B of an SYZ fibration of a K3 surface.

Example 2.4. A three-dimensional example can be constructed as in [1, Ex. 6.74]. Take E to be the
convex hull of the points

-1 4 -1 -1 -1
-1 -1 4 -1 -1

pO: _1 9 pl = _1 9 p2= _l b p3= 4 b p4: _1 b
-1 -1 -1 -1 4

which gives a 4-simplex. Take B (as a topological space) to be the boundary of E. There are five three-
dimensional maximal cells intersecting along 10 two-dimensional facets. The polyhedral decomposition
P on each facet is as in Figure 3.

The affine structure can be extended to the complement of codimension 2 closed subset I" whose
intersection with a triangle in Figure 3 is a Y-shaped locus. Locally near each of these triangles, it looks
like Figure 4a.

E has 10 one-dimensional faces, each of which is an edge with affine length 5. The polyhedral
decomposition & divides each edge into 5 intervals as we can see in Figure 3. Locally near each of
these length 1 intervals, there are three 2-cells of & intersecting along it. The locus I" on each 2-cell
intersects on the interval as shown in Figure 4b.
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g4 |\ P
51

P3

U1

(a) Y-vertex of type | (b) Y-vertex of type 11

Figure 4. Two types of Y-vertex.

Definition 2.5 ([27], Definition 1.43). An integral affine function on an open subset U C B is a
continuous function ¢ on U which is integral affine on U N int. (o) for o € 2" and on U N W, for
v € P01 We denote by Af f 5 (or simply Af f) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbreviated as PA-function) on U is a continuous function ¢ on
U which can be written as ¢ = ¥ + S (¢) on U N U, for every T € &P, where ¢ € Af f(U N U;) and
¢ is a piecewise linear function on @, g with respect to the fan X.. The sheaf of PA-functions on B is
denoted by PL .

There is a natural inclusion Af f <— PLg, and we let MP L5 be the quotient:
00— Aff > PLp > MPLyp — 0.

Locally, an element ¢ € I'(B, MPLg) is a collection of piecewise affine functions {¢y } such that on
each overlap U NV, the difference ¢y |y — ¢y |y is an integral affine function on U N V.

Definition 2.6 ([27], Definitions 1.45 and 1.47). The sheatf MPLgy is called the sheaf of mul-
tivalued piecewise affine functions (abbreviated as MPA-funtions) of the pair (B, ). A section
¢ € H'(B, MPL) is said to be convex (resp. strictly convex) if for any vertex {v} € 2, there is
a convex (resp. strictly convex) representative ¢, on U,,. (Here, convexity (resp. strict convexity) means
if we take any maximal cone o C U, with the affine function /,: U, — R defined by requiring
@vlo = lo, we always have ¢, (y) = I (y) (resp. ¢ (y) > [5(y)) fory € Uy \ o).

The set of all convex multivalued piecewise affine functions gives a submonoid of H°(B, MPLg)
under addition, denoted as HO(B, MPLp,N); we let Q be the dual monoid.

Definition 2.7 ([27], Definition 1.48). The polyhedral decomposition 2 is said to be regular if there
exists a strictly convex multivalued piecewise linear function ¢ € H°(B, MPLg).

We always assume that 2 is regular with a fixed strictly convex ¢ € H*(B, MPL ).

2.2. Monodromy, positivity and simplicity

To describe monodromy, we consider two maximal cells o, and two of their common vertices v..
Taking a path y going from v, to v_ through o7, and then from v_ back to v, through o_, we obtain a
monodromy transformation 7',. As in [27, §1.5], we are interested in two cases. The first case is when v,
is connected to v_ via a bounded edge w € P!, Let d,, € A, be the unique primitive vector pointing
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to v_ along w. For an integral tangent vector m € T,, := T,, 7B, the monodromy transformation 7, is
given by

Ty(m) =m+ (m,ng " )d, 2.1
fnﬁ o_
case is when o, and o are separated by a codimension one cell p € "1 Let dp € @, be the unique
primitive covector which is positive on .. The monodromy transformation is given by

for some ng,7" € @ c T, , where (., -) is the natural pairing between 7,, and T, . The second

T,(m) =m+ (m, dvp)mﬁw 2.2)

for some m€+vf € A;, where T C p is the smallest face of p containing v.. In particular, if we fix both

V+ € W C p C 0%, one obtains the formula
T, (m) = m+ Kyp(m, dvp)dw 2.3)

for some integer k.

Definition 2.8 ([27], Definition 1.54). We say that (B, &) is positive if k., > 0 for all w € 21 and
p e 2" yithw c p.

Following [27, Definition 1.58], we package the monodromy data into polytopes associated to
7 e Pl for 1 < k < n— 1. The simplest case is when p € 21 whose monodromy polytope is
defined by fixing a vertex v € p and setting

A(p) = Conv{m®, |vep, ve P c Az, (2.4)

where Conv refers to taking the convex hull. It is well defined up to translation and independent of the
choice of vg. The normal fan of p in A/*) r is a refinement of the normal fan of A(p). Similarly, when

w € P one defines the dual monodromy polytope by fixing oy D w and setting
A(w) := Conv{n?? | o > w, o € P11} ¢ Q;, g (2.5)

Again, this is well defined up to translation and independent of the choice of oy. The fan X, in
@, r is a refinement of the normal fan of A(w). For 1 < dimp(t) < n — 1, a combination of
monodromy and dual monodromy polytopes is needed. We let 2 (1) = {w | w € 21, w c 7} and
Pou1(t) ={p | p € 2", p >t} Foreach p € P,_i(1), we choose a vertex vy € p and let

Ap(T) = Conv{m’jov lver, vel)c Az .
Similarly, for each w € 9(1), we choose oy D 7 and let
Aw(1) :=Conv{n? | o o1, o € "1} ¢ Q; &

These are well defined up to translation and independent of the choices of v and oy, respectively.
Definition 2.9 ([27], Definition 1.60). We say (B, %) is simple if, for every T € 2, there are disjoint
nonempty subsets

Ql,...,Qpcgjl(T), Rl,...,RPC@n_](T)

(where p depends on 7) such that

1. forw e Pi(r) and p € P,_1(7), Kewp # 0if and only if w € Q; and p € R; forsome 1 <i < p;

2. A,(7) is independent (up to translation) of p € R; and will be denoted by A;(7); similarly, A, (1)
is independent (up to translation) of w € Q; and will be denoted by Ai (7);
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3. if {e1,..., ey} is the standard basis in Z”, then

A(t) := Conv {

p p
A,-(T)x{ei}}, A(t) := Conv {U&i(f) X{ei}}
= i=1

i=1

are elementary simplices (i.e., a simplex whose only integral points are its vertices) in (A, ® ZP )y
and (@% @ ZP),, respectively.
We need the following stronger condition in order to apply [28, Thm. 3.21] in a later stage:

Definition 2.10. We say (B, &) is strongly simple if it is simple, and for every 7 € &, both A(7) and
A(7) are standard simplices.
Example 2.11. Consider the two-dimensional example in Example 2.3. Following [, Ex. 6.82(1)], we

may choose the two adjacent vertices in Figure | to be v; = [-1 -1 —l]Tand vy =[0 -1 —1]Twhich
bound a 1-cell p. The two adjacent maximal cells are given by oy C {b | (ws,b) = 1}, where

wy =100 —I]T and o~ C {b | (w_,b) = 1}, where w_ = [0 -1 O]T. The tangent lattice 7), can be
identified with Z*/Z - v equipped with the basis e; = [1 0 O]T, er=1[01 O]T. If we let y be a loop
going from v; to v, through o and going back to v; through o, we have

T,(m)=m+ ([0 1 —I]T ,myeq
for m € T,,. Therefore, we have p = 1, A;(p) = Conv{0, ¢} and A1 (p) = Conv{0, w, — w_}. This is
an example of a positive and strongly simple (B, &) (Definitions 2.8 and 2.10).

Example 2.12. Next, we consider the two types of Y-vertex in Example 2.4.
We begin with Y-vertex of type / in Figure 4a. Following [1, Ex. 6.82(2)], the three vertices vy, vy, v3
can be chosen to be

vi=[-1-1-1 —I]T, vy =1[0 -1 -1 _I]T’ vy =[-10-I _I]T,

and o, € {b € R* | (wy,b) =1}, 0 c {b € R* | (w_,b) = 1} are 3-cells of B lying in the affine
hyperplanes with dual vector w,. = [0 0 -1 O]Tand w_ = [0 00 —I]T, respectively. If we identify T,
with A, via parallel transport and choose the basis of A, as

e1=[1000]",e2=[0-100]",e3=[0001]",

then the monodromy transformations are given by

101 10 -1 100
T, =|010|,T,=[01-1],T,=[011],
001 00 1 001

where 7; is the loop going from v; to v;4; through o and going back to v; through o_, with indices
of v;’s taken modulo 3. In this case, we have p = 1, Aj(p) = Conv{0, e1, —e;} is a 2-simplex and
A1 (p) = Conv{0, w, — w_} is a 1-simplex.

For the Y-vertex of type II in Figure 4b, we can choose

vi=[-1-1-1-1]",vy=[0-1-1-1]",

which are the end points of a 1-cell 7. We choose the three maximal cells o1, o and o3 intersecting at
7 to be the 3-cells lying in affine hyperplanes defined by {b | {(w;, b) = 1}, where

wi=[00-10]", wa=[000-1]",ws=[0-100]".
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Let 9; be the loop going from v; to v, through w; and then going back to v; through w;,, with indices
taken to be modulo 3. Then the corresponding monodromy transformations are given by

0 1-1-1
0, T,,=[0 1 0],
1 00 I
with respect to the basis

er=[1000]",e2=[0100]", e5=[00-10]".

In this case, p = 1, A (1) = Conv{0, v, — v} is a 1-simplex and 51(7) = Conv{0,w; — wy,w| — w3}
is a 2-simplex.
Both examples are positive and strongly simple.

Throughout this paper, we always assume that (B, %) is positive and strongly simple. In particular,
both A;(7) and A;(7) are standard simplices of positive dimensions, and Aa,(r) ® « -+ & Ap (1) (resp.
AX,(r) ® - ® A (r)) is an internal direct summand of A, (resp. @7).

2.3. Cone construction by gluing open affine charts

In this subsection, we recall the cone construction of the maximally degenerate Calabi—Yau %X =
OX(B, P, 5), following [27] and [29, §1.2]. For this purpose, we take K = Z and Q to be the positive
real axis in Notation 1.4. Throughout this paper, we will work in the category of analytic schemes.

We will construct °X as a gluing of affine analytic schemes V (v) parametrized by the vertices of 2.
For each vertex v, we consider the fan X,, and take the analytic affine toric variety

V(v) := Spec,, (C[Z,]),

where Spec,, means analytification of the algebraic affine scheme given by Spec. Here, the monoid
structure for a general fan £ C My is given by
oo p+q if p,q € M are in a common cone of Z,
pra= 0 otherwise,

and we set z*° = 0 in taking Spec(C[X]) (by abuse of notation, we use X to stand for both the fan and the
monoid associated to a fan if there is no confusion); in other words, the ring C[X] is defined explicitly as

P4 if p,g € M are in a common cone of X,
Clz] = @ C.2P, 9= {" P-4
0 otherwise,

pEIZINM

where |X| denotes the support of the fan X.

To glue these affine analytic schemes together, we need affine subschemes {V(7)} associated to
T € P with v € 7 and natural open embeddings V(1) — V(w) for v € w C 7. First, for 7 € & such
that v € 7, we consider the localization of X, at T defined by

7y, = {Kyo + Arr|K,0 is acone in X, such that o D 7};

here recall that K, 00 = R5¢S, (0 N U,) is the cone in X, (see the definition of a fan structure before
Definition 2.2). This defines a new complete fan in 7, r consisting of convex, but not necessarily strictly
convex, cones. If 7 contains another vertex v’, we can identify the fans 715, and 7712, as follows:
For each maximal o D 7, we identify the maximal cones K, 0 + A, r and K, 0 + A, r by identifying
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the tangent spaces T, = T, using parallel transport through o O 7. Patching these identifications for
all o O 7 together, we get a piecewise linear transformation from 7,, to T, identifying the fans 771X,
and 77'2, and hence the corresponding monoids. This defines the affine analytic scheme

V(t) := Spec,, (C[t7'Z,]),

up to a unique isomorphism. Notice that 7712, can be identified (noncanonically) with the fan 2 XA, g
in @ r X A7 R, so actually

V(1) = Spec,, (C[A+]) x Spec,, (C[2<]),

where Spec,, (C[A;]) = AL @, C* = (C*)! is a complex torus.
For any v € w C T, there is a map of monoids w™'X, — 77'Z, given by

p ifpekK,oc+A,Rrforsomeo D,
H
p oo otherwise

(though there is no fan map from w™'%, to 77'X, in general), and hence a ring map

S Clw™ 'z, ] - 7', ].

wT*

This gives an open inclusion of affine schemes
tor: V(1) = V(w),
and hence a functor F: & — Schy, defined by
F(r)=V(1), F(e):=tyr:V(T) > V(w)

forw cr.

We can further introduce twistings of the gluing of the affine analytic schemes {V(7)};c%. Toric
automorphisms u of V(7) are in bijection with the set of C*-valued piecewise multiplicative maps
on T, N |t7'Z,| with respect to the fan 7~'%,. Explicitly, for each maximal cone o € 2" with
T C o, there is a monoid homomorphism ps: Ay — C* such that if o’ € 211 also contains 7, then
HolA, g = Ho'lA, .- Denote by PM(7) the multiplicative group of C*-valued piecewise multiplicative
maps on T, N |t~ !X, |. The group PM(7) a priori depends on the choice of v € 7; however, for different
choices, say v and v’, the groups can be identified via the identification 7~'Z, = r7!'Z,,. Forw C 7,
there is a natural restriction map |, : PM(w) — PM(7) given by restricting to those maximal cells
oD wwitho D 7.

Definition 2.13 ([29], Definition 1.18). A choice of open gluing data (for the cone construction) for
(B, ) isasets = (sur)wce of elements s, € PM(7) such that

1. sy =1forall T € &, and
2. ifw C T C p, then
Swp =S‘rp'sun'|p-

Two choices of open gluing data s, s” are said to be cohomologous if there exists a system {¢; } o, with
tr € PM(7) for each T € 2, such that s, = t,(t,,|;)"'s),, whenever w C 7.

The set of cohomology classes of choices of open gluing data is a group under multiplication, denoted
as H' (P, 05 ® C*). For s € PM(1), we will denote also by s the corresponding toric automorphism on
V(7) which is explicitly given by s*(z™) = s (m)z™ form € o O 7. 1f s is a choice of open gluing data,
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then we can define an s-twisted functor Fy: 9 — Schy, by setting Fs(7) := F(r) = V() on objects
and Fy(w € 7) := F(w € 7) o 57)_: V(1) — V(w) on morphisms. This defines the analytic scheme

OX =°X(B, 2, s) := lim Fy.

Gross—Siebert [27] showed that OX(B, P, s) = OX(B, P, s”) as schemes when s, s are cohomologous.

Remark 2.14. Given 7 € 2] one can define a closed stratum ¢ : °X, — °X of dimension k by
gluing together the k-dimensional toric strata V,(w) C V(w) = Spec,,(C[w™'Z,]) corresponding to
the cones K, 7+ A, g in w™'X,, forall w 7. Abstractly, it is isomorphic to the toric variety associated
to the polyhedron T € A, r. Also, for every pair w C 7, there is a natural inclusion ¢, : 0x, —%%,.
One can alternatively construct °X by gluing along the closed strata °X ;s according to the polyhedral
decomposition; see [27, §2.2].

We recall the following definition from [27], which serves as an alternative set of combinatorial data
for encoding u € PM(7).

Definition 2.15 ([27], Definition 3.25 and [29], Definition 1.20). Let u € PM(7) and p € 2" with
T C p. For a vertex v € T, we define

U (m) € C*

D(p, p,v) = p ,
Hor(m’)

where o, o’ are the two unique maximal cells such that o N o’ = p, m € A is an element projecting
to the generator in @, = Ay /A, = Z pointing to o', and m’ is the parallel transport of m € Ay to Ay
through v. D(u, p, v) is independent of the choice of m.

Let p € 21971 and o, o be the two unique maximal cells such that o, N o = p. Let de €@, be
the unique primitive generator pointing to o-,. For any two vertices v, v’ € T, we have the formula

D(p,p.v) = u(m )™ D, p,v") (2.6)

relating monodromy data to the open gluing data, where mff » € A, is as discussed in equation (2.2).
The formula (2.6) describes the interaction between monodromy and a fixed 4 € PM(7). We shall
further impose the following lifting condition from [27, Prop. 4.25] relating sy, s,/ € PM(7) and
monodromy data:

Condition 2.16. We say a choice of open gluing data s satisfies the lifting condition if for any two

vertices v,v’ € T C p with p € 2" we have D(sy+,p,v) = D(sy'7, p,v’) whenever m? , = 0.

2.4. Log structures

We need to equip the analytic scheme °X = °X (B, 9, s) with log structures. The main reference is [27,
§3-5].

Definition 2.17. Let X be an analytic space, a log structure on X is a sheaf of monoids M x together with
a homomorphism ax : Mx — Ox of sheaves of (multiplicative) monoids such that ax : @~ (0y) —

O% is an isomorphism. The ghost sheaf My of a log structure is defined as the quotient sheaf
My /a™! (O%), whose monoid structure is written additively.

Example 2.18. Let X be an analytic space and D C X be a closed analytic subspace of pure codimension
one. We denote by j: X \ D < X the inclusion. Then the sheaf of monoids

My = j(Ox\p) N Ox,
together with the natural inclusion ax : Mx — Ox defines a log structure on X.
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We write X if we want to emphasize the log structure on X. A general way to define a log structure
is to take an arbitrary homomorphism of sheaves of monoids

a: P — Ox
and then define the associated log structure by

Mx = (P Ox)/{(p.a(p)™) | p €@ (Ox)}.

In particular, this allows us to define log structures on an analytic space Y by pulling back those
on another analytic space X via a morphism f:Y — X. More precisely, given a log structure on
X, the pullback log structure on Y is defined to be the log structure associated to the composition
ay: f'(Mx) = f1(Ox) — Oy. For more details of the theory of log structures, readers are
referred to, for example, [27, §3].

Example 2.19. Taking a toric monoid P (i.e., P = C N M for a cone C C Mp), we can define

: P — Ospec(cip)) by sending m + 7z, where P is the constant sheaf with stalk P. From this, we
obtam a log structure on the analytic toric variety Spec,,(C[P]). Note that this is a special case of
Example 2.18, where we take X = Spec,, (C[P]) and D to be the toric boundary divisor.

Before we describe the log structures on °X = X (B, 2, s), let us first specify a ghost sheaf M over
0X. Recall that the polyhedral decomposition & is assumed to be regular, namely, there exists a strictly
convex multivalued piecewise linear function ¢ € H°(B, MPLg). For any 7 € 2, we take a strictly
convex representative ¢, of ¢ on @ r and define

r(V(r),M) =P, =C, N (CQ, & Z),

where C; := {(m,h) € Qg ®R|h > ¢.(m)}. For any w C 7, we take an integral affine function ¢,
on U,, such that ¥, + S7,(@.) vanishes on K, 7 and agrees with S% (@) on all of oo N U, for any
o D 7. This induces amap C,, = Cpr = {(m, h) € Qur ®R|h = Yo (m) + @, (m)} by sending
(m, h) = (m, h+y,.(m)), whose composition with the quotient map @, r ®R — @, r ® R gives
amap C,, — C; of cones that corresponds to the monoid homomorphism P, — P, The P.’s glue
together to give the ghost sheaf M over °X. There is a well-defined section ¢ € F(OX M) given by
gluing (0, 1) € C; for each 7.

One may then hope to find a log structure on °X which is log smooth and with ghost sheaf given
by M. However, due to the presence of nontrivial monodromies of the affine structure, this can only
be done away from a complex codimension 2 subset Z  °X not containing any toric strata. Such log
structures can be described by sections of a coherent sheaf £S?,. supported on the scheme-theoretic

singular locus %X sing C 0X. We now describe the sheaf ﬁS;re

functions; readers are referred to [27, §3 and 4] for more details.
For every p € 2"~ we consider ¢,: °X, — °X, where X, is the toric variety associated to the

polytope p C A, r. From the fact that the normal fan /4, C A;’R of p is a refinement of the normal fan

M) C A;’R of the r,-dimensional simplex A(p) (as in §2.2), we have a toric morphism

pre
and some of its sections called slab

#p: OX, — P 2.7)

Now, A (p) corresponds to O(1) on P'». We let NV, := %, (O(1)) on OXp and define

LShe = @ Lpe(N). (2.8)

peg[n—l]
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Sections of ES;;re can be described explicitly. For each v € 21°, we consider the open subscheme

V(v) of °X and the local trivialization

’CS;re|V(V) = @ Ovp(V)’

pPVEP

whose sections over V(v) are given by (f,p)vep. Given v,v’ € 7 where 7 corresponding to V(7), these
local sections obey the change of coordinates given by

n-1_-— -m” -1 -
D($vr2s 0 V)T (furp) = 27 D($v2, 05 V) T 53 L (fop)s (2.9)

where p D 7 and s,, 5,7 are part of the open gluing data s. The section f := (f,p)vep is said to be
normalized if f,, takes the value 1 at the zero-dimensional toric stratum corresponding to a vertex v, for
all p. We will restrict ourselves to normalized sections f of £S;re. The complex codimension 2 subset
Z c 9X is taken to be the zero locus of f on 0x sing-

Only a subset of normalized sections of [,S;re

corresponds to log structures. For every vertex
v € 20 and € 2172 containing v, we choose a cyclic ordering p1, . . ., p; of codimension one cells
containing 7 according to an orientation of @, r. Let d,, € @; be the positively oriented normal to p;.

Then the condition for f = (fip)vep € ES;;re|V(v) to define a log structure is given by

!
[ 1o © foplvey =0@1, in@ @T(V:()\ 2,05 ), (2.10)
i=1

where the group structure on @ is additive and that on I'(V(v) \ Z, Oy, (v)) is multiplicative. If
f = (fup)vep is a normalized section satisfying this condition, we call the f,,’s slab functions.

Theorem 2.20 ([27], Theorem 5.2). Suppose that B is compact and the pair (B, P) is simple and
positive. Let s be a choice of open gluing data satisfying the lifting condition (Condition 2.16). Then
there exists a unique normalized section f € T'(°X, ES;rc) which defines a log structure on °X (i.e.,
satisfying the condition (2.10)).

From now on, we always assume that B is compact. To describe the log structure in Theorem 2.20,
we first construct some local smoothing models: For each vertex v € 2101, we represent the strictly
convex piecewise linear function ¢ in a small neighborhood U of v by a strictly convex piecewise linear
¢y : @, r — R (sothat ¢ = S} (¢,)) and set

Cy:={(m,h) e Qg ®R|h > ¢,(m)}, P,:=C,N(Q, ®Z).

The element o = (0, 1) € @, ® Z gives rise to a regular function g := z€ on Spec,,(C[P,]). We have a
natural identification

V(v) := Spec,, (C[Z,]) = Spec,, (C[Pv]/q).

through which we view V(v) as the toric boundary divisor in Spec,,(C[P,]) that corresponds to the
holomorphic function ¢, and 7, : Spec,,(C[P,]) — Spec,,(C[q]) as alocal model for smoothing V' (v).

Using these local models, we can now describe the log structure around a point x € °X \ Z. On a
neighborhood V c V(v) \ Z of x, the local smoothing model is given by composing the two inclusions
b: V e V(v) and V(v) — Spec,,(C[P,]). The natural monoid homomorphism P, — C[P, ] defined
by sending m +— z™ determines a log structure on Spec,,(C[P,]) which restricts to one on the toric
boundary divisor V(v) = Spec,,(C[Z,]). We further twist the inclusion b: V < V(v) as

" by, 7" form e X, (2.11)
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here, for each m € X,,, h,, is chosen as an invertible holomorphic function on V N Zero(z™;v), where
we denote Zero(z";v) := {x € V(v) | 2" € O%}, and such that they satisfy the relations

B B = Bmanys 00V 0 Zero (2™ 5 v). (2.12)

Then pulling back the log structure on V(v) via b: V < V(v) produces a log structure on V which is
log smooth.

These local choices of h,,’s are also required to be determined by the slab functions f,,’s, up to
equivalences. Here, we shall just give the formula relating them; see [27, Thm. 3.22] for details. For any
pE pln-1] containing v and two maximal cells o such that oy N o— = p, we take m, € @, N K, 0
generating @, with some mo € @, N K, p such that mg — m, € @, N K, 0. Then the required relation
is given by

Hi
fop= —— € 0y, (Vo) N V), 2.13)

hmo—m+ . hm0+m+ Ve (v)nV

which is independent of the choices of mg and m..

By abuse of notation, we also let b: V — XV be the k-th order thickening of V over C[¢q]/¢**! in
the model Spec,,(C[P,]) under the above embedding. Then there is a natural divisorial log structure
on kv over ST coming from restriction of the log structure on Spec,, (C[P,])T over S (i.e., Example
2.18, which is the same as the one given by Example 2.19 in this case). Restricting to V reproduces
the log structure we constructed above, which is the log structure of °X* over the log point °S* locally
around x. We have a Cartesian diagram of log spaces

Vi —skyt, (2.14)

0gtC___ S kgf

Next, we describe the log structure around a singular point x € Z N (OX N\ Uwer X w) for some
7. Viewing f = X, epin-1 fp Where f, is a section of Ny, welet Z, = Z(f,) C OXP c %X and write
Z =\, Z,. Forevery T € &, we have the data Q;’s, R;’s, A;(7) and A;(7) described in Definition 2.9
because (B, &) is simple. Since the normal fan /7 C A  of 7 is a refinement of N}, () C A% 5, we
have a natural toric morphism

%t OXp — P (2.15)

and the identification L*TP(J\/p) = %’;’i(O(l)). By the proof of [27, Thm. 5.2], i7,(f,) is completely
determined by the gluing data s and the associated monodromy polytope A;(7), where p € R;. In
particular, we have (7 ,(f,) = Ljp,(fpf) and Z, N X, = Zy N X, = Z[ for p,p" € R;. Locally, if
we write V(1) = Spec,,(C[77!Z,]) by choosing some v € 7, then, for each 1 < i < p, there exists an
analytic function f, ; on V(7) such that f, ;|v, () = syL(fup) for p € R;.
According to [28, §2.1], foreach 1 < i < p, we have A;(1) C @;R, which gives
yi(m) = —inf{(m,n) | n € Aj(7)}. (2.16)

By convention, we write ¢o := @,. By rearranging the indices i’s, we can assume thatx € Zf N---NZT
andx ¢ Z7 , U---UZ7. We introduce the convention that /. ; = ¢; for 0 < i < r and ¢ ; = 0 for
r < i < dimg (7). Then the local smoothing model near x is constructed as Spec,,(C[P+,x]), where

Pey = {(m,ao,...,a;) € @ xZ"" | a; > gy ;(m)}, (2.17)
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[ = dimg(7), and the distinguished element o = (0, 1,0, ..., 0) defines a family

Spec,, (C[Pr.x]) — Spec,,(Cg])

by sending ¢ +— z¢. The central fiber is given by Spec,,(C[Q+ x]), where

Q‘r,x = {(m, ap, . .. ,al) | ap = ‘;l’x,O(m)} = P‘r,x/(Q"' P‘r,x) (2]8)

is equipped with the monoid structure

b = m+m’ ifm+m’ € Qry,
0o otherwise.

We have the ring isomorphism C[Q, ] = C[X, ®N] induced by the monoid isomorphism defined by
sending (m, ag, ay,...,a;) — (m,a; —y(m),...,a; —;(m)).

We also fix some isomorphism C[77!'X,] = C[Z, ® Z'] coming from the identification of 77'%,
with the fan £, ®R! = {w®R! | w is a cone of 7} in @, r ®R’. Taking a sufficiently small neighborhood
V of x such that Z, NV = 0 if x ¢ Z,, we define a map V — Spec,, (C[Q+ x]) by composing the
inclusion V < Spec,, (C[t7'Z,]) = Spec,,(C[Z, ® Z]) with the map

Spec,,(C[Z; ® 7)) - Spec,,(C[Z; ® N')
described on generators by

" by 2" ifme Xy
u; = fyi ifl<i<r; (2.19)
u;—z;—z;(x) ifr<i<li

here, u; is the i-th coordinate function of C[N'], z; is the i-th coordinate function of C[Z!] chosen so

i
that (_02, ieriie

V N Zero(z™;v), and they satisfy the equations (2.12) and (2.13) where we replace f,, by

is nondegenerate on V; also, each h,, is an invertible holomorphic functions on

. syt (fop) ifx ¢ Z,,
R ifx € Z,.

Letting b: V — ¥V be the k-th order thickening of V over C[¢]/¢**" in the model Spec,, (C[P+.x])
under the above embedding, we have a natural divisorial log structure on ¥V over ¥ST induced from
the inclusion Spec,, (C[Q+,x]) < Spec,,(C[P+ x]) (i.e., Example 2.18). Restricting it to V gives the
log structure of X over the log point °S™ locally around x.

3. A generalized moment map and the tropical singular locus on B

In this section, we recall the construction of a generalized moment map i : °X — B from [43, Prop. 2.1].
Then we construct some convenient charts on the base tropical manifold B and study its singular locus.

3.1. A generalized moment map

From this point onward, we will assume the vanishing of an obstruction class associated to the open
gluing data s, namely, o(s) = 1, where the obstruction class o(s) is written multiplicatively (see [27,
Thm. 2.34]). Under this assumption, one can construct an ample line bundle £ on °X as follows: For
each polytope 7 C A, g, by identifying °X, (a closed stratum of °X described in Remark 2.14) with
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the projective toric variety associated to 7, we obtain an ample line bundle £, on °X,. When the
assumption holds, then there exists an isomorphism h,,-: ¢, (L) = L,,, for every pair w C 7 such
that the isomorphisms h,,.’s satisfy the cocycle condition, that is, h,,r o ¢§,.(h;s) = h, s for every
triple w C 7 C o> In particular, the degenerate Calabi—Yau °X = X (B, 2, s) is projective.

Sections of L correspond to the lattice points By C B. More precisely, given m € By, there is a
unique 7 € & such that m € int,. (1), and this determines a section &, r of L by toric geometry. This
section extends uniquely as ¥, to o D 7 such that h;,(#y,) = P, .. Further extending ¢, by 0 to
other cells gives a section of £ corresponding to m, called a (0M-order) theta function. Now, for a vertex
v € P10, we can trivialize £ over V(v) using 1, as the holomorphic frame. Then, for m lying in a cell
o that contains v, i, is of the form g,, where g is a constant multiple of z".

Under the above projectivity assumption, one can define a generalized moment map

w: °X > B 3.1

following [43, Prop. 2.1]: First of all, the theta functions {¥, } <, defines an embedding of 09X, denoted
by @: 9X < PV Restricting to each closed toric stratum °X . c X, the only nonzero theta functions
are those corresponding to m € Bz N 7. Also, there is an embedding j,: T, := 1\*;’R/A*;’Z — U(1)N of
real tori such that the composition @ : 0X, — PV of ® with the inclusion °X; — %X is equivariant.
The map w is then defined by setting

1

2
Hlox, (2) := [Gm ()| - m, (3.2)
YimeBznt |9 (2) 2 me%;m.r "
which can be understood as a composition of maps
0 (o2 N Hp N\ x dii
X P (R ) AT,R7

where pp is the standard moment map for PV and dj; : A”;’R — R is the Lie algebra homomorphism
induced by j,: T, — U(1)V.

Fixing a vertex v € 0] , we can naturally embed A, g < T, r for all 7 containing v. Furthermore,
we can patch the dj*’s into a linear map dj*: (RV)* — T, g so that u, = di* o up o ®, for each t
which contains v. In particular, on the local chart V(7) = Spec,,(C[7r7'Z,]) associated with v € 7, we
have the local description uly (ry = dji* o up o @|y () of the generalized moment map .

We consider the amoeba A := u(Z). As°X, NZ = Uf’:] Z7, where Z is the zero set of a section
of %*T’t.((’)(l)) (see the discussion right after equation (2.15)), we can see that AN T = U,-p:1 o (Z])
is a union of amoebas AT := u,(Z). It was shown in [43] that the affine structure defined right after
Definition 2.2 extends to B \ A.

3.2. Construction of charts on B
For any T € 2, we have
p(V(0) = | intre(w) = W(2).
TCWw

For later purposes, we would like to relate sufficiently small open convex subsets W c W (t) with Stein
(or strongly 1-completed, as defined in [13]) open subsets U c V(7). To do so, we need to introduce a
specific collection of (nonaffine) charts on B.

3In fact, the vanishing of the obstruction class corresponds exactly to the validity of the cocycle condition.
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Recall that there are natural maps A, < 7', and 7!Z, - .. By choosing a piecewise linear
splitting split.: X, — 7715, we have an identification of monoids 7~!%, = ¥, X A,, which induces
the biholomorphism

V(1) = Specy, (C[t7'Z,]) = Spec,,(C[A-]) X Spec,, (C[Z-]),
where A’;’C* := Spec,,(C[A;]) = AL ® C* = (C*)! is a complex torus. Fixing a set of genera-
tors {m;};cp, of the monoid X, which is not necessarily a minimal set, we can define an embedding
Spec,,(C[Z;]) — CBrl as an analytic subset using the functions z”’s. We consider the real torus
Try = QL g/ = U(1)"! and its action on Spec,,(C[X.]) defined by ¢ - g™ = 2™ (") zm o
gether with an embedding T, ; — U(l)'BT| of real tori via t + (eZm' (t.m; ))iEBT so that the inclusion
Spec,,(C[Z;]) < C[B*lis T, | -equivariant.
We consider the moment map fi,: Spec,,(C[Z;]) — @, r defined by

A 1 m; |2

fir = ieZB, S m, (3.3)
which is obtained by composing the standard moment map CcBl — leg l, (zi)ien, — ( %| z,—|2)i€BT
with the projection RB-I — Qrr,e; — m;. By [21, §4.2], i, induces a h;)meomorphism between the
quotient Spec,,(C[X;])/T,,1. and @, r. Taking product with the log map log: A} ¢ = A} 5 (which
is induced from the standard log map log: C* — R defined by log(e2”*+19)) = x), we obtain a map
pr = (log, fiz): V(r) — A} g X @ r," and the following diagram

V(T) 3.4
Hr
M

YT
A";’R X Qrg—=W(1),

where Y, is a homeomorphism which serves as a chart.

The homeomorphism Y, exists because if we fix a vertex v € 7, then we can equip V(7) with an
action by the real torus T" := T7 /T such that both ¢ and p, induce homeomorphisms from the
quotient V(7)/T" onto the images. The restriction of Y, to Aj,R x {o}, where {0} is the zero cone, is
a homeomorphism onto int,.(7) € W(7), which is nothing but (a generalized version of) the Legendre
transform (see [21, §4.2] for the explicit formula); also, this homeomorphism is independent of the
choices of the splitting split, and the generators {m;};cs. .

The dependencies of the chart Y, on the choices of the splitting split,: X, — 77'Z, and the
generators {m;}; can be described as follows. First, if we choose another piecewise linear splitting
s?ﬁt,: >, — 7°IZ,, then there is a piecewise linear map b: X, — A, R recording the difference
between split, and SF;TIitT. The two corresponding coordinate charts Y, and Y, are then related by a
homeomorphism J such that

J(x,Zyimi) = (x,Zyie“”(b(””)"‘)mi ,
i i
1

where y; = Elz"”'l2 for some point z € Spec,,(C[Z;]) and i runs through m; € o, via the for-
mula Y, = Y, o J. Second, if we choose another set of generators 77 j’s, then the corresponding
maps fir, fir: Spec,,(C[2;]) — @, r are related by a continuous map 3: Q. r — @, r which maps

41t depends on the choices of the splitting split, : % — 7 !X, and the generators {m; };, but we omit these dependencies
from our notations.
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each cone o € X, back to itself. This is because both fi., fi; induce a homeomorphism between
Spec,,(C[Z;])/T+,1 and @, r.

Now, suppose that w C 7. We want to see how the charts Y ,, Y, can be glued together in a compatible
manner. We first make a compatible choice of splittings. So we fix a vertex v € w and a piecewise linear
splitting split,,: X, — w~'Z,. We then choose a piecewise linear splitting split,,,: £, — X, such
that Ko is mapped into Ko for any o D 7. Together with the natural maps A;/A, — 77 'Z,
and 77'X,, - X., we obtain an isomorphism 77!, = (A;/A,) X Z;. By composing together
split,.: Zs = 2, split,: X — w~'%, and the natural monoid homomorphism s, 5 1l
we get a splitting split. : £, — 771Z,,.

Using these choices of splittings, we have a biholomorphism

Spec, (C[T7'Z0]) = (Ar/Aw)* ®2 C" X Spec,, (C[Z-])

which fits into the following diagram

AZ),(C* X Specan (C [Zw])g—>specan (C [w_l P ])
Fy(wcTt)

AZ),(C* X Specan(C[T_lzw])<:—spCCan( [T_lZV])%SPCCM(C[T_IZV])

wT

(Ao ® Ar/Ay)* ®2 C X Spec,, (C[Z,])=——A% 1. X Specan(C[ZT])TA;C* X Specy, (C[27]).

T

(3.5)

Here, the bottom left horizontal map is induced from a splitting (A /A ) — A, obtained by composing
Ar/Ay — T7'Z,, with the splitting 77'2,, — 77! (w™'Z,) and then identifying with the image lattice
A+. The appearance of s, in the diagram is due to the twisting of V(7) by the open gluing data
(Swr)wcr When it is glued to V(w).

We also have to make a compatible choice of the generators {m;};cg, and {m;};cp,. First, note
that the restriction of £, to the open subset Spec,,(C[t'Z,]) ¢ Spec,,(C[Z,,]) depends only on
the subcollection {m;};cp,,_, of {m;};ep, Which contains those m;’s that belong to some cone o D T.
We choose the set of generators {7, };eg, for X, with B; = B,,c, to be the projection of {m;};cs,,,
through the natural map 7%, — X.. Each m; can be expressed as m; = split,,,(1;) + b; for some
b; € A+/A,, through the splitting split,,,: X — Z,,. Notice that if m; € K,,7, then we have 7; = o
and hence b; € K,,7. By tracing through the biholomorphism in equation (3.5) and taking either the
modulus or the log map, we have a map

3 AZ,R X (AT,R/A(U,R)* X @T,R - AZ),]R X @w,R7

satisfying
IHxi —cor1,x2 - Cm,z,zyz'|Sm(3p”tm(ﬁli))|_2ﬁ1i) = (Xl,Zyi€4”<bf’x2>mi), (3.6)
; 7

where y; = %Iz”"i |>. Here, s,r € PM(7) is the part of the open gluing data associated to w C 7, and
Cwr =Cwr1+Cuwr2 € A’;’R is the unique element representing the linear map log |s,|: Az r = R
defined by log |s.,¢|(b) = log|ser(b)|. For instance, the holomorphic function 7™ € C[t7'Z,] is
identified with z% -z in (A+/Ao)*®7zC*xSpec,, (C[Z,]), resulting in the expression ; y;e*™ Pi-¥2)
on the right-hand side. We have Y, = Y, o ], where we use the splitting (A;/A,) — A, to obtain an
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isomorphism A% X (Arr/Awr)" = A ; and an identification of the domains of the two maps Y,
and Y, ol

Lemma 3.1. There is a base B of open subsets of B such that the preimage u~' (W) is Stein for any
We 3.

Proof. First of all, it is well known that analytic spaces associated to affine varieties are Stein. So V(7)
is Stein for any 7. Now, we fix a point x € int..(7) C B. It suffices to show that there is a local base 98, of
x such that the preimage u~! (W) is Stein for each W € 9B,. We work locally on u|y (r): V(1) = W(7).
Consider the diagram (3.4) and write Y! (x) = (x,0), where o € @ R is the origin. By [13, Ch. 1, Ex.
7.4], the preimage log™! (W) under the log map log: (C*)! — A*;’R is Stein for any convex W C A’;’R
which contains x. Again by [13, Ch. 1, Ex. 7.4], any subset

N
[){z € Spec (CIED) | 1£5(2)] < €},

J=1

where f;’s are holomorphic functions, is Stein. By taking f;’s to be the functions z™/’s associated to
the set of all nonzero generators in {m};cg, and e sufficiently small, we have a subset

2
1
W = {y | y = nymf with [y;| < %, where y; = §|sz|2 at some point z € Specan(C[ET])}
J

of @, r such that the preimage fi7' (W) is Stein. Therefore, we can construct a local base 9, of o such
that the preimage f;!(W) is Stein for any W € ,,. Finally, since a product of Stein open subsets is
Stein, we obtain our desired local base 9B, by taking the products of these subsets. O

3.3. The tropical singular locus § of B

We now specify a codimension 2 singular locus & C B of the affine structure using the charts Y,
introduced in (3.4) for 7 such that dimg(7) < n. Given the chart Y, that maps A’ ; to inte(7), we
define the tropical singular locus & by requiring that

Y(Sninte(m) = | ) ((inte(p) + ) x {0}), (3.7)
PENT;
dimg (p) <dimg (7)

where N, C A’;’R is the normal fan of the polytope 7, and {o} is the zero cone in X, C @ r; here,
¢ = log|syr| is the element in A7  representing the linear map log|sy|: Arr — R, which is
independent of the vertex v € 7. A subset of the form &7 , = (int(p) + c7) X {0} in (3.7) is called
a stratum of & in int, (7). The locus & is independent of the choices of the splittings split,’s and
generators {m; };cp, used to construct the charts Y,’s.

Remark 3.2. Our definition of the singular locus is similar to those in [27, 29]; the only difference is that
our locus is a collection of polyhedra in Aj’R, instead of int, (7). Note that A;R is homeomorphic to
int (7) by the Legendre transform. This modification is needed for our construction of the contraction
map € below, where we need to consider the convex open subsets in A’;’R, instead of those in int. (7).

Lemma 3.3. For w C 7 and a stratum Sr , in int(7), the intersection of the closure Sz , in B with
intye (w) is a union of strata of § in intye (w).

Proof. We consider the map J described in equation (3.6) and take a neighborhood W = W; x @Q,, r
of a point (x,0) in A} ; X @, r, where W} is some sufficiently small neighborhood of x in A’ .. By

shrinking W if necessary, we may assume that J='(W) = W; x (a — inte(K,7")) X @ r, Where a is
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some element in —inte (K,7") C (Arr/Awr)* Writing c; = ¢ + ¢¢2, Where ¢ 1, ¢, are the
components of ¢ according to the chosen decomposition A} = A7 ; X (Arr/AwRr)", the equality
Cr,1 *+ Cwr,1 = € follows from the compatibility of the open gluing data in Definition 2.13. If & ,
intersects the open subset J7! (W), then p C A% g must be the dual cone of some face p¥ C w C 7in
A’;’R. The intersection is of the form

(intre(B) + C‘r,l) X (a - intre(KwTV)) X {0}

for some pEe N (cz,2 is absorbed by a), where pC A% RIS the dual cone of pV in A’;’R, and hence we

have W N &7 , = J((intre(p) +¢7,1) X (@ — inte (K, 7)) X {0}). Therefore, the intersection of §- , with

A},  in the open subset W c A} g X Qg is given by (p +c,) X {0}, which is a union of strata. O

The tropical singular locus & is naturally equipped with a stratification, where a stratum is given by
&8z p for some cone p C A, of dimp(p) < dimg(7) for some 7 € Pl<nl We use the notation §¥I
to denote the set of k-dimensional strata of §. The affine structure on |, cgpio1 Wy U U g cginl intre (07)
introduced right after Definition 2.2 in §2.1 can be naturally extended to B \ & as in [29].

If we consider w C 7 C p for some w € P!l and p € 21"~ the corresponding monodromy
transformation 7, is nontrivial if and only if w € Q) and p € R, where p is as in Definition 2.9.
Therefore, the part of the singular locus & lying in Y7!(inte (7)) = A g X {0} is determined by the
subsets £2),’s. We may further define the essential singular locus S to include only those strata contained
in &2 with nontrivial monodromy around them. We observe that the affine structure can be further
extended to B \ &,.

More explicitly, we have a projection

lr=ir 1@ @lrpi AT oA () @"'@AZ,,@’

in which AZ] () ®--- DA can be treated as a direct summand as in §2.2. So we can consider

A])(T)
the pullback of the fan A, (r) X -+ X A4, (r) via the map i, and realize #7 C A7 ; as a refinement

of this fan. Similarly, we have I, = I, ® - ®1;,: Q7 — A% L0 8 A*A ) and the fan
r

/VA1 (r) X X /VA,,(T) in Q;R under pullback via ;. The intersection &, N inte(7) can be described

by replacing p € A5 with the condition p € i;l(./VAl(T) X+t X M, (7)), with a stratum denoted by

Se,z,p- This gives a stratification on &,.

Lemma 3.4. For w C 7 and a stratum Se + , in int(7), the intersection of the closure S 1 , in B with
intye (w) is a union of strata of S, in intee(w).

Proof. Given w C 1, we take a change of coordinate map J together with a neighborhood W as in the
proof of Lemma 3.3. We need to show that W N 8- , = J((intre(p) + ¢7,1) X (@ — inte (K, 7)) X {0})
for some cone p € i7! (Hf:l Ma, (). Let Ay(7),...,A(7),...,Ap,(7) be the monodromy polytopes
of ,and A (w), ..., Ar(w),...,Ap(w) be those of w such that A ;(w) is the face of A () parallel to
A for j =1,...,r. Then we have direct sum decompositions Ax,(r) ® -+ ® AA,,(T) ®A; =A;and
Apj(w) @ B AA (w) ©® Aw = Aw. We can further choose an inclusion

Qwr: Ap,, () © - GBAAP,(w) DA, > As;

in other words, forevery j =r+1,...,p’,any f € R; C &,_i(w) in Definition 2.9 is not containing

t.Forevery j=r+1,...,pandany f € R; ¢ %,_1(7), the element m{l v, 18 zero for any two vertices
v1, v2 of w. We have the identification

r p
Az/Aw = @(AAI'(T) /AAj(w)) & @ AA[(T) ® COker(awT)-
Jj=1 I=r+1
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As a result, any cone i;l(ﬂ‘;7

3-1(W) will be a pullback of a cone under the projection to AZI @ @ AZ, ()R
commutative diagram of projection maps

L pj) € i7 (17, W, (r)) of codimension greater than 0 intersecting

Consider the

AL — A (3.8)

lpﬂ) ip?‘
rAY
J=1 A (1) R”

LAY
]=1 Aj(w),R

Meycr

We see that, in the open subset J~! (W), every cone of codimension greater than 0 coming from
pullback via p, is a further pullback via II,c; o pr. As a consequence, it must be of the form
I((inte (p) + c7,1) X (a — inte (K, 7)) X {0}) in W. o

3.3.1. Contraction of Ato &
We would like to relate the amoeba A = p(Z) with the tropical singular locus § introduced above.

Assumption 3.5. We assume the existence of a surjective contraction map € : B — B which is isotopic
to the identity and satisfies the following conditions:

. €1 (B\&) c (B\S) and the restriction Cle-1(8\s): % '(B\ &) — B\ & is a homeomorphism.
. % maps A into the essential singular locus &,.

. For each 7 € &, we have €~ (intre (7)) C intye (7).

. For each 7 € & with 0 < dimg(7) < n, we have a decomposition

S W N =

N Y(B\S) = U Ty

verlol

of the intersection 7 N €' (B \ &) into connected components 7,’s, where each 7, is contractible
and is the unique component containing the vertex v € 1.
. For each 7 € 9 and each point x € int.(7) N &, €~!(x) C int(7) is a connected compact subset.
6. For each 7 € & and each point x € int,(7) N &, there exists a local base 9, around x such that
(€ o u)"" (W) c V(1) is Stein for every W € By, and for any U > €~ (x), we have €~ (W) c U
for sufficiently small W € 3,.

9}

Similar contraction maps appear in [43, Rem. 2.4] (see also [45, 44]).

When dimg (B) = 2, we can take € = id because from [27, Ex. 1.62], we see that Z is a finite
collection of points, with at most one point lying in each closed stratum °X ., and the amoeba A is
exactly the image of Z under the generalized moment map .

When dimg (B) = 3, the amoeba A can possibly be of codimension one and we need to construct a
contraction map as shown in Figure 5.

For dimg (1) = 1, again from [27, Ex. 1.62], we see that if A N int,(7) # 0, then there is exactly
one Q) and R;, and A (7) is a line segment of affine length 1. In this case, Z N 0X . consists of only
one point, given by the intersection of the zero locus s, ( fvp) with C* = V(1) c V(7). Taking m to
be the primitive vector in A, starting at v that points into 7, we can write s;L(f,p) = 1 + 531 (m)z™.
Applying the log map log: C* — R, we see that A Nint, () = ¢. Therefore, for an edge 7 € P11, we
can define € to be the identity on 7.

On a codimension one cell p such that int.(p) N A # 0 (see Figure 6), we consider the log map
log: Spec,,(C[A,]) = (C*)? — AZ,R = R? and take a sufficiently large polytope P (colored purple
in Figure 6) so that A \ int,(P) is a disjoint union of legs. We first contract each leg to the tropical
singular locus (colored blue in Figure 6) along the normal direction to the tropical singular locus. Next,
we contract the polytope P to the zero-dimensional stratum of §,. Notice that the restriction of € to
the tropical singular locus & is not the identity but rather a contraction onto itself. Once the contraction
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A T
C
Figure 5. Contraction map € when dimg(B) =3

\

S

/

Figure 6. Contraction at p.

map is constructed for all codimension one cells p, we can then extend it continuously to the whole of
B so that it is a diffeomorphism on int. (o) for every maximal cell o-. The map is chosen such that the
preimage %! (x) for every point x € inte(p) is a convex polytope in R?. Therefore, given any open
subset U ¢ R? which contains %”’ (x), we can find some convex open neighborhood W; ¢ U of € (x)
giving the Stein open subset log™! (W) c (C*)2. By taking W = W; x W5 in the chart A}O X Qp r as
in the proof of Lemma 3.1, we have the open subset W that satisfies condition (5) in Assumption 3.5.

In general, we need to construct & fin,. () inductively for each T € P such that €' (x) C inte(7) is
convex in the chart A* TR = inte (1) and the codimension one amoeba A is contracted to the codimension
2 tropical singular locus Se. The reason for introducing such a contraction map is that we can modify
the generalized moment map u to one which is more closely related with tropical geometry:

Definition 3.6. We call the composition v := € o u: °X — B the modified moment map.

One immediate consequence of property (6) in Assumption 3.5 is that we have Rv..(F) = v.(F) for
any coherent sheaf F on 0X, thanks to Lemma 3.1 and Cartan’s Theorem B:

Theorem 3.7 (Cartan’s Theorem B [6]; see e.g. Ch. IX, Cor. 4.11 in [13]). For any coherent sheaf F
over a Stein space U, we have H*(U, F) = 0

3.3.2. Monodromy invariant differential forms on B

Outside of the essential singular locus &, we have a nice integral affine manifold B \ &,, on which we
can talk about the sheaf Q* of (R-valued) de Rham differential forms. But in fact, we can extend its
definition to &, as well using monodromy invariant differential forms.
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We consider the inclusion ¢: By := B\ & — B and the natural exact sequence
0-Z— Aff = t.Ap, — 0, (3.9)

where A*B0 denotes the sheaf of integral cotangent vectors on By. For any 7 € 9, the stalk (L*A*BO )x at
apoint x € inte(7) N &, can be described using the chart Y in equation (3.4). Using the description in
§3.3, we have x € S, 7, = int(p) X {0} for some p € i;l(/VAl(T) X -+ X My, (r))- Taking a vertex
v € 7, we can consider the monodromy transformations T, ’s around the strata §, ; ,’s that contain x
in their closures. We can identify the stalk ¢, (Ago)x as the subset of invariant elements of 7}, under
all such monodromy transformations. Since p C A p is a cone, we have A, C A7. Using the natural
projection map 7,7 : 77 — A7, we have the identification ¢, (Ap )x = m,1(Ap). There is a direct sum
decomposition ¢, (Al*go )x = Ap ® @%, depending on a decomposition 7, = A ® @.. This gives the map

x: Uy — 1 (A (3.10)

in a sufficiently small neighborhood Uy, locally defined up to a translation in ﬂ;L(Ap)IE. We need to
describe the compatibility between the map associated to a pointx € &, and thattoapoint¥ € S - 5
such that 8¢, p C Se,7,5-

The first case is when w = 7. We let X € int,(5) X {0} N Uy for some p C g. Then, after choosing
suitable translations in 7,1 (Ap)g for the maps x and %, we have the following commutative diagram:

Us NUy———>m (A (3.11)
p
U, %n’;}r (Ap)]fé.

The second case is when w C 7. Making use of the change of charts J in equation (3.6), and the
description in the proof of Lemma 3.4, we write

¥ € inte (p) x {0}
for some cone p = i;l(]—[?:l pj) € i ( ;’:1 AZ,-(T)) of positive codimension. In J-! (W), we may
assume p is the pullback of a cone g via Il,c+ o pr as in equation (3.8). Since e wp C Se,7r.p5
we have p C p;} (0) and hence p;}CT(Ap) C Ap. Therefore, from py,cr © Tyr = 7y, We obtain
m, L, (Ap) € w3 L(Ap), inducing the map p: 7,1 (Ag); — 7L, (Ap)i. As a result, we still have the
commutative diagram (3.11) for a point X sufficiently close to x.

Definition 3.8. Given x € &, as above, the stalk of Q at x is defined as the stalk Q% := (x7'Q*), of
the pullback of the sheaf of smooth de Rham forms on ﬂ;IT(Ap)D’g, which is equipped with the de Rham
differential d. This defines the complex (Q*, d) of monodromy invariant smooth differential forms on B.
A section o € Q*(W) is a collection of elements o, € Q}, x € W such that each a, can be represented
by x‘lﬁx in a small neighborhood U, C p~'(U,) for some smooth form Bx on Uy, and satisfies the
relation az = ¥ ! (p*By) in Q7 for every X € Uy.

Example 3.9. In the two-dimensional case in Example 2.11, we consider a singular point
{x} = &, Ninte (1)

for some 7 € S In this case, we can take p to be the zero-dimenisonal stratum in A7 = i;l (Ma ()
and we have ¢, (AZO )x = @;. Taking a generator of @7, we get an invariant affine coordinate x: U, — R
which is the normal affine coordinate of 7. The stalk Q7 is then identified with the pullback of the space
of germs of smooth differential forms from (R, 0) via x. In particular, Qi =0.
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For the Y-vertex of type Il in Example 2.12, the situation is similar to the 2-dimensional case. For
{x} = & Ninte (1), we still have ¢, (A}‘go)x = @*, and in this case, x: U, — R? are the two invariant
affine coordinates. We can identify Q7 as the pullback of the space of germs of smooth differential
forms from (Rz, 0) via x.

For the Y-vertex of type I in Example 2.12, we use the identification A ; = int.(7) via Y, for the
2-dimensional cell T separating two maximal cells o and o—_. In this case, &, is as shown (in blue color)
in Figure 6 and /" = 17! (A}, ()) is the fan of P2. If x is the zero-dimensional stratum of &, N inty(7),
we have ¢, (AEO)X = @ and x: U, — R as an invariant affine coordinate. If x is a point on a leg of the

Y-vertex, we have x = (x1,X;): Uy — R? with x; coming from a generator of A, and x coming from
a generator of @;.

It follows from the definition that R — Q* is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.10. Given any x € B and a sufficiently small neighborhood U, there exists o € Q°(U) with
compact support in U such that 0 < o < 1 and o = 1 near x. (Since Q° is a subsheaf of the sheaf C° of
continuous functions on B, we can talk about the value f(x) for f € QY (W) and x € W.)

Proof. If x ¢ §,, the statement is a standard fact. So we assume that x € int,(7) N &, for some 7 € P.
As above, we can write x € inty(p) X {0}. Since p is a cone in the fan i7! (A4}, (1) X X Ma, () AT
has AZ. 0 ® O AZP (r) 52 direct summand, and the description of ¢, (A"B0 )x is compatible with the
direct sum decomposition of A%. We may further assume that p = 1 and 7 = A (7) is a simplex.

If p is not the smallest cone (i.e., the one consisting of just the origin in .47 ), we have a decomposition
A; = A, ® @, and the natural projection p: Ay — @,. Then, locally near x¢, we can write the normal
fan 4 as p~!(Z,) for some normal fan ¥, C @, of a lower-dimensional simplex. For any vector v
tangent to p at xo and the corresponding affine function [,, locally near x(, we always have % > (. This
allows us to construct a bump function o = 3., (I, (x) — [, (x0))? along the A, r-direction. So we are
reduced to the case when p = {0} is the smallest cone in the fan /7.

Now, we construct the function o near the origin o € /3 by induction on the dimension of the fan
Ny When dimg (#;) = 1, itis the fan of P! consisting of three cones R_, {0} and R,.. One can construct
the bump function which is equal to 1 near o and supported in a sufficiently small neighborhood of o.
For the induction step, we consider an n-dimensional fan .. For any point x near but not equal to o,
we have x € int.(p) for some p # {o}. Then we can decompose /7 locally as A, & @,. Applying
the induction hypothesis to @, gives a bump function o, compactly supported in any sufficiently small
neighborhood of x (for the A, directions, we do not need the induction hypothesis to get the bump
function). This produces a partition of unity {o;} outside o. Finally, letting ¢ := 1 - }}; ¢; and extending
it continuously to the origin o gives the desired function. O

Lemma 3.10 produces a partition of unity for the complex (*, d) of monodromy invariant differential
forms on B, which satisfies the requirement in Condition 4.7 below. In particular, the cohomology of
(Q*(B),d) computes RI'(B,R). Given a point x € B\ &, we can take an element o, € Q"(B),
compactly supported in an arbitrarily small neighborhood U, C B\ &, to represent a nonzero element
in the cohomology H" (Q*,d) = H*(B,C) = C.

4. Smoothing of maximally degenerate Calabi—Yau varieties via dgBV algebras

In this section, we review and refine the results in [8] concerning smoothing of the maximally degenerate
Calabi—Yau log variety X over ™ = Spec,,(R)" = Spec,,(C[[¢]])" using the local smoothing models
VT — kyTs specified in §2.4. In order to relate with tropical geometry on B, we will choose V so that
it is the preimage v~' (W) of an open subset W in B.
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4.1. Good covers and local smoothing data

Given 7 € & and a point x € int.(7) C B, we take a sufficiently small open subset W € 3B,. We need
to construct a local smoothing model on the Stein open subset V = v=1(W).

e If x ¢ &,, then we can simply take the local smoothing V' introduced in (2.14) in §2.4.

o If x € S, Ninte(7), we assume that €~ (W) N AT # 0 fori =1,...,r and €~ (W) N AT = 0 for
other i’s. Note that €' (W) N int,(7) may not be a small open subset in int,.(7) as we may contract
a polytope P via € (Figure 0). If we write Ap, () ® -+ ® Aa, (1) ® Az = A7 as lattices, then for each
direct summand Ay, (r), we have a commutative diagram

i
% S,
/\ F—
7,C* Ai(1),C*

llog log
N irir
Np— > Myr

so that both Z[ and A are coming from pullbacks of some subsets under the projection maps i ; c+
and i, g, respectively. From this, we see that €~ '(W) N AT n--- N AT # 0 and v ' (W) N ZT N
<N ZT # 0 while v"I(W) n 77 = 0 for other i’s. Now, we take ¢, ; = ¢; for 1 < i < r and

V«.i = 0 otherwise accordingly. Then we can take P , introduced in equation (2.17) and the map
V =v (W) — Spec,,(C[Z, ® N']) defined by

" hy 7" iftme Xy
ui = fo ifl<i<r; 4.1
u; > z; ifr<i <l

Note that the third line of this formula is different from that of equation (2.19) because we do not
specify a point x € Z N---NZT. By shrinking W if necessary, one can show that it is an embedding
using an argument similar to [28, Thm. 2.6]. This is possible because we can check that the Jacobian
appearing in the proof of [28, Thm. 2.6] is invertible for all point in v=! (x) = u~' (€~!(x)), which is
a connected compact subset by property (5) in Assumption 3.5.

Condition 4.1. An open cover {W,}, of B is said to be good if

1. for each W, there exists a unique 7, € & such that W, € B, for some x € int,(7);
2. Wog = Wo N Wg # 0 only when 7, C 18 Or 73 C 74, and if this is the case, we have either
inte (@) N Weg # 0 or inte (8) N Wepg # 0.

Given a good cover {W, }, of B, we have the corresponding Stein open cover V := {V,}, of °X given
by V, := v~ (W,,) for each a. For each Vl, the infinitesimal local smoothing model is given as a log space
V!, over §T (see equation (2.14)). Let ¥V, be the k™-order thickening over ¥S* = Spec, (R/m**1)*
and j: Vo, \ Z — V, be the open inclusion. As in [8, §8], we obtain coherent sheaves of BV algebras
(and modules) over V,, from these local smoothing models. But for the purpose of this paper, we would
like to push forward these coherent sheaves to B and work with the open subsets W, ’s. This leads to the
following modification of [8, Def. 7.6] (see also [8, Def. 2.14 and 2.20]):

Definition 4.2. For each k € Z, we define

o the sheaf of k™-order polyvector fields to be kg; = Vi fu (A7 Orypr /ks*) (i.e., push-forward of
relative log polyvector fields on kVI,);
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*

o the k™-order log de Rham complex to be kIC’; = Vi (Q ) (i.e., push-forward of log de Rham

*vh/C
differentials) equipped with the de Rham differential ¥, = @ which is naturally a dg module over
k Q; -
o k"the local log volume form w as a nowhere vanishing element in v.j,(Q". . ) and the -order

V5, /87

volume form to be *w, = w, (modm*+1).

Given k > [, there are natural maps kel J«(AT” @kvz/ksf) - (AT G’VL/’ST) which induce the
maps Kl kg’; - ’g;. Before taking the push-forward p., each j.(A" @kvl/ksf) is a sheaf of flat
kR-modules with the property that j, (A" Oyt jkgit) = RN Oruiyt jkrigr) Orrg kR by [17, Cor. 7.4
and 7.9]. In other words, we have a short exact sequence of coherent sheaves

. g .
OH]*(/\r ®0VL/OST)é.}*(Ar ®k+lV’L/k+lsﬁ-)H‘]*(/\r ®kVT1/ka)HO'

Applying u., which is exact, we get

k+

okl
0 Og‘—lr 4 k+lgl—Ir kg;r 0.

As aresult, we see that *G7" is a sheaf of flat ¥ R-modules on W,,, so we have *1G=" @y KR = kG

for each r; a similar statement holds for leQ.

A natural filtration XKC* is given by KKC¥, = ¥ Q;f A KK [s] and taking wedge product defines
the natural sheaf isomorphism X0 : *QL @iy (§K5/1K5[-r]) — FK3 /.4
]ﬁ/Cf, = ](‘)IC’;/’TIC’:Y = Ve (szf,/"sf) of relative log de Rham differentials.

There is a natural action v 4 ¢ for v € "g’;, and ¢ € ¥K* given by contracting a logarithmic
holomorphic vector field v with a logarithmic holomorphic form ¢. To simplify notations, for v € kg%,
we often simply write v¢, suppressing the contraction .. We define the Lie derivative via the formula
L, = (=1)"do (va)—(vas) o d (orequivalently, (-1)IVI£, := [8, v.]). By contracting with *w,,, we
get a sheaf isomorphism 1 Kw,: G, — ’ﬁIC’;, which defines the BV operator KA o by A o (¢) 1% w :=
k84 (¢ 2 ¥w). We call it the BV operator because the BV identity:

KC%,. We have the space

DM, w]l = A0 AW) =AW Aw = (=D A A(w) 4.2)

forv,w e kg;, where we put A = kA «» defines a graded Lie bracket. This gives k G?, the structure of a
sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms

Here, we apply the calculations in [17, 28] to give an explicit description of the stalk kICfl,x.

Let us consider K = v~! (x) and the local model near K described in §4.1, with P, , and Q. as
in equations (2.17), (2.18) and an embedding V — Spec,,(C[Q+,x]). We may treat the subset K C V
as a compact subset of C! = Spec,, (C[N]) < Spec,,(C[Q+.,]) via the identification of the analytic
spaces Spec,, (C[Z, ® N']) = Spec,,(C[Q¢.x]). For each m € X, we denote the corresponding
element (m, Yy o(m), ..., ¥y1(m)) € P, by it and the corresponding function by z* € C[P,,].
Similar to [17, Lem. 7.14], the germs of holomorphic functions Ok ;- near K in the analytic space
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kv = Spec,, (C[Pr.x/q**']) can be written as

N log |,
Okyx = E Am,iq' 7" | @m,i € Oc (U) for some neigh.U D K,  sup log |am.i <oob,
| mes., 0<i<k mex,\{0} d(m)

(4.3)

where d: £, — N is a monoid morphism such that d=!(0) = 0, and it is equipped with the product
M. g = A (bt note that | + mo # My + My in general). Thus, we have le?,’x = kg?,,x =
Oky -

To describe the differential forms, we consider the vector space & = P, x ¢, regarded as the space of
1-forms on Spec,, (C[P,]) = (C*)™*!. Write d log z” for p € Pr . c and set & := C(dlogu;)!_,, as
a subset of &. For an element m € @, ¢, we have the corresponding 1-form d log 7" € P, . c under the

association between m and 7. Let P be the power set of {1,...,1}, and write u’ = [];c; u; for I € P.
A computation for sections of the sheaf j. (QZW / C) from [28, Prop. 1.12] and [17, Lem. 7.14] can then

be rephrased as the following lemma.

*

Lemma 4.3 [17, 28]. The space of germs of sections ofj*(ka/C

)k near K is a subspace of OkV’K ®

N" & given by elements of the form

@ = § § Ui 147" ® Bn1s  Bma € /\ Em,1 = /\ (E1m,1 © &1 © (dlogq)),
meX, 1
0<i<k

where &) n.1 = (dlogu;)ie; C & and the subspace &> .1 C & is given as follows: we consider the
pullback of the product of normal fans [ 1;¢r N3, (1) t0 Q7 r and take & 1 = (dlogz™) form’ € o 1,
where oy, 1 is the smallest cone in [];q; /V&,(T) C Q. R containing m.

Here, we can treat [1;g /5, () € Qrr since (P, Az, () is a direct summand of @;. A similar
description for j*(Q:W /@)K is simply given by quotienting out the direct summand (d log ¢) in the
above formula for a. In particular, if we restrict ourselves to the case k = 0, a general element @ can be
written as

a = am,lzrhul ® ﬁm,l, ,Bm,l € ’ gm,I = *(Cgl,m,l @ g2,m,1)-
3 A

meX, 1
One can choose a nowhere vanishing element

Q=duy---dyy®neu;---uy® /\lgl ® /\nidimR(T)%g C j*(Q(')lVJf/CT)K

for some nonzero element € A" 4m=(7)&, which is well defined up to rescaling. Any element in
J (! )k can be written as fQ for some f = 3,,c5, finZ" € Ooy -

Oyt /Ct
Recall that the subset K c Cl is intersecting the singular locus Z7, ..., Z} (as in §4.1), where u;
is the coordinate function of C! with simple zeros along z7 fori = 1,...,r. There is a change of

coordinates between a neighborhood of K in C! and that of K in (C*)! given by

u; — fv,il(C*)l ifl1 <i< r,

U & 7 ifr<i<l.
Under the map log: (C*)! — R/, we have K = log™' (%) for some connected compact subset € C R.
In the coordinates z1, ..., z;, we find that dlog z; - - - d log z; ® n7 can be written as fQ near K for some
nowhere vanishing function f € Ooy g
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Lemma 4.4. When K N Z = 0 (i.e, ¥ = 0 in the above discussion), the top cohomology group
H" (]*(Qov’r/(ct)K’ 0) == J.(Q )k /Im(9) is isomorphic to C, which is generated by the element

dlogzy---dlogz; ®n.

Oyt/ct

Proof. Given a general element fQ as above, first observe that we can write f = fy + fi, where
S+ = Zmez,\ (0} fmz™and fy € Oci k- Wetake abasis ey, . .., e5 of @} ., and also a partition /1, . .., I
of the lattice points in £ \ {0} such that (e;,m) # O for m € I;. Letting

a—(l)zz Jom 'hdul---dm@Lejn,

Jj mel<”

we have d(@) = f1Q. So we only need to consider elements of the form fQ. If fpQ = d(«@) for some
@, we may take @ = X ; a;duy---duj---du; ® n for some a; € O g. Now, this is equivalent to
foduy -+ -duy = (X ; ajduy - ELE -+ duy) as forms in chl «- This reduces the problem to ct.

Working in (C*)! with coordinates z;’s, we can write

Ok = { Z a7 ) Z |aml|e""™ < oo, forall v € W, for some open W D ‘g},

meZ! meZ!

using the fact that K is multicircular. By writing Q* 0(@*)1 x ® \* % with #F; = (dlog z,)l 1>

((C*)l K/Im(6)7
for some constant c. O

(CHLK
we can see that any element can be represented as cd log z; - - - d log z; in the quotient Q!

From this lemma, we conclude that the top cohomology sheaf ’H”(HIC*, 0) is isomorphic to the
locally constant sheaf C over B \ S,.

Lemma 4.5. The volume element *w is nonzero in H"(OIC* 0)x for every x € B.

Proof. We first consider the case when x € int, (o) for some maximal cell o € 2], The toric stratum
OX, associated to o is equipped with the natural divisorial log structure induced from its boundary

divisor. Then the sheaf Q: t of log derivations for °X is isomorphic to A" Ay &z Qoy, - By [28,

Lem. 3.12], we have w, = c(ug)v 1(x) 0 Vi (QF )y = ?llCﬁ, where p, € A" Ay is nowhere

OXT /CT
vanishing and ¢ is a nonzero constant c¢. Thus °X|, is nonzero in the cohomology as the same is true

for us, € v, (QO . /CT)"' Next, we consider a general point x € int, (7). If the statement is not true, we

will have %w, = 08(@) for some @ € ﬂlCﬁ‘l. Then there is an open neighborhood U > €~ (x) such that
this relation continues to hold. As U N inte (o) # @, for those maximal cells o- which contain the point
x, we can take a nearby point y € U N int (o) and conclude that cu = °d () in v*(Q i )y. This

contradicts the previous case. o
Lemma 4.6. Suppose that x € Wy, \ 8.. For an element of the form
e/ (Fwa) € K3

with f € kg%,x = Oy, satisfying f = O(mod m), there exist h(q) € kR = Clq]/(¢**") and
IS kg;}x with h,v = 0(mod m) such that

el Fwy) = e"e™ (Fwa) (4.4)

in kICZ’, o

where we recall that £, := (=1)1"18 o (v1) = (v1) 0 8.
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Proof. To simplify notations in this proof, we will drop the subscript @. We prove the first statement by
induction on k. The initial case is trivial. Assuming that this has been done for the (k — 1)%-order, then,
by taking an arbitrary lifting # of v to the k-order, we have

e—h+f+qke (kw) — oL (kw)

0

for some € € OOVX' By Lemmas 4.4 and 4.5, we have € °w = ¢ %w + d(y) for some y and some suitable

constant ¢. Letting 6 1 (w) =y and ¥ = ¥ + ¢*6, we have
e,C\; (kw) — eﬁv (kw) _ qk 6(0 . (Ow)) — e—h+f+ch (kw)

By defining & (q) := h(q) — cq* in C[q]/(g**"), we obtain the desired expression. O

4.3. A global pre-dgBYV algebra from gluing

One approach for smoothing °X is to look for gluing morphisms * Vap: kVL|Va s = kV;h/HB between

the local smoothing models which satisfy the cocycle condition, from which one obtain a k"-order
thickening kX over ¥S*. This was done by Kontsevich—Soibelman [36] (in two dimensions) and Gross—
Siebert [29] (in general dimensions) using consistent scattering diagrams. If such gluing morphisms
kzpmg’s are available, one can certainly glue the global k™-order sheaves *G*, ¥XC* and the volume
form *w.

In [8], we instead took suitable dg-resolutions KPV5* := Q*(XG*)’s of the sheaves ¥G* ’s (more

precisely, we used the Thom—Whitney resolution in [8, §3]) to construct gluings
k . OF ko * ok A%
8ap: Q (G = Q (CGp)lv,p

of sheaves which only preserve the Gerstenhaber algebra structure but not the differential. The key
discovery in [8] was that, as the sheaves Q*(kg*a)’s are soft, such a gluing problem could be solved
without any information from the complicated scattering diagrams. What we obtained is a pre-dgBV
algebra’ ¥ PV**(X), in which the differential squares to zero only modulo m = (¢). Using well-known
algebraic techniques [33, 48], we can solve the Maurer—Cartan equation and construct the thickening
kX . In this subsection, we will summarize the whole procedure, incorporating the nice reformulation
by Felten [16] in terms of deformations of Gerstenhaber algebras.
To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (Q*, d) of unital differential graded algebras (abbreviated as dga) (over
R or C) over B, with degrees 0 < * < L for some L such that

e the natural inclusion R — Q* (or C — Q) of the locally constant sheaf (concentrated at degree 0)
gives a resolution, and

o for any open cover U = {U;}; ez, there is a partition of unity subordinate to I/, that is, we have {p; };ez
with p; € T(U;, Q%) and supp(p;) C U; such that {supp(p;)}; is locally finite and }; p; = 1.

It is easy to construct such an Q*, and there are many natural choices. For instance, if B is a smooth
manifold, then we can simply take the usual de Rham complex on B. In §3.3.2, the sheaf of monodromy
invariant differential forms we constructed using the (singular) integral affine structure on B is another
possible choice for Q* (with degrees 0 < * < n). Yet another variant, namely the sheaf of monodromy
invariant tropical differential forms, will be constructed in §5.1; this links tropical geometry on B with
the smoothing of the maximally degenerate Calabi—Yau variety °X.

SThis was originally called an almost dgBV algebra in [8], but we later found the name pre-dgBV algebra from [16] more
appropriate.
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Let us recall how to obtain a gluing of the dg resolutions of the sheaves * G, and kICfl using any
possible choice of such an Q*. We fix a good cover W := {W, }, of B and the corresponding Stein open
cover V := {V4}q of °X, where V,, = v-1(W,,) for each a.

Definition 4.8. We define *PV57 = Q4(“Gh) := Q¥|y, @ “Gh and *PV" = P,  *PVE7, which
gives a sheaf of dgBV algebras over W,,. The dgBV structure (A, d,, A ) is defined componentwise by

(e AWew) = (=D"IEry) e waw),
da(p®v) = (dp)®v, Aulp@v):=(-)¥pe(Av),

for g,y € Q*(U) and v, w € kg’&(U) for each open subset U c W,,.
Definition 4.9. We define ¥ A7 = Q4 (*KP) := Q4| @K and ¥ A" = D, kAL which gives

a sheaf of dgas over W, equipped with the natural filtration k A%* inherited from ]fICZ The structures
(A, 0q, 04) are defined componentwise by

(@) A ew) =)l prp)e v aw),
Ja(p®v) = (dp) ®v, dalp®v)=(-1)¥p® (dv),

for o, € Q*(U) and v, w € kIC’;(U) for each open subset U ¢ W,,.

There is an action of KPV%* on ¥ A%* by contraction 1 defined by the formula
(eev)sWaw) =) gry)e v aw),

for o, € Q*(U), v € kg’[,(U) and w € kIC’;,(U) for each open subset U c W,. Note that the
local holomorphic volume form *w,, € ’ﬁ A0 (W,) satisfies o (Fwq) = 0, and we have the identity

k9o (¢ 1¥wa) = %A q(¢) 1 *wq of operators.

The next step is to consider gluing of the local sheaves ¥PV,’s for higher orders k. Similar con-
structions have been done in [8, 16] using the combinatorial Thom—Whitney resolution for the sheaves
kG 4’s. We make suitable modifications of those arguments to fit into our current setting.

First, since ka,|VaB and kV;lvaﬂ are divisorial deformations (in the sense of [28, Def. 2.7]) of

the intersection V;B = Vj, N Vg,, we can use [28, Thm. 2.11] and the fact that Vg is Stein to obtain
an isomorphism kc,l/aﬁz kVI,l\a,ﬁ - kVI;|VaB of divisorial deformations which induces the gluing

morphism Xy 4 5: kgj,|Waﬁ N kg;|waﬁ that in turn gives “yo5: *PValw,, = “PVglw,,-

Definition 4.10. A k"-order Gerstenhaber deformation of °PV is a collection of gluing morphisms
Kgap: kPVQ|Waﬁ - kPV/glwaﬁ of the form

kgaﬁ = elPas1 o kl!/aﬁ
for some 645 € kPV;’O(WaB) with 6,4 = 0 (mod m), such that the cocycle condition

kgya o kgﬁ)/ © kgaﬁ =id

is satisfied.
An isomorphism between two k"™-order Gerstenhaber deformations {kg(,ﬁ}nﬁ and {kg:tﬁ}nﬁ isa

collection of automorphisms khy: ¥PV, — *¥PV, of the form

kh(l = e[baf’"]
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for some b, € kPV:,l’O(WQ) with b, = 0(mod m), such that
kg/gﬁ ° kha = khﬁ o kga/ﬁ-
A slight modification of [16, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a k"-order Gerstenhaber deformation {¥ 8aptap, the obstruction to the exis-
tence of a lifting to a (k + 1)*-order deformation {k+1gaﬁ}aﬁ lies in the Cech cohomology (with respect
to the cover W = {Wy }g)

2 OW,°PV19) @ (m**! /m*+2).
The isomorphism classes of (k + 1)*-order liftings are in
H'OV,°PV"0) @ (m**! /m*+2).
Fixing a (k + 1)%-order lifting {k”gaﬁ}aﬁ, the automorphisms fixing {kga/;}aﬁ are in
HOOWV,'PV=19) @ (m*+! /m*+2).

Since Q' satisfies Condition 4.7, we have H>%(W, PV~1-0) = 0. In particular, we always have a set
of compatible Gerstenhaber deformations g = (¥g)xew, where ¥g = {¥g o5} a3 and any two of them are
equivalent. Fixing such a set g, we obtain a set {¥ PV }; ey of Gerstenhaber algebras which is compatible,
in the sense that there are natural identifications **!' PV ®w.ip R = *PV.

We can also glue the local sheaves K.A%*™’s of dgas using g = (g)ren. First, we can define
K ap kIC’;|Waﬁ - le;IWaﬁ using Xy o5 kV2|Vaﬁ - kV['g|Vaﬁ. For each fixed k, we can write
kgop = elPap 1 o Ky, o as before. Then

L s,k * %
o= e o Myap: KA W,y = F AT W (4.5)

where we recall that £, := (=1)/V1d o (va) — (va) o 8, preserves the dga structure (A, d,) and the
filtration on X A%*’s. As a result, we obtain a set of compatible sheaves {(*.A**, A, ) }rex of dgas. The
contraction action . is also compatible with the gluing construction, so we have a natural action 4 of
kPV*,* on kA*’*.

Next, we glue the operators dy’sand Ay’s.
Definition 4.12. A k"-order predifferential & on ¥ PV** is a degree (0, 1) operator obtained from

gluing the operators d, + [, -] specified by a collection of elements 7, € ¥ PV;I’I(W(,) such that
Ne = 0 (mod m) and

“8pa © (G5 + [15.]) ©*gap = (Jo + [1a-]).
Two predifferentials 3 and §” are equivalent if there is a Gerstenhaber automorphism (for the deformation
koY h: kKpv** — kpy** suchthat h "' o doh =4".

Notice that we only have 3> = 0(modm), which is why we call it a predifferential. Using the argument

in [8, Thm. 3.34] or [ 16, Lem. 8.1], we can always lift any k"-order predifferential *dtoa (k+1)%-order
predifferential. Furthermore, any two such liftings differ by a global element d € °PV~1! @ mk*! /m*+2.

We fix aset d := {"a'}keN of such compatible predifferentials. For each k, the action of k[_i on K A** is
given by gluing of the action of d, + L, on K A%*. On the other hand, the elements

_ 1 _
lo = 0a(na) + 3 [Nasna] € FPV 12 (W,) (4.6)
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glue to give a global element [ € kpy-12(B), and for different k’s, these elements are compatible.
Computation shows that 3 = [I, -] on *PV** and % = £; on ¥ A**.
To glue the operators A,’s, we need to glue the local volume elements “w,,’s to a global Kw. We

consider an element of the form efe- - ¥w,, where f, € ¥ PV0’0(~WQ) satisfies f, = 0 (mod m). Given

L k+1

a k"M-order global volume element efo* - ¥ ,, we take a lifting e~ W4 such that

k+1g(1B (efaJ . k+1w(l) — e(fﬁ—UQB)J . k+10)ﬁ

for some element o,g € 0PVO’O(W/[;;) ® m**!1 /m**2_ By construction, {vap}tap gives a Cech 1-cycle
in 2PV which is exact. So there exist u,’s such that uglw,; — Ualw,; = Dap, and we can modify
fu as f(t + 11, which gives the desired (k + 1)*-order volume element. Inductively, we can construct
compatible volume elements “w € ’ﬁA"’O(B), k € N. Any two such volume elements w and K’ differ

by w = e - kw’, where f € K PV%0(B) is some global element. Notice that “d(¥w) # 0 unless mod m.
Using the volume element w (we omit the dependence on k if there is no confusion), we may now
define the global BV operator A by

(Ap) cw=0(p 1 w), 4.7
which can locally be written as kAQ + [fa,-]. We have A2 = 0. The local elements

Mgy = kAa(n(l) + a-a(fa) + [77(2, fa] (4.8)

glue to give a global element n € KPV%!(B) which satisfies d A + Ad = [n,-]. Also, the elements [
and 1 satisfy the relation d(n) + A(I) = 0 by a local calculation.

In summary, we obtain pre-dgBV algebras (PV,d, A, A) and pre-dgas (A, 3, 8, A) with a natural
contraction action . of k5 on k.A*’*, and also volume elements w. We set

PV :=1lim*PV, A:=lim* A,
s s

and define a fotal de Rham operator d: A** — A** by
d:=0+0+1,, 4.9)

which preserves the filtration ,. A**. Using the contraction w.: PV** — ”.A*J'”’* to pull back the

operator, we obtain the operator d = 3 + A + (I + 1)A acting on PV**. Direct computation shows that
d? = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers may
consult [8, §4.2] for the computations and more details.

Definition 4.13. We call PV** (resp. ¥ PV**) the sheaf of (resp. k™-order) smooth relative polyvector
fields over ST, and A** (resp. ¥ A**) the sheaf of (resp. k™-order) smooth forms over ST. We denote
the corresponding total complexes by PV* = @p+q=* PVP4 (resp. KPV*) and A* = P AP-4

prq=*
(resp. K A*).

4.4. Smoothing by solving the Maurer—Cartan equation

With the sheaf PV* of pre-dgBV algebras defined, we can now consider the extended Maurer—Cartan
equation

. 1
(6+tA)s0+§[so,so]+I+m=0 (4.10)
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for ¢ = (¥@)i, where ¢ € *PVO(B)[[t]] := *PV°(B) ®c C[[¢]]. Setting t = O gives the (classical)
Maurer—Cartan equation

-1
6so+§[so,<p]+l=0 4.11)

for ¢ € PVY(B). To inductively solve these equations, we need two conditions, namely the holomorphic
Poincaré Lemma and the Hodge-to-de Rham degeneracy.
We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves

J (8 )’s. We consider the complex (j.(Q} )ul, a) where

kyi c kyi,/c

l

0q veu®l = (0avs)u® + sdlog(q) A veu®~
g
S

s=0

There is a natural exact sequence

.0y,

)[u] d —j. (€ )—=0, (4.12)

O—>kR* — . (QF

kvl i/c ()Vl /OST

).

k.0p _ k0
where b(Z3 o Vsu®) == ""b(vp) as elements in j. (QOV* st

Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point x € X7, the

complex ( "] ) is acyclic, where kf%j,,x denotes the stalk of kﬁ; at x.

a,x?

The holomorphic Poincaré lemma for our setting was proved in [28, proof of Thm. 4.1], but a gap
was subsequently pointed out by Felten—Filip—Ruddat in [17], who used a different strategy to close the
gap and give a correct proof in [17, Thm. 1.10]. From this condition, we can see that the cohomology
sheaf H* ’ﬁIC*a, k8,) is free over ¥R = C[q]/(¢**") (cf. [34, Lem. 4.1]). We will need freeness of

the cohomology H* 'ﬁ.A*(B), d) over ¥R, which can be seen by the following lemma (see [34] and [8,
§4.3.2] for similar arguments).

Lemma 4.15. Under Condition 4.14 (the holomorphic Poincaré Lemma), the natural map
“O: H*(JA*(B),d) - H'(JA"(B),d)

is surjective for each k > 0.

Proof. First of all, applying the functor v, to the exact sequence

k.0

0—="&;,——. Qe =78y o) —0
gives the following exact sequence of sheaves on B:
i3,
0 k}r ke Tu) 0K, 0.

This is true because every sheaf in the first exact sequence is a direct limit of coherent analytic
sheaves, Rv, commutes with direct limits of sheaves, and Rv, = Rv, as the fiber v~! (x) is a compact
Hausdorft topological space; see, for example, [32]. By taking a Cartan—Eilenberg resolution, we have
the implication:

& Roxs kaar) is acyclic = Ry (( R* kaa)) _

Downloaded from https://www.cambridge.org/core. IP address: 3.145.125.13, on 16 Apr 2025 at 10:19:41, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.32


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.32
https://www.cambridge.org/core

Forum of Mathematics, Pi 37

for any open subset U, where RI'y is the derived global section functor in the derived category of
sheaves. In our case, U = v~! (W) and we have RI",-i w) = RI'w o Rv.. Furthermore, we see that

Rv.(“83,.04) = (“8%,.8,).

This can be seen by taking a double complex C** resolving (kS_{’fl, 5;) such that v, (C**) computes
Rv*(kfi’f,,:?;). The spectral sequence associated to the double complex has the E;-page given by
R4 v*(k.@ﬂ), which is 0 if ¢ > 0 because kfkﬁ is a direct limit of coherent analytic sheaves. Therefore,
v*(kf{’(‘l, 5;) — v, (C**) = Rv*(kf_{’;,g;) is a quasi-isomorphism. Combining these, we obtain that
Rl"év (kR’(‘l, 6:) = 0 for each i.

Next, by Condition 4.7, (Q*|w,, ®r kR* ) is a resolution with a partition of unity, so the cohomology
of the complex

(B (W), 8 + ) = (92w, 8 “R3) (W), 8 + )
computes Ry (*K*). Through an isomorphism e”«*: ¥B* — ¥B* 'we can identify the operator:

do =0+ Ly + a5, ()41 (nauna)

with d, + 5;, and hence deduce that (¥ B, (W),d,) is acyclic for any open subset W.
Now, we consider the global sheaf (¥B*,d) of complexes on B obtained by gluing the local sheaves
(*B?,,d,). We also have (¥ A*,d) obtained by gluing (Q*|w, ® *X* [u],d,), and (ﬁA*, d) obtained

by gluing (Q*|w, ® ﬁIC’;, d,). Then there is an exact sequence of complexes of sheaves

0 kR kA 04" 0.

To see that the complex (*B*(B), d) is acyclic, we consider the total Cech complex associated to the
cover {Wq }o. The associated spectral sequence has zero E; page, thus (*B*(B),d) is indeed acyclic.

As a result, the map H' (* A%,(B),d,) — H "(ﬁA*;(B), d,) is an isomorphism. Finally, surjectivity of

the map k-9 follows from the fact that the isomorphism H! (kK A% (B),d,) — Hi(ﬁA* (B),d) factors

a
k,Ob

through O

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on °X¥. We consider

the Hodge filtration F>" j, (Q:;X"'/OS'I') = @pz o Jx (Qg’x T/OsT); the spectral sequence associated to it

computes the hypercohomology of the complex of sheaves ( j*(Q;wa), 09).
Condition 4.16. We say that the Hodge-to-de Rham degeneracy holds for X7 if the spectral sequence
associated to the above Hodge filtration degenerates at E|.

Under the assumption that (B, ) is strongly simple (Definition 2.10), the Hodge-to-de Rham
degeneracy for the maximally degenerate Calabi—Yau scheme °X* was proved in [28, Thm. 3.26]. This
was later generalized to the case when (B, &) is only simple (instead of strongly simple)® and further
to log toroidal spaces in Felten—Filip—Ruddat [17] using different methods.

We consider the dgBV algebra °PV*(B)[[]] equipped with the operator d + 1 A.

Lemma 4.17. Under Condition 4.16 (the Hodge-to-de Rham degeneracy), H*(*PV*(B)[[t]],d +t A)
is a free C[[t]]-module.

6The subtle difference between the log Hodge group and the affine Hodge group when (B, &) is just simple, instead of strongly
simple, was studied in details by Ruddat in his thesis [42].
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Proof. Recall that we are working with a good cover W = {W,},, so that the inverse image V, =
v~1(W,) is Stein for each . We have RT, (w) = RT'w o Rv, and

RV*(]*(Q;X-;-/()ST), a) = (ﬁ’C*’ a)

If v~ (W) is Stein, then RT,-1 () (j*(ngt/OS#)) =T\ 1(w) (j*(ngT/OS#)) and hence

RTw (JK7) = Tw (K7).

*

0xt 0 S'l')’ d) is computed using the Cech double complex

The hypercohomology of (. (€

C' (V. oy o)

with respect to the Stein open cover V = {v~!(W,)}. Similarly, the hypercohomology of the complex
(ﬁIC*, d) is computed using the Cech double complex C*(WV, ﬁIC*) with respect to the open cover

W = {Wq}a; here, the Hodge filtration is induced from the filtration F>" ﬁIC* =P ,., K=r.

pzr |
These two Cech complexes, as well as their corresponding Hodge filtrations, are identified as

ﬁIC*(W) = ]'*(ngT/[)S?)(v’](W)) for each W = Wy, N --- N W,,. Hence, under Condition 4.16,

we have E; degeneracy also for C*(W, ﬁIC*), or equivalently, that (C*(W, ﬁlC*)[[t]], 0+10)is afree
C[[]]-module. In view of the isomorphisms (°G*, A) = (ﬁIC, 0) and

H*(OPV*(B)[[1]],0 +1 A) = H*(C* (W, \K)[[1]],6 +1 ),

we conclude that H*(°PV*(B)[[]],d +t A) is a free C[[¢]]-module as well. O

For the purpose of this paper, we restrict ourselves to the case that
k k k
p="¢+1("f),

where ¢ € *PV-11(B) and ¥ € KPV%0(B). The extended Maurer-Cartan equation (4.10) can be
decomposed, according to orders in ¢, into the (classical) Maurer—Cartan equation (4.11) for ¢ and the
equation

IEN +15e. f1+AFg) +n=0. (4.13)

Theorem 4.18. Suppose that both Conditions 4.14 and 4.16 hold. Then for any k"-order solution
kKo =*p +1(%f) to the extended Maurer—Cartan equation (4.10), there exists a (k + 1)*'-order solution
kel = kel 4 t(k+1f) to equation (4.10) lifting *@. The same statement holds for the Maurer—Cartan
equation (4.11) if we restrict to k¢ e kpy-L1 (B).

Proof. The first statement follows from [8, Thm. 5.6] and [8, Lem. 5.12]: Starting with a k"-order
solution ¢ = K¢ + t(* ) for equation (4.10), one can always use [8, Thm. 5.6] to lift it to a general
element “*'¢ € K1 PVO(B)[[t]]. The argument in [8, Lem. 5.12] shows that we can choose “*!¢ such
that the component of *1¢|;_q in ¥*1 PV%-0(B) is zero. As a result, the component of ¥*!¢ + t(**1 £) in
k1 py=L.1(B) ® t(**1PV%0(B)) is again a solution to (4.10).

For the second statement, we argue that, given ¥¢, there always exists ¥ f € KPV%0(B) such that
k¢ +1(* f) is a solution to equation (4.10). We need to solve the equation (4.13) by induction on the
order k. The initial case is trivial by taking ° f = 0. Suppose the equation can be solved for /~! f. Then

we take an arbitrary lifting ! f to the j™-order. We can define an element o € *PV0-0(B) by

Fo=0CF)+/g. Fl+A(¢)+n,
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which satisfies d(0) = 0. Therefore, the class [o] lies in the cohomology
H'(°PV®*,d) = H'(°X,0) = H'(B,C),

where the last equivalence is from [27, Prop. 2.37]. By our assumption in §2, we have H 1 (B,C) =0,

and hence we can find an element f such that d(f) = o. Letting / f =’ f + ¢/ - f (mod ¢/*") proves
the induction step from the (j — 1)™-order to the j"-order. Now, applying the first statement, we can lift
the solution ¥ := K¢ + 1 (X f) to ¥+ = ¥+1 ¢ + +(**! £) which satisfies equation (4.10), and hence ¥*'¢
solves equation (4.11). ]

From Theorem 4.18, we obtain a solution ¢ € PV-11(B) to the Maurer-Cartan equation (4.11),
from which we obtain the sheaves ker(d + [¢,-]) € ¥PV** and ker(d + L4) ]ﬁA*’* over B. These

sheaves are locally isomorphic to kg; and "ﬁle,, so we may treat them as obtained from gluing of
the local sheaves G*’s and ’ﬁICfY’s. From these, we can extract consistent and compatible gluings
kb kyl, Vap — k V; v, satisfying the cocycle condition, and hence obtain a k-th order thickening

kX of °X over kST; see [8, §5.3]. Also, e/ . w, as a section of ker(J+ L 4) over B, defines a holomorphic
volume form on the k-th order thickening ¥ X.

4.4.1. Normalized volume form
For later purposes, we need to further normalize the holomorphic volume

Q:=el Jweker(d+Ly)(B) C ]ﬁA"’O(B)

by adding a suitable power series i(q) € (q) € C[[g]] to f, so that the condition that /T e Jw=1,
where T is a nearby n-torus in the smoothing, is satisfied.
The k™-order Hodge bundle over Spec,,(C[q]/q**!) is defined as the cohomology

“Ho=H"(j A", 0),

equipped with a Gauss—Manin connection ¥V, where Va o is the connecting homomorphism of the
logg

long exact sequence associated to
0— ’ﬁA*—l ®c C{dlog q) — K A* — ’ﬁA* - 0; (4.14)

here C(d log g) is the one-dimensional graded vector space spanned by the degree 1 element d log g.
We denote H := liLnk k. Restricting to the 0™-order, we have N = °V_, , which is a nilpotent

dlogqg
operator acting on *H = H"(ﬁA*) = H"(X, j*Q’;ﬂ/@), where X = °X. If we consider the top
0

cohomoloy HZ"(”A*), which is one-dimensional, we see that N = OVala = 0. So kVala is a flat
ogq 0gq

connection without log poles at g = 0. Hence, we can find a basis (order by order in g) to identify
HZ"(ﬁA*) = Hzn(ﬂA*) ® C[q]/g**", which also trivializes the flat connection V as ﬁ.

Since H"(B,C) = C, we can fix a nonzero generator and choose a representative o € Q"(B). Then
the element p® 1 € ’ﬁ.A”(B) (which may simply be written as o) represents a section [o] in H. A direct

computation shows that V[o] = 0, that is, it is a flat section to all orders. The pairing with the 0-order
volume form %w gives a nonzero element [*w A o] in H 2"(?l.A*).

Definition 4.19. The volume form Q = e/ 1 w is said to be normalized if [Q A o] is flat under V.
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In other words, we can write [Q A o] = [°w A o] under the identification
H (KA = H(OA%) ® Clql /g

By modifying f to f + h(q), this can always be achieved. Further, after the modification, ¢ = ¢ +1 f still
solves equation (4.10).

5. From smoothing of Calabi-Yau varieties to tropical geometry
5.1. Tropical differential forms

To tropicalize the pre-dgBV algebra PV**, we need to replace the Thom—Whitney resolution used
in [8] by a geometric resolution. To do so, we first need to recall some background materials from
our previous works [7, §4.2.3] and [9, §3.2]. Of crucial importance is the notion of differential forms
with asymptotic support (which will be called tropical differential forms in this paper) that origi-
nated from multivalued Morse theory and Witten deformations. Such differential forms can be re-
garded as distribution-valued forms supported on tropical polyhedral subsets. This key notion allows
us to develop tropical intersection theory via differential forms, and in particular, define the inter-
section pairing between possibly nontransversal tropical polyhedral subsets simply using the wedge
product.

Let U be an open subset of Mr. We consider the space Q]h‘(U) := T'(U X Rsg, AKTVU), where
we take C* sections of Ak TVU and # is a coordinate on R.. Let WX_(U) c Q’fj(U) be the subset
of k-forms « such that, for each g € U, there exist a neighborhood g € V C U, constants Dy, cy
and a sufficiently small real number %, > 0 such that ||V/a/|| o) < Djye v /" for all j > 0 and
for 0 < 7 < fip; here, the L*-norm is defined by ||@||z~(v) = sup,ey |la(x)]|| for any section « of
the tensor bundle TU®F @ TVU®!, where we fix a constant metric on Mg and use the induced metric

on TU®* @ TVU®!; VJ denotes an operator of the form Vaa cee Vaa , where V is a torsion-free, flat
X1y X1
connection defining an affine structure on U and x = (x1,...,x,) is an affine coordinate system (note

that V is not the Gauss—Manin connection in the previous section). Similarly, let WX (U) c Q’g (U) be
the set of k-forms « such that, for each g € U, there exist a neighborhood g € V C U, a constant D v,
N; v € Zs¢ and a sufficiently small real number 7y > 0 such that ||V/ || ~(v) < D, y# N for all
j = 0and for0 < 7 < fig.

The assignment U — WX _(U) (resp. U — WX (U)) defines a sheaf WX, (resp. W) on Mz ([7,
Defs. 4.15 & 4.16]). Note that WX and WX are closed under the wedge product, V 2 and the de Rham

differential d. Since W*_, is a dg ideal of WX, the quotient WY, /W*  is a sheaf of dgas when equipped
with the de Rham differential.

Now, suppose U is a convex open set. By a tropical polyhedral subset of U, we mean a connected
convex subset of U which is defined by finitely many affine equations or inequalities over Q of the form
aipxy+---+apx, <b.

Definition 5.1 ([7], Definition 4.19). A k-form @ € WX (U) is said to have asymptotic support on a
closed codimension k tropical polyhedral subset P C U with weight s € Z, denoted as & € Wp (U), if
the following conditions are satisfied:

1. Forany p € U \ P, there is a neighborhood p € V c U \ P such that a|y € WX_ (V).

2. There exists a neighborhood Wp C U of P such that @ = h(x,#)vp+non Wp, where vp € /\k Ngrisa
nonzero affine k-form (defined up to nonzero constant) which is normal to P, h(x, #) € C*(WpxR)
and n € Wk (Wp).

3. For any p € P, there exists a convex neighborhood p € V c U equipped with an affine coordinate

system x = (xy,...,x,) such that x” := (xy,...,xx) parametrizes codimension k affine linear
subspaces of V parallel to P, with x” = 0 corresponding to the subspace containing P. With the
foliation {(Py x')}xeny . Where Py v = {(x1,...,x,) € V| (x1,...,x¢) = x’} and Ny is the
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normal bundle of V, we require that, for all j € Z5o and multi-indices 8 = (B1,...,8x) € Z’;O, the
estimate
’ i _j+s=|Bl=k
/ ) ( sup |Vf<tv,v3a>|) vp < Djygh
x’ Py

— _ 0 i)
holds for some constant D v 3 and s € Z, where |8] = 3, ; and v}, = 2o N A m?

Observe that V_o W (U) € Wp 541 (U) and (x"YPWp (U) € Wp _i5/(U). It follows that
Xl

(x)PV o V0 W s (U) € Wiy (U).

axll

The weight s defines a filtration of WWX (we drop the U dependence from the notation whenever it is
clear from the context):®

Wfoo cC--- CWP,_l CWP’()CWPJ cC--- CV\}f0 CQ;:(U)

This filtration, which keeps track of the polynomial order of 7 for k-forms with asymptotic support on
P, provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([9], Definition 3.10). A differential k-form « is in WS"(U) if there exist polyhedral

subsets Py, ..., P; C U of codimension k such that @ € Zi’:] ij,s(U). If, moreover, da € Wf:ll (U),
then we write @ € WX (U). For every s € Z, let W (U) = P, Wf+k(U).

Example 5.3. Let U = R and x be an affine coordinate on U. Then we consider the #-dependent 1-form

1\ e
0= (E) e 7 dx.

Direct calculations in [7, Lem 4.12] showed that ¢ € )/Vl1 (U) has asymptotic support on the hyperplane
P defined by x = 0.

The hyperplane P separates U into two chambers H; and H_. If we fix a base point in H_ and apply
the integral operator [ in [7, Lem. 4.23], we obtain /() € Wg(U) which has asymptotic support on
H, U P, playing the role of a step function.

Taking finite products of elements of the above form, we obtain « € W]f (U) with asymptotic support
on arbitrary tropical polyhedral subsets of U. Any forms obtained from a finite number of steps of
applying the differential d, applying the integral operator / and taking wedge product are in W (U).

We say that two closed tropical polyhedral subsets Py, P, C U of codimension ki, ky intersect
transversally if the affine subspaces of codimension k; and k, which contain P and P,, respectively,
intersect transversally. This definition applies also when Py N P, = @ or OP; # 0.

Lemma 5.4 [7, Lem. 4.22].

1. Let Py, P>, P C U be closed tropical polyhedral subsets of codimension ki, ko and k| + ko, respec-
tively, such that P contains Py N Py and is normal to vp, A vp,. Then Wp, s(U) A Wp, ,(U) C
Wep 45 (U) if Py and P; intersect transversally with Py N Py # 0, and Wp, s(U) A Wp, - (U) C
WEFR (U otherwise.

2. We have Wfl‘ U)na V\/Skz2 U) c Wfl‘:;;z (U). In particular, W3 (U) ¢ W, (U) is a dg subalgebra and

W, (U) c W;(U) is a dg ideal.

7For k = 0, we use the convention that vp =1 € /\0 Ngr = R and also set VZ, =1.
8Note that k is equal to the codimension of P c U.
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Definition 5.5. Let W] be the sheafification of the presheaf defined by U +— W;(U). We call the
quotient sheaf 7 := W;/W"*, the sheaf of tropical differential forms, which is a sheaf of dgas on Mg
with structures (A, d).

From [9, Lem. 3.6], we learn that R — J* is a resolution. Furthermore, given any point x € U and
a sufficiently small neighborhood x € W c U, we can show that there exists f € Wg (W) with compact
support in W and satisfying f = 1 near x (using an argument similar to the proof of Lemma 3.10).
Therefore, " has a partition of unity subordinate to a given open cover. Replacing the sheaf of de
Rham differential forms on A;l 1 ®Qr r by the sheaf 7 of tropical differential forms, we can construct
a particular complex on the integral tropical manifold B satisfying Condition 4.7, which dictates the
tropical geometry of B.

Definition 5.6. Given a point x as in §3.3.2 (with a chart as in equation (3.10)), the stalk of I * at x is
defined as 7" := (x~!F*),. This defines the complex (T*, d) (or simply T *) of monodromy invariant
tropical differential forms on B. A section @ € I *(W) is a collection of elements @y € I, x € W
such that each @, can be represented by x~! 8, in a small neighborhood U c p~!(Uy,) for some tropical
differential form 8, on Uy, and satisfies the relation oz = X~ (p*By) in T- < forevery ¥ € Usy.

Notice that the definition of I * requires the projection map p in equation (3.11) to be affine, while
that of Q" in §3.3.2 does not. But like Q*, * satisfies Condition 4.7 and can be used for the purpose
of gluing the sheaf PV* of dgBV algebras in §4.3. In the rest of this section, we shall use the notations
PV* and A* to denote the complexes of sheaves constructed using 7 *.

5.2. The semiflat dgBYV algebra and its comparison with the pre-dgBV algebra PV**

In this section, we define a twisting of the semiflat dgBV algebra by the slab functions (or initial wall-
crossing factors) in §2.4 and compare it with the dgBV algebra we constructed in §4.3 using gluing of
local smoothing models. The key result is Lemma 5.10, which is an important step in the proof of our
main result.

We start by recalling some notations from §2.4. Recall that for each vertex v, we fix a representative
@, : U, — R of the strictly convex multivalued piecewise linear function ¢ € H°(B, MPL%) to
define the cone C, and the monoid P, . The natural projection 7, ® Z — T,, induces a surjective ring
homomorphism C[p~'P,] — C[p~'Z,]; we denote by m € p~'X, the image of m € p~'P, under
the natural projection. We consider V(7), := Spec,,(C[r~'P,]) for some 7 containing v and write z™
for the function corresponding to m € 77! P,,. The element o together with the corresponding function
7€ determine a family Spec,,(C[t~'P,]) — C, whose central fiber is given by Spec,,(C[t7'Z,]).
The variety V(7), = Spec,,(C[r7'P,]) is equipped with the divisorial log structure induced by
Spec,, (C[t7'%,]), which is log smooth. We write V(T)I if we need to emphasize the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element u € I'(B \ &, A" T 7).
We fix a local representative u,, € A" T, for every vertex vand u, € A" A, for every maximal cell o.
Writing p, = my A - -+ A m,,, we have the corresponding relative volume form

y=dlogzZ™ A--- Adlogz™

in Qz( et Now, the relative log polyvector fields can be written as
Ty
—1
Ovirpcr= D " A Ay
mer 1P,
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The volume form u, defines a BV operator via contraction (Aa) 4 u, = d(a 4 u,), which is given
explicitly by

!
AL Oy A A ) = D (=17, m) "By Ao By A .
j=1

A Schouten—Nijenhuis-type bracket is given by extending the following formulae skew-symmetrically:

m m mi+m;
(2™ Onys 270y ] = 2™ 2a(”ﬂle>nl—<ﬁlz,nl)rlz’

[2™, 0n] = (m,n)z"™.
This gives A" ®V(T)? /ct the structure of a BV algebra.

5.2.1. Construction of the semiflat sheaves
For each k € N, we shall define a sheaf *G; (resp. *K;) of k""-order semiflat log vector fields (resp.
semiflat log de Rham forms) over the open dense subset Wy C B defined by

Wo:= | ) inte(@)U [ inte(p)U [ (inte(p) \ (§ Nintee(0)),
oeplnl pegb(gn—l] pet@l[n—l]
where 9’&"7]] consists of p’s such that int,. (p) N S, = 0 and 991["71] of p’s that intersect with &§,. These

sheaves use the natural divisorial log structure on V( p)i and will not depend on the slab functions f,,’s.
This construction is possible because we are using the much more flexible Euclidean topology on Wy,
instead of the Zariski topology on *X.

For o € P!l recall that we have V(o) = Spec,,(C[c"'Z,]) for some v € %], We also have
Spec,,(C[c~'Z,]) = A}, o/ N, which is isomorphic to (C*)", because c7'%, = Apr =T, . The
local k™-order thickening

V()" = Specy, (Clo' Py /¢**']) = (C")" x Spec,, (Clgl/¢"*")

is obtained by identifying o' P,, as A, x N. Choosing a different vertex v’, we can use the parallel
transport T, = T, from v to v’ within int, (o) and the difference ¢, |, — ¢,/|o between two affine
functions to identify the monoids o' P,, = o~!P,,. We take

KG fint (o) = v*( A Oy /ks.;.) = . Oty (o)) 82 [\ Al

Next, we need to glue the sheaves kG:fhmm(o.) ’s along neighborhoods of codimension one cells p’s.
For each codimension, one cell p, we fix a primitive normal de to p and label the two adjacent maximal
cells oy and o so that Jp is pointing into o~.. There are two situations to consider.

The simpler case is when &, N int,(p) = @, where the monodromy is trivial. In this case, we have
V(p) = Spec,,(C[p~'Z,]), with the gluing V(o+) < V(p) as described below Definition 2.13 using
the open gluing data s, -, . We take the k™-order thickening given by

“V(p)" = Specy, (Clp~" Py /g" '),
equipped with the divisorial log structure induced by V(p). We extend the open gluing data
Sporst Ngy = C”
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to
Spo. Ao, ®Z — C*

sothat s, (0, 1) = 1, which acts as an automorphism of Spec,,,(C[c"'Z,]). In this way, we can extend
the gluing V(o) < V(p) to

Spec,, (Cloz' Py /q"']) — Spec,, (Clp~' Py /¢"*'])

by twisting with the ring homomorphism induced by z™ — sy, (m)~'2™. On a sufficiently small
neighborhood 7, of int..(p), we take

k ~x ,_ —*
GQfl% = V*( /\ @kv(p)T/kST)LW .
P

Choosing a different vertex v/, we may use parallel transport to identify the fans p~'%, = p~!'%,,, and
further use the difference ¢, |7, — ¢\/|3;, to identify the monoids p~'P, = p~'P,.. One can check that

the sheaf kG:f|7/p is well defined.

The more complicated case is when &, N int(p) # 0, where the monodromy is nontrivial. We
write inte (p) \ & = U, intee(p),, where inte (p),, is the unique component which contains the vertex v
in its closure. We fix one v, the corresponding int..(p),, and a sufficiently small open subset 7%, , of
int(p),. We assume that the neighborhood 7%, ,, of int,.(p), intersects neither %, , nor %, for any
possible v” and p’. Then we consider the scheme-theoretic embedding

V(p) = Spec,, (Clp™'Z,]) — Spec,, (Clp™' Py ])

given by

s z™ if m lies on the boundary of the cone p~'P,,,
0 if m lies in the interior of the cone p~'P,,.

We denote by FV( p): the k"-order thickening of V(p)|, -1 7

0,

,) in Spec,, (C[p~'P,]) and equip it with
the divisorial log structure which is log smooth over *ST (note that it is different from the local model
kV(p)T introduced earlier in §4 because the latter depends on the slab functions f, ,, as we can see
explicitly in §5.2.2, while the former doesn’t). We take

kA~ i -
Gyl = /\ Oy (o)1 kst

The gluing with nearby maximal cells o, on the overlap int(ox) N %, is given by parallel
transporting through the vertex v to relate the monoids o;' P, and p~!' P, constructed from P,,, and
twisting the map Spec,, (C[oz' P, ]) — Spec,,(C[p~' P, ]) with the open gluing data

7" 5L (m)z™,

PO+

using previous liftings of s,, t0 Ay, ® Z. We obtain a commutative diagram of holomorphic maps

V(os)lo Hkv(o})”@ s

V(p)lo—"V(p)"lo
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Ur Un
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Figure 7. Analytic continuation along y.

where 9 = v‘l(%/p’v N inte(0:)) and the vertical arrow on the right-hand side respects the log
structures. The induced isomorphism

V(/\ ®kV<p>i/ksT)EV*(/\ ®kv<ai>i/ks+)

of sheaves on the overlap %, ,, N int,. (o) then gives the desired gluing for defining the sheaf k G;‘f on
Wo. Note that the cocycle condition is trivial here as there is no triple intersection of any three open
subsets from int. (o), %, and %, .

Similarly, we can define the sheaf ¥ K} of semiflat log de Rham forms, together with a relative volume
form Kw, € ’ﬁK;‘f(Wo) obtained from gluing the local u,’s specified by the element y as described in
the beginning of §5.2.

It would be useful to write down elements of the sheaf ¥ G;; more explicitly. For instance, fixing a
point x € int.(p),, we may write

kG:f,x = Vu(Oky (), )x ®r /\_ T, x (5.1

and use d, to stand for the semiflat holomorphic vector field associated to an element n € T},

Note that analytic continuation around the singular locus &, N int.(p) acts nontr1v1ally on the
semiflat sheaf ¥ G;; due to the presence of nontrivial monodromy of the affine structure. Below is a
simple example.

Example 5.7. We consider the local affine charts which appeared in Example 2.3, equipped with a
strictly convex piecewise linear affine function ¢ on X, whose change of slopes is 1. Let us study the
analytic continuation of a local section along the loop y which starts at a point b, as shown in Figure
7. First, we can identify both p~' P, and p~!' P,_ with the monoid in the cone P = {(x,y,z) | z = ¢(x)}
via parallel transport through o-,.. Writing u = z(10D y = 77100 1y = 2(0.21.0) gpd g = 7(0.0.D e
have C[P] = Clu,v,w*, q]/(uv — q). Now, the analytic continuation of u € V*(Ok\,(p)v+ )», along y
(going from the chart Uy to the chart Ut and then back to Uyp) is given by as a sequence of elements:

u—-=>Syq, ((1, O))_lu*>uw*>spm ((L,0) 'gv'w—swu,
via the following sequence of maps between the stalks over b, c, € Ugand b_, c_ € Ur:
Vi (Ony(p),, 0. = Va(Ory gy )er V4 (Ory ), Jo- =4Oy gyt )ee >Vl Oy ), Db
So we see that the analytic continuation along y maps u to wu.
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kG;‘f is equipped with the BV algebra structure inherited from Spec,,(C[p~'P,])" (as described in
the beginning of §5.2), which agrees with the one induced from the volume form *wy. This allows us
to define the sheaf of semiflat tropical vertex Lie algebras as

kp .= Ker(A)[eg1 [-1]. (5.2)

Remark 5.8. The sheaf can actually be extended over the nonessential singular locus & \ &, because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Explicit gluing away from codimension 2

When we define the sheaves ¥G*’s in §4.1, the open subset W, is taken to be a sufficiently small
neighborhood of x € int.(7) for some 7 € . In fact, we can choose one of these open subsets to be
the large open dense subset Wjy. In this subsection, we construct the sheaves kgg and * K on Wy using
an explicit gluing of the underlying complex analytic space.

Over inty (o) for o € 21" or over W, for p € 21 with &, Ninte(p) = 0, we have kgg = kG:f,
which was just constructed in §5.2.1. So it remains to consider p € 2!"~!l such that &, N intr.(p) # 0.
The log structure of V(p)" is prescribed by the slab functions fv.po € T(Oy,(v))’s, which restrict to
functions s;’lp(fv,p)’s on the torus Spec,, (C[A,]) = (C*)"~1. Each of these can be pulled back via the
natural projection Spec,,(C[p™'Z,]) — Spec,, (C[A,]) to give a function on Spec,,(C[p~'Z,]). In
this case, we may fix the log chart V(p)'|,-i Hp) = Spec,, (C[p~'P,])T given by the equation

" if {d,,m) >0,
Y <J,m>.<vp _>
z (svp(fv’p)) »" i (d,, m) < 0.
Write kV(p)i for the corresponding k™-order thickening in Spec,,(C[p~'P,]), which gives a local
model for smoothing V(p)|, - () (as in §4). We take

k ~* o —*
Golw,., = V(/\ ®kV(p>i/kS*)'

We have to specify the gluing on the overlap %, ,, N int,. (o) with the adjacent maximal cells 0.
This is given by first using parallel transport through v to relate the monoids o' P, and p~' P, as in
the semiflat case, and then an embedding Spec,, (C[oz' P, /¢**']) — Spec,,(C[p~' P, /g**']) via the
formula

Zm — s;gr+ (m)zm . for 04, (5 3)
Sper. (m)2™ (531 (fo ) %™ for o, '

where s, ¢, , Sy, are treated as maps A, ®Z — C* as before. We observe that there is a commutative
diagram of log morphisms

V(O':r)“hl@%kv(o'r)”@ ,

V() lo—*V(p)'ly
where @ = v"1(%,,, Ninte(0.)). The induced isomorphism

V*( Ai* ®’<V(p>i/k5+) "*( Ai* ®kv<at>i/ksw—)
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of sheaves on the overlap & then provides the gluing for defining the sheaf G o on Wy. Hence, we obtain a
sheaf kg;; of BV algebras, where the BV structure is inherited from the local models Spec,, (C[o~'P,,])
and Spec,, (C[p~'P,]). Similarly, we can define the sheaf kICZ‘) of log de Rham forms over W), together
with a relative volume form *wy € 'ﬁ K (Wo) by gluing the local u,’s.

5.2.3. Relation between the semiflat dgBV algebra and the log structure
The difference between kg;; and kG;‘f is that analytic continuation along a path vy in inty. (0=) U inte (),
where p = o No—, induces a nontrivial action on k sz (the semiflat sheaf) but not on kg o (the corrected
sheaf). This is because, near a singular point p € I' of the affine structure on B, there is another local
model kg; for p € W, constructed in 4.1, where restrictions of sections are invariant under analytic
continuation (cf. Example 5.7). This is in line with the philosophy that monodromy is being cancelled
by the slab functions f, ,’s (which we also call initial wall-crossing factors). In view of this, we should
be able to relate the sheaves "g;; and ¥ G;; by adding back the initial wall-crossing factors f, ,’s.

Recall that the slab function f, , is a function on V,(v) C OXp, whose zero locus is Zf N Vy(v)
for p such that &, N inte(p) # 0. Also, recall that, for p containing v, p,, is the unique contractible
componentin pN G~ (B\ &) suchthatv € p,, as defined in Assumption 3.5. Note that the inverse image
u(p,) c V,»(v) under the generalized moment map y is also a contractible open subset. It contains the
zero-dimensional stratum x, in V,,(v) that corresponds to v. Since f, ,(x,) = 1, we can define log(f, )
in a small neighborhood of x,,, and it can further be extended to the whole of u~!(p,) C V,,(v) because
this subset is contractible. Restricting to the open dense torus orbit Spec,,, (C[A,]) N 1~ (py), we obtain
log(sy,5(fv.5)), which can in addition be lifted to a section in *G%(%},,) = T(W}., Ory(,,) for a
sufficiently small 7, , .

Now, we resolve the sheaves "gg and kG;‘f by the complex & * introduced in §5.1. We let

* k
T |W0 ®r Gsf

k *, %
PV

S
and equip it with 9, = d ® 1, A and A, making it a sheaf of dgBV algebras. Over the open subset Wy,

using the explicit description of kG;}Wp » we consider the element

Bu.p = —0v,0 ®10g(s75(f1.0)y € PV (), (5.4)

where 6, ,, is any 1-form with asymptotic support in int.(p0), and whose integral over any curve
transversal to int.(p), going from o_ to o is asymptotically 1; such a 1-form can be constructed
using a family of bump functions in the normal direction of int. (p), similar to Example 5.3 (see also
[7, §4]). We can further extend the section ¢, , to the whole Wy by setting it to be 0 outside a small
neighborhood of int..(p), in % , .

Definition 5.9. The sheaf of semiflat polyvector fields is defined as

k % gk k ~x
PVSf =J |WO ®r Gsf’

which is equipped with a BV operator A, a wedge product A (and hence a Lie bracket [-,-]) and the
operator

O = Jo+ [ 1 = Tot ) [dvps ],
v.p

where 8, = d ® 1 and ¢y, := Zv.p $v.p- We also define the sheaf of semiflat log de Rham forms as

k pa** . g* ko*
Asf =9 |w, ®r Kses
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equipped with 9, A,
5Sf = 8_0 + Z ‘C’¢v,p’
v.p

and a contraction action 1 by elements in kPVZ;*.
It can be easily checked that 5S2f = [(if, A] =0, so we have a sheaf of dgBV algebras.
On the other hand, we write
kPVZ;’* = 9*|W() Rr kgé‘,,
which is equipped with the operators dp = d ® 1, A and A. The following important lemma is a
comparison between the two sheaves of dgBV algebras.

Lemma 5.10. There exists a set of compatible isomorphisms
@: kpvyt 5 FPVY, ke N
sf

of sheaves of dgBV algebras such that @ o 0y = ds; o D for each k € N.
There also exists a set of compatible isomorphisms

@ KA S FAY keN

of sheaves of dgas preserving the contraction action s and such that ® o 0y = ds; o D for each k € N.
Furthermore, the relative volume form *w is identified via ®.

Proof. Outside those int..(p)’s such that &, Nint(p) # 0, the two sheaves are identical. So we will
take a component int. (o), of int.(p) \ & and compare the sheaves on a neighborhood %, .

We fix a point x € int(p), and describe the map @ at the stalks of the two sheaves. First, the
preimage K := v~ !(x) = A;»R / A, can be identified as a real (n — 1)-dimensional torus in the analytic

space Spec,,(C[Ay]) = (C*)"!. We have an identification p~'%, = %, x A,, and we choose the
unique primitive element m,, € %, in the ray pointing into o. As analytic spaces, we write

Spec,, (C[Z,]) = {uv = 0} c C?,
where u = 7" and v = z7™, and
Spec,, (Clp™'2,1) = (€ x {uv = 0.

The germ Oy (), x of analytic functions can be written as

o ) —0 ) 1 )
Ov(p).k = {ao + Z a;u' + Z aiv’t | a; € O(c+yn1 (U) for neigh. U O K, sup 08 |ai] < oo} .
i=1

iz0 il

Using the embedding V(p)|,-1 ) kV(p)I in §5.2.2, we can write

k-0 _ _
Gox = OkV(p)v,K =

k 0 —eo

) . log la: :

{ E (ao,j + E aj ju' + E ai,jv_l)q]) a;,j € O+yn1 (U) for neigh. U S K, s_u(;)) % < oo} ,
j=0 i=1 i=-1 i#

with the relation uv = qls;})( fv.p) (here, [ is the change of slopes for ¢, across p). For the elements
(mp, @y (my)) and (—my, @, (-m,)) in p~'P,, we have the identities (we omit the dependence on k
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when we write elements in the stalks of sheaves):
Z(mp"ﬁv(mp)) =u,

Z‘(—mp»¢v(—mp)) - s;;l)(fv,p)_lv,

describing the embedding kV(p)I s Spec,,(C[p~'P,])". For polyvector fields, we can write

k o k ~0 A *
Gox =" G0 @ [\ T\ 5
The BV operator is described by the relations A(d,) =0, [0y, 0n,] =0, and

[, 0,] = A(Z™0,) = (m,n)z™ form withm € Ap, n € T ;4
[u,0n] = A(udy) = (mp, n)u forn €T} ; 5.5
[v, 0] = A(v8,) = (=mp, n)v + dp(log 53}, (fu p))v forneT; o

Similarly, we can write down the stalk for kg x = k G; .
O(cyn-1 x ®c Clgl/(g**"), we have “G;

sf,x

® AT ;. As a module over ring
=k Gy, the ring structure on ngf .. differs from that on
kG0 _and is determined by the relation uv = g'. The embedding “V(p)} < Spec,,(C[p~'P,])" is
given by

Z(mps‘/’v (mp)) =u,

Zf(fmp"l’v (=myp)) =y.

The formulae for the BV operator are the same as that for "gg’x, except that for the last equation in (5.5),
we have [v, 0,] = A(v0,) = (-=m,, n)v instead.

We apply the argument in [7, §4], where we considered a scattering diagram consisting of only
one wall, to relate these two sheaves. We can find a set of compatible elements 6 = (k 0)ren, Where
kg € *pv 0(%,,,,) for k € N, such that e? » J, = Jy¢ and A (6) = 0. Explicitly, @ is a step-function-like
section of the form

_ log(s;})(fv,p))advp on intre(o_+) N %,v,
0 on inte(0—) N %,

For each k € N, we also define 6 := log(s;}) (fv,p))(?gp, as an element in kGS_fl (7). Now, we define
the map @, : KPV;* — *PV." at the stalks by writing

k *, % *
PVO,x:‘G/; 0x®R/\TvR
(and similarly for KPV*; ofx * ) and extending the formulae

Dy (@) =a for a € 9,

D (f)=el®If=f forfeOrcymik,
Dy (u) = elf=t1y,

D, (v) =elfly,

D, (8,) = el?=%"15, forne T:’R

through the tensor product ®g and skew-symmetrically in d,,’s.
To see that @ is the desired isomorphism, we check all the relations by computations:
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0.-]

e Since el?1 04,0l = 6_Sf, we have

B¢ Dy (u) = el 13, (e7 1%y = 0

similarly, We have 5gf(¢ (v)) =0 = 3y (D (8,)). Hence, we have @ 0 dy = gt 0 Dy.
e We have e~1%0-1y = 57 (fvp)u and

D, (D (v) = e (s L (f et W = sTL(fu p)el® T uv) = ¢'sTh (o) = P (uv),

that is, the map @, preserves the product structure.
e From the fact that A (6) = 0 = A(6p), we see that e!?~%-] commutes with A, and hence A (D, (8,)) =
el?=0-1 A (8,) = 0. We also have [@,(d,,,), P (8p,)] = el9%1[d,,,8,,] =0
e Again from A(0) =0 = A(6)p), we have
A(Dx ()P (82)) = AP (ud,)) = !PT (A(udy))
= (mp, m)e! "N (u) = (mp, n)Ds () = P (A (u6,)).

o Finally, we have

AP (V) D (0n)) = A% T ((elP1),)) = el O T (A(s7) (fu,0)v0n))
= el 0N ((—mp nysy L (Fo o)V + On sy ) (fop))V)
= (=mp,n)(e'%v) + 8, (log 57} (fv.0)) (1% 1v)
= (=, ) (v) + O (log 5,1 (fr.p)) P (V)
= O, (A(vd,)).

We conclude that @, : ¥PV" i — KPV®* is an isomorphism of dgBV algebras. We need to check

0,
that the map @, agrees with the isomorphism * PVO lg — *PV* o *|# induced simply by the identity

sf,x

kg0|g = kG*flg, where € = Wo \ U, nint. (p)20 intre (). For this purpose, we consider two nearby
maxnnal cells o such that o, N o~ = p. We have ¥V (o) = Spec,,(C[oz' P,]/¢**"), and the gluing
of ¥ G, over W,y N o is given by parallel transporting through v, and then by the formulae

Mo sl (m)" form € A,
u sy (mp)z™, (5.6)

Vi qls;}n (fv,p)S;(ln(—mp)Z_m" .

The only difference for gluing of kG:f is the last equation in (5.6), which is now replaced by the formula
v - g'syi (—=mp)z 7. Since we have

&, (v) = S\_»Fly(fv,p)v on Uy Nintee (o),
v on Uy Nint (o)

on a sufficiently small neighborhood Uy of x, we see that @, (v) = ¢'syi, (f1.p)s54, (—=mp)z~" under
the gluing map of * Gy; on Uy N intre (o). This shows the compatibility of @, with the gluing of kg;
and ¥ G;; over Uy Nintye(04). A similar argument applies for Uy N intee(0-).

The proof for @: * AS’* —k A;;* is similar and will be omitted. The volume form is preserved under
@ because we have A (6) = 0 = A(6y). This completes the proof of the lemma. O
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5.2.4. A global sheaf of dgLas from gluing of the semiflat sheaves

We shall apply the procedure described in §4.3 to the semiflat sheaves to glue a global sheaf of dglas. First
of all, we choose an open cover {W,, },e.s satisfying the Condition 4.1, together with a decomposition
J = J1 U S such that Wy = {Wy }aes is a cover of the semiflat part Wy, and Wh = {Wytaes, is a
cover of a neighborhood of (U, egin-21 7) U (Upns, 20 S N inte(p)).

For each W,,, we have a compatible set of local sheaves “G*, of BV algebras, local sheaves X, of
dgas, and relative volume elements . Wa, k € N(asin §4.1). We can further demand that, over the semiflat
part Wy, we have KG*, = kg;;|wa, kiex = kIC(*)|Wa and *wo = *wolw,, and hence *PVy" = KPV ™|,
and K A% = kA(’;’*IWa for @ € 7.

Using the construction in §4.3, we obtain a Gerstenhaber deformation ¥ 8aB = elfap:] o ka//aﬁ
specified by 0,5 € kPV;),l’O(WaB), which give rise to sets of compatible global sheaves ¥ PV** and
K A** k e N. Restricting to the semiflat part, we get two Gerstenhaber deformations kPVE”)’* and

kPV**|w,, which must be equivalent as H>°(W;,°PV=10|y.) = 0. So we have a set of compatible
isomorphisms locally given by ho = elPe1: KPVE|y, - — kpy=+|y, = kPVL* for some element

b, € kPVal’O(Wa), for each k € N, and they fit into the following commutative diagram

k *, % id _ g %
PV, |WQB*> PV, |Waﬁ
ha hg

k
k pyye. 8af K pyye
PV, |WQB*> PV,B |Waﬁ'

Since the predifferential on k py. |w, obtained from the construction in §4.3 is of the form Oy + [7as -]
for some n,, € kPVa L1 (Wq), pulling back via /., gives a global element 77 € PV(;I’1 (Wy) such that

h:xl o (50 +[na>*]) 0o he = 50 +[n,].

Theorem 4.18 gives a Maurer—Cartan solution ¢ € *PV~11(B) such that (d + [¢,-])? = 0, together
with a holomorphic volume form e/ w, compatible for each k. We denote the pullback of ¢ under £, ’s
to kPV(; L1 (Wp) as ¢ and that of volume form to ’ﬁ AS’O(WO) as e wg. We see that the equation

(6_0 + £,7+¢0)€g wo = 0

is satisfied, or equivalently, that 7 + ¢ + 7g is a solution to the extended Maurer—Cartan equation 4.10.

Lemma 5.11. If the holomorphic volume form e/ w is normalized in the sense of Definition 4.19, then
we can find a set of compatible V € kPVal’O(Wo), k € N such that

eV wy = 2 wy.
As a consequence, the Maurer—Cartan solution n + ¢ + tg is gauge equivalent to a solution of the form
Lo+t -0 for some {y € kPV(;l’1 (W), via the gauge transformation e!V>'1: kPVS’* - kPVS’*.

Proof. We should construct V by induction on k as in the proof of Lemma 4.6. Namely, suppose V is
constructed for the (k — 1)*-order, then we shall lift it to the k™-order. We prove the existence of a
lifting Vs € kPValx’O at every stalk x € Wy and use partition of unity to glue a global lifting V.

First of all, we can always find a gauge transformation 8 € kPV(; 1);0 such that

e 1%V oGy o el =Gy + [+ ¢o.-].
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So we have dy(e?e8 wy) = 0, which implies that e~¢ 8 w € ’ﬁIC(’)’ .- We can write eLoe8 wy = e wy
in the stalk at x for some germ & € ¥ gg . of holomorphic functions. Applying Lemma 4.6, we can

further choose 6 so that & = h(q) € (¢) € C[q]/¢q**". In a sufficiently small neighborhood U,, we
find an element o, € I "(Uy) as in Definition 4.19. The fact that the volume form is normalized forces
e [wy A 0,] to be constant with respect to the Gauss—Manin connection V. Tracing through the
exact sequence (4.14) on Uy, we can lift wq to leg(Ux) which is closed under 9. As a consequence,

we have kv% [wo A 0x] = 0, and hence we conclude that 4(g) = 0.
ogq

Now, we have to solve for a lifting V, such that e“?e™“vx wy = wo up to the kM-order. This is
equivalent to solving for a lifting u satisfying e“* wqy = wq for the kM-order once the (k — 1)*-order is
given. Take an arbitrary lifting  to the k'"-order, and making use of the formula in [8, Lem. 2.8], we have

> o3
e“t wy = exp (ZO (s+—ul)' A(ﬁ)) wo,
s=

where 6; = —[i,-]. From e“* wy = wo (mod m*), we use induction on the order j to prove that

A(ii) = 0 up to order (k — 1). Therefore, we can write
A(iM) = ¢* A7) (mod m¥)

for some ii € OPVa 1);0 by the fact that the cohomology sheaf under A is free over R = C[q]/(¢**")
(see the discussion right after Condition 4.14). Setting u = i — g¥i will then solve the equation. O

_ The element V obtained in Lemma 5.11 can be used to conjugate the operator 8o + [ + ¢o, -] to get
o + [ o, -], that is,

eV lo 8y + 2o, 1) 0 €™ 1 =g+ [+ g0, -]

The volume form wq will be holomorphic under the operator dy + [0, -]. From the equation (4.13), we
observe that A () = 0. Furthermore, the image of ¢, under the isomorphism ®: * PVy* — kPVZ};* in

Lemma 5.10 gives ¢5 € I‘PVS_fl’1 (Wp), and an operator of the form

50 + [¢in + ¢Ss ] = 8_0 + Z [¢V,p’ ] + [¢S9 ']’ (57)
V.p

where ¢in = 3, , ¢ p, that acts on kPV:IZ*'

Equipping with this operator, the semiflat sheaf *PV’;" can be glued to the sheaves *PV;*’s for
a € S, preserving all the operators. More explicitly, on each overlap Wy, := Wy N W,,, we have

*g0at “PV Iwe, = PV W, (5.8)
defined by
Kgap o k80a|w{w i=hgoe V1o [Wap

for 5 € 71, which sends the operator 0 + [Pin + s, -] tO Oy + [7a + 0,1

Definition 5.12. We call kTL;‘f = Ker(A)[-1] c kPVS_fl’* [—1], equipped with the structure of a dglLa
using 9, and [-, -] inherited from kPVS_fl’*, the sheaf of semiflat tropical vertex differential graded Lie
algebras (abbreviated as sf-TVdgLa).
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Note that kTL;‘f = I *|w, ®r kp. Also, we have A (¢s) = 0 since A (&) = 0, and a direct computation
shows that A (¢i,) = 0. Thus, @i, s € kTL;f(Wo), and the operator d, + [¢in + ¢, -] preserves the
sub-dgLa ¥ TL

From the description of the sheaf I *, we can see that locally on U € Wy, ¢ is supported on finitely
many codimension one polyhedral subsets, called walls or slabs, which are constituents of a scattering
diagram. This is why we use the subscript ‘s’ in ¢, which stands for ‘scattering’.

5.3. Consistent scattering diagrams and Maurer—Cartan solutions

5.3.1. Scattering diagrams

In this subsection, we recall the notion of scattering diagrams introduced by Kontsevich—Soibelman
[36] and Gross—Siebert [29], and make modifications to suit our needs. We begin with the notion of
walls from [29, §2]. Let

$= ( U T) U U § Ninte(p)
repln-2] pegin-l
PNSe#0

be equipped with a polyhedral decomposition induced from 9° and &'. For the exposition below, we will
always fix k > 0 and consider all these structures modulo m**! = (gk*1).

Definition 5.13. A wall (W, oy, dw, ®y) consists of

e amaximal cell o € plnl
a closed (n — 1)-dimensional tropical polyhedral subset w of o such that

inte(w) N| () inte(p) | =0.

pE‘@["_I]
PNSe#0

a choice of a primitive normal Jw, and
a section ©,, of the tropical vertex group exp(q - “B) over a sufficiently small neighborhood of w.

We call ®y, the wall-crossing factor associated to the wall w. We may write a wall as (w, ®y) for
simplicity.

A wall cannot be contained in p with p N &, # 0. We define a notion of slabs for these subsets of
codimension one strata p intersecting &§,. The difference is that we have an extra term 6, , coming
from the slab function f, ,.

Definition 5.14. A slab (b, py, d,,, 5) consists of

an (n — 1)-cell py, € 2" such that pp, N S, # 0,

a closed (n — 1)-dimensional tropical polyhedral subset b of py, \ (op N &),
a choice of a primitive normal Jp, and

a section &}, of exp(q - kh) over a sufficiently small neighborhood of b.

The wall-crossing factor associated to the slab b is given by
®b = @v,p o Eb,
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Figure 8. Supports of walls/slabs.

where v is the unique vertex such that int.(p), contains b and
Ov.p = exp([log(sy, (f1,0))0y, 1)

(cf. equation (5.4)). We may write a slab as (b, ®p) for simplicity.

Remark 5.15. In the above definition, a slab is not allowed to intersect the singular locus &'. This is
different from the situation in [29, §2]. However, in our definition of consistent scattering diagrams, we
will require consistency around each stratum of §.

Example 5.16. We consider the three-dimensional example shown in Figure 8, from which we can see
possible supports of the walls and slabs. There are two adjacent maximal cells intersecting at p € P11
with & Np = & N p colored in red. The two-dimensional polyhedral subsets colored in blue can support
walls and the polyhedral subset colored in green can support a slab because it is lying inside p with
SeNp #0.

Definition 5.17. A (k"-order) scattering diagram is a countable collection
D ={(wi,0) }iew U {(b;,0;)}jen

of walls or slabs such that the intersections of any two walls/slabs is at most an (n — 2)-dimensional
tropical polyhedral subset, and {w; N Wo}ien U {b; N Wy} jen is locally finite in Wy.

Our notion of scattering diagrams is more flexible than the one defined in [36, 29] in two ways: First,
there is no relation between the affine direction orthogonal to a wall w or a slab b and its wall crossing
factor. As a result, we cannot allow overlapping of walls/slabs in their relative interior because in that
case their associated wall crossing factors are not necessarily commuting. Second, we only require that
the intersection of & with W is a locally finite collection of W, which implies that we allow a possibly
infinite number of walls/slabs approaching strata of &. In the construction of the scattering diagram
D () associated to a Maurer—Cartan solution ¢ below, all the walls/slabs will be compact subsets of Wj.
These walls will not intersect of, as illustrated in Figure 8. However, there could be a union of infinitely
many walls limiting to some strata of §. See also Remark 1.2.

Example 5.18. For the two-dimensional example shown in Figure 9, we see a vertex v and its adjacent
cells, and the singular locus &, consists of the red crosses. In our version of scattering diagrams, we
allow infinitely many intervals limiting to {v} or &.

Given a scattering diagram &, we can define its support as | 2| := | ien Wi U U e bj. There is an
induced polyhedral decomposition on || such that its (n — 1)-cells are closed subsets of some walls
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Figure 9. Walls/slabs around S.

or slabs, and all intersections of walls or slabs are lying in the union of the (n — 2)-cells. We write
|21 for the collection of all the i-cells in this polyhedral decomposition. We may assume, after further
subdividing the walls or slabs in 9 if necessary, that every wall or slab is an (n — 1)-cell in |2|. We call
an (n —2)-cell j € |2|"~21 a joint, and a connected component of Wy \ |2| a chamber.

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of elements
in the tropical vertex group as in [29], we will express it in terms of the action by the tropical vertex group

on the local sections of kG?f. There is no harm in doing so since we have the inclusion of sheaf of Lie

algebra kGS_fl — Der(kGSf; kGSf
In this regard, we would like to define the (k™-order) wall-crossing sheaf ¥ ©g on the open set

), that is, a relative vector field is determined by its action on functions.

Wo(@):=wo\ [ i

i€||in-2)

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall/slab. We first consider the sheaf ngf of holomorphic functions over the subset Wy \ |9,
and let

k kO
Oalw\ 121 = " Cglwo\|2)-

To extend it through the walls/slabs, we will specify the analytic continuation through int,. (w) for each
w € |2|"~11. Given a wall/slab w with two adjacent chambers C,, C_ and dy pointing into C,, and a
point x € int,. (W) with the germ Oy, . of wall-crossing factors near x, we let

Og 1= 4Gl ,
but with a different gluing to nearby chambers C.: In a sufficiently small neighborhood U, of x, the
gluing of a local section f € k@g,x is given by

Ow.x(Nlu.ne, onUy NCy,

59
Sflune. onU, NC_. (5:9)

flu.ne, = {

In this way, the sheaf O, lwy\ || extends to Wy (D).

Now, we can formulate consistency of a scattering diagram < in terms of the behaviour of the sheaf
k64 over the joints i’s and (n — 2)-dimensional strata of . More precisely, we consider the push-
forward i,(¥0g) along the embedding i: Wo(D) — B, and its stalk at x € int. () and x € int,(7) for
strata 7 C §. Similar to above, we can define the (/™-order) sheaf '@, by using ’ Ggf and considering
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equation (5.9) modulo (g)**!. There is a natural restriction map kly: i,(k0g) — i.('03). Taking
tensor product, we have *'b: i,(¥05) ®p 'R — i.(!0%), where *R = C[4]/(g**").
The proof of the following lemma will be given in Appendix §A.

Lemma 5.19 (Hartogs extension property). We have
L(°G%lw,) =°6°
where t: Wy — B is the inclusion. Moreover, for any scattering diagram 9, we have
i.("Glwy(2)) = °G°

where i: Wo(D) — B is the inclusion.
Lemma 5.20. The 0"-order sheaf i.(°0g) is isomorphic to the sheaf °GP.

Proof. In view of Lemma 5.19, we only have to show that the two sheaves are isomorphic on the
open subset Wy(2). Since we work modulo (g), only the wall-crossing factor @, , associated to a
slab matters. So we take a point x € int(b) C int.(p), for some vertex v and compare 0@9’)( with
0G0 = OGgf’x. From the proof of Lemma 5.10, we have

0 0
Gk tx = Oy,

{ao,+2au +Zav i|al € O(cn-1 (U) for some neigh. U O K, su(l)) Og|l||a il <Oo},
i#

i=—

with the relation uv = 0. The gluings with nearby maximal cells o, of both °G and OG(S)f are simply
given by the parallel transport through v and the formulae

M spn (m)Z™ form € A, Mool (m)z” form € A,
Oyl (U spm(mp)zmp, o_: Jur 0,
v 0, Vi S;,lrf(—mp)z_mp

in the proof of Lemma 5.10.

Now, for the wall-crossing sheaf °0g, , = oGl

on the two coordinate functions u, v because {m, Jp) = 0 for m € A,. The gluing of u to the nearby
maximal cells which obeys wall crossing is given by

the wall-crossing factor @, ,, acts trivially except

wly e = ulu,ne, on U, Ny,
No.
: 6, x(Wlune. =0 onUgyno_,

in a sufficiently small neighborhood U, of x. Here, the reason that we have 07! pxMune. =0 on
U, N o_ is simply because we have u — 0 in the gluing of OGSf. For the same reason, we see that the
gluing of v agrees with that of °G and °GC. O

Definition 5.21. A (k™-order) scattering diagram 9 is said to be consistent if there is an isomorphism
i.(*O0g)|w, = *GY as sheaves of C[¢]/(¢**")-algebras on each open subset W,,.

The above consistency condition would imply that kly: 1,(k0g) — i.(109) is surjective for any
I < k and hence i, (¥0g) is a sheaf of free C[¢]/(¢**!)-modules on B. We are going to see that i, (*Og)
agrees with the push-forward of the sheaf of holomorphic functions on a (k"-order) thickening X of
the central fiber °X under the modified moment map v.

Let us elaborate a bit on the relation between this definition of consistency and that in [29]. Assuming
we have a consistent scattering diagram in the sense of [29], then we obtain a k"-order thickening * X
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of °X which is locally modeled on the thickenings ¥V ,’s by [28, Cor. 2.18]. Pushing forward via
the modified moment map v, we obtain a sheaf of algebras over C[g]/(¢**") lifting °G°, which is
locally isomorphic to the kg?,’s. This consequence is exactly what we use to formulate our definition of
consistency.

Lemma 5.22. Suppose we have W C W, N Wg such that V = v~ 1 (W) is Stein, and an isomorphism
h: kg%|w — kg?,|w of sheaves of C[q]/(q**")-algebras which is the identity modulo (q). Then there

is a unique isomorphism y: *V |y — kVﬁlv of analytic spaces inducing h.

Proof. From the description in §2.4, we can embed both families ¥V, kVﬁ over Spec,, (C[q]/(g**"))
as closed analytic subschemes of CV*!1 = CN x Cy and ciHl =k x Cy, respectively, where projection
to the second factor defines the family over C[q]/(g**"). Let J,, and Jp be the corresponding ideal
sheaves, which can be generated by finitely many elements. We can take Stein open subsets U, € CN*!
and Ug C CL+1 such that their intersections with the subschemes give ¥V, |y and nglv, respectively.
By taking global sections of the sheaves over W, we obtain the isomorphism /: OkVﬁ (V) = Oy, (V).
Using the fact that U,, is Stein, we can lift /(z;)’s, where z;’s are restrictions of coordinate functions
to kVB|V C Ug, to holomorphic functions on U, . In this way, & can be lifted as a holomorphic map
Y : Uy — Upg. Restricting to kVa|V, we see that the image lies in kvﬁ|v, and hence we obtain the
isomorphism . The uniqueness follows from the fact the i is determined by ¥ *(z;) = h(z;). O

Given a consistent scattering diagram < (in the sense of Definition 5.21), the sheaf i, (¥6Gg) can be
treated as a gluing of the local sheaves kg%’s. Then from Lemma 5.22, we obtain a gluing of the local
models ¥V ,’s yielding a thickening ¥ X of °X. This justifies Definition 5.21.

5.3.2. Constructing consistent scattering diagrams from Maurer-Cartan solutions
We are finally ready to demonstrate how to construct a consistent scattering diagram 2 () in the sense
of Definition 5.21 from a Maurer—Cartan solution ¢ = ¢ + ¢ f obtained in Theorem 4.18. As in §5.2.4,
we obtain a k™-order Maurer—Cartan solution £y and define its scattered part as ¢ € kTLif(W()). From
this, we want to construct a k"-order scattering diagram 2 ().

We take an open cover {U;}; by precompact convex open subsets of Wy such that, locally on U;,
¢din + @5 can be written as a finite sum

(¢in + ¢s)|u; = Z @ij ®Vij,
J

where a;; € T 1(U;) has asymptotic support on a codimension one polyhedral subset P; i C Uj, and
vij € Kh(U;). We take a partition of unity {o;}; subordinate to the cover {U;}; such that supp(o;) has
asymptotic support on a compact subset C; of U;. As a result, we can write

Gin + Ps :ZZ(Qiaij)®vij3 (5.10)
i

where each (o;a;;) has asymptotic support on the compact codimension one subset C; N P;; < U;. The
subset |;; C; N P;; will be the support || of our scattering diagram & = P(¢p).

We may equip || := U;; C; N P;; with a polyhedral decomposition such that all the boundaries and
mutual intersections of C; N P;;’s are contained in (n—2)-dimensional strata of ||. So, for each (n—1)-
dimensional cell 7 of |2, if int(7) N (C; N P;;) # 0 for some i, j, then we must have T € C; N P;y;.
Let I(7) := {(i,j) | * € C; N P;;}, which is a finite set of indices. We will equip the (n — 1)-cells 7’s
of |2| with the structure of walls or slabs.

We first consider the case of a wall. Take 7 € |2|["~!] such that int. (7) N int,(p) = 0 for all p with
pNS, # 0. Welet w = 7, choose a primitive normal dy of 7, and give the labels C. to the two adjacent
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chambers C. so that dy, is pointing into C,. In a sufficiently small neighborhood U of int,(7), we have
éinlu, = 0 and we may write

¢slu, = Z (0iaij) ®vij,

(i,))€1(7)

where each (g; ;) has asymptotic support on int. (7). Since locally on U, any Maurer—Cartan solution
is gauge equivalent to 0, there exists an element 8, € 7°(U;) ® g - K§(U) such that

elf 10 g, 0e7l0m1 = 5, + ¢, -].

Such an element can be constructed inductively using the procedure in [37, §3.4.3] and can be chosen
to be of the form

0 onU,; NCs,
91|UTOC1 - { T,0|UTﬁC+ T + (511)

0 onU,NC._,

for some O, 0 € q - KB(U.,). From this, we obtain the wall-crossing factor associated to the wall w
Oy = elfro-l, (5.12)

Remark 5.23. Here, we need to apply the procedure in [37, §3.4.3], which is a generalization of that in
[7], because of the potential noncommutativity: [v;;, v;y] # 0 for j # j’.

For the case where T C int.(p), for some p with p N &, # 0, we will define a slab. We take U, and
I(7) as above, and let the slab b = 7. The primitive normal de is the one we chose earlier for each p.
Again, we work in a small neighborhood U of int.(7) with two adjacent chambers C.. As in the proof
of Lemma 5.10, we can find a step-function-like element 6, ,, of the form

9. = log(s;})(fv,p))advp onU,NC,,
"o onU, NC_

to solve the equation el® -1 0 3, 0 e71%r-"1 = §, + [y, -] on Us. In other words,
v = e el (LG, Oy) — (FTL ., 0o)

is an isomorphism of sheaves of dglas. Computations using the formula in [8, Lem. 2.5] then gives the
identity

V(G + [¥(89). 1) 0¥ = 8o + [Gin + 5. .
Once again, we can find an element 6, such that
elf1 o g, 0701 =5, + [P (gy), 1,
and hence a corresponding element 6, o € g - k b(U;) of the form (5.11). From this, we get
Sy 1= elfro-] (5.13)

and hence the wall-crossing factor ®y, := 6,, , o Z}, associated to the slab b.
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Next, we would like to argue that consistency of the scattering diagram & follows from the fact that
¢ is a Maurer—Cartan solution. First of all, on the global sheaf kpy** over B, we have the operator
g = 3 + [¢,-] which satisfies [A, dy] = 0 and 3} = 0. This allows us to define the sheaf of k™-order
holomorphic functions as

k(9¢, = Ker(a_,,;) c kpy9o,

for each k € N. It is a sequence of sheaves of commutative C[g]/(¢**!)-algebras over B, equipped with
a natural map ©p: ¥ Oy — 1(9¢, for [ < k that is induced from the maps for K PV*>*. By construction,
we see that 0(9¢ = 0G0 ~ Vi (Ooy).

We claim that the maps K:lbs are surjective. To prove this, we fix a point x € B and take an open
chart W, containing x in the cover of B we chose at the beginning of §5.2.4. There is an isomorphism
Dy KPVH*|y, = KPVY* identifying the differential d with d, + [174,-] by our construction. Write
$o = Do (¢) and notice that d,, + [ + P, -] squares to zero, which means that 77, + ¢, is a solution to
the Maurer—Cartan equation for K PV%*(W,,). We apply the same trick as above to the local open subset
W, namely, any Maurer—Cartan solution lying in kPV:,l’l (W,) is gauge equivalent to the trivial one,
so there exists 6, € ¥ PV;I’O(WQ) such that

elbarl o By © P L2 . Oq + [Na + Par-].

As aresult, the map e (% Tod,: (KPV**|y,  d+][¢,-]) = (*PVY",d,) is an isomorphism of dgLas,
sending k(9¢ isomorphically onto kg%.

We shall now prove the consistency of the scattering diagram & = P () by identifying the associated
wall-crossing sheaf ¥©g with the sheaf k0¢|wo(9) of k™-order holomorphic functions.

Theorem 5.24. There is an isomorphism @ : k(9¢|WO(9) — k64 of sheaves of Clq]/(g**")-algebras
on Wy(D). Furthermore, the scattering diagram D = D () associated to the Maurer—-Cartan solution
¢ is consistent in the sense of Definition 5.2 1.

Proof. To prove the first statement, we first notice that there is a natural isomorphism

“Oulworiz1 = “Oalwy 2

so we only need to consider those points x € int.(7), where 7 is either a wall or a slab. Since
Wo(D) c Wy, we will work on the semiflat locus Wy and use the model PV;;*, which is equipped with
the operator d, + [¢in + ¢s, -]. Via the isomorphism

@: ("PVy*,04) = ("PV. 00 + [bin + ¢s.-])
from Lemma 5.10, we may write

“Oglw, = Ker(dy) c *PVE0.
We fix a point x € Wp(D) N || and consider the stalk at x for both sheaves. In the above construction
of walls and slabs from the Maurer—Cartan solution ¢, we first take a sufficiently small open subset
U, and then find a gauge transformation of the form ¥ = ¢[%'] in the case of a wall, and of the form
¥ = el%.p1 o ¢l9 1 in the case of a slab. We have

?’ogoOY’_l=5o+[¢in+¢s,‘]
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by construction, so this further induces an isomorphism
. knO k
v GsflUx g O¢|UX

of C[q]/(g**")-algebras.
It remains to see how the stalk ¥ : ¥ Ggf L k O .« is glued to nearby chambers C. . For this purpose,
we let

Y, = el070:]
as in equation (5.12) in the case of a wall, and
Yo:=0,,0 elfro-]

0

as in equation (5.13) in the case of a slab. Then, the restriction of an element f € ¥ Gy

chamber is given by

. to a nearby

vp) - {‘Po(f) on Uy NCy,
f onU, NC_
in a sufficiently small neighborhood U,. This agrees with the description of the wall-crossing sheaf
k0. in equation (5.9). Hence, we obtain an isomorphism O 4|w,(2) = *Og.
To prove the second statement, we first apply pushing forward viai: Wy(2) — B to the first statement
to get the isomorphism

.5 Oplwy2)) = 1.(F09).

Now, by the discussion right before this proof, we may identify 04 with kGO locally. But the sheaf
kGO, which is isomorphic to the restriction of °G® ®c C[¢]/(g**") to W, as sheaves of C[q]/(¢**")-
modules, satisfies the Hartogs extension property from Wy(2) N W, to W, by Lemma 5.19. So we have
i*(k0¢|wo(9)) = kO¢. Hence, we obtain

i.(“09)lw, = (“Oy)lw, =G\,

from which follows the consistency of the diagram 2 = D (). O

Remark 5.25. From the proof of Theorem 5.24, we actually have a correspondence between step-
function-like elements in the gauge group and elements in the tropical vertex group as follows. We fix
a generic point x in a joint {, and consider a neighborhood of x of the form U, X D, where U, is a
neighborhood of x in inte (j) and Dy is a disk in the normal direction of j. We pick a compact annulus
Ay C Dy surrounding x, intersecting finitely many walls/slabs. We let 71, ..., 7y be the walls/slabs in
anticlockwise direction. For each 7;, we take an open subset %; just containing the wall 7; such that
Wi\ i = W; + U W; . The following Figure 10 below illustrates the situation.
As in the proof of Theorem 5.24, there is a gauge transformation on each %; of the form

o PV s, 8o) = PV s, B + [in + &5, ).
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Ti+1

Wi

Figure 10. Wall crossing around a joint i.

where ¥; = el%r>10 el%] for a slab and ¥; = e!?7>] for a wall. These are step-function-like elements
in the gauge group satisfying

®; on ..

W, =
id on%; -,

where ©; is the wall crossing factor associated to ;.
On the overlap %; + = W; N Wi+1 (where we seti+ 1 =1 if i = s), there is a commutative diagram

0;

*PVE" ;... 0o)

" PV o0 0)

sf
Y lV’m

*, %k a id *,%k a
(kPVSf |7/,~,+: 00 + [¢in + ¢s» '])%(kpvsf’ |7/,~,+s ao + [¢in + ¢s’ ])

allowing us to interpret the wall crossing factor ©; as the gluing between the two sheaves * PV:E*
KPV |y, over 7 ..

Notice that the Maurer—Cartan element ¢ is global. On a small neighborhood W,, containing U, X D,
we have the sheaf (PV7%*, 5¢) on W, and there is an isomorphism

; and

el 1. (kpyes ) = (FPV*,d,).

Composing with the isomorphism

I3

PV | 0g) = (FPVE

W; > Bo + [¢in + ¢s, ])s
we have a commutative diagram of isomorphisms

%o

(“PVy" PV Ly, B

/

Wi +» ga)

Wi+» 50)

PV
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This is a Cech-type cocycle condition between the sheaves kPV:f’*|71/,.’s and KPV%*, which can be
understood as the original consistency condition defined using path-ordered products in [36, 29]. In
particular, taking a local holomorphic function in GO (W,) and restricting it to Uy, X A, we obtain
elements in Ggf(%/,-) that jump across the walls according to the wall crossing factors ©;’s.

A. The Hartogs extension property
The following lemma is an application of the Hartogs extension theorem [41].

Lemma A.l. Consider the analytic space (C*)k x Spec,,(C[Z.]) for some T and an open subset
of the form U x V, where U C (C*)* and V is a neighborhood of the origin o € Spec,,(C[Z.]). Let
W :=V\ (U Vo), where dimg (w) +2 < dimg (2) (i.e., W is the complement of complex codimension
2 orbits in V). Then the restriction O(U x V) — O(U x W) is a ring isomorphism.

Proof. We first consider the case where dimg (X;) > 2 and W = V \ {0}. We can further assume that
X . consists of just one cone o~ because the holomorphic functions on V are those on V N o that agree
on the overlaps. So we can write

OWUxW) = { Z amz" | am € O(c*)k(U)} ,

meA,

that is, as Laurent series converging in W. We may further assume that W is a sufficiently small Stein
open subset. Take f = 3,,cp, amz™ € O(U X W). We have the corresponding holomorphic function
Yimen, @m(u)z™ on W for each point u € U, which can be extended to V using the Hartogs extension
theorem [41] because {0} is a compact subset of V such that W = V \ {0} is connected. Therefore, we
have a,,(u) = 0 for m ¢ o N A, for each u, and hence f = 3\ ;1 amz™ is an elementin O(U X V).
For the general case, we use induction on the codimension of w to show that any holomorphic function
can be extended through V,, \ U, V; with dimg(7) < dimg(w). Taking a point x € V, \ U, V¢, a
neighborhood of x can be written as (C*)! x Spec,, (C[Z,,]). By the induction hypothesis, we know that
holomorphic functions can already be extended through (C*)! x {0}. We conclude that any holomorphic
function can be extended through V,, \ U, V. O

We will make use of the following version of the Hartogs extension theorem, which can be found in,
for example, [31, p. 58], to handle extension within codimension one cells p’s and maximal cells o’s.

Theorem A.2 (Hartogs extension theorem, see, for example, [31]). Let U c C" be a domain with
n > 2, and A C U such that U \ A is still a domain. Suppose n(U) \ n(A) is a nonempty open subset,
and n~'(w(x)) N A is compact for every x € A, where n: C* — C""! is projection along one of the
coordinate direction. Then the natural restriction O(U) — O(U \ A) is an isomorphism.

Proof of Lemma 5.19. To prove the first statement, we apply Lemma A.1. So we only need to show that,
for p € 21"~ a holomorphic function f in U, \ & € V(p) can be extended uniquely to U,, where U,
is some neighborhood of x € int,(p) N &. Writing V(p) = (C*)""! x Spec,,(C[Z,]), we may simply
prove that this is the case with X, consisting of a single ray o as in the proof of Lemma A.1. Thus,
we can assume that V(p) = (C*)"~! x C and the open subset U, = U x V for some connected U. We
observe that extensions of holomorphic functions from (U \ &) X V to U X V can be done by covering
the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extensions through int.(j) for a joint
i. For those joints lying in some codimension one stratum p, the argument is similar to the above. So
we assume that oy = o is a maximal cell. We take a point x € int..(j) and work in a sufficiently small
neighborhood U of x. In this case, we may find a codimension one rational hyperplane w containing
i, together with a lattice embedding A, < A, which induces the projection 7: (C*)" — (C*)""!
along one of the coordinate directions. Letting A = v~!(A N U) and applying Theorem A.2, we obtain
extensions of holomorphic functions in U. O
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M, My

N, Na

(B, P)

Ao

intge (7)

U-

Q.

S::Ur = Qrr
.

K:o

Ty
Ai(7), Ai(7)
Af f

PLyp
MPL

@

71z,

V(t)

PM(7)
D(u,p,v)
OXT

C:

z@

?ﬂgﬁ o

P
Heit OXp — Proi

P‘r,x
Q‘r,x
Nz
u:°X - B
Y,
& (resp. Se)
v:'X 5B
W={Ws}ta
kV:l
1K

w(l
KA o
kpvy
kA
kpyss

NS ST

&
8
)

NN NN NN

UCMEO’:CMEO’:CMEO’:CMEO’:UW’:CM
[ R S IR A AN A A~ AN

a

De:

§2.3
Def. 2.15
§2.3
§2.4

§2.4
§2.4
§2.4
§2.4
§2.4
§2.4
§2.4
§2.4

§3.1

§3.2
§3.3
Def. 3.6
§4

§4

Def. 4.2
Def. 4.2
§4.1
Def. 4.2
§4.1
Def. 4.8
Def. 4.9
Def. 4.13
Def. 4.13
Def. 5.6
§5.2.1
§5.2.1
§5.2.1
eqt. (5.2)
Def. 5.9
Def. 5.9
Def. 5.12
Def. 5.13
Def. 5.14
Def. 5.17
§5.3.1
§5.3.1
§5.3.1

lattice, M4 := M ®;z A for any Z-module A

dual lattice of M, N4 := N ®z A for any Z-module A

integral tropical manifold equipped with a polyhedral decomposition
lattice generated by integral tangent vectors along o

relative interior of a polyhedron 7

open neighborhood of int (7)

lattice generated by normal vectors to T

fan structure along

complete fan in @, g constructed from S+

Kro0 =R50S: (0 NU;) is acone in £, corresponding to o
lattice of integral tangent vectors of B at x

monodromy polytope of 7, dual monodromy polytope of 7

sheaf of affine functions on B

sheaf of piecewise affine functions on B with respect to 5

sheaf of multivalued piecewise affine functions on B with respect to &
strictly convex multivalued piecewise linear function

localization of the fan X,, at T

local affine scheme associated to 7 used for open gluing

group of piecewise multiplicative maps on 77'Z,

number encoding the change of u € PM(7) across p through v
closed stratum of °X associated to 7

cone defined by the strictly convex function ¢,: £ —» R
representing ¢

monoid of integral points in C

parameter for a toric degeneration

line bundle on °X, having slab functions f, as sections

local slab function associate to p in the chart V (v)

toric morphism induced from the monodromy polytope A; (7)

toric monoid describing the local model of toric degeneration near x € %X,
toric monoid isomorphic to Pr /(0 + Pz x)

normal fan of a polytope 7

generalized moment map

coordinate chart on W (1) C B

(resp. essential) tropical singular locus in B

surjective map with v(Z) C S,

good cover (Condition 4.1) of B with V,, := v~! (W,,) being Stein
k"-order local smoothing model of V,,

sheaf of k™-order holomorphic relative log polyvector fields on Vi,
sheaf of k"-order holomorphic log de Rham differentials on kyi,
sheaf of k™-order holomorphic relative log de Rham differentials on "VL
k™-order relative log volume form on XV,

BV operator on kga

local sheaf of k™M-order polyvector fields

local sheaf of k™-order de Rham forms

global sheaf of k™-order polyvector fields from gluing of ¥ PV 53*’s
global sheaf of k™-order de Rham forms from gluing of kAss
global sheaf of tropical differential forms on B

semiflat locus

sheaf of k™-order semiflat holomorphic relative vector fields

sheaf of k"-order semiflat holomorphic log de Rham forms

sheaf of k"-order semiflat holomorphic tropical vertex Lie algebras
sheaf of k™M-order semiflat polyvector fields

sheaf of k"-order semiflat log de Rham forms

sheaf of k"-order semiflat tropical vertex Lie algebras

wall equipped with a wall-crossing factor

slab equipped with a wall-crossing factor

scattering diagram

complement of joints in the semiflat locus

the embedding i: Wy(92) — B

k" -order wall-crossing sheaf associated to &
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