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Abstract
In 2002, Fukaya [19] proposed a remarkable explanation of mirror symmetry detailing the Strominger–Yau–Zaslow
(SYZ) conjecture [47] by introducing two correspondences: one between the theory of pseudo-holomorphic curves
on a Calabi–Yau manifold 𝑋̌ and the multivalued Morse theory on the base 𝐵̌ of an SYZ fibration 𝑝 : 𝑋̌ → 𝐵̌, and
the other between deformation theory of the mirror X and the same multivalued Morse theory on 𝐵̌. In this paper,
we prove a reformulation of the main conjecture in Fukaya’s second correspondence, where multivalued Morse
theory on the base 𝐵̌ is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques
of asymptotic analysis developed in [7, 9] to tropicalize the pre-dgBV algebra which governs smoothing of a
maximally degenerate Calabi–Yau log variety 0𝑋† introduced in [8]. Then a comparison between this tropicalized
algebra with the dgBV algebra associated to the deformation theory of the semiflat part 𝑋sf ⊂ 𝑋 allows us to extract
consistent scattering diagrams from appropriate Maurer–Cartan solutions.
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1. Introduction

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [47], Fukaya
[19] proposed two correspondences:

• Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections) on
a Calabi–Yau manifold 𝑋̌ and the multivalued Morse theory on the base 𝐵̌ of an SYZ fibration
𝑝 : 𝑋̌ → 𝐵̌, and

• Correspondence II: between deformation theory of the mirror X and the same multivalued Morse
theory on the base 𝐵̌.

In this paper, we prove a reformulation of the main conjecture [19, Conj 5.3] in Fukaya’s Correspondence
II, where multivalued Morse theory on the SYZ base 𝐵̌ is replaced by tropical geometry on the Legendre
dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [7] in a local setting;
the main result of the current paper is a global version of the main result in loc. cit. A crucial ingredient
in the proof is a precise link between tropical geometry on an integral affine manifold with singularities
and smoothing of maximally degenerate Calabi–Yau varieties.

The main conjecture [19, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a Maurer–
Cartan element of the Kodaira–Spencer differential graded Lie algebra (dgLa) associated to deformations
of the semiflat part 𝑋sf of X that is asymptotically close to a Fourier expansion ([19, Eq. (42)]), whose
Fourier modes are given by smoothings of distribution-valued 1-forms defined by moduli spaces of
gradient Morse flow trees which are expected to encode counting of nontrivial (Maslov index 0)
holomorphic disks bounded by Lagrangian torus fibers (see [19, Rem. 5.4]). Also, the complex structure
defined by this Maurer–Cartan element can be compactified to give a complex structure on X. At the
same time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound nontrivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has been
found [4, 10, 11, 12, 18, 20, 38, 39, 40].

The tropical counterpart of such gradient Morse flow trees are given by consistent scattering diagrams,
which were invented by Kontsevich–Soibelman [36] and extensively used in the Gross–Siebert program
[29] to solve the reconstruction problem in mirror symmetry, namely, the construction of the mirror X
from smoothing of a maximally degenerate Calabi–Yau variety 0𝑋 . It is therefore natural to replace the
distribution-valued 1-form in each Fourier mode in the Fourier expansion [19, Eq. (42)] by a distribution-
valued 1-form associated to a wall-crossing factor of a consistent scattering diagram. This was exactly
how Fukaya’s conjecture [19, Conj. 5.3] was reformulated and proved in the local case in [7].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semiflat part 𝑋sf with smoothings of the maximally degenerate Calabi–Yau variety
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0𝑋 . This is because consistent scattering diagrams were used by Gross–Siebert [28] to study the
deformation theory of the compact log variety 0𝑋† (whose log structure is specified by slab functions),
instead of 𝑋sf . For this purpose, we consider the open dense part

0𝑋sf := 𝜇−1 (𝑊0) ⊂
0𝑋,

where 𝜇 : 0𝑋 → 𝐵 is the generalized moment map in [43] and 𝑊0 ⊆ 𝐵 is an open dense subset such
that 𝐵 \𝑊0 contains the tropical singular locus and all codimension 2 cells of B.

Equipping 0𝑋sf with the trivial log structure, there is a semiflat differential graded Batalin–Vilkovisky
(dgBV) algebra PV∗,∗ governing its smoothings, and the general fiber of a smoothing is given by the
semiflat Calabi–Yau 𝑋sf that appeared in Fukaya’s original conjecture [19, Conj. 5.3]. However, the
Maurer–Cartan elements of PV∗,∗ cannot be compactified to give complex structures on X. On the
other hand, in our previous work [8] we constructed a Kodaira–Spencer–type pre-dgBV algebra 𝑃𝑉∗,∗

which controls the smoothing of 0𝑋 . A key observation is that a twisting of PV∗,∗ by slab functions is
isomorphic to the restriction of 𝑃𝑉∗,∗ to 0𝑋sf (Lemma 5.10).

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer–Cartan
element 𝜙 of this twisted semiflat dgBV algebra that is asymptotically close to a Fourier expansion whose
Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This conjecture
follows from (the proof of) our main result, stated as Theorem 1.1 below, which is a combination of
Theorem 4.18, the construction in §5.3.2 and Theorem 5.24:

Theorem 1.1. There exists a solution 𝜙 to the classical Maurer–Cartan equation (4.11) giving rise
to a smoothing of the maximally degenerate Calabi–Yau log variety 0𝑋† over C[[𝑞]], from which a
consistent scattering diagram 𝒟(𝜙) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem 1.1 is now in order. First, recall that the pre-dgBV algebra
𝑃𝑉∗,∗ which governs smoothing of the maximally degenerate Calabi–Yau variety 0𝑋 was constructed
in [8, Thm. 1.1 & §3.5], and we also proved a Bogomolov–Tian–Todorov–type theorem [8, Thm. 1.2 &
§5] showing unobstructedness of the extended Maurer–Cartan equation (4.10), under the Hodge-to-de
Rham degeneracy Condition 4.16 and a holomorphic Poincaré Lemma Condition 4.14 (both proven in
[17, 28]). In Theorem 4.18, we will further show how one can extract from the extended Maurer–Cartan
equation (4.10) a smoothing of 0𝑋 , described as a solution 𝜙 ∈ 𝑃𝑉−1,1 (𝐵) to the classical Maurer–
Cartan equation (4.11)

𝜕𝜙 +
1
2
[𝜙, 𝜙] + 𝔩 = 0,

together with a holomorphic volume form 𝑒 𝑓 𝜔 which satisfies the normalization condition∫
𝑇
𝑒 𝑓 𝜔 = 1, (1.1)

where T is a nearby vanishing torus in the smoothing.
Next, we need to tropicalize the pre-dgBV algebra 𝑃𝑉∗,∗. However, the original construction of

𝑃𝑉∗,∗ in [8] using the Thom–Whitney resolution [14, 49] is too algebraic in nature. Here, we construct
a geometric resolution exploiting the affine manifold structure on B. Using the generalized moment
map 𝜇 : 0𝑋 → 𝐵 [43] and applying the techniques of asymptotic analysis (in particular the notion of
asymptotic support) in [7], we define the sheaf𝒯∗ of monodromy invariant tropical differential forms on
B in §5.1. According to Definition 5.5, a tropical differential form can be regarded as a distribution-valued
form supported on polyhedral subsets of B. Using the sheaf 𝒯∗, we can take asymptotic expansions
of elements in 𝑃𝑉∗,∗ and hence connect differential geometric operations in dgBV/dgLa with tropical
geometry. In this manner, we can extract local scattering diagrams from Maurer–Cartan solutions as we
did in [7], but we need to glue them together to get a global object.
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To achieve this, we need the aforementioned comparison between 𝑃𝑉∗,∗ and the semiflat dgBV
algebra PV∗,∗sf which governs smoothing of the semiflat part 0𝑋sf := 𝜇−1 (𝑊0) ⊂

0𝑋 equipped with
the trivial log structure. The key Lemma 5.10 says that the restriction of 𝑃𝑉∗,∗ to the semiflat part is
isomorphic to PV∗,∗sf precisely after we twist the semiflat operator 𝜕◦ by elements corresponding to the
slab functions associated to the initial walls of the form:

𝜙in = −
∑
𝑣 ∈𝜌

𝛿𝑣,𝜌 ⊗ log( 𝑓𝑣,𝜌)𝜕𝑑𝜌 ;

here, the sum is over vertices in codimension one cells 𝜌’s which intersect with the essential singular
locus 𝒮𝑒 (defined in §3.3), 𝛿𝑣,𝜌 is a distribution-valued 1-form supported on a component of 𝜌 \ 𝒮𝑒
containing v, 𝜕𝑑𝜌 is a holomorphic vector field and 𝑓𝑣,𝜌’s are the slab functions associated to the initial
walls. We remark that slab functions were used to specify the log structure on 0𝑋 as well as the local
models for smoothing 0𝑋 in the Gross–Siebert program; see §2 for a review.

Now, the Maurer–Cartan solution 𝜙 ∈ 𝑃𝑉−1,1 (𝐵) obtained in Theorem 4.18 defines a new operator
𝜕𝜙 on 𝑃𝑉∗,∗ which squares to zero. Applying the above comparison of dgBV algebras (Lemma 5.10)
and the gauge transformation from Lemma 5.11, we show that, after restricting to 𝑊0, there is an
isomorphism (

𝑃𝑉−1,1 (𝑊0), 𝜕𝜙

)
�
(
PV−1,1

sf (𝑊0), 𝜕◦ + [𝜙in + 𝜙s, ·]
)

for some element 𝜙s, where ‘s’ stands for scattering terms. From the description of 𝒯∗, the element 𝜙s,
to any fixed order k, is written locally as a finite sum of terms supported on codimension one walls/slabs
(Definitions 5.13 and 5.14. For the purpose of a brief discussion in this introduction, we will restrict
ourselves to a wall w below, though the same argument applies to a slab; see §5.3.2 for the details. In
a neighborhood 𝑈w of each wall w, the operator 𝜕◦ + [𝜙in + 𝜙s, ·] is gauge equivalent to 𝜕◦ via some
vector field 𝜃w ∈ PV−1,0

sf (𝑊0), that is,

𝑒 [𝜃w , ·] ◦ 𝜕◦ ◦ 𝑒
−[𝜃w , ·] = 𝜕◦ + [𝜙in + 𝜙s, ·] .

Employing the techniques for analyzing the gauge which we developed in [7, 9, 37], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor 𝛩w satisfying

𝑒 [𝜃w , ·] |C± =

{
𝛩w |C+ on 𝑈w ∩ C+,
id on 𝑈w ∩ C−,

where C± are the two chambers separated by w. Then from the fact that the volume form 𝑒 𝑓 𝜔 is
normalized as in equation (1.1), it follows that 𝜙s is closed under the semiflat BV operator Δ , and hence
we deduce that the wall-crossing factor 𝛩w lies in the tropical vertex group. This defines a scattering
diagram 𝒟(𝜙) on the semiflat part 𝑊0 associated to 𝜙. Finally, we prove consistency of the scattering
diagram 𝒟(𝜙) in Theorem 5.24. We emphasize that the consistency is over the whole B even though
the diagram is only defined on 𝑊0, because the Maurer–Cartan solution 𝜙 is globally defined on B.
Remark 1.2. Our notion of scattering diagrams (Definition 5.17) is a little bit more relaxed than the
usual notion defined in [36, 29] in two aspects: One is that we do not require the generator of the
exponents of the wall-crossing factor to be orthogonal to the wall.1 The other is that we allow possibly
infinite number of walls/slabs approaching strata of the tropical singular locus. See the paragraph after
Definition 5.17 for more details. In practice, this simply means that we are considering a larger gauge
equivalence class (or equivalently, a weaker gauge equivalence), which is natural from the point of view
of both the Bogomolov–Tian–Todorov Theorem and mirror symmetry (in the A-side, this amounts to

1It seems reasonable to relax this orthogonality condition because one cannot require such a condition in more general settings
[5, 37].
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flexibility in the choice of the almost complex structure). We also have a different, but more or less
equivalent, formulation of the consistency of a scattering diagram; see Definition 5.21 and §5.3.1.

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between the
semiflat part 𝑋sf and the maximally degenerate Calabi–Yau log variety 0𝑋†, we also find the correct
description of the Maurer–Cartan solutions near the singular locus, namely, they should be extendable to
the local models prescribed by the log structure (or slab functions), as was hinted by the Gross–Siebert
program. This is related to a remark by Fukaya [19, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between the
differential-geometric properties of the tropical dgBV algebra and the scattering (and other combinato-
rial) properties of tropical disks, which was speculated by Fukaya as well ([19, Pt. (1) after Conj. 5.3])
although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross–Siebert
program [27, 28, 29] and Katzarkov–Kontsevich–Pantev’s Hodge theoretic viewpoint [33] through
𝑃𝑉∗,∗ (recall from [8] that a semi-infinite variation of Hodge structures can be constructed from 𝑃𝑉∗,∗,
using the techniques of Barannikov–Kontsevich [3, 2] and Katzarkov–Kontsevich–Pantev [33]), we
obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. A future direction is to apply the framework in this paper and the works [7, 8] to develop
a local-to-global approach to understand genus 0 mirror symmetry. In view of the ideas of Seidel
[46] and Kontsevich [35], and also recent breakthroughs by Ganatra–Pardon–Shende [24, 25, 26] and
Gammage–Shende [22, 23], we expect that there is a sheaf of 𝐿∞ algebras on the A-side mirror to
(the 𝐿∞ enhancement of) 𝑃𝑉∗,∗ that can be constructed by gluing local models. More precisely, a large
volume limit of a Calabi–Yau manifold 𝑋̌ can be specified by removing from it a normal crossing divisor
𝐷̌ which represents the Kähler class of 𝑋̌ . This gives rise to a Weinstein manifold 𝑋̌ \ 𝐷̌ and produces
a mirror pair 𝑋̌ \ 𝐷̌ ↔ 0𝑋 at the large volume/complex structure limits.

In [23], Gammage–Shende constructed a Lagrangian skeleton Λ(Φ) ⊂ 𝑋̌ \ 𝐷̌ from a combinatorial
structure Φ called fanifold, which can be extracted from the integral tropical manifold B equipped with
a polyhedral decomposition 𝒫 (here, we assume that the gluing data s is trivial). They also proved
a Homological Mirror Symmetry statement at the large limits. We expect that an A-side analogue of
𝑃𝑉∗,∗ can be constructed from the Lagrangian skeleton Λ(Φ) in 𝑋̌ \ 𝐷̌, possibly together with a nice
and compatible SYZ fibration on 𝑋̌ \ 𝐷̌, via gluing of local models. A local-to-global comparsion on the
A-side and isomorphisms between the local models on the two sides should then yield an isomorphism
of Frobenius manifolds.

Notation 1.4. We usually fix a rank s lattice K together with a strictly convex s-dimensional rational
polyhedral cone 𝑄R ⊂ KR = K ⊗Z R. We call 𝑄 := 𝑄R ∩ K the universal monoid. We consider the
ring 𝑅 := C[𝑄], a monomial element of which is written as 𝑞𝑚 ∈ 𝑅 for 𝑚 ∈ 𝑄, and the maximal
ideal m := C[𝑄 \ {0}]. Then 𝑘𝑅 := 𝑅/m𝑘+1 is an Artinian ring, and we denote by 𝑅̂ := lim

←−−𝑘
𝑘𝑅 the

completion of R. We further equip R, 𝑘𝑅 and 𝑅̂ with the natural monoid homomorphism 𝑄 → 𝑅,
𝑚 ↦→ 𝑞𝑚, which gives them the structure of a log ring (see [29, Definition 2.11]); the corresponding
log analytic spaces are denoted as 𝑆†, 𝑘𝑆† and 𝑆†, respectively.

Furthermore, we let Ω∗
𝑆†

:= 𝑅 ⊗C
∧∗KC, 𝑘Ω∗

𝑆†
:= 𝑘𝑅 ⊗C

∧∗KC and Ω̂∗
𝑆†

:= 𝑅̂ ⊗C
∧∗KC (here,

KC = K ⊗Z C) be the spaces of log de Rham differentials on 𝑆†, 𝑘𝑆† and 𝑆† respectively, where we
write 1 ⊗ 𝑚 = 𝑑 log 𝑞𝑚 for 𝑚 ∈ K; these are equipped with the de Rham differential 𝜕 satisfying
𝜕 (𝑞𝑚) = 𝑞𝑚𝑑 log 𝑞𝑚. We also denote by Θ𝑆† := 𝑅 ⊗C K∨

C
, Θ𝑆† and Θ̂𝑆† , respectively, the spaces of log

derivations, which are equipped with a natural Lie bracket [·, ·]. We write 𝜕𝑛 for the element 1 ⊗ 𝑛 with
action 𝜕𝑛 (𝑞

𝑚) = (𝑚, 𝑛)𝑞𝑚, where (𝑚, 𝑛) is the natural pairing between KC and K∨
C

.

2. Gross–Siebert’s cone construction of maximally degenerate Calabi–Yau varieties

This section is a brief review of Gross–Siebert’s construction of the maximally degenerate Calabi–Yau
variety 0𝑋 from the affine manifold B and its log structures from slab functions [27, 28, 29].
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2.1. Integral tropical manifolds

We first recall the notion of integral tropical manifolds from [29, §1.1]. Given a lattice M of rank n, a
rational convex polyhedron 𝜎 is a convex subset in 𝑀R given by a finite intersection of rational (i.e.,
defined over 𝑀Q) affine half-spaces. We usually drop the attributes ‘rational’ and ‘convex’ for polyhedra.
A polyhedron 𝜎 is said to be integral if all its vertices lie in M; a polytope is a compact polyhedron.
The group Aff (𝑀) := 𝑀 � GL(𝑀) of integral affine transformations acts on the set of polyhedra in
𝑀R. Given a polyhedron 𝜎 ⊂ 𝑀R, let Λ𝜎,R ⊂ 𝑀R be the smallest affine subspace containing 𝜎, and
denote by Λ𝜎 := Λ𝜎,R ∩ 𝑀 the corresponding lattice. The relative interior intre(𝜎) refers to taking
the interior of 𝜎 in Λ𝜎,R. There is an identification 𝑇𝜎,𝑥 � Λ𝜎,R for the tangent space at 𝑥 ∈ intre(𝜎).
Write 𝜕𝜎 = 𝜎 \ intre(𝜎). Then a face of 𝜎 is the intersection of 𝜕𝜎 with a supporting hyperplane.
Codimension one faces are called facets.

Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms onto faces (i.e., an integral affine morphism 𝜏 → 𝜎 which is
an isomorphism onto its image and identifies 𝜏 with a face of 𝜎). An integral polyhedral complex is a
functor F : 𝒫 → LPoly from a finite category 𝒫 to LPoly such that every face of F(𝜎) still lies in the
image of F, and there is at most one arrow 𝜏 → 𝜎 for every pair 𝜏, 𝜎 ∈ 𝒫. By abuse of notation, we
usually drop the notation F and write 𝜎 ∈ 𝒫 to represent an integral polyhedron in the image of the
functor. From an integral polyhedral complex, we obtain a topological space 𝐵 := lim

−−→𝜎∈𝒫
𝜎 via gluing

of the polyhedra along faces. We further assume that:

1. the natural map 𝜎 → 𝐵 is injective for each 𝜎 ∈ 𝒫, so that 𝜎 can be identified with a closed subset
of B called a cell, and a morphism 𝜏 → 𝜎 can be identified with an inclusion of subsets;

2. a finite intersection of cells is a cell; and
3. B is an orientable connected topological manifold of dimension n without boundary which in addition

satisfies the condition that 𝐻1(𝐵,Q) = 0.

Remark 2.1. The condition 𝐻1(𝐵,Q) = 0 will be used only in Theorem 4.18 to ensure that 𝐻1(0𝑋,O) =
𝐻1 (𝐵,C) = 0, where 0𝑋 is the degenerate Calabi–Yau variety that we are going to construct.2 This
corresponds to the condition that 𝑏1 = 0 for smooth Calabi–Yau manifolds.

The set of k-dimensional cells is denoted by 𝒫 [𝑘 ] and the k-skeleton by 𝒫 [≤𝑘 ] . For every 𝜏 ∈ 𝒫,
we define its open star by

𝑈𝜏 :=
⋃
𝜎⊃𝜏

intre(𝜎),

which is an open subset of B containing intre(𝜏). A fan structure along 𝜏 ∈ 𝒫 [𝑛−𝑘 ] is a continuous map
𝑆𝜏 : 𝑈𝜏 → R

𝑘 such that

• 𝑆−1
𝜏 (0) = intre(𝜏),

• for every 𝜎 ⊃ 𝜏, the restriction 𝑆𝜏 |intre (𝜎) is an integral affine submersion onto its image (meaning
that it is induced by some epimorphism Λ𝜎 → 𝑊 ∩ Z𝑘 for some vector subspace 𝑊 ⊂ R𝑘 ), and

• the collection of cones {𝐾𝜏𝜎 := R≥0𝑆𝜏 (𝜎 ∩𝑈𝜏)}𝜎⊃𝜏 forms a complete finite fan Σ𝜏 .

Two fan structures along 𝜏 are equivalent if they differ by composition with an integral affine transfor-
mation of R𝑘 . If 𝑆𝜏 is a fan structure along 𝜏 and 𝜎 ⊃ 𝜏, then 𝑈𝜎 ⊂ 𝑈𝜏 and there is a fan structure
along 𝜎 induced from 𝑆𝜏 via the composition:

𝑈𝜎 ↩→ 𝑈𝜏 → R
𝑘 � R𝑙 ,

where R𝑘 → R𝑘/R𝑆𝜏 (𝜎 ∩𝑈𝜏) � R𝑙 is the quotient map.

2In his recent work [15], Felten was able to prove Theorem 4.18 without assuming that 𝐻 1 (𝐵,Q) = 0.
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Figure 1. The polyhedral decomposition.

Definition 2.2 ([29], Definition 1.2). An integral tropical manifold is an integral polyhedral complex
(𝐵,𝒫) together with a fan structure 𝑆𝜏 along each 𝜏 ∈ 𝒫 such that whenever 𝜏 ⊂ 𝜎, the fan structure
induced from 𝑆𝜏 is equivalent to 𝑆𝜎 .

Taking sufficiently small and mutually disjoint open subsets 𝑊𝑣 ⊂ 𝑈𝑣 for 𝑣 ∈ 𝒫 [0] and intre(𝜎) for
𝜎 ∈ 𝒫 [𝑛] , there is an integral affine structure on

⋃
𝑣 ∈𝒫 [0] 𝑊𝑣∪

⋃
𝜎∈𝒫 [𝑛] intre(𝜎). We will further choose

the open subsets 𝑊𝑣 ’s and intre(𝜎)’s so that the affine structure is defined outside a closed subset Γ of
codimension two in B, as in [27, §1.3]. This affine structure allows us to use parallel transport to identify
the tangent spaces𝑇𝑥𝐵 for different points x outside the closed subset. For every 𝜏, we choose a maximal
cell 𝜎 ⊃ 𝜏 and consider the lattice of normal vectors 𝒬𝜏 = Λ𝜎/Λ𝜏 (we suppress the dependence on
𝜎 because we will see that Λ𝜏 is monodromy invariant under the monodromy transformation given by
any two vertices of 𝜏 and any two maximal cells containing 𝜏). We can identify 𝒬𝜏 with Z𝑘 via 𝑆𝜏 and
write the fan structure as 𝑆𝜏 : 𝑈𝜏 → 𝒬𝜏,R.

Example 2.3. We take a two-dimensional example from [1, Ex. 6.74] to illustrate the above definitions.
Let Ξ be the convex hull of the points

𝑝0 =

⎡⎢⎢⎢⎢⎣
−1
−1
−1

⎤⎥⎥⎥⎥⎦ , 𝑝1 =

⎡⎢⎢⎢⎢⎣
3
−1
−1

⎤⎥⎥⎥⎥⎦ , 𝑝2 =

⎡⎢⎢⎢⎢⎣
−1
3
−1

⎤⎥⎥⎥⎥⎦ , 𝑝3 =

⎡⎢⎢⎢⎢⎣
−1
−1
3

⎤⎥⎥⎥⎥⎦ ,
so Ξ is a 3-simplex. Take B (as a topological space) to be the boundary of Ξ. The polyhedral decompo-
sition 𝒫 is defined so that the integral points are vertices as shown in Figure 1.

Then we define affine coordinate charts on
⋃
𝜎∈𝒫 [𝑛] intre(𝜎) ∪

⋃
𝑣 ∈𝒫 [0] 𝑊𝑣 as follows. On intre(𝜎),

we take 𝜓𝜎 : intre(𝜎) → Λ𝜎,R which maps homeomorphically onto its image. At a vertex v treated as
a vector in R3, we let 𝜓𝑣 : 𝑊𝑣 ⊂ R

3 → R3/R𝑣, where R3 → R3/R𝑣 is the natural projection onto the
quotient. By [1, Prop. 6.81], this gives an integral affine manifold with singularities. The affine structure
can be extended to the complement of a subset Γ consisting of 24 points lying on the six edges of Ξ, with
each edge containing 4 points (colored in red in Figure 1). The fan structure 𝑆𝜏 can be defined similarly.

Locally near each singular point 𝑝 ∈ Γ contained in an edge 𝜌, the affine structure is described as a
gluing of two affine charts 𝑈I ⊂ R

2 \ {0} × R≥0 and 𝑈II ⊂ R
2 \ 0 × R≤0 as in [30, §3.2]. The change of

coordinates from𝑈I to𝑈II is given by the restriction of the map Υ from (R\ {0}) ×R to itself defined by

(𝑥, 𝑦) ↦→

{
(𝑥, 𝑦), 𝑥 < 0
(𝑥, 𝑥 + 𝑦), 𝑥 > 0.
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Figure 2. Affine coordinate charts.

Figure 3. The polyhedral decomposition on a facet.

The fan structure 𝑆𝜌 : 𝑈𝜌 → R is given as 𝑆𝜌 (𝑥, 𝑦) = 𝑥 and the fan Σ𝜌 is the toric fan for P1. Figure 2
below illustrates the situation.

With the structure of an integral tropical manifold, the corners and edges in Figure 1 are flattened
via the affine coordinate charts, and we can view (𝐵,𝒫) as the 2-sphere equipped with a polyhedral
decomposition and with 24 affine singularities. Such an affine structure with singularities also appears
in the base B of an SYZ fibration of a K3 surface.

Example 2.4. A three-dimensional example can be constructed as in [1, Ex. 6.74]. Take Ξ to be the
convex hull of the points

𝑝0 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑝1 =

⎡⎢⎢⎢⎢⎢⎢⎣
4
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑝2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1
4
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑝3 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1
−1
4
−1

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑝4 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1
−1
−1
4

⎤⎥⎥⎥⎥⎥⎥⎦ ,
which gives a 4-simplex. Take B (as a topological space) to be the boundary of Ξ. There are five three-
dimensional maximal cells intersecting along 10 two-dimensional facets. The polyhedral decomposition
𝒫 on each facet is as in Figure 3.

The affine structure can be extended to the complement of codimension 2 closed subset Γ whose
intersection with a triangle in Figure 3 is a Y-shaped locus. Locally near each of these triangles, it looks
like Figure 4a.

Ξ has 10 one-dimensional faces, each of which is an edge with affine length 5. The polyhedral
decomposition 𝒫 divides each edge into 5 intervals as we can see in Figure 3. Locally near each of
these length 1 intervals, there are three 2-cells of 𝒫 intersecting along it. The locus Γ on each 2-cell
intersects on the interval as shown in Figure 4b.
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Figure 4. Two types of Y-vertex.

Definition 2.5 ([27], Definition 1.43). An integral affine function on an open subset 𝑈 ⊂ 𝐵 is a
continuous function 𝜑 on U which is integral affine on 𝑈 ∩ intre(𝜎) for 𝜎 ∈ 𝒫 [𝑛] and on 𝑈 ∩𝑊𝑣 for
𝑣 ∈ 𝒫 [0] . We denote by A 𝑓 𝑓 𝐵 (or simply A 𝑓 𝑓 ) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbreviated as PA-function) on U is a continuous function 𝜑 on
U which can be written as 𝜑 = 𝜓 + 𝑆∗𝜏 (𝜑̄) on 𝑈 ∩𝑈𝜏 for every 𝜏 ∈ 𝒫, where 𝜓 ∈ A 𝑓 𝑓 (𝑈 ∩𝑈𝜏) and
𝜑̄ is a piecewise linear function on 𝒬𝜏,R with respect to the fan Σ𝜏 . The sheaf of PA-functions on B is
denoted by PL𝒫.

There is a natural inclusion A 𝑓 𝑓 ↩→ PL𝒫, and we let MPL𝒫 be the quotient:

0→ A 𝑓 𝑓 → PL𝒫 →MPL𝒫 → 0.

Locally, an element 𝜑 ∈ Γ(𝐵,MPL𝒫) is a collection of piecewise affine functions {𝜑𝑈 } such that on
each overlap 𝑈 ∩𝑉 , the difference 𝜑𝑈 |𝑉 − 𝜑𝑉 |𝑈 is an integral affine function on 𝑈 ∩𝑉 .
Definition 2.6 ([27], Definitions 1.45 and 1.47). The sheaf MPL𝒫 is called the sheaf of mul-
tivalued piecewise affine functions (abbreviated as MPA-funtions) of the pair (𝐵,𝒫). A section
𝜑 ∈ 𝐻0 (𝐵,MPL𝒫) is said to be convex (resp. strictly convex) if for any vertex {𝑣} ∈ 𝒫, there is
a convex (resp. strictly convex) representative 𝜑𝑣 on 𝑈𝑣 . (Here, convexity (resp. strict convexity) means
if we take any maximal cone 𝜎 ⊂ 𝑈𝑣 with the affine function 𝑙𝜎 : 𝑈𝑣 → R defined by requiring
𝜑𝑣 |𝜎 = 𝑙𝜎 , we always have 𝜑𝑣 (𝑦) ≥ 𝑙𝜎 (𝑦) (resp. 𝜑𝑣 (𝑦) > 𝑙𝜎 (𝑦)) for 𝑦 ∈ 𝑈𝑣 \ 𝜎).

The set of all convex multivalued piecewise affine functions gives a submonoid of 𝐻0(𝐵,MPL𝒫)

under addition, denoted as 𝐻0(𝐵,MPL𝒫,N); we let Q be the dual monoid.
Definition 2.7 ([27], Definition 1.48). The polyhedral decomposition 𝒫 is said to be regular if there
exists a strictly convex multivalued piecewise linear function 𝜑 ∈ 𝐻0(𝐵,MPL𝒫).

We always assume that 𝒫 is regular with a fixed strictly convex 𝜑 ∈ 𝐻0(𝐵,MPL𝒫).

2.2. Monodromy, positivity and simplicity

To describe monodromy, we consider two maximal cells 𝜎± and two of their common vertices 𝑣±.
Taking a path 𝛾 going from 𝑣+ to 𝑣− through 𝜎+, and then from 𝑣− back to 𝑣+ through 𝜎−, we obtain a
monodromy transformation 𝑇𝛾 . As in [27, §1.5], we are interested in two cases. The first case is when 𝑣+
is connected to 𝑣− via a bounded edge 𝜔 ∈ 𝒫 [1] . Let 𝑑𝜔 ∈ Λ𝜔 be the unique primitive vector pointing
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to 𝑣− along 𝜔. For an integral tangent vector 𝑚 ∈ 𝑇𝑣+ := 𝑇𝑣+ ,Z𝐵, the monodromy transformation 𝑇𝛾 is
given by

𝑇𝛾 (𝑚) = 𝑚 + 〈𝑚, 𝑛𝜎+𝜎−𝜔 〉𝑑𝜔 (2.1)

for some 𝑛𝜎+𝜎−𝜔 ∈ 𝒬∗𝜎+∩𝜎− ⊂ 𝑇∗𝑣+ , where 〈·, ·〉 is the natural pairing between 𝑇𝑣+ and 𝑇∗𝑣+ . The second
case is when 𝜎+ and 𝜎− are separated by a codimension one cell 𝜌 ∈ 𝒫 [𝑛−1] . Let 𝑑𝜌 ∈ 𝒬∗𝜌 be the unique
primitive covector which is positive on 𝜎+. The monodromy transformation is given by

𝑇𝛾 (𝑚) = 𝑚 + 〈𝑚, 𝑑𝜌〉𝑚
𝜌
𝑣+𝑣− (2.2)

for some 𝑚
𝜌
𝑣+𝑣− ∈ Λ𝜏 , where 𝜏 ⊂ 𝜌 is the smallest face of 𝜌 containing 𝑣±. In particular, if we fix both

𝑣± ∈ 𝜔 ⊂ 𝜌 ⊂ 𝜎±, one obtains the formula

𝑇𝛾 (𝑚) = 𝑚 + 𝜅𝜔𝜌〈𝑚, 𝑑𝜌〉𝑑𝜔 (2.3)

for some integer 𝜅𝜔𝜌.

Definition 2.8 ([27], Definition 1.54). We say that (𝐵,𝒫) is positive if 𝜅𝜔𝜌 ≥ 0 for all 𝜔 ∈ 𝒫 [1] and
𝜌 ∈ 𝒫 [𝑛−1] with 𝜔 ⊂ 𝜌.

Following [27, Definition 1.58], we package the monodromy data into polytopes associated to
𝜏 ∈ 𝒫 [𝑘 ] for 1 ≤ 𝑘 ≤ 𝑛 − 1. The simplest case is when 𝜌 ∈ 𝒫 [𝑛−1] , whose monodromy polytope is
defined by fixing a vertex 𝑣0 ∈ 𝜌 and setting

Δ (𝜌) := Conv{𝑚𝜌
𝑣0𝑣 | 𝑣 ∈ 𝜌, 𝑣 ∈ 𝒫 [0] } ⊂ Λ𝜌,R, (2.4)

where Conv refers to taking the convex hull. It is well defined up to translation and independent of the
choice of 𝑣0. The normal fan of 𝜌 in Λ∗𝜌,R is a refinement of the normal fan of Δ (𝜌). Similarly, when
𝜔 ∈ 𝒫 [1] , one defines the dual monodromy polytope by fixing 𝜎0 ⊃ 𝜔 and setting

Δ̌ (𝜔) := Conv{𝑛𝜎0𝜎
𝜔 | 𝜎 ⊃ 𝜔, 𝜎 ∈ 𝒫 [𝑛−1] } ⊂ 𝒬∗𝜔,R. (2.5)

Again, this is well defined up to translation and independent of the choice of 𝜎0. The fan Σ𝜔 in
𝒬𝜔,R is a refinement of the normal fan of Δ̌ (𝜔). For 1 < dimR(𝜏) < 𝑛 − 1, a combination of
monodromy and dual monodromy polytopes is needed. We let 𝒫1 (𝜏) = {𝜔 | 𝜔 ∈ 𝒫 [1] , 𝜔 ⊂ 𝜏} and
𝒫𝑛−1 (𝜏) = {𝜌 | 𝜌 ∈ 𝒫 [𝑛−1] , 𝜌 ⊃ 𝜏}. For each 𝜌 ∈ 𝒫𝑛−1 (𝜏), we choose a vertex 𝑣0 ∈ 𝜌 and let

Δ𝜌 (𝜏) := Conv{𝑚𝜌
𝑣0𝑣 | 𝑣 ∈ 𝜏, 𝑣 ∈ 𝒫

[0] } ⊂ Λ𝜏,R.

Similarly, for each 𝜔 ∈ 𝒫1 (𝜏), we choose 𝜎0 ⊃ 𝜏 and let

Δ̌𝜔 (𝜏) := Conv{𝑛𝜎0𝜎
𝜔 | 𝜎 ⊃ 𝜏, 𝜎 ∈ 𝒫 [𝑛−1] } ⊂ 𝒬∗𝜏,R.

These are well defined up to translation and independent of the choices of 𝑣0 and 𝜎0, respectively.

Definition 2.9 ([27], Definition 1.60). We say (𝐵,𝒫) is simple if, for every 𝜏 ∈ 𝒫, there are disjoint
nonempty subsets

Ω1, . . . ,Ω𝑝 ⊂ 𝒫1 (𝜏), 𝑅1, . . . , 𝑅𝑝 ⊂ 𝒫𝑛−1(𝜏)

(where p depends on 𝜏) such that

1. for 𝜔 ∈ 𝒫1(𝜏) and 𝜌 ∈ 𝒫𝑛−1 (𝜏), 𝜅𝜔𝜌 ≠ 0 if and only if 𝜔 ∈ Ω𝑖 and 𝜌 ∈ 𝑅𝑖 for some 1 ≤ 𝑖 ≤ 𝑝;
2. Δ𝜌 (𝜏) is independent (up to translation) of 𝜌 ∈ 𝑅𝑖 and will be denoted by Δ 𝑖 (𝜏); similarly, Δ̌𝜔 (𝜏)

is independent (up to translation) of 𝜔 ∈ Ω𝑖 and will be denoted by Δ̌ 𝑖 (𝜏);
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3. if {𝑒1, . . . , 𝑒𝑝} is the standard basis in Z𝑝 , then

Δ (𝜏) := Conv

{
𝑝⋃
𝑖=1

Δ 𝑖 (𝜏) × {𝑒𝑖}

}
, Δ̌ (𝜏) := Conv

{
𝑝⋃
𝑖=1

Δ̌ 𝑖 (𝜏) × {𝑒𝑖}

}
are elementary simplices (i.e., a simplex whose only integral points are its vertices) in (Λ𝜏 ⊕ Z𝑝)R
and
(
𝒬∗𝜏 ⊕ Z

𝑝
)
R

, respectively.

We need the following stronger condition in order to apply [28, Thm. 3.21] in a later stage:

Definition 2.10. We say (𝐵,𝒫) is strongly simple if it is simple, and for every 𝜏 ∈ 𝒫, both Δ (𝜏) and
Δ̌ (𝜏) are standard simplices.

Example 2.11. Consider the two-dimensional example in Example 2.3. Following [1, Ex. 6.82(1)], we
may choose the two adjacent vertices in Figure 1 to be 𝑣1 =

[
−1 −1 −1

]𝑇 and 𝑣2 =
[
0 −1 −1

]𝑇 which
bound a 1-cell 𝜌. The two adjacent maximal cells are given by 𝜎+ ⊂ {𝑏 | 〈𝑤+, 𝑏〉 = 1}, where
𝑤+ =
[
0 0 −1

]𝑇 and 𝜎− ⊂ {𝑏 | 〈𝑤−, 𝑏〉 = 1}, where 𝑤− =
[
0 −1 0

]𝑇 . The tangent lattice 𝑇𝑣1 can be
identified with Z3/Z · 𝑣1 equipped with the basis 𝑒1 =

[
1 0 0
]𝑇 , 𝑒2 =

[
0 1 0
]𝑇 . If we let 𝛾 be a loop

going from 𝑣1 to 𝑣2 through 𝜎+ and going back to 𝑣1 through 𝜎−, we have

𝑇𝛾 (𝑚) = 𝑚 + 〈
[
0 1 −1

]𝑇
, 𝑚〉𝑒1

for 𝑚 ∈ 𝑇𝑣1 . Therefore, we have 𝑝 = 1, Δ1(𝜌) = Conv{0, 𝑒1} and Δ̌1 (𝜌) = Conv{0, 𝑤+ − 𝑤−}. This is
an example of a positive and strongly simple (𝐵,𝒫) (Definitions 2.8 and 2.10).

Example 2.12. Next, we consider the two types of Y-vertex in Example 2.4.
We begin with Y-vertex of type I in Figure 4a. Following [1, Ex. 6.82(2)], the three vertices 𝑣1, 𝑣2, 𝑣3

can be chosen to be

𝑣1 =
[
−1 −1 −1 −1

]𝑇
, 𝑣2 =

[
0 −1 −1 −1

]𝑇
, 𝑣3 =

[
−1 0 −1 −1

]𝑇
,

and 𝜎+ ⊂ {𝑏 ∈ R
4 | 〈𝑤+, 𝑏〉 = 1}, 𝜎− ⊂ {𝑏 ∈ R4 | 〈𝑤−, 𝑏〉 = 1} are 3-cells of B lying in the affine

hyperplanes with dual vector 𝑤+ =
[
0 0 −1 0

]𝑇 and 𝑤− =
[
0 0 0 −1

]𝑇 , respectively. If we identify 𝑇𝑣
with Λ𝜎+ via parallel transport and choose the basis of Λ𝜎+ as

𝑒1 =
[
1 0 0 0

]𝑇
, 𝑒2 =

[
0 −1 0 0

]𝑇
, 𝑒3 =

[
0 0 0 1

]𝑇
,

then the monodromy transformations are given by

𝑇𝛾1 =

⎡⎢⎢⎢⎢⎣
1 0 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑇𝛾2 =

⎡⎢⎢⎢⎢⎣
1 0 −1
0 1 −1
0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑇𝛾3 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎦ ,
where 𝛾𝑖 is the loop going from 𝑣𝑖 to 𝑣𝑖+1 through 𝜎+ and going back to 𝑣𝑖 through 𝜎−, with indices
of 𝑣𝑖’s taken modulo 3. In this case, we have 𝑝 = 1, Δ1 (𝜌) = Conv{0, 𝑒1,−𝑒2} is a 2-simplex and
Δ̌1 (𝜌) = Conv{0, 𝑤+ − 𝑤−} is a 1-simplex.

For the Y-vertex of type II in Figure 4b, we can choose

𝑣1 =
[
−1 −1 −1 −1

]𝑇
, 𝑣2 =

[
0 −1 −1 −1

]𝑇
,

which are the end points of a 1-cell 𝜏. We choose the three maximal cells 𝜎1, 𝜎2 and 𝜎3 intersecting at
𝜏 to be the 3-cells lying in affine hyperplanes defined by {𝑏 | 〈𝑤𝑖 , 𝑏〉 = 1}, where

𝑤1 =
[
0 0 −1 0

]𝑇
, 𝑤2 =

[
0 0 0 −1

]𝑇
, 𝑤3 =

[
0 −1 0 0

]𝑇
.
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Let 𝛾̃𝑖 be the loop going from 𝑣1 to 𝑣2 through 𝑤𝑖 and then going back to 𝑣1 through 𝑤𝑖+1, with indices
taken to be modulo 3. Then the corresponding monodromy transformations are given by

𝑇𝛾1 =

⎡⎢⎢⎢⎢⎣
1 0 1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑇𝛾2 =

⎡⎢⎢⎢⎢⎣
1 1 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦ , 𝑇𝛾3 =

⎡⎢⎢⎢⎢⎣
1 −1 −1
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦ ,
with respect to the basis

𝑒1 =
[
1 0 0 0

]𝑇
, 𝑒2 =

[
0 1 0 0

]𝑇
, 𝑒3 =

[
0 0 −1 0

]𝑇
.

In this case, 𝑝 = 1, Δ1(𝜏) = Conv{0, 𝑣2 − 𝑣1} is a 1-simplex and Δ̌1 (𝜏) = Conv{0, 𝑤1 − 𝑤2, 𝑤1 − 𝑤3}
is a 2-simplex.

Both examples are positive and strongly simple.

Throughout this paper, we always assume that (𝐵,𝒫) is positive and strongly simple. In particular,
both Δ 𝑖 (𝜏) and Δ̌ 𝑖 (𝜏) are standard simplices of positive dimensions, and ΛΔ1 (𝜏) ⊕ · · · ⊕ ΛΔ 𝑝 (𝜏) (resp.
ΛΔ̌1 (𝜏)

⊕ · · · ⊕ ΛΔ̌ 𝑝 (𝜏)
) is an internal direct summand of Λ𝜏 (resp. 𝒬∗𝜏).

2.3. Cone construction by gluing open affine charts

In this subsection, we recall the cone construction of the maximally degenerate Calabi–Yau 0𝑋 =
0𝑋 (𝐵,𝒫, 𝑠), following [27] and [29, §1.2]. For this purpose, we take K = Z and Q to be the positive
real axis in Notation 1.4. Throughout this paper, we will work in the category of analytic schemes.

We will construct 0𝑋 as a gluing of affine analytic schemes 𝑉 (𝑣) parametrized by the vertices of 𝒫.
For each vertex v, we consider the fan Σ𝑣 and take the analytic affine toric variety

𝑉 (𝑣) := Specan(C[Σ𝑣 ]),

where Specan means analytification of the algebraic affine scheme given by Spec. Here, the monoid
structure for a general fan Σ ⊂ 𝑀R is given by

𝑝 + 𝑞 =

{
𝑝 + 𝑞 if 𝑝, 𝑞 ∈ 𝑀 are in a common cone of Σ,
∞ otherwise,

and we set 𝑧∞ = 0 in taking Spec(C[Σ]) (by abuse of notation, we use Σ to stand for both the fan and the
monoid associated to a fan if there is no confusion); in other words, the ring C[Σ] is defined explicitly as

C[Σ] :=
⊕

𝑝∈ |Σ |∩𝑀

C · 𝑧𝑝 , 𝑧𝑝 · 𝑧𝑞 =

{
𝑧𝑝+𝑞 if 𝑝, 𝑞 ∈ 𝑀 are in a common cone of Σ,
0 otherwise,

where |Σ | denotes the support of the fan Σ.
To glue these affine analytic schemes together, we need affine subschemes {𝑉 (𝜏)} associated to

𝜏 ∈ 𝒫 with 𝑣 ∈ 𝜏 and natural open embeddings 𝑉 (𝜏) ↩→ 𝑉 (𝜔) for 𝑣 ∈ 𝜔 ⊂ 𝜏. First, for 𝜏 ∈ 𝒫 such
that 𝑣 ∈ 𝜏, we consider the localization of Σ𝑣 at 𝜏 defined by

𝜏−1Σ𝑣 := {𝐾𝑣𝜎 + Λ𝜏,R | 𝐾𝑣𝜎 is a cone in Σ𝑣 such that 𝜎 ⊃ 𝜏};

here recall that 𝐾𝑣𝜎 = R≥0𝑆𝑣 (𝜎 ∩𝑈𝑣 ) is the cone in Σ𝑣 (see the definition of a fan structure before
Definition 2.2). This defines a new complete fan in 𝑇𝑣,R consisting of convex, but not necessarily strictly
convex, cones. If 𝜏 contains another vertex 𝑣′, we can identify the fans 𝜏−1Σ𝑣 and 𝜏−1Σ𝑣′ as follows:
For each maximal 𝜎 ⊃ 𝜏, we identify the maximal cones 𝐾𝑣𝜎 + Λ𝜏,R and 𝐾𝑣′𝜎 + Λ𝜏,R by identifying
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the tangent spaces 𝑇𝑣 � 𝑇𝑣′ using parallel transport through 𝜎 ⊃ 𝜏. Patching these identifications for
all 𝜎 ⊃ 𝜏 together, we get a piecewise linear transformation from 𝑇𝑣 to 𝑇𝑣′ , identifying the fans 𝜏−1Σ𝑣
and 𝜏−1Σ𝑣′ and hence the corresponding monoids. This defines the affine analytic scheme

𝑉 (𝜏) := Specan(C[𝜏
−1Σ𝑣 ]),

up to a unique isomorphism. Notice that 𝜏−1Σ𝑣 can be identified (noncanonically) with the fan Σ𝜏×Λ𝜏,R
in 𝒬𝜏,R × Λ𝜏,R, so actually

𝑉 (𝜏) � Specan(C[Λ𝜏]) × Specan (C[Σ𝜏]),

where Specan (C[Λ𝜏]) � Λ∗𝜏 ⊗Z C
∗ � (C∗)𝑙 is a complex torus.

For any 𝑣 ∈ 𝜔 ⊂ 𝜏, there is a map of monoids 𝜔−1Σ𝑣 → 𝜏−1Σ𝑣 given by

𝑝 ↦→

{
𝑝 if 𝑝 ∈ 𝐾𝑣𝜎 + Λ𝜔,R for some 𝜎 ⊃ 𝜏,

∞ otherwise

(though there is no fan map from 𝜔−1Σ𝑣 to 𝜏−1Σ𝑣 in general), and hence a ring map

𝜄∗𝜔𝜏 : C[𝜔−1Σ𝑣 ] → C[𝜏
−1Σ𝑣 ] .

This gives an open inclusion of affine schemes

𝜄𝜔𝜏 : 𝑉 (𝜏) ↩→ 𝑉 (𝜔),

and hence a functor 𝐹 : 𝒫→ Schan defined by

𝐹 (𝜏) := 𝑉 (𝜏), 𝐹 (𝑒) := 𝜄𝜔𝜏 : 𝑉 (𝜏) → 𝑉 (𝜔)

for 𝜔 ⊂ 𝜏.
We can further introduce twistings of the gluing of the affine analytic schemes {𝑉 (𝜏)}𝜏∈𝒫. Toric

automorphisms 𝜇 of 𝑉 (𝜏) are in bijection with the set of C∗-valued piecewise multiplicative maps
on 𝑇𝑣 ∩ |𝜏

−1Σ𝑣 | with respect to the fan 𝜏−1Σ𝑣 . Explicitly, for each maximal cone 𝜎 ∈ 𝒫 [𝑛] with
𝜏 ⊂ 𝜎, there is a monoid homomorphism 𝜇𝜎 : Λ𝜎 → C

∗ such that if 𝜎′ ∈ 𝒫 [𝑛] also contains 𝜏, then
𝜇𝜎 |Λ𝜎∩𝜎′

= 𝜇𝜎′ |Λ𝜎∩𝜎′
. Denote by PM(𝜏) the multiplicative group ofC∗-valued piecewise multiplicative

maps on 𝑇𝑣 ∩ |𝜏
−1Σ𝑣 |. The group PM(𝜏) a priori depends on the choice of 𝑣 ∈ 𝜏; however, for different

choices, say v and 𝑣′, the groups can be identified via the identification 𝜏−1Σ𝑣 � 𝜏−1Σ𝑣′ . For 𝜔 ⊂ 𝜏,
there is a natural restriction map |𝜏 : PM(𝜔) → PM(𝜏) given by restricting to those maximal cells
𝜎 ⊃ 𝜔 with 𝜎 ⊃ 𝜏.

Definition 2.13 ([29], Definition 1.18). A choice of open gluing data (for the cone construction) for
(𝐵,𝒫) is a set 𝑠 = (𝑠𝜔𝜏)𝜔⊂𝜏 of elements 𝑠𝜔𝜏 ∈ PM(𝜏) such that

1. 𝑠𝜏𝜏 = 1 for all 𝜏 ∈ 𝒫, and
2. if 𝜔 ⊂ 𝜏 ⊂ 𝜌, then

𝑠𝜔𝜌 = 𝑠𝜏𝜌 · 𝑠𝜔𝜏 |𝜌 .

Two choices of open gluing data 𝑠, 𝑠′ are said to be cohomologous if there exists a system {𝑡𝜏}𝜏∈𝒫, with
𝑡𝜏 ∈ PM(𝜏) for each 𝜏 ∈ 𝒫, such that 𝑠𝜔𝜏 = 𝑡𝜏 (𝑡𝜔 |𝜏)

−1𝑠′𝜔𝜏 whenever 𝜔 ⊂ 𝜏.

The set of cohomology classes of choices of open gluing data is a group under multiplication, denoted
as 𝐻1 (𝒫,𝒬𝒫 ⊗C

×). For 𝑠 ∈ PM(𝜏), we will denote also by s the corresponding toric automorphism on
𝑉 (𝜏) which is explicitly given by 𝑠∗(𝑧𝑚) = 𝑠𝜎 (𝑚)𝑧

𝑚 for 𝑚 ∈ 𝜎 ⊃ 𝜏. If s is a choice of open gluing data,
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then we can define an s-twisted functor 𝐹𝑠 : 𝒫 → Schan by setting 𝐹𝑠 (𝜏) := 𝐹 (𝜏) = 𝑉 (𝜏) on objects
and 𝐹𝑠 (𝜔 ⊂ 𝜏) := 𝐹 (𝜔 ⊂ 𝜏) ◦ 𝑠−1

𝜔𝜏 : 𝑉 (𝜏) → 𝑉 (𝜔) on morphisms. This defines the analytic scheme

0𝑋 = 0𝑋 (𝐵,𝒫, 𝑠) := lim
−→

𝐹𝑠 .

Gross–Siebert [27] showed that 0𝑋 (𝐵,𝒫, 𝑠) � 0𝑋 (𝐵,𝒫, 𝑠′) as schemes when 𝑠, 𝑠′ are cohomologous.

Remark 2.14. Given 𝜏 ∈ 𝒫 [𝑘 ] , one can define a closed stratum 𝜄𝜏 : 0𝑋 𝜏 →
0𝑋 of dimension k by

gluing together the k-dimensional toric strata 𝑉𝜏 (𝜔) ⊂ 𝑉 (𝜔) = Specan(C[𝜔
−1Σ𝑣 ]) corresponding to

the cones 𝐾𝑣𝜏+Λ𝜔,R in 𝜔−1Σ𝑣 , for all 𝜔 ⊂ 𝜏. Abstractly, it is isomorphic to the toric variety associated
to the polyhedron 𝜏 ⊂ Λ𝜏,R. Also, for every pair 𝜔 ⊂ 𝜏, there is a natural inclusion 𝜄𝜔𝜏 : 0𝑋𝜔 →

0𝑋 𝜏 .
One can alternatively construct 0𝑋 by gluing along the closed strata 0𝑋 𝜏’s according to the polyhedral
decomposition; see [27, §2.2].

We recall the following definition from [27], which serves as an alternative set of combinatorial data
for encoding 𝜇 ∈ PM(𝜏).

Definition 2.15 ([27], Definition 3.25 and [29], Definition 1.20). Let 𝜇 ∈ PM(𝜏) and 𝜌 ∈ 𝒫 [𝑛−1] with
𝜏 ⊂ 𝜌. For a vertex 𝑣 ∈ 𝜏, we define

𝐷 (𝜇, 𝜌, 𝑣) :=
𝜇𝜎 (𝑚)

𝜇𝜎′ (𝑚′)
∈ C×,

where 𝜎, 𝜎′ are the two unique maximal cells such that 𝜎 ∩ 𝜎′ = 𝜌, 𝑚 ∈ Λ𝜎 is an element projecting
to the generator in 𝒬𝜌 � Λ𝜎/Λ𝜌 � Z pointing to 𝜎′, and 𝑚′ is the parallel transport of 𝑚 ∈ Λ𝜎 to Λ𝜎′

through v. 𝐷 (𝜇, 𝜌, 𝑣) is independent of the choice of m.

Let 𝜌 ∈ 𝒫 [𝑑−1] and 𝜎+, 𝜎− be the two unique maximal cells such that 𝜎+ ∩ 𝜎− = 𝜌. Let 𝑑𝜌 ∈ 𝒬∗𝜌 be
the unique primitive generator pointing to 𝜎+. For any two vertices 𝑣, 𝑣′ ∈ 𝜏, we have the formula

𝐷 (𝜇, 𝜌, 𝑣) = 𝜇(𝑚
𝜌
𝑣𝑣′ )

−1 · 𝐷 (𝜇, 𝜌, 𝑣′) (2.6)

relating monodromy data to the open gluing data, where 𝑚
𝜌
𝑣𝑣′ ∈ Λ𝜌 is as discussed in equation (2.2).

The formula (2.6) describes the interaction between monodromy and a fixed 𝜇 ∈ PM(𝜏). We shall
further impose the following lifting condition from [27, Prop. 4.25] relating 𝑠𝑣𝜏 , 𝑠𝑣′𝜏 ∈ PM(𝜏) and
monodromy data:

Condition 2.16. We say a choice of open gluing data s satisfies the lifting condition if for any two
vertices 𝑣, 𝑣′ ∈ 𝜏 ⊂ 𝜌 with 𝜌 ∈ 𝒫 [𝑛−1] , we have 𝐷 (𝑠𝑣𝜏 , 𝜌, 𝑣) = 𝐷 (𝑠𝑣′𝜏 , 𝜌, 𝑣

′) whenever 𝑚𝜌
𝑣𝑣′ = 0.

2.4. Log structures

We need to equip the analytic scheme 0𝑋 = 0𝑋 (𝐵,𝒫, 𝑠) with log structures. The main reference is [27,
§3 - 5].

Definition 2.17. Let X be an analytic space, a log structure on X is a sheaf of monoids M𝑋 together with
a homomorphism 𝛼𝑋 : M𝑋 → O𝑋 of sheaves of (multiplicative) monoids such that 𝛼𝑋 : 𝛼−1(O∗𝑋 ) →
O∗𝑋 is an isomorphism. The ghost sheaf M𝑋 of a log structure is defined as the quotient sheaf
M𝑋/𝛼

−1(O∗𝑋 ), whose monoid structure is written additively.

Example 2.18. Let X be an analytic space and 𝐷 ⊂ 𝑋 be a closed analytic subspace of pure codimension
one. We denote by 𝑗 : 𝑋 \ 𝐷 ↩→ 𝑋 the inclusion. Then the sheaf of monoids

M𝑋 := 𝑗∗(O∗𝑋\𝐷) ∩O𝑋 ,

together with the natural inclusion 𝛼𝑋 : M𝑋 → O𝑋 defines a log structure on X.
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We write 𝑋† if we want to emphasize the log structure on X. A general way to define a log structure
is to take an arbitrary homomorphism of sheaves of monoids

𝛼̃ : P → O𝑋

and then define the associated log structure by

M𝑋 := (P ⊕ O∗𝑋 )/{(𝑝, 𝛼̃(𝑝)−1) | 𝑝 ∈ 𝛼̃−1(O∗𝑋 )}.

In particular, this allows us to define log structures on an analytic space Y by pulling back those
on another analytic space X via a morphism 𝑓 : 𝑌 → 𝑋 . More precisely, given a log structure on
X, the pullback log structure on Y is defined to be the log structure associated to the composition
𝛼̃𝑌 : 𝑓 −1(M𝑋 ) → 𝑓 −1(O𝑋 ) → O𝑌 . For more details of the theory of log structures, readers are
referred to, for example, [27, §3].

Example 2.19. Taking a toric monoid P (i.e., 𝑃 = 𝐶 ∩ 𝑀 for a cone 𝐶 ⊂ 𝑀R), we can define
𝛼̃ : 𝑃 → OSpec(C[𝑃 ]) by sending 𝑚 ↦→ 𝑧𝑚, where 𝑃 is the constant sheaf with stalk P. From this, we
obtain a log structure on the analytic toric variety Specan (C[𝑃]). Note that this is a special case of
Example 2.18, where we take 𝑋 = Specan(C[𝑃]) and D to be the toric boundary divisor.

Before we describe the log structures on 0𝑋 = 0𝑋 (𝐵,𝒫, 𝑠), let us first specify a ghost sheaf M over
0𝑋 . Recall that the polyhedral decomposition 𝒫 is assumed to be regular, namely, there exists a strictly
convex multivalued piecewise linear function 𝜑 ∈ 𝐻0 (𝐵,MPL𝒫). For any 𝜏 ∈ 𝒫, we take a strictly
convex representative 𝜑̄𝜏 of 𝜑 on 𝒬𝜏,R and define

Γ(𝑉 (𝜏),M) := 𝑃̄𝜏 = 𝐶𝜏 ∩ (𝒬𝜏 ⊕ Z),

where 𝐶𝜏 := {(𝑚, ℎ) ∈ 𝒬𝜏,R ⊕ R | ℎ ≥ 𝜑̄𝜏 (𝑚)}. For any 𝜔 ⊂ 𝜏, we take an integral affine function 𝜓𝜔𝜏
on 𝑈𝜔 such that 𝜓𝜔𝜏 + 𝑆∗𝜔 (𝜑̄𝜔) vanishes on 𝐾𝜔𝜏 and agrees with 𝑆∗𝜏 (𝜑̄𝜏) on all of 𝜎 ∩ 𝑈𝜏 for any
𝜎 ⊃ 𝜏. This induces a map 𝐶𝜔 → 𝐶𝜔𝜏 := {(𝑚, ℎ) ∈ 𝒬𝜔,R ⊕ R | ℎ ≥ 𝜓𝜔𝜏 (𝑚) + 𝜑̄𝜔 (𝑚)} by sending
(𝑚, ℎ) ↦→ (𝑚, ℎ + 𝜓𝜔𝜏 (𝑚)), whose composition with the quotient map 𝒬𝜔,R ⊕ R → 𝒬𝜏,R ⊕ R gives
a map 𝐶𝜔 → 𝐶𝜏 of cones that corresponds to the monoid homomorphism 𝑃̄𝜔 → 𝑃̄𝜏 . The 𝑃̄𝜏’s glue
together to give the ghost sheaf M over 0𝑋 . There is a well-defined section 𝜚̄ ∈ Γ(0𝑋,M) given by
gluing (0, 1) ∈ 𝐶𝜏 for each 𝜏.

One may then hope to find a log structure on 0𝑋 which is log smooth and with ghost sheaf given
by M. However, due to the presence of nontrivial monodromies of the affine structure, this can only
be done away from a complex codimension 2 subset 𝑍 ⊂ 0𝑋 not containing any toric strata. Such log
structures can be described by sections of a coherent sheaf LS+pre supported on the scheme-theoretic
singular locus 0𝑋sing ⊂

0𝑋 . We now describe the sheaf LS+pre and some of its sections called slab
functions; readers are referred to [27, §3 and 4] for more details.

For every 𝜌 ∈ 𝒫 [𝑛−1] , we consider 𝜄𝜌 : 0𝑋𝜌 →
0𝑋 , where 0𝑋𝜌 is the toric variety associated to the

polytope 𝜌 ⊂ Λ𝜌,R. From the fact that the normal fan 𝒩𝜌 ⊂ Λ∗𝜌,R of 𝜌 is a refinement of the normal fan
𝒩Δ (𝜌) ⊂ Λ∗𝜌,R of the 𝑟𝜌-dimensional simplex Δ (𝜌) (as in §2.2), we have a toric morphism

𝜘𝜌 : 0𝑋𝜌 → P
𝑟𝜌 . (2.7)

Now, Δ (𝜌) corresponds to O(1) on P𝑟𝜌 . We let N𝜌 := 𝜘∗𝜌 (O(1)) on 0𝑋𝜌 and define

LS+pre :=
⊕

𝜌∈𝒫 [𝑛−1]

𝜄𝜌,∗(N𝜌). (2.8)
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Sections of LS+pre can be described explicitly. For each 𝑣 ∈ 𝒫 [0] , we consider the open subscheme
𝑉 (𝑣) of 0𝑋 and the local trivialization

LS+pre |𝑉 (𝑣) =
⊕
𝜌:𝑣 ∈𝜌

O𝑉𝜌 (𝑣) ,

whose sections over 𝑉 (𝑣) are given by ( 𝑓𝑣𝜌)𝑣 ∈𝜌. Given 𝑣, 𝑣′ ∈ 𝜏 where 𝜏 corresponding to 𝑉 (𝜏), these
local sections obey the change of coordinates given by

𝐷 (𝑠𝑣′𝜏 , 𝜌, 𝑣
′)−1𝑠−1

𝑣′𝜏 ( 𝑓𝑣′𝜌) = 𝑧−𝑚
𝜌

𝑣𝑣′𝐷 (𝑠𝑣𝜏 , 𝜌, 𝑣)
−1𝑠−1

𝑣𝜏 ( 𝑓𝑣𝜌), (2.9)

where 𝜌 ⊃ 𝜏 and 𝑠𝑣𝜏 , 𝑠𝑣′𝜏 are part of the open gluing data s. The section 𝑓 := ( 𝑓𝑣𝜌)𝑣 ∈𝜌 is said to be
normalized if 𝑓𝑣𝜌 takes the value 1 at the zero-dimensional toric stratum corresponding to a vertex v, for
all 𝜌. We will restrict ourselves to normalized sections f of LS+pre. The complex codimension 2 subset
𝑍 ⊂ 0𝑋 is taken to be the zero locus of f on 0𝑋sing.

Only a subset of normalized sections of LS+pre corresponds to log structures. For every vertex
𝑣 ∈ 𝒫 [0] and 𝜏 ∈ 𝒫 [𝑛−2] containing v, we choose a cyclic ordering 𝜌1, . . . , 𝜌𝑙 of codimension one cells
containing 𝜏 according to an orientation of 𝒬𝜏,R. Let 𝑑𝜌𝑖 ∈ 𝒬∗𝑣 be the positively oriented normal to 𝜌𝑖 .
Then the condition for 𝑓 = ( 𝑓𝑣𝜌)𝑣 ∈𝜌 ∈ LS+pre |𝑉 (𝑣) to define a log structure is given by

𝑙∏
𝑖=1

𝑑𝜌𝑖 ⊗ 𝑓𝑣𝜌𝑖 |𝑉𝜏 (𝑣) = 0 ⊗ 1, in 𝒬∗𝑣 ⊗ Γ(𝑉𝜏 (𝑣) \ 𝑍,O∗𝑉𝜏 (𝑣)
), (2.10)

where the group structure on 𝒬∗𝑣 is additive and that on Γ(𝑉𝜏 (𝑣) \ 𝑍,O∗𝑉𝜏 (𝑣)
) is multiplicative. If

𝑓 = ( 𝑓𝑣𝜌)𝑣 ∈𝜌 is a normalized section satisfying this condition, we call the 𝑓𝑣𝜌’s slab functions.

Theorem 2.20 ([27], Theorem 5.2). Suppose that B is compact and the pair (𝐵,𝒫) is simple and
positive. Let s be a choice of open gluing data satisfying the lifting condition (Condition 2.16). Then
there exists a unique normalized section 𝑓 ∈ Γ(0𝑋,LS+pre) which defines a log structure on 0𝑋 (i.e.,
satisfying the condition (2.10)).

From now on, we always assume that B is compact. To describe the log structure in Theorem 2.20,
we first construct some local smoothing models: For each vertex 𝑣 ∈ 𝒫 [0] , we represent the strictly
convex piecewise linear function 𝜑 in a small neighborhood U of v by a strictly convex piecewise linear
𝜑𝑣 : 𝒬𝑣,R → R (so that 𝜑 = 𝑆∗𝑣 (𝜑𝑣 )) and set

𝐶𝑣 := {(𝑚, ℎ) ∈ 𝒬𝑣,R ⊕ R | ℎ ≥ 𝜑𝑣 (𝑚)}, 𝑃𝑣 := 𝐶𝑣 ∩ (𝒬𝑣 ⊕ Z).

The element 𝜚 = (0, 1) ∈ 𝒬𝑣 ⊕ Z gives rise to a regular function 𝑞 := 𝑧 𝜚 on Specan(C[𝑃𝑣 ]). We have a
natural identification

𝑉 (𝑣) := Specan(C[Σ𝑣 ]) � Specan(C[𝑃𝑣 ]/𝑞),

through which we view 𝑉 (𝑣) as the toric boundary divisor in Specan (C[𝑃𝑣 ]) that corresponds to the
holomorphic function q, and 𝜋𝑣 : Specan(C[𝑃𝑣 ]) → Specan (C[𝑞]) as a local model for smoothing𝑉 (𝑣).

Using these local models, we can now describe the log structure around a point 𝑥 ∈ 0𝑋 \ 𝑍 . On a
neighborhood 𝑉 ⊂ 𝑉 (𝑣) \ 𝑍 of x, the local smoothing model is given by composing the two inclusions
♭ : 𝑉 ↩→ 𝑉 (𝑣) and𝑉 (𝑣) ↩→ Specan(C[𝑃𝑣 ]). The natural monoid homomorphism 𝑃𝑣 → C[𝑃𝑣 ] defined
by sending 𝑚 ↦→ 𝑧𝑚 determines a log structure on Specan(C[𝑃𝑣 ]) which restricts to one on the toric
boundary divisor 𝑉 (𝑣) = Specan(C[Σ𝑣 ]). We further twist the inclusion ♭ : 𝑉 ↩→ 𝑉 (𝑣) as

𝑧𝑚 ↦→ ℎ𝑚 · 𝑧
𝑚 for 𝑚 ∈ Σ𝑣 ; (2.11)
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here, for each 𝑚 ∈ Σ𝑣 , ℎ𝑚 is chosen as an invertible holomorphic function on 𝑉 ∩ Zero(𝑧𝑚; 𝑣), where
we denote Zero(𝑧𝑚; 𝑣) := {𝑥 ∈ 𝑉 (𝑣) | 𝑧𝑚 ∈ O∗𝑥}, and such that they satisfy the relations

ℎ𝑚 · ℎ𝑚′ = ℎ𝑚+𝑚′ , on 𝑉 ∩ Zero(𝑧𝑚+𝑚
′

; 𝑣). (2.12)

Then pulling back the log structure on 𝑉 (𝑣) via ♭ : 𝑉 ↩→ 𝑉 (𝑣) produces a log structure on V which is
log smooth.

These local choices of ℎ𝑚’s are also required to be determined by the slab functions 𝑓𝑣𝜌’s, up to
equivalences. Here, we shall just give the formula relating them; see [27, Thm. 3.22] for details. For any
𝜌 ∈ 𝒫 [𝑛−1] containing v and two maximal cells 𝜎± such that 𝜎+ ∩ 𝜎− = 𝜌, we take 𝑚+ ∈ 𝒬𝑣 ∩ 𝐾𝑣𝜎+
generating 𝒬𝜌 with some 𝑚0 ∈ 𝒬𝑣 ∩ 𝐾𝑣 𝜌 such that 𝑚0 − 𝑚+ ∈ 𝒬𝑣 ∩ 𝐾𝑣𝜎−. Then the required relation
is given by

𝑓𝑣𝜌 =
ℎ2
𝑚0

ℎ𝑚0−𝑚+ · ℎ𝑚0+𝑚+

���
𝑉𝜌 (𝑣)∩𝑉

∈ O∗𝑉𝜌 (𝑣)
(𝑉𝜌 (𝑣) ∩𝑉), (2.13)

which is independent of the choices of 𝑚0 and 𝑚+.
By abuse of notation, we also let ♭ : 𝑉 → 𝑘V be the k-th order thickening of V over C[𝑞]/𝑞𝑘+1 in

the model Specan (C[𝑃𝑣 ]) under the above embedding. Then there is a natural divisorial log structure
on 𝑘V† over 𝑘𝑆† coming from restriction of the log structure on Specan(C[𝑃𝑣 ])

† over 𝑆† (i.e., Example
2.18, which is the same as the one given by Example 2.19 in this case). Restricting to V reproduces
the log structure we constructed above, which is the log structure of 0𝑋† over the log point 0𝑆† locally
around x. We have a Cartesian diagram of log spaces

𝑉†
� � ��

��

𝑘V†

��
0𝑆†

� � �� 𝑘𝑆†

. (2.14)

Next, we describe the log structure around a singular point 𝑥 ∈ 𝑍 ∩
(0𝑋 𝜏 \⋃𝜔⊂𝜏 0𝑋𝜔

)
for some

𝜏. Viewing 𝑓 =
∑
𝜌∈𝒫 [𝑛−1] 𝑓𝜌 where 𝑓𝜌 is a section of N𝜌, we let 𝑍𝜌 = 𝑍 ( 𝑓𝜌) ⊂

0𝑋𝜌 ⊂
0𝑋 and write

𝑍 =
⋃
𝜌 𝑍𝜌. For every 𝜏 ∈ 𝒫, we have the data Ω𝑖’s, 𝑅𝑖’s, Δ 𝑖 (𝜏) and Δ̌ 𝑖 (𝜏) described in Definition 2.9

because (𝐵,𝒫) is simple. Since the normal fan 𝒩𝜏 ⊂ Λ∗𝜏,R of 𝜏 is a refinement of 𝒩Δ𝑖 (𝜏) ⊂ Λ∗𝜏,R, we
have a natural toric morphism

𝜘𝜏,𝑖 : 0𝑋 𝜏 → P
𝑟𝜏,𝑖 , (2.15)

and the identification 𝜄∗𝜏𝜌 (N𝜌) � 𝜘∗𝜏,𝑖 (O(1)). By the proof of [27, Thm. 5.2], 𝜄∗𝜏𝜌 ( 𝑓𝜌) is completely
determined by the gluing data s and the associated monodromy polytope Δ 𝑖 (𝜏), where 𝜌 ∈ 𝑅𝑖 . In
particular, we have 𝜄∗𝜏𝜌 ( 𝑓𝜌) = 𝜄∗𝜏𝜌′ ( 𝑓𝜌′ ) and 𝑍𝜌 ∩

0𝑋 𝜏 = 𝑍𝜌′ ∩
0𝑋 𝜏 =: 𝑍 𝜏𝑖 for 𝜌, 𝜌′ ∈ 𝑅𝑖 . Locally, if

we write 𝑉 (𝜏) = Specan(C[𝜏
−1Σ𝑣 ]) by choosing some 𝑣 ∈ 𝜏, then, for each 1 ≤ 𝑖 ≤ 𝑝, there exists an

analytic function 𝑓𝑣,𝑖 on 𝑉 (𝜏) such that 𝑓𝑣,𝑖 |𝑉𝜌 (𝜏) = 𝑠−1
𝑣𝜏 ( 𝑓𝑣𝜌) for 𝜌 ∈ 𝑅𝑖 .

According to [28, §2.1], for each 1 ≤ 𝑖 ≤ 𝑝, we have Δ̌ 𝑖 (𝜏) ⊂ 𝒬∗𝜏,R, which gives

𝜓𝑖 (𝑚) = − inf{〈𝑚, 𝑛〉 | 𝑛 ∈ Δ̌ 𝑖 (𝜏)}. (2.16)

By convention, we write 𝜓0 := 𝜑̄𝜏 . By rearranging the indices i’s, we can assume that 𝑥 ∈ 𝑍 𝜏1 ∩ · · · ∩ 𝑍
𝜏
𝑟

and 𝑥 ∉ 𝑍 𝜏𝑟+1 ∪ · · · ∪ 𝑍 𝜏𝑝 . We introduce the convention that 𝜓𝑥,𝑖 = 𝜓𝑖 for 0 ≤ 𝑖 ≤ 𝑟 and 𝜓𝑥,𝑖 ≡ 0 for
𝑟 < 𝑖 ≤ dimR (𝜏). Then the local smoothing model near x is constructed as Specan(C[𝑃𝜏,𝑥]), where

𝑃𝜏,𝑥 := {(𝑚, 𝑎0, . . . , 𝑎𝑙) ∈ 𝒬𝜏 × Z
𝑙+1 | 𝑎𝑖 ≥ 𝜓𝑥,𝑖 (𝑚)}, (2.17)
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𝑙 = dimR(𝜏), and the distinguished element 𝜚 = (0, 1, 0, . . . , 0) defines a family

Specan(C[𝑃𝜏,𝑥]) → Specan(C[𝑞])

by sending 𝑞 ↦→ 𝑧 𝜚 . The central fiber is given by Specan (C[𝑄𝜏,𝑥]), where

𝑄𝜏,𝑥 = {(𝑚, 𝑎0, . . . , 𝑎𝑙) | 𝑎0 = 𝜓𝑥,0 (𝑚)} � 𝑃𝜏,𝑥/(𝜚 + 𝑃𝜏,𝑥) (2.18)

is equipped with the monoid structure

𝑚 + 𝑚′ =

{
𝑚 + 𝑚′ if 𝑚 + 𝑚′ ∈ 𝑄𝜏,𝑥 ,

∞ otherwise.

We have the ring isomorphism C[𝑄𝜏,𝑥] � C[Σ𝜏 ⊕N𝑙] induced by the monoid isomorphism defined by
sending (𝑚, 𝑎0, 𝑎1, . . . , 𝑎𝑙) ↦→ (𝑚, 𝑎1 − 𝜓1 (𝑚), . . . , 𝑎𝑙 − 𝜓𝑙 (𝑚)).

We also fix some isomorphism C[𝜏−1Σ𝑣 ] � C[Σ𝜏 ⊕ Z𝑙] coming from the identification of 𝜏−1Σ𝑣
with the fan Σ𝜏 ⊕R𝑙 = {𝜔⊕R𝑙 | 𝜔 is a cone of 𝜏} in𝒬𝜏,R⊕R𝑙 . Taking a sufficiently small neighborhood
V of x such that 𝑍𝜌 ∩ 𝑉 = ∅ if 𝑥 ∉ 𝑍𝜌, we define a map 𝑉 → Specan(C[𝑄𝜏,𝑥]) by composing the
inclusion 𝑉 ↩→ Specan(C[𝜏

−1Σ𝑣 ]) � Specan(C[Σ𝜏 ⊕ Z
𝑙]) with the map

Specan (C[Σ𝜏 ⊕ Z
𝑙]) → Specan (C[Σ𝜏 ⊕ N

𝑙])

described on generators by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑚 ↦→ ℎ𝑚 · 𝑧

𝑚 if 𝑚 ∈ Σ𝜏 ;
𝑢𝑖 ↦→ 𝑓𝑣,𝑖 if 1 ≤ 𝑖 ≤ 𝑟;
𝑢𝑖 ↦→ 𝑧𝑖 − 𝑧𝑖 (𝑥) if 𝑟 < 𝑖 ≤ 𝑙;

(2.19)

here, 𝑢𝑖 is the i-th coordinate function of C[N𝑙], 𝑧𝑖 is the i-th coordinate function of C[Z𝑙] chosen so
that
(
𝜕 𝑓𝑣,𝑖
𝜕𝑧 𝑗

)
1≤𝑖≤𝑟 ,1≤ 𝑗≤𝑟

is nondegenerate on V; also, each ℎ𝑚 is an invertible holomorphic functions on
𝑉 ∩ Zero(𝑧𝑚; 𝑣), and they satisfy the equations (2.12) and (2.13) where we replace 𝑓𝑣𝜌 by

𝑓𝑣𝜌 =

{
𝑠−1
𝑣𝜏 ( 𝑓𝑣𝜌) if 𝑥 ∉ 𝑍𝜌,

1 if 𝑥 ∈ 𝑍𝜌 .

Letting ♭ : 𝑉 → 𝑘V be the k-th order thickening of V over C[𝑞]/𝑞𝑘+1 in the model Specan(C[𝑃𝜏,𝑥])
under the above embedding, we have a natural divisorial log structure on 𝑘V† over 𝑘𝑆† induced from
the inclusion Specan(C[𝑄𝜏,𝑥]) ↩→ Specan(C[𝑃𝜏,𝑥]) (i.e., Example 2.18). Restricting it to V gives the
log structure of 0𝑋† over the log point 0𝑆† locally around x.

3. A generalized moment map and the tropical singular locus on B

In this section, we recall the construction of a generalized moment map 𝜇 : 0𝑋 → 𝐵 from [43, Prop. 2.1].
Then we construct some convenient charts on the base tropical manifold B and study its singular locus.

3.1. A generalized moment map

From this point onward, we will assume the vanishing of an obstruction class associated to the open
gluing data s, namely, 𝑜(𝑠) = 1, where the obstruction class 𝑜(𝑠) is written multiplicatively (see [27,
Thm. 2.34]). Under this assumption, one can construct an ample line bundle L on 0𝑋 as follows: For
each polytope 𝜏 ⊂ Λ𝜏,R, by identifying 0𝑋 𝜏 (a closed stratum of 0𝑋 described in Remark 2.14) with
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the projective toric variety associated to 𝜏, we obtain an ample line bundle L𝜏 on 0𝑋 𝜏 . When the
assumption holds, then there exists an isomorphism h𝜔𝜏 : 𝜄∗𝜔𝜏 (L𝜏) � L𝜔 , for every pair 𝜔 ⊂ 𝜏 such
that the isomorphisms h𝜔𝜏’s satisfy the cocycle condition, that is, h𝜔𝜏 ◦ 𝜄∗𝜔𝜏 (h𝜏𝜎) = h𝜔𝜎 for every
triple 𝜔 ⊂ 𝜏 ⊂ 𝜎.3 In particular, the degenerate Calabi–Yau 0𝑋 = 0𝑋 (𝐵,𝒫, 𝑠) is projective.

Sections of L correspond to the lattice points 𝐵Z ⊂ 𝐵. More precisely, given 𝑚 ∈ 𝐵Z, there is a
unique 𝜏 ∈ 𝒫 such that 𝑚 ∈ intre(𝜏), and this determines a section 𝜗𝑚,𝜏 of L𝜏 by toric geometry. This
section extends uniquely as 𝜗𝑚 to 𝜎 ⊃ 𝜏 such that h𝜏𝜎 (𝜗𝑚) = 𝜗𝑚,𝜏 . Further extending 𝜗𝑚 by 0 to
other cells gives a section of L corresponding to m, called a (0th-order) theta function. Now, for a vertex
𝑣 ∈ 𝒫 [0] , we can trivialize L over 𝑉 (𝑣) using 𝜗𝑣 as the holomorphic frame. Then, for m lying in a cell
𝜎 that contains v, 𝜗𝑚 is of the form 𝑔𝜗𝑣 , where g is a constant multiple of 𝑧𝑚.

Under the above projectivity assumption, one can define a generalized moment map

𝜇 : 0𝑋 → 𝐵 (3.1)

following [43, Prop. 2.1]: First of all, the theta functions {𝜗𝑚}𝑚∈𝐵Z defines an embedding of 0𝑋 , denoted
by Φ : 0𝑋 ↩→ P𝑁 . Restricting to each closed toric stratum 0𝑋 𝜏 ⊂

0𝑋 , the only nonzero theta functions
are those corresponding to 𝑚 ∈ 𝐵Z ∩ 𝜏. Also, there is an embedding 𝔧𝜏 : T𝜏 := Λ∗𝜏,R/Λ

∗
𝜏,Z ↩→ U(1)

𝑁 of
real tori such that the composition Φ𝜏 : 0𝑋 𝜏 → P

𝑁 of Φ with the inclusion 0𝑋 𝜏 ↩→ 0𝑋 is equivariant.
The map 𝜇 is then defined by setting

𝜇 |0𝑋 𝜏
(𝑧) :=

1∑
𝑚∈𝐵Z∩𝜏 |𝜗𝑚 (𝑧) |

2

∑
𝑚∈𝐵Z∩𝜏

|𝜗𝑚 (𝑧) |
2 · 𝑚, (3.2)

which can be understood as a composition of maps

0𝑋 𝜏
Φ𝜏 �� P𝑁

𝜇P �� (R𝑁 )∗
𝑑𝔧∗𝜏 �� Λ𝜏,R,

where 𝜇P is the standard moment map for P𝑁 and 𝑑𝔧𝜏 : Λ∗𝜏,R → R
𝑁 is the Lie algebra homomorphism

induced by 𝔧𝜏 : T𝜏 → U(1)𝑁 .
Fixing a vertex 𝑣 ∈ 𝒫 [0] , we can naturally embed Λ𝜏,R ↩→ 𝑇𝑣,R for all 𝜏 containing v. Furthermore,

we can patch the 𝑑𝔧∗𝜏’s into a linear map 𝑑𝔧∗ : (R𝑁 )∗ → 𝑇𝑣,R so that 𝜇𝜏 = 𝑑𝔧∗ ◦ 𝜇P ◦ Φ𝜏 for each 𝜏
which contains v. In particular, on the local chart 𝑉 (𝜏) = Specan(C[𝜏

−1Σ𝑣 ]) associated with 𝑣 ∈ 𝜏, we
have the local description 𝜇 |𝑉 (𝜏) = 𝑑𝔧∗ ◦ 𝜇P ◦Φ|𝑉 (𝜏) of the generalized moment map 𝜇.

We consider the amoeba A := 𝜇(𝑍). As 0𝑋 𝜏 ∩ 𝑍 =
⋃𝑝
𝑖=1 𝑍

𝜏
𝑖 , where 𝑍 𝜏𝑖 is the zero set of a section

of 𝜘∗𝜏,𝑖 (O(1)) (see the discussion right after equation (2.15)), we can see that A ∩ 𝜏 =
⋃𝑝
𝑖=1 𝜇𝜏 (𝑍

𝜏
𝑖 )

is a union of amoebas A𝜏
𝑖 := 𝜇𝜏 (𝑍

𝜏
𝑖 ). It was shown in [43] that the affine structure defined right after

Definition 2.2 extends to 𝐵 \A.

3.2. Construction of charts on B

For any 𝜏 ∈ 𝒫, we have

𝜇(𝑉 (𝜏)) =
⋃
𝜏⊂𝜔

intre(𝜔) =: 𝑊 (𝜏).

For later purposes, we would like to relate sufficiently small open convex subsets 𝑊 ⊂ 𝑊 (𝜏) with Stein
(or strongly 1-completed, as defined in [13]) open subsets 𝑈 ⊂ 𝑉 (𝜏). To do so, we need to introduce a
specific collection of (nonaffine) charts on B.

3In fact, the vanishing of the obstruction class corresponds exactly to the validity of the cocycle condition.
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Recall that there are natural maps Λ𝜏 ↩→ 𝜏−1Σ𝑣 and 𝜏−1Σ𝑣 � Σ𝜏 . By choosing a piecewise linear
splitting split𝜏 : Σ𝜏 → 𝜏−1Σ𝑣 , we have an identification of monoids 𝜏−1Σ𝑣 � Σ𝜏 × Λ𝜏 , which induces
the biholomorphism

𝑉 (𝜏) = Specan(C[𝜏
−1Σ𝑣 ]) � Specan(C[Λ𝜏]) × Specan(C[Σ𝜏]),

where Λ∗𝜏,C∗ := Specan(C[Λ𝜏]) � Λ∗𝜏 ⊗Z C
∗ � (C∗)𝑙 is a complex torus. Fixing a set of genera-

tors {𝑚𝑖}𝑖∈B𝜏 of the monoid Σ𝜏 , which is not necessarily a minimal set, we can define an embedding
Specan (C[Σ𝜏]) ↩→ C

|B𝜏 | as an analytic subset using the functions 𝑧𝑚𝑖 ’s. We consider the real torus
T𝜏,⊥ := 𝒬∗𝜏,R/𝒬

∗
𝜏 � U(1)𝑛−𝑙 and its action on Specan(C[Σ𝜏]) defined by 𝑡 · 𝑧𝑚 = 𝑒2𝜋𝑖 (𝑡 ,𝑚) 𝑧𝑚, to-

gether with an embedding T𝜏,⊥ ↩→ U(1) |B𝜏 | of real tori via 𝑡 ↦→ (𝑒2𝜋𝑖 (𝑡 ,𝑚𝑖 ) )𝑖∈B𝜏 so that the inclusion
Specan (C[Σ𝜏]) ↩→ C

|B𝜏 | is T𝜏,⊥-equivariant.
We consider the moment map 𝜇̂𝜏 : Specan(C[Σ𝜏]) → 𝒬𝜏,R defined by

𝜇̂𝜏 :=
∑
𝑖∈B𝜏

1
2
|𝑧𝑚𝑖 |2 · 𝑚𝑖 , (3.3)

which is obtained by composing the standard moment map C |B𝜏 | → R |B𝜏 |
≥0 , (𝑧𝑖)𝑖∈B𝜏 ↦→ ( 1

2 |𝑧𝑖 |
2)𝑖∈B𝜏

with the projection R |B𝜏 | → 𝒬𝜏,R, 𝑒𝑖 ↦→ 𝑚𝑖 . By [21, §4.2], 𝜇̂𝜏 induces a homeomorphism between the
quotient Specan(C[Σ𝜏])/T𝜏,⊥ and 𝒬𝜏,R. Taking product with the log map log: Λ∗𝜏,C∗ → Λ∗𝜏,R (which
is induced from the standard log map log: C∗ → R defined by log(𝑒2𝜋 (𝑥+𝑖 𝜃) ) = 𝑥), we obtain a map
𝜇𝜏 := (log, 𝜇̂𝜏) : 𝑉 (𝜏) → Λ∗𝜏,R ×𝒬𝜏,R,4 and the following diagram

𝑉 (𝜏)

𝜇

��

𝜇𝜏

�����
���

���
��

Λ∗𝜏,R ×𝒬𝜏,R
Υ𝜏 ��𝑊 (𝜏),

(3.4)

where Υ𝜏 is a homeomorphism which serves as a chart.
The homeomorphism Υ𝜏 exists because if we fix a vertex 𝑣 ∈ 𝜏, then we can equip 𝑉 (𝜏) with an

action by the real torus T𝑛 := 𝑇∗𝑣,R/𝑇
∗
𝑣 such that both 𝜇 and 𝜇𝜏 induce homeomorphisms from the

quotient 𝑉 (𝜏)/T𝑛 onto the images. The restriction of Υ𝜏 to Λ∗𝜏,R × {𝑜}, where {𝑜} is the zero cone, is
a homeomorphism onto intre (𝜏) ⊂ 𝑊 (𝜏), which is nothing but (a generalized version of) the Legendre
transform (see [21, §4.2] for the explicit formula); also, this homeomorphism is independent of the
choices of the splitting split𝜏 and the generators {𝑚𝑖}𝑖∈B𝜏 .

The dependencies of the chart Υ𝜏 on the choices of the splitting split𝜏 : Σ𝜏 → 𝜏−1Σ𝑣 and the
generators {𝑚𝑖}𝑖 can be described as follows. First, if we choose another piecewise linear splitting
s̃plit𝜏 : Σ𝜏 → 𝜏−1Σ𝑣 , then there is a piecewise linear map 𝑏 : Σ𝜏 → Λ𝜏,R recording the difference
between split𝜏 and s̃plit𝜏 . The two corresponding coordinate charts Υ𝜏 and Υ̃𝜏 are then related by a
homeomorphism ג such that

ג

(
𝑥,
∑
𝑖

𝑦𝑖𝑚𝑖

)
=

(
𝑥,
∑
𝑖

𝑦𝑖𝑒
4𝜋 〈𝑏 (𝑚𝑖 ) ,𝑥 〉𝑚𝑖

)
,

where 𝑦𝑖 = 1
2 |𝑧

𝑚𝑖 |2 for some point 𝑧 ∈ Specan(C[Σ𝜏]) and i runs through 𝑚𝑖 ∈ 𝜎, via the for-
mula Υ̃𝜏 = Υ𝜏 ◦ .ג Second, if we choose another set of generators 𝑚̃ 𝑗 ’s, then the corresponding
maps 𝜇̂𝜏 , 𝜇̃𝜏 : Specan(C[Σ𝜏]) → 𝒬𝜏,R are related by a continuous map ג̂ : 𝒬𝜏,R → 𝒬𝜏,R which maps

4It depends on the choices of the splitting split𝜏 : Σ𝜏 → 𝜏−1Σ𝑣 and the generators {𝑚𝑖 }𝑖 , but we omit these dependencies
from our notations.
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each cone 𝜎 ∈ Σ𝜏 back to itself. This is because both 𝜇̂𝜏 , 𝜇̃𝜏 induce a homeomorphism between
Specan(C[Σ𝜏])/T𝜏,⊥ and 𝒬𝜏,R.

Now, suppose that𝜔 ⊂ 𝜏. We want to see how the chartsΥ𝜔 ,Υ𝜏 can be glued together in a compatible
manner. We first make a compatible choice of splittings. So we fix a vertex 𝑣 ∈ 𝜔 and a piecewise linear
splitting split𝜔 : Σ𝜔 → 𝜔−1Σ𝑣 . We then choose a piecewise linear splitting split𝜔𝜏 : Σ𝜏 → Σ𝜔 such
that 𝐾𝜏𝜎 is mapped into 𝐾𝜔𝜎 for any 𝜎 ⊃ 𝜏. Together with the natural maps Λ𝜏/Λ𝜔 ↩→ 𝜏−1Σ𝜔
and 𝜏−1Σ𝜔 � Σ𝜏 , we obtain an isomorphism 𝜏−1Σ𝜔 � (Λ𝜏/Λ𝜔) × Σ𝜏 . By composing together
split𝜔𝜏 : Σ𝜏 → Σ𝜔 , split𝜔 : Σ𝜔 → 𝜔−1Σ𝑣 and the natural monoid homomorphism 𝜔−1Σ𝑣 → 𝜏−1Σ𝑣 ,
we get a splitting split𝜏 : Σ𝜏 → 𝜏−1Σ𝑣 .

Using these choices of splittings, we have a biholomorphism

Specan(C[𝜏
−1Σ𝜔]) � (Λ𝜏/Λ𝜔)

∗ ⊗Z C
∗ × Specan(C[Σ𝜏])

which fits into the following diagram

Λ∗𝜔,C∗ × Specan(C[Σ𝜔])
� ��Specan(C[𝜔

−1Σ𝑣 ])

Λ∗𝜔,C∗ × Specan(C[𝜏
−1Σ𝜔])

��

��

�

��

Specan(C[𝜏
−1Σ𝑣 ])�

��

�

��

��

��

Specan(C[𝜏
−1Σ𝑣 ])

𝑠−1
𝜔𝜏

��

�

��

� �

𝐹𝑠 (𝜔⊂𝜏)
�������������������

(Λ𝜔 ⊕ Λ𝜏/Λ𝜔)
∗ ⊗Z C

∗ × Specan(C[Σ𝜏]) Λ∗𝜏,C∗ × Specan(C[Σ𝜏])�� Λ∗𝜏,C∗ × Specan(C[Σ𝜏]).
𝑠−1
𝜔𝜏

��

(3.5)

Here, the bottom left horizontal map is induced from a splitting (Λ𝜏/Λ𝜔) → Λ𝜏 obtained by composing
Λ𝜏/Λ𝜔 → 𝜏−1Σ𝜔 with the splitting 𝜏−1Σ𝜔 → 𝜏−1(𝜔−1Σ𝑣 ) and then identifying with the image lattice
Λ𝜏 . The appearance of 𝑠𝜔𝜏 in the diagram is due to the twisting of 𝑉 (𝜏) by the open gluing data
(𝑠𝜔𝜏)𝜔⊂𝜏 when it is glued to 𝑉 (𝜔).

We also have to make a compatible choice of the generators {𝑚𝑖}𝑖∈B𝜔 and {𝑚𝑖}𝑖∈B𝜏 . First, note
that the restriction of 𝜇̂𝜔 to the open subset Specan(C[𝜏

−1Σ𝜔]) ⊂ Specan (C[Σ𝜔]) depends only on
the subcollection {𝑚𝑖}𝑖∈B𝜔⊂𝜏 of {𝑚𝑖}𝑖∈B𝜔 which contains those 𝑚𝑖’s that belong to some cone 𝜎 ⊃ 𝜏.
We choose the set of generators {𝑚̃𝑖}𝑖∈B𝜏 for Σ𝜏 , with B𝜏 = B𝜔⊂𝜏 , to be the projection of {𝑚𝑖}𝑖∈B𝜔⊂𝜏
through the natural map 𝜏−1Σ𝜔 → Σ𝜏 . Each 𝑚𝑖 can be expressed as 𝑚𝑖 = split𝜔𝜏 (𝑚̃𝑖) + 𝑏𝑖 for some
𝑏𝑖 ∈ Λ𝜏/Λ𝜔 , through the splitting split𝜔𝜏 : Σ𝜏 → Σ𝜔 . Notice that if 𝑚𝑖 ∈ 𝐾𝜔𝜏, then we have 𝑚̃𝑖 = 𝑜
and hence 𝑏𝑖 ∈ 𝐾𝜔𝜏. By tracing through the biholomorphism in equation (3.5) and taking either the
modulus or the log map, we have a map

ג : Λ∗𝜔,R × (Λ𝜏,R/Λ𝜔,R)
∗ ×𝒬𝜏,R → Λ∗𝜔,R ×𝒬𝜔,R,

satisfying

ג

(
𝑥1 − 𝑐𝜔𝜏,1, 𝑥2 − 𝑐𝜔𝜏,2,

∑
𝑖

𝑦𝑖 |𝑠𝜔𝜏 (split𝜔𝜏 (𝑚̃𝑖)) |
−2𝑚̃𝑖

)
=

(
𝑥1,
∑
𝑖

𝑦𝑖𝑒
4𝜋 〈𝑏𝑖 ,𝑥2 〉𝑚𝑖

)
, (3.6)

where 𝑦𝑖 = 1
2 |𝑧

𝑚̃𝑖 |2. Here, 𝑠𝜔𝜏 ∈ PM(𝜏) is the part of the open gluing data associated to 𝜔 ⊂ 𝜏, and
𝑐𝜔𝜏 = 𝑐𝜔𝜏,1 + 𝑐𝜔𝜏,2 ∈ Λ∗𝜏,R is the unique element representing the linear map log |𝑠𝜔𝜏 | : Λ𝜏,R → R
defined by log |𝑠𝜔𝜏 | (𝑏) = log |𝑠𝜔𝜏 (𝑏) |. For instance, the holomorphic function 𝑧𝑚𝑖 ∈ C[𝜏−1Σ𝜔] is
identified with 𝑧𝑏𝑖 ·𝑧𝑚̃𝑖 in (Λ𝜏/Λ𝜔)

∗⊗ZC
∗×Specan(C[Σ𝜏]), resulting in the expression

∑
𝑖 𝑦𝑖𝑒

4𝜋 〈𝑏𝑖 ,𝑥2 〉𝑚𝑖

on the right-hand side. We have Υ𝜏 = Υ𝜔 ◦ ,ג where we use the splitting (Λ𝜏/Λ𝜔) → Λ𝜏 to obtain an
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isomorphism Λ∗𝜔,R × (Λ𝜏,R/Λ𝜔,R)
∗ � Λ∗𝜏,R and an identification of the domains of the two maps Υ𝜏

and Υ𝜔 ◦ .ג

Lemma 3.1. There is a base ℬ of open subsets of B such that the preimage 𝜇−1 (𝑊) is Stein for any
𝑊 ∈ ℬ.

Proof. First of all, it is well known that analytic spaces associated to affine varieties are Stein. So 𝑉 (𝜏)
is Stein for any 𝜏. Now, we fix a point 𝑥 ∈ intre (𝜏) ⊂ 𝐵. It suffices to show that there is a local base ℬ𝑥 of
x such that the preimage 𝜇−1 (𝑊) is Stein for each 𝑊 ∈ ℬ𝑥 . We work locally on 𝜇 |𝑉 (𝜏) : 𝑉 (𝜏) → 𝑊 (𝜏).
Consider the diagram (3.4) and write Υ−1(𝑥) = (𝑥, 𝑜), where 𝑜 ∈ 𝒬𝜏,R is the origin. By [13, Ch. 1, Ex.
7.4], the preimage log−1 (𝑊) under the log map log: (C∗)𝑙 → Λ∗𝜏,R is Stein for any convex 𝑊 ⊂ Λ∗𝜏,R
which contains 𝑥. Again by [13, Ch. 1, Ex. 7.4], any subset

𝑁⋂
𝑗=1
{𝑧 ∈ Specan (C[Σ𝜏]) | | 𝑓 𝑗 (𝑧) | < 𝜖},

where 𝑓 𝑗 ’s are holomorphic functions, is Stein. By taking 𝑓 𝑗 ’s to be the functions 𝑧𝑚 𝑗 ’s associated to
the set of all nonzero generators in {𝑚 𝑗 } 𝑗∈B𝜏 and 𝜖 sufficiently small, we have a subset

𝑊 =

{
𝑦
��� 𝑦 =
∑
𝑗

𝑦 𝑗𝑚 𝑗 with |𝑦 𝑗 | <
𝜖2

2
, where 𝑦 𝑗 =

1
2
|𝑧𝑚 𝑗 |2 at some point 𝑧 ∈ Specan(C[Σ𝜏])

}
of 𝒬𝜏,R such that the preimage 𝜇̂−1

𝜏 (𝑊) is Stein. Therefore, we can construct a local base ℬ𝑜 of o such
that the preimage 𝜇̂−1

𝜏 (𝑊) is Stein for any 𝑊 ∈ ℬ𝑜. Finally, since a product of Stein open subsets is
Stein, we obtain our desired local base ℬ𝑥 by taking the products of these subsets. �

3.3. The tropical singular locus 𝓢 of B

We now specify a codimension 2 singular locus 𝒮 ⊂ 𝐵 of the affine structure using the charts Υ𝜏
introduced in (3.4) for 𝜏 such that dimR (𝜏) < 𝑛. Given the chart Υ𝜏 that maps Λ∗𝜏,R to intre(𝜏), we
define the tropical singular locus 𝒮 by requiring that

Υ−1
𝜏 (𝒮 ∩ intre(𝜏)) =

⋃
𝜌∈𝒩𝜏 ;

dimR (𝜌)<dimR (𝜏)

(
(intre (𝜌) + 𝑐𝜏) × {𝑜}

)
, (3.7)

where 𝒩𝜏 ⊂ Λ∗𝜏,R is the normal fan of the polytope 𝜏, and {𝑜} is the zero cone in Σ𝜏 ⊂ 𝒬𝜏,R; here,
𝑐𝜏 = log |𝑠𝑣𝜏 | is the element in Λ∗𝜏,R representing the linear map log |𝑠𝑣𝜏 | : Λ𝜏,R → R, which is
independent of the vertex 𝑣 ∈ 𝜏. A subset of the form 𝒮𝜏,𝜌 := (intre(𝜌) + 𝑐𝜏) × {𝑜} in (3.7) is called
a stratum of 𝒮 in intre(𝜏). The locus 𝒮 is independent of the choices of the splittings split𝜏’s and
generators {𝑚𝑖}𝑖∈B𝜏 used to construct the charts Υ𝜏’s.

Remark 3.2. Our definition of the singular locus is similar to those in [27, 29]; the only difference is that
our locus is a collection of polyhedra in Λ∗𝜏,R, instead of intre (𝜏). Note that Λ∗𝜏,R is homeomorphic to
intre (𝜏) by the Legendre transform. This modification is needed for our construction of the contraction
map 𝒞 below, where we need to consider the convex open subsets in Λ∗𝜏,R, instead of those in intre(𝜏).

Lemma 3.3. For 𝜔 ⊂ 𝜏 and a stratum 𝒮𝜏,𝜌 in intre(𝜏), the intersection of the closure 𝒮𝜏,𝜌 in B with
intre (𝜔) is a union of strata of 𝒮 in intre(𝜔).

Proof. We consider the map ג described in equation (3.6) and take a neighborhood 𝑊 = 𝑊1 × 𝒬𝜔,R
of a point (𝑥, 𝑜) in Λ∗𝜔,R × 𝒬𝜔,R, where 𝑊1 is some sufficiently small neighborhood of 𝑥 in Λ∗𝜔,R. By
shrinking W if necessary, we may assume that (𝑊)1−ג = 𝑊1 × (𝑎 − intre (𝐾𝜔𝜏∨)) × 𝒬𝜏,R, where a is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.32
Downloaded from https://www.cambridge.org/core. IP address: 3.145.125.13, on 16 Apr 2025 at 10:19:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.32
https://www.cambridge.org/core


Forum of Mathematics, Pi 23

some element in −intre(𝐾𝜔𝜏∨) ⊂ (Λ𝜏,R/Λ𝜔,R)
∗. Writing 𝑐𝜏 = 𝑐𝜏,1 + 𝑐𝜏,2, where 𝑐𝜏,1, 𝑐𝜏,2 are the

components of 𝑐𝜏 according to the chosen decomposition Λ∗𝜏,R � Λ∗𝜔,R × (Λ𝜏,R/Λ𝜔,R)
∗, the equality

𝑐𝜏,1 + 𝑐𝜔𝜏,1 = 𝑐𝜔 follows from the compatibility of the open gluing data in Definition 2.13. If 𝒮𝜏,𝜌
intersects the open subset ,(𝑊)1−ג then 𝜌 ⊂ Λ∗𝜏,R must be the dual cone of some face 𝜌∨ ⊂ 𝜔 ⊂ 𝜏 in
Λ∗𝜏,R. The intersection is of the form

(intre(𝜌) + 𝑐𝜏,1) × (𝑎 − intre(𝐾𝜔𝜏∨)) × {𝑜}

for some 𝜌 ∈ 𝒩𝜔 (𝑐𝜏,2 is absorbed by a), where 𝜌 ⊂ Λ∗𝜔,R is the dual cone of 𝜌∨ in Λ∗𝜔,R, and hence we
have 𝑊 ∩𝒮𝜏,𝜌 = intre))ג (𝜌) + 𝑐𝜏,1) × (𝑎− intre(𝐾𝜔𝜏∨)) × {𝑜}). Therefore, the intersection of 𝒮𝜏,𝜌 with
Λ∗𝜔,R in the open subset 𝑊 ⊂ Λ∗𝜔,R ×𝒬𝜔,R is given by (𝜌 + 𝑐𝜔) × {𝑜}, which is a union of strata. �

The tropical singular locus 𝒮 is naturally equipped with a stratification, where a stratum is given by
𝒮𝜏,𝜌 for some cone 𝜌 ⊂ 𝒩𝜏 of dimR (𝜌) < dimR(𝜏) for some 𝜏 ∈ 𝒫 [<𝑛] . We use the notation 𝒮 [𝑘 ]

to denote the set of k-dimensional strata of 𝒮. The affine structure on
⋃
𝑣 ∈𝒫 [0] 𝑊𝑣 ∪

⋃
𝜎∈𝒫 [𝑛] intre (𝜎)

introduced right after Definition 2.2 in §2.1 can be naturally extended to 𝐵 \𝒮 as in [29].
If we consider 𝜔 ⊂ 𝜏 ⊂ 𝜌 for some 𝜔 ∈ 𝒫 [1] and 𝜌 ∈ 𝒫 [𝑛−1] , the corresponding monodromy

transformation 𝑇𝛾 is nontrivial if and only if 𝜔 ∈ Ω𝑝 and 𝜌 ∈ 𝑅𝑝 , where p is as in Definition 2.9.
Therefore, the part of the singular locus 𝒮 lying in Υ−1

𝜏 (intre(𝜏)) = Λ∗𝜏,R × {𝑜} is determined by the
subsetsΩ𝑝’s. We may further define the essential singular locus𝒮𝑒 to include only those strata contained
in 𝒮 [𝑛−2] with nontrivial monodromy around them. We observe that the affine structure can be further
extended to 𝐵 \𝒮𝑒.

More explicitly, we have a projection

i𝜏 = i𝜏,1 ⊕ · · · ⊕ i𝜏,𝑝 : Λ∗𝜏 → Λ∗Δ1 (𝜏)
⊕ · · · ⊕ Λ∗Δ 𝑝 (𝜏)

,

in which Λ∗Δ1 (𝜏)
⊕ · · · ⊕ Λ∗Δ 𝑝 (𝜏)

can be treated as a direct summand as in §2.2. So we can consider
the pullback of the fan 𝒩Δ1 (𝜏) × · · · ×𝒩Δ 𝑝 (𝜏) via the map i𝜏 and realize 𝒩𝜏 ⊂ Λ∗𝜏,R as a refinement
of this fan. Similarly, we have ǐ𝜏 = ǐ𝜏,1 ⊕ · · · ⊕ ǐ𝜏,𝑝 : 𝒬∗𝜏 → Λ∗

Δ̌1 (𝜏)
⊕ · · · ⊕ Λ∗

Δ̌ 𝑝 (𝜏)
and the fan

𝒩Δ̌1 (𝜏)
× · · · ×𝒩Δ̌ 𝑝 (𝜏)

in 𝒬∗𝜏,R under pullback via ǐ𝜏 . The intersection 𝒮𝑒 ∩ intre(𝜏) can be described
by replacing 𝜌 ∈ 𝒩𝜏 with the condition 𝜌 ∈ i−1

𝜏 (𝒩Δ1 (𝜏) × · · · ×𝒩Δ 𝑝 (𝜏) ), with a stratum denoted by
𝒮𝑒,𝜏,𝜌. This gives a stratification on 𝒮𝑒.

Lemma 3.4. For 𝜔 ⊂ 𝜏 and a stratum 𝒮𝑒,𝜏,𝜌 in intre (𝜏), the intersection of the closure 𝒮𝑒,𝜏,𝜌 in B with
intre (𝜔) is a union of strata of 𝒮𝑒 in intre(𝜔).

Proof. Given 𝜔 ⊂ 𝜏, we take a change of coordinate map ג together with a neighborhood W as in the
proof of Lemma 3.3. We need to show that 𝑊 ∩𝒮𝜏,𝜌 = intre(𝜌)))ג + 𝑐𝜏,1) × (𝑎 − intre(𝐾𝜔𝜏∨)) × {𝑜})
for some cone 𝜌 ∈ i−1

𝜏 (
∏𝑝
𝑖=1 𝒩Δ𝑖 (𝜏) ). Let Δ1 (𝜏), . . . ,Δ𝑟 (𝜏), . . . ,Δ 𝑝 (𝜏) be the monodromy polytopes

of 𝜏, and Δ1 (𝜔), . . . ,Δ𝑟 (𝜔), . . . ,Δ 𝑝′ (𝜔) be those of 𝜔 such that Δ 𝑗 (𝜔) is the face of Δ 𝑗 (𝜏) parallel to
Λ𝜔 for 𝑗 = 1, . . . , 𝑟 . Then we have direct sum decompositions ΛΔ1 (𝜏) ⊕ · · · ⊕ ΛΔ 𝑝 (𝜏) ⊕ 𝐴𝜏 = Λ𝜏 and
ΛΔ1 (𝜔) ⊕ · · · ⊕ ΛΔ 𝑝′ (𝜔) ⊕ 𝐴𝜔 = Λ𝜔 . We can further choose an inclusion

a𝜔𝜏 : ΛΔ𝑟+1 (𝜔) ⊕ · · · ⊕ ΛΔ 𝑝′ (𝜔) ⊕ 𝐴𝜔 ↩→ 𝐴𝜏 ;

in other words, for every 𝑗 = 𝑟 + 1, . . . , 𝑝′, any 𝑓 ∈ 𝑅 𝑗 ⊂ 𝒫𝑛−1 (𝜔) in Definition 2.9 is not containing
𝜏. For every 𝑗 = 𝑟 + 1, . . . , 𝑝 and any 𝑓 ∈ 𝑅 𝑗 ⊂ 𝒫𝑛−1 (𝜏), the element 𝑚 𝑓

𝑣1𝑣2 is zero for any two vertices
𝑣1, 𝑣2 of 𝜔. We have the identification

Λ𝜏/Λ𝜔 =
𝑟⊕
𝑗=1
(ΛΔ 𝑗 (𝜏) /ΛΔ 𝑗 (𝜔) ) ⊕

𝑝⊕
𝑙=𝑟+1

ΛΔ𝑙 (𝜏) ⊕ coker(a𝜔𝜏).
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As a result, any cone i−1
𝜏 (
∏𝑝

𝑗=1 𝜌 𝑗 ) ∈ i
−1
𝜏

( ∏𝑝
𝑖=1 𝒩Δ𝑖 (𝜏)

)
of codimension greater than 0 intersecting

(𝑊)1−ג will be a pullback of a cone under the projection to Λ∗Δ1 (𝜏) ,R
⊕ · · · ⊕ Λ∗Δ𝑟 (𝜏) ,R

. Consider the
commutative diagram of projection maps

Λ∗𝜔,R

p𝜔

��

Λ∗𝜏,Rp𝜔⊂𝜏
��

p𝜏

��∏𝑟
𝑗=1 Λ

∗
Δ 𝑗 (𝜔) ,R

∏𝑟
𝑗=1 Λ

∗
Δ 𝑗 (𝜏) ,R

.
Π𝜔⊂𝜏

��

(3.8)

We see that, in the open subset ,(𝑊)1−ג every cone of codimension greater than 0 coming from
pullback via p𝜏 is a further pullback via Π𝜔⊂𝜏 ◦ p𝜏 . As a consequence, it must be of the form
intre(𝜌)))ג + 𝑐𝜏,1) × (𝑎 − intre (𝐾𝜔𝜏∨)) × {𝑜}) in W. �

3.3.1. Contraction of A to 𝓢

We would like to relate the amoeba A = 𝜇(𝑍) with the tropical singular locus 𝒮 introduced above.

Assumption 3.5. We assume the existence of a surjective contraction map 𝒞 : 𝐵→ 𝐵 which is isotopic
to the identity and satisfies the following conditions:

1. 𝒞−1 (𝐵 \𝒮) ⊂ (𝐵 \𝒮) and the restriction 𝒞 |𝒞−1 (𝐵\𝒮) : 𝒞−1(𝐵 \𝒮) → 𝐵 \𝒮 is a homeomorphism.
2. 𝒞 maps A into the essential singular locus 𝒮𝑒.
3. For each 𝜏 ∈ 𝒫, we have 𝒞−1(intre (𝜏)) ⊂ intre(𝜏).
4. For each 𝜏 ∈ 𝒫 with 0 < dimR (𝜏) < 𝑛, we have a decomposition

𝜏 ∩𝒞−1(𝐵 \𝒮) =
⋃
𝑣 ∈𝜏 [0]

𝜏𝑣

of the intersection 𝜏 ∩ 𝒞−1(𝐵 \ 𝒮) into connected components 𝜏𝑣 ’s, where each 𝜏𝑣 is contractible
and is the unique component containing the vertex 𝑣 ∈ 𝜏.

5. For each 𝜏 ∈ 𝒫 and each point 𝑥 ∈ intre(𝜏) ∩𝒮, 𝒞−1(𝑥) ⊂ intre(𝜏) is a connected compact subset.
6. For each 𝜏 ∈ 𝒫 and each point 𝑥 ∈ intre (𝜏) ∩ 𝒮, there exists a local base ℬ𝑥 around x such that
(𝒞 ◦ 𝜇)−1(𝑊) ⊂ 𝑉 (𝜏) is Stein for every 𝑊 ∈ ℬ𝑥 , and for any 𝑈 ⊃ 𝒞−1 (𝑥), we have 𝒞−1 (𝑊) ⊂ 𝑈
for sufficiently small 𝑊 ∈ ℬ𝑥 .

Similar contraction maps appear in [43, Rem. 2.4] (see also [45, 44]).
When dimR (𝐵) = 2, we can take 𝒞 = id because from [27, Ex. 1.62], we see that Z is a finite

collection of points, with at most one point lying in each closed stratum 0𝑋 𝜏 , and the amoeba A is
exactly the image of Z under the generalized moment map 𝜇.

When dimR(𝐵) = 3, the amoeba A can possibly be of codimension one and we need to construct a
contraction map as shown in Figure 5.

For dimR(𝜏) = 1, again from [27, Ex. 1.62], we see that if A ∩ intre(𝜏) ≠ ∅, then there is exactly
one Ω1 and 𝑅1, and Δ1 (𝜏) is a line segment of affine length 1. In this case, 𝑍 ∩ 0𝑋 𝜏 consists of only
one point, given by the intersection of the zero locus 𝑠−1

𝑣𝜏 ( 𝑓𝑣𝜌) with C∗ � 𝑉𝜏 (𝜏) ⊂ 𝑉 (𝜏). Taking m to
be the primitive vector in Λ𝜏 starting at v that points into 𝜏, we can write 𝑠−1

𝑣𝜏 ( 𝑓𝑣𝜌) = 1 + 𝑠−1
𝑣𝜏 (𝑚)𝑧

𝑚.
Applying the log map log: C∗ → R, we see that A∩ intre(𝜏) = 𝑐𝜏 . Therefore, for an edge 𝜏 ∈ 𝒫 [1] , we
can define 𝒞 to be the identity on 𝜏.

On a codimension one cell 𝜌 such that intre(𝜌) ∩ A ≠ ∅ (see Figure 6), we consider the log map
log: Specan(C[Λ𝜌]) � (C

∗)2 → Λ∗𝜌,R � R
2 and take a sufficiently large polytope P (colored purple

in Figure 6) so that A \ intre(P) is a disjoint union of legs. We first contract each leg to the tropical
singular locus (colored blue in Figure 6) along the normal direction to the tropical singular locus. Next,
we contract the polytope P to the zero-dimensional stratum of 𝒮𝑒. Notice that the restriction of 𝒞 to
the tropical singular locus 𝒮 is not the identity but rather a contraction onto itself. Once the contraction
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Figure 5. Contraction map 𝒞 when dimR (𝐵) = 3.

Figure 6. Contraction at 𝜌.

map is constructed for all codimension one cells 𝜌, we can then extend it continuously to the whole of
B so that it is a diffeomorphism on intre (𝜎) for every maximal cell 𝜎. The map is chosen such that the
preimage 𝒞−1(𝑥) for every point 𝑥 ∈ intre(𝜌) is a convex polytope in R2. Therefore, given any open
subset𝑈 ⊂ R2 which contains 𝒞−1(𝑥), we can find some convex open neighborhood𝑊1 ⊂ 𝑈 of 𝒞−1(𝑥)
giving the Stein open subset log−1(𝑊1) ⊂ (C

∗)2. By taking 𝑊 = 𝑊1 ×𝑊2 in the chart Λ∗𝜌,R ×𝒬𝜌,R as
in the proof of Lemma 3.1, we have the open subset W that satisfies condition (5) in Assumption 3.5.

In general, we need to construct 𝒞 |intre (𝜏) inductively for each 𝜏 ∈ 𝒫 such that 𝒞−1 (𝑥) ⊂ intre(𝜏) is
convex in the chart Λ∗𝜏,R � intre(𝜏) and the codimension one amoeba A is contracted to the codimension
2 tropical singular locus 𝒮𝑒. The reason for introducing such a contraction map is that we can modify
the generalized moment map 𝜇 to one which is more closely related with tropical geometry:

Definition 3.6. We call the composition 𝜈 := 𝒞 ◦ 𝜇 : 0𝑋 → 𝐵 the modified moment map.

One immediate consequence of property (6) in Assumption 3.5 is that we have 𝑅𝜈∗(F) = 𝜈∗(F) for
any coherent sheaf F on 0𝑋 , thanks to Lemma 3.1 and Cartan’s Theorem B:

Theorem 3.7 (Cartan’s Theorem B [6]; see e.g. Ch. IX, Cor. 4.11 in [13]). For any coherent sheaf F
over a Stein space U, we have 𝐻>0 (𝑈,F) = 0.

3.3.2. Monodromy invariant differential forms on B
Outside of the essential singular locus 𝒮𝑒, we have a nice integral affine manifold 𝐵 \𝒮𝑒, on which we
can talk about the sheaf Ω∗ of (R-valued) de Rham differential forms. But in fact, we can extend its
definition to 𝒮𝑒 as well using monodromy invariant differential forms.
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We consider the inclusion 𝜄 : 𝐵0 := 𝐵 \𝒮𝑒 → 𝐵 and the natural exact sequence

0→ Z→ A 𝑓 𝑓 → 𝜄∗Λ
∗
𝐵0
→ 0, (3.9)

where Λ∗𝐵0
denotes the sheaf of integral cotangent vectors on 𝐵0. For any 𝜏 ∈ 𝒫, the stalk (𝜄∗Λ∗𝐵0

)𝑥 at
a point 𝑥 ∈ intre (𝜏) ∩𝒮𝑒 can be described using the chart Υ𝜏 in equation (3.4). Using the description in
§3.3, we have 𝑥 ∈ 𝒮𝑒,𝜏,𝜌 = intre(𝜌) × {𝑜} for some 𝜌 ∈ i−1

𝜏 (𝒩Δ1 (𝜏) × · · · ×𝒩Δ 𝑝 (𝜏) ). Taking a vertex
𝑣 ∈ 𝜏, we can consider the monodromy transformations 𝑇𝛾’s around the strata 𝒮𝑒,𝜂,𝜌’s that contain x
in their closures. We can identify the stalk 𝜄∗(Λ∗𝐵0

)𝑥 as the subset of invariant elements of 𝑇∗𝑣 under
all such monodromy transformations. Since 𝜌 ⊂ Λ∗𝜏,R is a cone, we have Λ𝜌 ⊂ Λ∗𝜏 . Using the natural
projection map 𝜋𝑣𝜏 : 𝑇∗𝑣 → Λ∗𝜏 , we have the identification 𝜄∗(Λ∗𝐵0

)𝑥 � 𝜋−1
𝑣𝜏 (Λ𝜌). There is a direct sum

decomposition 𝜄∗(Λ∗𝐵0
)𝑥 = Λ𝜌 ⊕𝒬∗𝜏 , depending on a decomposition 𝑇𝑣 = Λ𝜏 ⊕𝒬𝜏 . This gives the map

x : 𝑈𝑥 → 𝜋−1
𝑣𝜏 (Λ𝜌)

∗
R (3.10)

in a sufficiently small neighborhood 𝑈𝑥 , locally defined up to a translation in 𝜋−1
𝑣𝜏 (Λ𝜌)

∗
R

. We need to
describe the compatibility between the map associated to a point 𝑥 ∈ 𝒮𝑒,𝜔,𝜌 and that to a point 𝑥 ∈ 𝒮𝑒,𝜏,𝜌̃
such that 𝒮𝑒,𝜔,𝜌 ⊂ 𝒮𝑒,𝜏,𝜌̃.

The first case is when 𝜔 = 𝜏. We let 𝑥 ∈ intre( 𝜌̃) × {𝑜} ∩𝑈𝑥 for some 𝜌 ⊂ 𝜌̃. Then, after choosing
suitable translations in 𝜋−1

𝑣𝜏 (Λ𝜌)
∗
R

for the maps x and x̃, we have the following commutative diagram:

𝑈𝑥̃ ∩𝑈𝑥

��

x̃ ��𝜋−1
𝑣𝜏 (Λ𝜌̃)

∗
R

p

��
𝑈𝑥

x ��𝜋−1
𝑣𝜏 (Λ𝜌)

∗
R
.

(3.11)

The second case is when 𝜔 � 𝜏. Making use of the change of charts ג in equation (3.6), and the
description in the proof of Lemma 3.4, we write

𝑥 ∈ intre( 𝜌̃) × {𝑜}

for some cone 𝜌̃ = i−1
𝜏 (
∏𝑝

𝑗=1 𝜌̃ 𝑗 ) ∈ i
−1
𝜏

( ∏𝑝
𝑗=1 Λ

∗
Δ 𝑗 (𝜏)

)
of positive codimension. In ,(𝑊)1−ג we may

assume 𝜌̃ is the pullback of a cone 𝜌̆ via Π𝜔⊂𝜏 ◦ p𝜏 as in equation (3.8). Since 𝒮𝑒,𝜔,𝜌 ⊂ 𝒮𝑒,𝜏,𝜌̃,
we have 𝜌 ⊂ p−1

𝜔 ( 𝜌̆) and hence p−1
𝜔⊂𝜏 (Λ𝜌) ⊂ Λ𝜌̃. Therefore, from p𝜔⊂𝜏 ◦ 𝜋𝑣𝜏 = 𝜋𝑣𝜔 , we obtain

𝜋−1
𝑣𝜔 (Λ𝜌) ⊂ 𝜋−1

𝑣𝜏 (Λ𝜌̃), inducing the map p : 𝜋−1
𝑣𝜏 (Λ𝜌̃)

∗
R
→ 𝜋−1

𝑣𝜔 (Λ𝜌)
∗
R

. As a result, we still have the
commutative diagram (3.11) for a point 𝑥 sufficiently close to x.

Definition 3.8. Given 𝑥 ∈ 𝒮𝑒 as above, the stalk of Ω∗ at x is defined as the stalk Ω∗𝑥 := (x−1Ω∗)𝑥 of
the pullback of the sheaf of smooth de Rham forms on 𝜋−1

𝑣𝜏 (Λ𝜌)
∗
R

, which is equipped with the de Rham
differential d. This defines the complex (Ω∗, 𝑑) of monodromy invariant smooth differential forms on B.
A section 𝛼 ∈ Ω∗(𝑊) is a collection of elements 𝛼𝑥 ∈ Ω∗𝑥 , 𝑥 ∈ 𝑊 such that each 𝛼𝑥 can be represented
by x−1𝛽𝑥 in a small neighborhood 𝑈𝑥 ⊂ p

−1(U𝑥) for some smooth form 𝛽𝑥 on U𝑥 , and satisfies the
relation 𝛼𝑥̃ = x̃−1(p∗𝛽𝑥) in Ω∗𝑥̃ for every 𝑥 ∈ 𝑈𝑥 .

Example 3.9. In the two-dimensional case in Example 2.11, we consider a singular point

{𝑥} = 𝒮𝑒 ∩ intre (𝜏)

for some 𝜏 ∈ 𝒫 [1] . In this case, we can take 𝜌 to be the zero-dimenisonal stratum in 𝒩𝜏 = i−1
𝜏 (𝒩Δ1 (𝜏) )

and we have 𝜄∗(Λ∗𝐵0
)𝑥 = 𝒬∗𝜏 . Taking a generator of 𝒬∗𝜏 , we get an invariant affine coordinate x : 𝑈𝑥 → R

which is the normal affine coordinate of 𝜏. The stalk Ω∗𝑥 is then identified with the pullback of the space
of germs of smooth differential forms from (R, 0) via x. In particular, Ω2

𝑥 = 0.
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For the Y-vertex of type II in Example 2.12, the situation is similar to the 2-dimensional case. For
{𝑥} = 𝒮𝑒 ∩ intre (𝜏), we still have 𝜄∗(Λ∗𝐵0

)𝑥 = 𝒬∗𝜏 , and in this case, x : 𝑈𝑥 → R
2 are the two invariant

affine coordinates. We can identify Ω∗𝑥 as the pullback of the space of germs of smooth differential
forms from (R2, 0) via x.

For the Y-vertex of type I in Example 2.12, we use the identification Λ∗𝜏,R � intre(𝜏) via Υ𝜏 for the
2-dimensional cell 𝜏 separating two maximal cells 𝜎+ and 𝜎−. In this case,𝒮𝑒 is as shown (in blue color)
in Figure 6 and 𝒩 = i−1

𝜏 (𝒩Δ1 (𝜏) ) is the fan of P2. If x is the zero-dimensional stratum of 𝒮𝑒 ∩ intre(𝜏),
we have 𝜄∗(Λ∗𝐵0

)𝑥 = 𝒬∗𝜏 and x : 𝑈𝑥 → R as an invariant affine coordinate. If x is a point on a leg of the
Y-vertex, we have x = (x1, x2) : 𝑈𝑥 → R

2 with x1 coming from a generator of Λ𝜌 and x2 coming from
a generator of 𝒬∗𝜏 .

It follows from the definition that R → Ω∗ is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.10. Given any 𝑥 ∈ 𝐵 and a sufficiently small neighborhood U, there exists 𝜚 ∈ Ω0(𝑈) with
compact support in U such that 0 ≤ 𝜚 ≤ 1 and 𝜚 ≡ 1 near x. (Since Ω0 is a subsheaf of the sheaf C0 of
continuous functions on B, we can talk about the value 𝑓 (𝑥) for 𝑓 ∈ Ω0(𝑊) and 𝑥 ∈ 𝑊 .)

Proof. If 𝑥 ∉ 𝒮𝑒, the statement is a standard fact. So we assume that 𝑥 ∈ intre(𝜏) ∩𝒮𝑒 for some 𝜏 ∈ 𝒫.
As above, we can write 𝑥 ∈ intre(𝜌) × {𝑜}. Since 𝜌 is a cone in the fan i−1

𝜏 (𝒩Δ1 (𝜏) × · · · ×𝒩Δ 𝑝 (𝜏) ), Λ∗𝜏
has Λ∗Δ1 (𝜏)

⊕ · · · ⊕ Λ∗Δ 𝑝 (𝜏)
as a direct summand, and the description of 𝜄∗(Λ∗𝐵0

)𝑥 is compatible with the
direct sum decomposition of Λ∗𝜏 . We may further assume that 𝑝 = 1 and 𝜏 = Δ1 (𝜏) is a simplex.

If 𝜌 is not the smallest cone (i.e., the one consisting of just the origin in 𝒩𝜏), we have a decomposition
Λ∗𝜏 = Λ𝜌 ⊕ 𝒬𝜌 and the natural projection p : Λ∗𝜏 → 𝒬𝜌. Then, locally near 𝑥0, we can write the normal
fan 𝒩𝜏 as p−1(Σ𝜌) for some normal fan Σ𝜌 ⊂ 𝒬𝜌 of a lower-dimensional simplex. For any vector v
tangent to 𝜌 at 𝑥0 and the corresponding affine function 𝑙𝑣 locally near 𝑥0, we always have 𝜕𝑙𝑣

𝜕𝑣 > 0. This
allows us to construct a bump function 𝜚 =

∑
𝑣𝑖 (𝑙𝑣𝑖 (𝑥) − 𝑙𝑣𝑖 (𝑥0))

2 along the Λ𝜌,R-direction. So we are
reduced to the case when 𝜌 = {𝑜} is the smallest cone in the fan 𝒩𝜏 .

Now, we construct the function 𝜚 near the origin 𝑜 ∈ 𝒩𝜏 by induction on the dimension of the fan
𝒩𝜏 . When dimR (𝒩𝜏) = 1, it is the fan of P1 consisting of three cones R−, {𝑜} and R+. One can construct
the bump function which is equal to 1 near o and supported in a sufficiently small neighborhood of o.
For the induction step, we consider an n-dimensional fan 𝒩𝜏 . For any point x near but not equal to o,
we have 𝑥 ∈ intre(𝜌) for some 𝜌 ≠ {𝑜}. Then we can decompose 𝒩𝜏 locally as Λ𝜌 ⊕ 𝒬𝜌. Applying
the induction hypothesis to 𝒬𝜌 gives a bump function 𝜚𝑥 compactly supported in any sufficiently small
neighborhood of x (for the Λ𝜌 directions, we do not need the induction hypothesis to get the bump
function). This produces a partition of unity {𝜚𝑖} outside o. Finally, letting 𝜚 := 1−

∑
𝑖 𝜚𝑖 and extending

it continuously to the origin o gives the desired function. �

Lemma 3.10 produces a partition of unity for the complex (Ω∗, 𝑑) of monodromy invariant differential
forms on B, which satisfies the requirement in Condition 4.7 below. In particular, the cohomology of
(Ω∗(𝐵), 𝑑) computes 𝑅Γ(𝐵,R). Given a point 𝑥 ∈ 𝐵 \ 𝒮𝑒, we can take an element 𝜚𝑥 ∈ Ω𝑛 (𝐵),
compactly supported in an arbitrarily small neighborhood 𝑈𝑥 ⊂ 𝐵 \𝒮𝑒, to represent a nonzero element
in the cohomology 𝐻𝑛 (Ω∗, 𝑑) = 𝐻𝑛 (𝐵,C) � C.

4. Smoothing of maximally degenerate Calabi–Yau varieties via dgBV algebras

In this section, we review and refine the results in [8] concerning smoothing of the maximally degenerate
Calabi–Yau log variety 0𝑋† over 𝑆† = Specan(𝑅̂)

† = Specan(C[[𝑞]])
† using the local smoothing models

𝑉† → 𝑘V†’s specified in §2.4. In order to relate with tropical geometry on B, we will choose V so that
it is the preimage 𝜈−1(𝑊) of an open subset W in B.
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4.1. Good covers and local smoothing data

Given 𝜏 ∈ 𝒫 and a point 𝑥 ∈ intre(𝜏) ⊂ 𝐵, we take a sufficiently small open subset 𝑊 ∈ ℬ𝑥 . We need
to construct a local smoothing model on the Stein open subset 𝑉 = 𝜈−1(𝑊).

• If 𝑥 ∉ 𝒮𝑒, then we can simply take the local smoothing V† introduced in (2.14) in §2.4.
• If 𝑥 ∈ 𝒮𝑒 ∩ intre(𝜏), we assume that 𝒞−1 (𝑊) ∩ A𝜏

𝑖 ≠ ∅ for 𝑖 = 1, . . . , 𝑟 and 𝒞−1 (𝑊) ∩ A𝜏
𝑖 = ∅ for

other i’s. Note that 𝒞−1(𝑊) ∩ intre(𝜏) may not be a small open subset in intre(𝜏) as we may contract
a polytope P via 𝒞 (Figure 6). If we write ΛΔ1 (𝜏) ⊕ · · · ⊕ ΛΔ 𝑝 (𝜏) ⊕ 𝐴𝜏 = Λ𝜏 as lattices, then for each
direct summand ΛΔ𝑖 (𝜏) , we have a commutative diagram

Λ∗𝜏,C∗
i𝜏,𝑖,C∗ ��

log
��

Λ∗Δ𝑖 (𝜏) ,C∗

log
��

Λ∗𝜏,R
i𝜏,𝑖,R ��Λ∗Δ𝑖 (𝜏) ,R

so that both 𝑍 𝜏𝑖 and A𝜏
𝑖 are coming from pullbacks of some subsets under the projection maps i𝜏,𝑖,C∗

and i𝜏,𝑖,R, respectively. From this, we see that 𝒞−1(𝑊) ∩ A𝜏
1 ∩ · · · ∩ A𝜏

𝑟 ≠ ∅ and 𝜈−1(𝑊) ∩ 𝑍 𝜏1 ∩

· · · ∩ 𝑍 𝜏𝑟 ≠ ∅ while 𝜈−1(𝑊) ∩ 𝑍 𝜏𝑖 = ∅ for other i’s. Now, we take 𝜓𝑥,𝑖 = 𝜓𝑖 for 1 ≤ 𝑖 ≤ 𝑟 and
𝜓𝑥,𝑖 = 0 otherwise accordingly. Then we can take 𝑃𝜏,𝑥 introduced in equation (2.17) and the map
𝑉 = 𝜈−1(𝑊) → Specan(C[Σ𝜏 ⊕ N

𝑙]) defined by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑚 ↦→ ℎ𝑚 · 𝑧

𝑚 if 𝑚 ∈ Σ𝜏 ;
𝑢𝑖 ↦→ 𝑓𝑣,𝑖 if 1 ≤ 𝑖 ≤ 𝑟;
𝑢𝑖 ↦→ 𝑧𝑖 if 𝑟 < 𝑖 ≤ 𝑙.

(4.1)

Note that the third line of this formula is different from that of equation (2.19) because we do not
specify a point 𝑥 ∈ 𝑍 𝜏1 ∩ · · · ∩ 𝑍 𝜏𝑟 . By shrinking W if necessary, one can show that it is an embedding
using an argument similar to [28, Thm. 2.6]. This is possible because we can check that the Jacobian
appearing in the proof of [28, Thm. 2.6] is invertible for all point in 𝜈−1(𝑥) = 𝜇−1(𝒞−1 (𝑥)), which is
a connected compact subset by property (5) in Assumption 3.5.

Condition 4.1. An open cover {𝑊𝛼}𝛼 of B is said to be good if

1. for each 𝑊𝛼, there exists a unique 𝜏𝛼 ∈ 𝒫 such that 𝑊𝛼 ∈ ℬ𝑥 for some 𝑥 ∈ intre(𝜏);
2. 𝑊𝛼𝛽 = 𝑊𝛼 ∩ 𝑊𝛽 ≠ ∅ only when 𝜏𝛼 ⊂ 𝜏𝛽 or 𝜏𝛽 ⊂ 𝜏𝛼, and if this is the case, we have either

intre(𝛼) ∩𝑊𝛼𝛽 ≠ ∅ or intre(𝛽) ∩𝑊𝛼𝛽 ≠ ∅.

Given a good cover {𝑊𝛼}𝛼 of B, we have the corresponding Stein open cover V := {𝑉𝛼}𝛼 of 0𝑋 given
by𝑉𝛼 := 𝜈−1(𝑊𝛼) for each𝛼. For each𝑉†𝛼, the infinitesimal local smoothing model is given as a log space
V
†
𝛼 over 𝑆† (see equation (2.14)). Let 𝑘V𝛼 be the 𝑘 th-order thickening over 𝑘𝑆† = Specan(𝑅/m𝑘+1)†

and 𝑗 : 𝑉𝛼 \ 𝑍 ↩→ 𝑉𝛼 be the open inclusion. As in [8, §8], we obtain coherent sheaves of BV algebras
(and modules) over 𝑉𝛼 from these local smoothing models. But for the purpose of this paper, we would
like to push forward these coherent sheaves to B and work with the open subsets 𝑊𝛼’s. This leads to the
following modification of [8, Def. 7.6] (see also [8, Def. 2.14 and 2.20]):

Definition 4.2. For each 𝑘 ∈ Z≥0, we define

• the sheaf of 𝑘 th-order polyvector fields to be 𝑘G∗𝛼 := 𝜈∗ 𝑗∗(
∧−∗ Θ𝑘V

†
𝛼/

𝑘𝑆† ) (i.e., push-forward of
relative log polyvector fields on 𝑘V

†
𝛼);
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• the 𝑘 th-order log de Rham complex to be 𝑘K∗𝛼 := 𝜈∗ 𝑗∗(Ω∗𝑘V†𝛼/C
) (i.e., push-forward of log de Rham

differentials) equipped with the de Rham differential 𝑘𝜕𝛼 = 𝜕 which is naturally a dg module over
𝑘Ω∗

𝑆†
;

• 𝑘 ththe local log volume form 𝜔𝛼 as a nowhere vanishing element in 𝜈∗ 𝑗∗(Ω𝑛

V
†
𝛼/𝑆̂†
) and the -order

volume form to be 𝑘𝜔𝛼 = 𝜔𝛼 (modm𝑘+1).

Given 𝑘 > 𝑙, there are natural maps 𝑘,𝑙♭ : 𝑗∗(
∧−∗ Θ𝑘V

†
𝛼/

𝑘𝑆† ) → 𝑗∗(
∧−∗Θ𝑙V

†
𝛼/

𝑙𝑆† ) which induce the
maps 𝑘,𝑙♭ : 𝑘G∗𝛼 → 𝑙G∗𝛼. Before taking the push-forward 𝜇∗, each 𝑗∗(

∧𝑟 Θ𝑘V
†
𝛼/

𝑘𝑆† ) is a sheaf of flat
𝑘𝑅-modules with the property that 𝑗∗(

∧𝑟 Θ𝑘V
†
𝛼/

𝑘𝑆† ) � 𝑗∗(
∧𝑟 Θ𝑘+1V†𝛼/

𝑘+1𝑆† ) ⊗𝑘+1𝑅
𝑘𝑅 by [17, Cor. 7.4

and 7.9]. In other words, we have a short exact sequence of coherent sheaves

0 �� 𝑗∗(
∧𝑟 Θ0V†𝛼/

0𝑆† )
·𝑞𝑘+1

���� 𝑗∗(
∧𝑟 Θ𝑘+1V†𝛼/

𝑘+1𝑆† )
�� 𝑗∗(
∧𝑟 Θ𝑘V

†
𝛼/

𝑘𝑆† )
��0.

Applying 𝜇∗, which is exact, we get

0 ��0G−𝑟𝛼
·𝑞𝑘+1

���� 𝑘+1G−𝑟𝛼 �� 𝑘G−𝑟𝛼 ��0.

As a result, we see that 𝑘G−𝑟𝛼 is a sheaf of flat 𝑘𝑅-modules on 𝑊𝛼, so we have 𝑘+1G−𝑟𝛼 ⊗𝑘+1𝑅
𝑘𝑅 � 𝑘G−𝑟𝛼

for each r; a similar statement holds for 𝑘K𝑟
𝛼.

A natural filtration 𝑘
•K∗𝛼 is given by 𝑘

𝑠K∗𝛼 := 𝑘Ω≥𝑠
𝑆†
∧ 𝑘K∗𝛼 [𝑠] and taking wedge product defines

the natural sheaf isomorphism 𝑘
𝑟𝜎
−1 : 𝑘Ω𝑟

𝑆†
⊗𝑘𝑅 (

𝑘
0K∗𝛼/𝑘1K∗𝛼 [−𝑟]) → 𝑘

𝑟K∗𝛼/ 𝑘
𝑟+1K∗𝛼. We have the space

𝑘
‖
K∗𝛼 := 𝑘

0K∗𝛼/𝑘1K∗𝛼 � 𝜈∗ 𝑗∗(Ω∗𝑘V†𝛼/𝑘𝑆†
) of relative log de Rham differentials.

There is a natural action 𝑣 � 𝜑 for 𝑣 ∈ 𝑘G∗𝛼 and 𝜑 ∈ 𝑘K∗ given by contracting a logarithmic
holomorphic vector field v with a logarithmic holomorphic form 𝜑. To simplify notations, for 𝑣 ∈ 𝑘G0

𝛼,
we often simply write 𝑣𝜑, suppressing the contraction �. We define the Lie derivative via the formula
L𝑣 := (−1) |𝑣 |𝜕 ◦ (𝑣�) − (𝑣�) ◦ 𝜕 (or equivalently, (−1) |𝑣 |L𝑣 := [𝜕, 𝑣�]). By contracting with 𝑘𝜔𝛼, we
get a sheaf isomorphism � 𝑘𝜔𝛼 : 𝑘G∗𝛼 → 𝑘

‖
K∗𝛼, which defines the BV operator 𝑘Δ𝛼 by 𝑘Δ𝛼 (𝜑) � 𝑘𝜔 :=

𝑘𝜕𝛼 (𝜑 � 𝑘𝜔). We call it the BV operator because the BV identity:

(−1) |𝑣 | [𝑣, 𝑤] := Δ (𝑣 ∧ 𝑤) − Δ (𝑣) ∧ 𝑤 − (−1) |𝑣 |𝑣 ∧ Δ (𝑤) (4.2)

for 𝑣, 𝑤 ∈ 𝑘G∗𝛼, where we put Δ = 𝑘Δ𝛼, defines a graded Lie bracket. This gives 𝑘G∗𝛼 the structure of a
sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms

Here, we apply the calculations in [17, 28] to give an explicit description of the stalk 𝑘K∗𝛼,𝑥 .
Let us consider 𝐾 = 𝜈−1(𝑥) and the local model near K described in §4.1, with 𝑃𝜏,𝑥 and 𝑄𝜏,𝑥 as

in equations (2.17), (2.18) and an embedding 𝑉 → Specan(C[𝑄𝜏,𝑥]). We may treat the subset 𝐾 ⊂ 𝑉
as a compact subset of C𝑙 = Specan(C[N

𝑙]) ↩→ Specan(C[𝑄𝜏,𝑥]) via the identification of the analytic
spaces Specan(C[Σ𝜏 ⊕ N

𝑙]) � Specan(C[𝑄𝜏,𝑥]). For each 𝑚 ∈ Σ𝜏 , we denote the corresponding
element (𝑚, 𝜓𝑥,0 (𝑚), . . . , 𝜓𝑥,𝑙 (𝑚)) ∈ 𝑃𝜏,𝑥 by 𝑚̂ and the corresponding function by 𝑧𝑚̂ ∈ C[𝑃𝜏,𝑥].
Similar to [17, Lem. 7.14], the germs of holomorphic functions O𝑘V,𝐾 near K in the analytic space
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𝑘V = Specan(C[𝑃𝜏,𝑥/𝑞
𝑘+1]) can be written as

O𝑘V,𝐾 =

{ ∑
𝑚∈Σ𝜏 , 0≤𝑖≤𝑘

𝛼𝑚,𝑖𝑞
𝑖𝑧𝑚̂
���𝛼𝑚,𝑖 ∈ OC𝑙 (𝑈) for some neigh.𝑈 ⊃ 𝐾, sup

𝑚∈Σ𝜏\{0}

log |𝛼𝑚,𝑖 |
d(𝑚)

< ∞

}
,

(4.3)

where d : Σ𝜏 → N is a monoid morphism such that d−1(0) = 0, and it is equipped with the product
𝑧𝑚̂1 · 𝑧𝑚̂2 := 𝑧𝑚̂1+𝑚̂2 (but note that "𝑚1 + 𝑚2 ≠ 𝑚̂2 + 𝑚̂2 in general). Thus, we have 𝑘K0

𝛼,𝑥 �
𝑘G0

𝛼,𝑥 �
O𝑘V,𝐾 .

To describe the differential forms, we consider the vector spaceℰ = 𝑃𝜏,𝑥,C, regarded as the space of
1-forms on Specan(C[𝑃

gp
𝜏,𝑥]) � (C∗)𝑛+1. Write 𝑑 log 𝑧𝑝 for 𝑝 ∈ 𝑃𝜏,𝑥,C and set ℰ1 := C〈𝑑 log 𝑢𝑖〉

𝑙
𝑖=1, as

a subset ofℰ. For an element 𝑚 ∈ 𝒬𝜏,C, we have the corresponding 1-form 𝑑 log 𝑧𝑚̂ ∈ 𝑃𝜏,𝑥,C under the
association between m and 𝑧𝑚̂. Let P be the power set of {1, . . . , 𝑙}, and write 𝑢𝐼 =

∏
𝑖∈𝐼 𝑢𝑖 for 𝐼 ∈ P.

A computation for sections of the sheaf 𝑗∗(Ω𝑟𝑘V†/C) from [28, Prop. 1.12] and [17, Lem. 7.14] can then
be rephrased as the following lemma.

Lemma 4.3 [17, 28]. The space of germs of sections of 𝑗∗(Ω∗𝑘V†/C)𝐾 near K is a subspace of O𝑘V,𝐾 ⊗∧∗ℰ given by elements of the form

𝛼 =
∑
𝑚∈Σ𝜏
0≤𝑖≤𝑘

∑
𝐼

𝛼𝑚,𝑖,𝐼 𝑞
𝑖𝑧𝑚̂𝑢𝐼 ⊗ 𝛽𝑚,𝐼 , 𝛽𝑚,𝐼 ∈

∧∗
ℰ𝑚,𝐼 =

∧∗
(ℰ1,𝑚,𝐼 ⊕ℰ2,𝑚,𝐼 ⊕ 〈𝑑 log 𝑞〉),

where ℰ1,𝑚,𝐼 = 〈𝑑 log 𝑢𝑖〉𝑖∈𝐼 ⊂ ℰ1 and the subspace ℰ2,𝑚,𝐼 ⊂ ℰ is given as follows: we consider the
pullback of the product of normal fans

∏
𝑖∉𝐼 𝒩Δ̌𝑖 (𝜏)

to𝒬𝜏,R and takeℰ2,𝑚,𝐼 = 〈𝑑 log 𝑧𝑚̂
′
〉 for 𝑚′ ∈ 𝜎𝑚,𝐼 ,

where 𝜎𝑚,𝐼 is the smallest cone in
∏
𝑖∉𝐼 𝒩Δ̌𝑖 (𝜏)

⊂ 𝒬𝜏,R containing m.

Here, we can treat
∏
𝑖∉𝐼 𝒩Δ̌𝑖 (𝜏)

⊂ 𝒬𝜏,R since
⊕

𝑖 ΛΔ̌𝑖 (𝜏)
is a direct summand of 𝒬∗𝜏 . A similar

description for 𝑗∗(Ω∗𝑘V†/C† )𝐾 is simply given by quotienting out the direct summand 〈𝑑 log 𝑞〉 in the
above formula for 𝛼. In particular, if we restrict ourselves to the case 𝑘 = 0, a general element 𝛼 can be
written as

𝛼 =
∑
𝑚∈Σ𝜏

∑
𝐼

𝛼𝑚,𝐼 𝑧
𝑚̂𝑢𝐼 ⊗ 𝛽𝑚,𝐼 , 𝛽𝑚,𝐼 ∈

∧∗
ℰ𝑚,𝐼 =

∧∗
(ℰ1,𝑚,𝐼 ⊕ℰ2,𝑚,𝐼 ).

One can choose a nowhere vanishing element

Ω = 𝑑𝑢1 · · · 𝑑𝑢𝑙 ⊗ 𝜂 ∈ 𝑢1 · · · 𝑢𝑙 ⊗ ∧
𝑙ℰ1 ⊗ ∧

𝑛−dimR (𝜏)ℰ2 ⊂ 𝑗∗(Ω
𝑛
0V†/C†

)𝐾

for some nonzero element 𝜂 ∈ ∧𝑛−dimR (𝜏)ℰ2, which is well defined up to rescaling. Any element in
𝑗∗(Ω𝑛

0V†/C†
)𝐾 can be written as 𝑓Ω for some 𝑓 =

∑
𝑚∈Σ𝜏

𝑓𝑚𝑧
𝑚̂ ∈ O0V,𝐾 .

Recall that the subset 𝐾 ⊂ C𝑙 is intersecting the singular locus 𝑍 𝜏1 , . . . , 𝑍
𝜏
𝑟 (as in §4.1), where 𝑢𝑖

is the coordinate function of C𝑙 with simple zeros along 𝑍 𝜏𝑖 for 𝑖 = 1, . . . , 𝑟 . There is a change of
coordinates between a neighborhood of K in C𝑙 and that of K in (C∗)𝑙 given by{

𝑢𝑖 ↦→ 𝑓𝑣,𝑖 |(C∗)𝑙 if 1 ≤ 𝑖 ≤ 𝑟;
𝑢𝑖 ↦→ 𝑧𝑖 if 𝑟 < 𝑖 ≤ 𝑙.

Under the map log: (C∗)𝑙 → R𝑙 , we have 𝐾 = log−1(𝒞) for some connected compact subset 𝒞 ⊂ R𝑙 .
In the coordinates 𝑧1, . . . , 𝑧𝑙 , we find that 𝑑 log 𝑧1 · · · 𝑑 log 𝑧𝑙 ⊗ 𝜂 can be written as 𝑓Ω near K for some
nowhere vanishing function 𝑓 ∈ O0V,𝐾 .
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Lemma 4.4. When 𝐾 ∩ 𝑍 = ∅ (i.e., 𝑟 = 0 in the above discussion), the top cohomology group
H𝑛 ( 𝑗∗(Ω𝑛

0V†/C†
)𝐾 , 𝜕) := 𝑗∗(Ω𝑛

0V†/C†
)𝐾 /Im(𝜕) is isomorphic to C, which is generated by the element

𝑑 log 𝑧1 · · · 𝑑 log 𝑧𝑙 ⊗ 𝜂.

Proof. Given a general element 𝑓Ω as above, first observe that we can write 𝑓 = 𝑓0 + 𝑓+, where
𝑓+ =
∑
𝑚∈Σ𝜏\{0} 𝑓𝑚𝑧

𝑚̂ and 𝑓0 ∈ OC𝑙 ,𝐾 . We take a basis 𝑒1, . . . , 𝑒𝑠 of𝒬∗𝜏,R, and also a partition 𝐼1, . . . , 𝐼𝑠
of the lattice points in Σ𝜏 \ {0} such that 〈𝑒 𝑗 , 𝑚〉 ≠ 0 for 𝑚 ∈ 𝐼 𝑗 . Letting

𝛼 = (−1)𝑙
∑
𝑗

∑
𝑚∈𝐼 𝑗

𝑓𝑚
〈𝑒 𝑗 , 𝑚〉

𝑧𝑚̂𝑑𝑢1 · · · 𝑑𝑢𝑙 ⊗ 𝜄𝑒 𝑗𝜂,

we have 𝜕 (𝛼) = 𝑓+Ω. So we only need to consider elements of the form 𝑓0Ω. If 𝑓0Ω = 𝜕 (𝛼) for some
𝛼, we may take 𝛼 =

∑
𝑗 𝛼 𝑗𝑑𝑢1 · · · 𝑑𝑢 𝑗 · · · 𝑑𝑢𝑙 ⊗ 𝜂 for some 𝛼 𝑗 ∈ OC𝑙 ,𝐾 . Now, this is equivalent to

𝑓0𝑑𝑢1 · · · 𝑑𝑢𝑙 = 𝜕
( ∑

𝑗 𝛼 𝑗𝑑𝑢1 · · · 𝑑𝑢 𝑗 · · · 𝑑𝑢𝑙
)

as forms in Ω𝑙
C𝑙 ,𝐾

. This reduces the problem to C𝑙 .
Working in (C∗)𝑙 with coordinates 𝑧𝑖’s, we can write

O(C∗)𝑙 ,𝐾 =

{∑
𝑚∈Z𝑙

𝑎𝑚𝑧
𝑚
��� ∑
𝑚∈Z𝑙

|𝑎𝑚 |𝑒
〈𝑣,𝑚〉 < ∞, for all 𝑣 ∈ 𝑊, for some open 𝑊 ⊃ 𝒞

}
,

using the fact that K is multicircular. By writing Ω∗
(C∗)𝑙 ,𝐾

= O(C∗)𝑙 ,𝐾 ⊗
∧∗ℱ1 with ℱ1 = 〈𝑑 log 𝑧𝑖〉

𝑙
𝑖=1,

we can see that any element can be represented as 𝑐𝑑 log 𝑧1 · · · 𝑑 log 𝑧𝑙 in the quotient Ω𝑙
(C∗)𝑙 ,𝐾

/Im(𝜕),
for some constant c. �

From this lemma, we conclude that the top cohomology sheaf H𝑛 (0
‖
K∗, 𝜕) is isomorphic to the

locally constant sheaf C over 𝐵 \𝒮𝑒.

Lemma 4.5. The volume element 0𝜔 is nonzero in H𝑛 (0
‖
K∗, 𝜕)𝑥 for every 𝑥 ∈ 𝐵.

Proof. We first consider the case when 𝑥 ∈ intre(𝜎) for some maximal cell 𝜎 ∈ 𝒫 [𝑛] . The toric stratum
0𝑋𝜎 associated to 𝜎 is equipped with the natural divisorial log structure induced from its boundary
divisor. Then the sheaf Ω∗0𝑋†𝜎/C†

of log derivations for 0𝑋† is isomorphic to
∧𝑛 Λ𝜎 ⊗Z O0𝑋𝜎

. By [28,

Lem. 3.12], we have 0𝜔𝑥 = 𝑐(𝜇𝜎)𝜈−1 (𝑥) in 𝜈∗(Ω𝑛
0𝑋†𝜎/C†

)𝑥 � 0
‖
K𝑛
𝑥 , where 𝜇𝜎 ∈

∧𝑛 Λ𝜎,C is nowhere

vanishing and c is a nonzero constant c. Thus 0𝑋 |𝑥 is nonzero in the cohomology as the same is true
for 𝜇𝜎 ∈ 𝜈∗(Ω𝑛

0𝑋†𝜎/C†
)𝑥 . Next, we consider a general point 𝑥 ∈ intre(𝜏). If the statement is not true, we

will have 0𝜔𝑥 =
0𝜕 (𝛼) for some 𝛼 ∈ 0

‖
K𝑛−1
𝑥 . Then there is an open neighborhood 𝑈 ⊃ 𝒞−1(𝑥) such that

this relation continues to hold. As 𝑈 ∩ intre (𝜎) ≠ ∅, for those maximal cells 𝜎 which contain the point
x, we can take a nearby point 𝑦 ∈ 𝑈 ∩ intre(𝜎) and conclude that 𝑐𝜇𝜎 = 0𝜕 (𝛼) in 𝜈∗(Ω𝑛

0𝑋†𝜎/C†
)𝑦 . This

contradicts the previous case. �

Lemma 4.6. Suppose that 𝑥 ∈ 𝑊𝛼 \𝒮𝑒. For an element of the form

𝑒 𝑓 (𝑘𝜔𝛼) ∈
𝑘
‖K

𝑛
𝛼,𝑥

with 𝑓 ∈ 𝑘G0
𝛼,𝑥 � O𝑘V𝛼 ,𝑥

satisfying 𝑓 ≡ 0(mod m), there exist ℎ(𝑞) ∈ 𝑘𝑅 = C[𝑞]/(𝑞𝑘+1) and
𝑣 ∈ 𝑘G−1

𝛼,𝑥 with ℎ, 𝑣 ≡ 0(mod m) such that

𝑒 𝑓 (𝑘𝜔𝛼) = 𝑒ℎ𝑒L𝑣 (𝑘𝜔𝛼) (4.4)

in 𝑘
‖
K𝑛
𝛼,𝑥 , where we recall that L𝑣 := (−1) |𝑣 |𝜕 ◦ (𝑣�) − (𝑣�) ◦ 𝜕.
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Proof. To simplify notations in this proof, we will drop the subscript 𝛼. We prove the first statement by
induction on k. The initial case is trivial. Assuming that this has been done for the (𝑘 − 1)st-order, then,
by taking an arbitrary lifting 𝑣̃ of v to the 𝑘 th-order, we have

𝑒−ℎ+ 𝑓 +𝑞
𝑘 𝜖 (𝑘𝜔) = 𝑒L𝑣̃ (𝑘𝜔)

for some 𝜖 ∈ O0V𝑥
. By Lemmas 4.4 and 4.5, we have 𝜖 0𝜔 = 𝑐 0𝜔 + 𝜕 (𝛾) for some 𝛾 and some suitable

constant c. Letting 𝜃 � (0𝜔) = 𝛾 and 𝑣̆ = 𝑣̃ + 𝑞𝑘𝜃, we have

𝑒L𝑣̆ (𝑘𝜔) = 𝑒L𝑣 (𝑘𝜔) − 𝑞𝑘 𝜕 (𝜃 � (0𝜔)) = 𝑒−ℎ+ 𝑓 +𝑐𝑞
𝑘
(𝑘𝜔).

By defining ℎ̃(𝑞) := ℎ(𝑞) − 𝑐𝑞𝑘 in C[𝑞]/(𝑞𝑘+1), we obtain the desired expression. �

4.3. A global pre-dgBV algebra from gluing

One approach for smoothing 0𝑋 is to look for gluing morphisms 𝑘𝜓𝛼𝛽 : 𝑘V
†
𝛼 |𝑉𝛼𝛽 →

𝑘V
†
𝛽 |𝑉𝛼𝛽 between

the local smoothing models which satisfy the cocycle condition, from which one obtain a 𝑘 th-order
thickening 𝑘𝑋 over 𝑘𝑆†. This was done by Kontsevich–Soibelman [36] (in two dimensions) and Gross–
Siebert [29] (in general dimensions) using consistent scattering diagrams. If such gluing morphisms
𝑘𝜓𝛼𝛽’s are available, one can certainly glue the global 𝑘 th-order sheaves 𝑘G∗, 𝑘K∗ and the volume
form 𝑘𝜔.

In [8], we instead took suitable dg-resolutions 𝑘𝑃𝑉∗,∗𝛼 := Ω∗(𝑘G∗𝛼)’s of the sheaves 𝑘G∗𝛼’s (more
precisely, we used the Thom–Whitney resolution in [8, §3]) to construct gluings

𝑘𝑔𝛼𝛽 : Ω∗(𝑘G∗𝛼) |𝑉𝛼𝛽 → Ω∗(𝑘G∗𝛽) |𝑉𝛼𝛽

of sheaves which only preserve the Gerstenhaber algebra structure but not the differential. The key
discovery in [8] was that, as the sheaves Ω∗(𝑘G∗𝛼)’s are soft, such a gluing problem could be solved
without any information from the complicated scattering diagrams. What we obtained is a pre-dgBV
algebra5

𝑘𝑃𝑉∗,∗(𝑋), in which the differential squares to zero only modulo m = (𝑞). Using well-known
algebraic techniques [33, 48], we can solve the Maurer–Cartan equation and construct the thickening
𝑘𝑋 . In this subsection, we will summarize the whole procedure, incorporating the nice reformulation
by Felten [16] in terms of deformations of Gerstenhaber algebras.

To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (Ω∗, 𝑑) of unital differential graded algebras (abbreviated as dga) (over
R or C) over B, with degrees 0 ≤ ∗ ≤ 𝐿 for some L such that

• the natural inclusion R → Ω∗ (or C → Ω∗) of the locally constant sheaf (concentrated at degree 0)
gives a resolution, and

• for any open cover U = {𝑈𝑖}𝑖∈I , there is a partition of unity subordinate to U , that is, we have {𝜌𝑖}𝑖∈I
with 𝜌𝑖 ∈ Γ(𝑈𝑖 ,Ω0) and supp(𝜌𝑖) ⊂ 𝑈𝑖 such that {supp(𝜌𝑖)}𝑖 is locally finite and

∑
𝑖 𝜌𝑖 ≡ 1.

It is easy to construct such an Ω∗, and there are many natural choices. For instance, if B is a smooth
manifold, then we can simply take the usual de Rham complex on B. In §3.3.2, the sheaf of monodromy
invariant differential forms we constructed using the (singular) integral affine structure on B is another
possible choice for Ω∗ (with degrees 0 ≤ ∗ ≤ 𝑛). Yet another variant, namely the sheaf of monodromy
invariant tropical differential forms, will be constructed in §5.1; this links tropical geometry on B with
the smoothing of the maximally degenerate Calabi–Yau variety 0𝑋 .

5This was originally called an almost dgBV algebra in [8], but we later found the name pre-dgBV algebra from [16] more
appropriate.
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Let us recall how to obtain a gluing of the dg resolutions of the sheaves 𝑘G∗𝛼 and 𝑘K∗𝛼 using any
possible choice of such an Ω∗. We fix a good cover W := {𝑊𝛼}𝛼 of B and the corresponding Stein open
cover V := {𝑉𝛼}𝛼 of 0𝑋 , where 𝑉𝛼 = 𝜈−1(𝑊𝛼) for each 𝛼.

Definition 4.8. We define 𝑘𝑃𝑉 𝑝,𝑞
𝛼 = Ω𝑞 (𝑘G 𝑝𝛼) := Ω𝑞 |𝑊𝛼 ⊗R

𝑘G 𝑝𝛼 and 𝑘𝑃𝑉∗,∗𝛼 =
⊕

𝑝,𝑞
𝑘𝑃𝑉 𝑝,𝑞

𝛼 , which
gives a sheaf of dgBV algebras over 𝑊𝛼. The dgBV structure (∧, 𝜕𝛼, Δ𝛼) is defined componentwise by

(𝜑 ⊗ 𝑣) ∧ (𝜓 ⊗ 𝑤) := (−1) |𝑣 | |𝜓 | (𝜑 ∧ 𝜓) ⊗ (𝑣 ∧ 𝑤),

𝜕𝛼 (𝜑 ⊗ 𝑣) := (𝑑𝜑) ⊗ 𝑣, Δ𝛼 (𝜑 ⊗ 𝑣) := (−1) |𝜑 |𝜑 ⊗ (Δ𝑣),

for 𝜑, 𝜓 ∈ Ω∗(𝑈) and 𝑣, 𝑤 ∈ 𝑘G∗𝛼 (𝑈) for each open subset 𝑈 ⊂ 𝑊𝛼.

Definition 4.9. We define 𝑘A𝑝,𝑞
𝛼 = Ω𝑞 (𝑘K𝑝

𝛼) := Ω𝑞 |𝑊𝛼 ⊗R
𝑘K𝑝

𝛼 and 𝑘A∗,∗𝛼 =
⊕

𝑝,𝑞
𝑘A𝑝,𝑞

𝛼 , which gives
a sheaf of dgas over 𝑊𝛼 equipped with the natural filtration 𝑘

•A∗,∗𝛼 inherited from 𝑘
•K∗𝛼. The structures

(∧, 𝜕𝛼, 𝜕𝛼) are defined componentwise by

(𝜑 ⊗ 𝑣) ∧ (𝜓 ⊗ 𝑤) := (−1) |𝑣 | |𝜓 | (𝜑 ∧ 𝜓) ⊗ (𝑣 ∧ 𝑤),

𝜕𝛼 (𝜑 ⊗ 𝑣) := (𝑑𝜑) ⊗ 𝑣, 𝜕𝛼 (𝜑 ⊗ 𝑣) = (−1) |𝜑 |𝜑 ⊗ (𝜕𝑣),

for 𝜑, 𝜓 ∈ Ω∗(𝑈) and 𝑣, 𝑤 ∈ 𝑘K∗𝛼 (𝑈) for each open subset 𝑈 ⊂ 𝑊𝛼.

There is an action of 𝑘𝑃𝑉∗,∗𝛼 on 𝑘A∗,∗𝛼 by contraction � defined by the formula

(𝜑 ⊗ 𝑣) � (𝜓 ⊗ 𝑤) := (−1) |𝑣 | |𝜓 | (𝜑 ∧ 𝜓) ⊗ (𝑣 � 𝑤),

for 𝜑, 𝜓 ∈ Ω∗(𝑈), 𝑣 ∈ 𝑘G∗𝛼 (𝑈) and 𝑤 ∈ 𝑘K∗𝛼 (𝑈) for each open subset 𝑈 ⊂ 𝑊𝛼. Note that the
local holomorphic volume form 𝑘𝜔𝛼 ∈

𝑘
‖
A𝑛,0
𝛼 (𝑊𝛼) satisfies 𝜕𝛼 (

𝑘𝜔𝛼) = 0, and we have the identity
𝑘𝜕𝛼 (𝜙 � 𝑘𝜔𝛼) = 𝑘Δ𝛼 (𝜙) � 𝑘𝜔𝛼 of operators.

The next step is to consider gluing of the local sheaves 𝑘𝑃𝑉 𝛼’s for higher orders k. Similar con-
structions have been done in [8, 16] using the combinatorial Thom–Whitney resolution for the sheaves
𝑘G𝛼’s. We make suitable modifications of those arguments to fit into our current setting.

First, since 𝑘V
†
𝛼 |𝑉𝛼𝛽 and 𝑘V

†
𝛽 |𝑉𝛼𝛽 are divisorial deformations (in the sense of [28, Def. 2.7]) of

the intersection 𝑉†𝛼𝛽 := 𝑉†𝛼 ∩ 𝑉†𝛽 , we can use [28, Thm. 2.11] and the fact that 𝑉𝛼𝛽 is Stein to obtain
an isomorphism 𝑘𝜓𝛼𝛽 : 𝑘V

†
𝛼 |𝑉𝛼𝛽 →

𝑘V
†
𝛽 |𝑉𝛼𝛽 of divisorial deformations which induces the gluing

morphism 𝑘𝜓𝛼𝛽 : 𝑘G∗𝛼 |𝑊𝛼𝛽 →
𝑘G∗𝛽 |𝑊𝛼𝛽 that in turn gives 𝑘𝜓𝛼𝛽 : 𝑘𝑃𝑉 𝛼 |𝑊𝛼𝛽 →

𝑘𝑃𝑉𝛽 |𝑊𝛼𝛽 .

Definition 4.10. A 𝑘 th-order Gerstenhaber deformation of 0𝑃𝑉 is a collection of gluing morphisms
𝑘𝑔𝛼𝛽 : 𝑘𝑃𝑉 𝛼 |𝑊𝛼𝛽 →

𝑘𝑃𝑉𝛽 |𝑊𝛼𝛽 of the form

𝑘𝑔𝛼𝛽 = 𝑒 [𝜗𝛼𝛽 , ·] ◦ 𝑘𝜓𝛼𝛽

for some 𝜃𝛼𝛽 ∈
𝑘𝑃𝑉−1,0

𝛽 (𝑊𝛼𝛽) with 𝜃𝛼𝛽 ≡ 0 (mod m), such that the cocycle condition

𝑘𝑔𝛾𝛼 ◦
𝑘𝑔𝛽𝛾 ◦

𝑘𝑔𝛼𝛽 = id

is satisfied.
An isomorphism between two 𝑘 th-order Gerstenhaber deformations {𝑘𝑔𝛼𝛽}𝛼𝛽 and {𝑘𝑔′𝛼𝛽}𝛼𝛽 is a

collection of automorphisms 𝑘ℎ𝛼 : 𝑘𝑃𝑉 𝛼 →
𝑘𝑃𝑉 𝛼 of the form

𝑘ℎ𝛼 = 𝑒 [b𝛼 , ·]
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for some b𝛼 ∈ 𝑘𝑃𝑉−1,0
𝛼 (𝑊𝛼) with b𝛼 ≡ 0(mod m), such that

𝑘𝑔′𝛼𝛽 ◦
𝑘ℎ𝛼 = 𝑘ℎ𝛽 ◦

𝑘𝑔𝛼𝛽 .

A slight modification of [16, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a 𝑘 th-order Gerstenhaber deformation {𝑘𝑔𝛼𝛽}𝛼𝛽 , the obstruction to the exis-
tence of a lifting to a (𝑘 +1)st-order deformation {𝑘+1𝑔𝛼𝛽}𝛼𝛽 lies in the Čech cohomology (with respect
to the cover W = {𝑊𝛼}𝛼)

𝐻̌2 (W , 0𝑃𝑉−1,0) ⊗C (m𝑘+1/m𝑘+2).

The isomorphism classes of (𝑘 + 1)st-order liftings are in

𝐻̌1 (W , 0𝑃𝑉−1,0) ⊗C (m𝑘+1/m𝑘+2).

Fixing a (𝑘 + 1)st-order lifting {𝑘+1𝑔𝛼𝛽}𝛼𝛽 , the automorphisms fixing {𝑘𝑔𝛼𝛽}𝛼𝛽 are in

𝐻̌0 (W , 0𝑃𝑉−1,0) ⊗C (m𝑘+1/m𝑘+2).

Since Ω𝑖 satisfies Condition 4.7, we have 𝐻̌>0(W , 0𝑃𝑉−1,0) = 0. In particular, we always have a set
of compatible Gerstenhaber deformations 𝑔 = (𝑘𝑔)𝑘∈N, where 𝑘𝑔 = {𝑘𝑔𝛼𝛽}𝛼𝛽 and any two of them are
equivalent. Fixing such a set 𝑔, we obtain a set {𝑘𝑃𝑉}𝑘∈N of Gerstenhaber algebras which is compatible,
in the sense that there are natural identifications 𝑘+1𝑃𝑉 ⊗𝑘+1𝑅

𝑘𝑅 = 𝑘𝑃𝑉 .
We can also glue the local sheaves 𝑘A∗,∗𝛼 ’s of dgas using 𝑔 = (𝑘𝑔)𝑘∈N. First, we can define

𝑘𝜓𝛼𝛽 : 𝑘K∗𝛼 |𝑊𝛼𝛽 →
𝑘K∗𝛽 |𝑊𝛼𝛽 using 𝑘𝜓𝛼𝛽 : 𝑘V

†
𝛼 |𝑉𝛼𝛽 →

𝑘V
†
𝛽 |𝑉𝛼𝛽 . For each fixed k, we can write

𝑘𝑔𝛼𝛽 = 𝑒 [𝜗𝛼𝛽 , ·] ◦ 𝑘𝜓𝛼𝛽 as before. Then

𝑘𝑔 := 𝑒
L𝜗𝛼𝛽 ◦ 𝑘𝜓𝛼𝛽 : 𝑘A∗,∗𝛼 |𝑊𝛼𝛽 →

𝑘A∗,∗𝛽 |𝑊𝛼𝛽 , (4.5)

where we recall that L𝑣 := (−1) |𝑣 |𝜕 ◦ (𝑣�) − (𝑣�) ◦ 𝜕, preserves the dga structure (∧, 𝜕𝛼) and the
filtration on 𝑘

•A∗,∗𝛼 ’s. As a result, we obtain a set of compatible sheaves {(𝑘A∗,∗,∧, 𝜕)}𝑘∈N of dgas. The
contraction action � is also compatible with the gluing construction, so we have a natural action � of
𝑘𝑃𝑉∗,∗ on 𝑘A∗,∗.

Next, we glue the operators 𝜕𝛼’s and Δ𝛼’s.

Definition 4.12. A 𝑘 th-order predifferential 𝜕 on 𝑘𝑃𝑉∗,∗ is a degree (0, 1) operator obtained from
gluing the operators 𝜕𝛼 + [𝜂𝛼, ·] specified by a collection of elements 𝜂𝛼 ∈

𝑘𝑃𝑉−1,1
𝛼 (𝑊𝛼) such that

𝜂𝛼 ≡ 0 (mod m) and

𝑘𝑔𝛽𝛼 ◦ (𝜕𝛽 + [𝜂𝛽 , ·]) ◦
𝑘𝑔𝛼𝛽 = (𝜕𝛼 + [𝜂𝛼, ·]).

Two predifferentials 𝜕 and 𝜕 ′ are equivalent if there is a Gerstenhaber automorphism (for the deformation
𝑘𝑔) ℎ : 𝑘𝑃𝑉∗,∗ → 𝑘𝑃𝑉∗,∗ such that ℎ−1 ◦ 𝜕 ◦ ℎ = 𝜕 ′.

Notice that we only have 𝜕2 ≡ 0(modm), which is why we call it a predifferential. Using the argument
in [8, Thm. 3.34] or [16, Lem. 8.1], we can always lift any 𝑘 th-order predifferential 𝑘𝜕 to a (𝑘 +1)st-order
predifferential. Furthermore, any two such liftings differ by a global element 𝔡 ∈ 0𝑃𝑉−1,1 ⊗m𝑘+1/m𝑘+2.
We fix a set 𝜕 := {𝑘𝜕}𝑘∈N of such compatible predifferentials. For each k, the action of 𝑘𝜕 on 𝑘A∗,∗ is
given by gluing of the action of 𝜕𝛼 + L𝜂𝛼 on 𝑘A∗,∗𝛼 . On the other hand, the elements

𝔩𝛼 := 𝜕𝛼 (𝜂𝛼) +
1
2
[𝜂𝛼, 𝜂𝛼] ∈

𝑘𝑃𝑉−1,2
𝛼 (𝑊𝛼) (4.6)
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glue to give a global element 𝔩 ∈ 𝑘𝑃𝑉−1,2(𝐵), and for different k’s, these elements are compatible.
Computation shows that 𝜕2 = [𝔩, ·] on 𝑘𝑃𝑉∗,∗ and 𝜕2 = L𝔩 on 𝑘A∗,∗.

To glue the operators Δ𝛼’s, we need to glue the local volume elements 𝑘𝜔𝛼’s to a global 𝑘𝜔. We
consider an element of the form 𝑒𝔣𝛼� · 𝑘𝜔𝛼, where 𝔣𝛼 ∈ 𝑘𝑃𝑉0,0(𝑊𝛼) satisfies 𝔣𝛼 ≡ 0 (mod m). Given
a 𝑘 th-order global volume element 𝑒𝔣𝛼� · 𝑘𝜔𝛼, we take a lifting 𝑒𝔣𝛼� · 𝑘+1𝜔𝛼 such that

𝑘+1𝑔𝛼𝛽
(
𝑒𝔣𝛼� · 𝑘+1𝜔𝛼

)
= 𝑒 (𝔣𝛽−𝔬𝛼𝛽)� · 𝑘+1𝜔𝛽

for some element 𝔬𝛼𝛽 ∈ 0𝑃𝑉0,0 (𝑊𝛽) ⊗ m𝑘+1/m𝑘+2. By construction, {𝔬𝛼𝛽}𝛼𝛽 gives a Čech 1-cycle
in 0𝑃𝑉0,0 which is exact. So there exist 𝔲𝛼’s such that 𝔲𝛽 |𝑊𝛼𝛽 − 𝔲𝛼 |𝑊𝛼𝛽 = 𝔬𝛼𝛽 , and we can modify
𝔣𝛼 as 𝔣𝛼 + 𝔲𝛼, which gives the desired (𝑘 + 1)st-order volume element. Inductively, we can construct
compatible volume elements 𝑘𝜔 ∈ 𝑘

‖
A𝑛,0 (𝐵), 𝑘 ∈ N. Any two such volume elements 𝑘𝜔 and 𝑘𝜔′ differ

by 𝑘𝜔 = 𝑒𝔣� · 𝑘𝜔′, where 𝔣 ∈ 𝑘𝑃𝑉0,0 (𝐵) is some global element. Notice that 𝑘𝜕 (𝑘𝜔) ≠ 0 unless mod m.
Using the volume element 𝜔 (we omit the dependence on k if there is no confusion), we may now

define the global BV operator Δ by

(Δ𝜑) � 𝜔 = 𝜕 (𝜑 � 𝜔), (4.7)

which can locally be written as 𝑘Δ𝛼 + [𝔣𝛼, ·]. We have Δ2 = 0. The local elements

𝔫𝛼 := 𝑘Δ𝛼 (𝜂𝛼) + 𝜕𝛼 (𝔣𝛼) + [𝜂𝛼, 𝔣𝛼] (4.8)

glue to give a global element 𝔫 ∈ 𝑘𝑃𝑉0,1 (𝐵) which satisfies 𝜕 Δ + Δ𝜕 = [𝔫, ·]. Also, the elements 𝔩
and 𝔫 satisfy the relation 𝜕 (𝔫) + Δ (𝔩) = 0 by a local calculation.

In summary, we obtain pre-dgBV algebras (𝑘𝑃𝑉, 𝜕, Δ ,∧) and pre-dgas (𝑘A, 𝜕, 𝜕,∧) with a natural
contraction action � of 𝑘𝜕 on 𝑘A∗,∗, and also volume elements 𝜔. We set

𝑃𝑉 := lim
←−−
𝑘

𝑘𝑃𝑉, A := lim
←−−
𝑘

𝑘A,

and define a total de Rham operator d : A∗,∗ → A∗,∗ by

d := 𝜕 + 𝜕 + 𝔩�, (4.9)

which preserves the filtration •A∗,∗. Using the contraction 𝜔� : 𝑃𝑉∗,∗ →
‖
A∗+𝑛,∗ to pull back the

operator, we obtain the operator d = 𝜕 + Δ + (𝔩 + 𝔫)∧ acting on 𝑃𝑉∗,∗. Direct computation shows that
d2 = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers may
consult [8, §4.2] for the computations and more details.

Definition 4.13. We call 𝑃𝑉∗,∗ (resp. 𝑘𝑃𝑉∗,∗) the sheaf of (resp. 𝑘 th-order) smooth relative polyvector
fields over 𝑆†, and A∗,∗ (resp. 𝑘A∗,∗) the sheaf of (resp. 𝑘 th-order) smooth forms over 𝑆†. We denote
the corresponding total complexes by 𝑃𝑉∗ =

⊕
𝑝+𝑞=∗ 𝑃𝑉

𝑝,𝑞 (resp. 𝑘𝑃𝑉∗) and A∗ =
⊕

𝑝+𝑞=∗ A𝑝,𝑞

(resp. 𝑘A∗).

4.4. Smoothing by solving the Maurer–Cartan equation

With the sheaf 𝑃𝑉∗ of pre-dgBV algebras defined, we can now consider the extended Maurer–Cartan
equation

(𝜕 + 𝑡 Δ)𝜑 +
1
2
[𝜑, 𝜑] + 𝔩 + 𝑡𝔫 = 0 (4.10)
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for 𝜑 = (𝑘𝜑)𝑘 , where 𝑘𝜑 ∈ 𝑘𝑃𝑉0(𝐵) [[𝑡]] := 𝑘𝑃𝑉0(𝐵) ⊗C C[[𝑡]]. Setting 𝑡 = 0 gives the (classical)
Maurer–Cartan equation

𝜕𝜑 +
1
2
[𝜑, 𝜑] + 𝔩 = 0 (4.11)

for 𝜑 ∈ 𝑃𝑉0(𝐵). To inductively solve these equations, we need two conditions, namely the holomorphic
Poincaré Lemma and the Hodge-to-de Rham degeneracy.

We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves
𝑗∗(Ω∗𝑘V†𝛼/C

)’s. We consider the complex ( 𝑗∗(Ω∗𝑘V†𝛼/C
) [𝑢], 𝜕𝛼), where

𝜕𝛼

(
𝑙∑
𝑠=0

𝜈𝑠𝑢
𝑠

)
:=
∑
𝑠

(𝜕𝛼𝜈𝑠)𝑢
𝑠 + 𝑠𝑑 log(𝑞) ∧ 𝜈𝑠𝑢

𝑠−1.

There is a natural exact sequence

0 �� 𝑘𝔎̄∗𝛼 �� 𝑗∗(Ω∗𝑘V†𝛼/C
) [𝑢]

𝑘,0♭ �� 𝑗∗(Ω∗0V†𝛼/0𝑆†
) ��0, (4.12)

where 𝑘,0♭(
∑𝑙
𝑠=0 𝜈𝑠𝑢

𝑠) := 𝑘,0♭(𝜈0) as elements in 𝑗∗(Ω∗0V†𝛼/0𝑆†
).

Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point 𝑥 ∈ 0𝑋†, the
complex (𝑘𝔎̄∗𝛼,𝑥 , 𝜕𝛼) is acyclic, where 𝑘

𝔎̄∗𝛼,𝑥 denotes the stalk of 𝑘𝔎̄∗𝛼 at x.

The holomorphic Poincaré lemma for our setting was proved in [28, proof of Thm. 4.1], but a gap
was subsequently pointed out by Felten–Filip–Ruddat in [17], who used a different strategy to close the
gap and give a correct proof in [17, Thm. 1.10]. From this condition, we can see that the cohomology
sheaf H∗(𝑘

‖
K∗𝛼, 𝑘𝜕𝛼) is free over 𝑘𝑅 = C[𝑞]/(𝑞𝑘+1) (cf. [34, Lem. 4.1]). We will need freeness of

the cohomology 𝐻∗(𝑘
‖
A∗(𝐵), d) over 𝑘𝑅, which can be seen by the following lemma (see [34] and [8,

§4.3.2] for similar arguments).

Lemma 4.15. Under Condition 4.14 (the holomorphic Poincaré Lemma), the natural map

𝑘,0♭ : 𝐻∗(𝑘‖A
∗(𝐵), d) → 𝐻∗(0

‖
A∗(𝐵), d)

is surjective for each 𝑘 ≥ 0.

Proof. First of all, applying the functor 𝜈∗ to the exact sequence

0 �� 𝑘𝔎̄∗𝛼 �� 𝑗∗(Ω∗𝑘V†𝛼/C
) [𝑢]

𝑘,0♭ �� 𝑗∗(Ω∗0V†𝛼/0𝑆†
) ��0

gives the following exact sequence of sheaves on B:

0 �� 𝑘𝔎∗𝛼 �� 𝑘K∗𝛼 [𝑢]
𝑘,0♭ ��0K∗𝛼 ��0.

This is true because every sheaf in the first exact sequence is a direct limit of coherent analytic
sheaves, 𝑅𝜈! commutes with direct limits of sheaves, and 𝑅𝜈! = 𝑅𝜈∗ as the fiber 𝜈−1(𝑥) is a compact
Hausdorff topological space; see, for example, [32]. By taking a Cartan–Eilenberg resolution, we have
the implication:

(
𝑘
𝔎̄∗𝛼,𝑥 ,

𝑘𝜕𝛼) is acyclic =⇒ 𝑅Γ𝑈 ((
𝑘
𝔎̄∗𝛼,

𝑘𝜕𝛼)) = 0
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for any open subset U, where 𝑅Γ𝑈 is the derived global section functor in the derived category of
sheaves. In our case, 𝑈 = 𝜈−1(𝑊) and we have 𝑅Γ𝜈−1 (𝑊 ) = 𝑅Γ𝑊 ◦ 𝑅𝜈∗. Furthermore, we see that

𝑅𝜈∗(
𝑘
𝔎̄∗𝛼, 𝜕𝛼) = (

𝑘𝔎∗𝛼, 𝜕𝛼).

This can be seen by taking a double complex 𝐶∗,∗ resolving (𝑘𝔎̄∗𝛼, 𝜕𝛼) such that 𝜈∗(𝐶∗,∗) computes
𝑅𝜈∗(

𝑘
𝔎̄∗𝛼, 𝜕𝛼). The spectral sequence associated to the double complex has the 𝐸1-page given by

𝑅𝑞𝜈∗(
𝑘
𝔎̄𝑝
𝛼), which is 0 if 𝑞 > 0 because 𝑘

𝔎̄𝑝
𝛼 is a direct limit of coherent analytic sheaves. Therefore,

𝜈∗(
𝑘
𝔎̄∗𝛼, 𝜕𝛼) → 𝜈∗(𝐶

∗,∗) = 𝑅𝜈∗(
𝑘
𝔎̄∗𝛼, 𝜕𝛼) is a quasi-isomorphism. Combining these, we obtain that

𝑅Γ𝑖𝑊 (
𝑘𝔎∗𝛼, 𝜕𝛼) = 0 for each i.

Next, by Condition 4.7, (Ω∗ |𝑊𝛼 ⊗R
𝑘𝔎∗𝛼) is a resolution with a partition of unity, so the cohomology

of the complex (
𝑘B∗𝛼 (𝑊), 𝜕𝛼 + 𝜕𝛼

)
:=
(
(Ω∗ |𝑊𝛼 ⊗R

𝑘𝔎∗𝛼) (𝑊), 𝜕𝛼 + 𝜕𝛼

)
computes 𝑅Γ𝑊 (

𝑘𝔎∗𝛼). Through an isomorphism 𝑒𝜂𝛼� : 𝑘B∗𝛼 → 𝑘B∗𝛼, we can identify the operator:

d𝛼 := 𝜕𝛼 + L𝜂𝛼 + 𝜕𝛼 + 𝜄𝜕̄𝛼 (𝜂𝛼)+
1
2 [𝜂𝛼 ,𝜂𝛼 ]

with 𝜕𝛼 + 𝜕𝛼, and hence deduce that (𝑘B∗𝛼 (𝑊), d𝛼) is acyclic for any open subset W.
Now, we consider the global sheaf (𝑘B∗, d) of complexes on B obtained by gluing the local sheaves

(𝑘B∗𝛼, d𝛼). We also have (𝑘A∗, d) obtained by gluing (Ω∗ |𝑊𝛼 ⊗
𝑘K∗𝛼 [𝑢], d𝛼), and (0

‖
A∗, d) obtained

by gluing (Ω∗ |𝑊𝛼 ⊗
0
‖
K∗𝛼, d𝛼). Then there is an exact sequence of complexes of sheaves

0 �� 𝑘B∗ �� 𝑘A∗ �� 0
‖
A∗ ��0.

To see that the complex (𝑘B∗(𝐵), d) is acyclic, we consider the total Čech complex associated to the
cover {𝑊𝛼}𝛼. The associated spectral sequence has zero 𝐸1 page, thus (𝑘B∗(𝐵), d) is indeed acyclic.
As a result, the map 𝐻𝑖 ('𝑘A∗𝛼 (𝐵), d𝛼) → 𝐻𝑖 (0

‖
A∗𝛼 (𝐵), d𝛼) is an isomorphism. Finally, surjectivity of

the map 𝑘,0♭ follows from the fact that the isomorphism 𝐻𝑖 ('𝑘A∗𝛼 (𝐵), d𝛼) → 𝐻𝑖 (0
‖
A∗𝛼 (𝐵), d𝛼) factors

through 𝑘,0♭. �

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on 0𝑋†. We consider
the Hodge filtration 𝐹≥𝑟 𝑗∗(Ω∗0𝑋†/0𝑆† ) =

⊕
𝑝≥𝑟 𝑗∗(Ω

𝑝
0𝑋†/0𝑆†

); the spectral sequence associated to it

computes the hypercohomology of the complex of sheaves ( 𝑗∗(Ω∗0𝑋†/0𝑆† ),
0𝜕).

Condition 4.16. We say that the Hodge-to-de Rham degeneracy holds for 0𝑋† if the spectral sequence
associated to the above Hodge filtration degenerates at 𝐸1.

Under the assumption that (𝐵,𝒫) is strongly simple (Definition 2.10), the Hodge-to-de Rham
degeneracy for the maximally degenerate Calabi–Yau scheme 0𝑋† was proved in [28, Thm. 3.26]. This
was later generalized to the case when (𝐵,𝒫) is only simple (instead of strongly simple)6 and further
to log toroidal spaces in Felten–Filip–Ruddat [17] using different methods.

We consider the dgBV algebra 0𝑃𝑉∗(𝐵) [[𝑡]] equipped with the operator 𝜕 + 𝑡 Δ .
Lemma 4.17. Under Condition 4.16 (the Hodge-to-de Rham degeneracy), 𝐻∗(0𝑃𝑉∗(𝐵) [[𝑡]], 𝜕 + 𝑡 Δ)
is a free C[[𝑡]]-module.

6The subtle difference between the log Hodge group and the affine Hodge group when (𝐵,𝒫) is just simple, instead of strongly
simple, was studied in details by Ruddat in his thesis [42].
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Proof. Recall that we are working with a good cover W = {𝑊𝛼}𝛼, so that the inverse image 𝑉𝛼 =
𝜈−1(𝑊𝛼) is Stein for each 𝛼. We have 𝑅Γ𝜈−1 (𝑊 ) = 𝑅Γ𝑊 ◦ 𝑅𝜈∗ and

𝑅𝜈∗( 𝑗∗(Ω
∗
0𝑋†/0𝑆†

), 𝜕) = (0
‖
K∗, 𝜕).

If 𝜈−1(𝑊) is Stein, then 𝑅Γ𝜈−1 (𝑊 ) ( 𝑗∗(Ω
𝑟
0𝑋†/0𝑆†

)) = Γ𝜈−1 (𝑊 ) ( 𝑗∗(Ω
𝑟
0𝑋†/0𝑆†

)) and hence

𝑅Γ𝑊 (
0
‖
K𝑟 ) = Γ𝑊 (

0
‖
K𝑟 ).

The hypercohomology of ( 𝑗∗(Ω∗0𝑋†/0𝑆† ), 𝜕) is computed using the Čech double complex

Č∗(V , 𝑗∗(Ω∗0𝑋†/0𝑆† ))

with respect to the Stein open cover V = {𝜈−1(𝑊𝛼)}𝛼. Similarly, the hypercohomology of the complex
(0
‖
K∗, 𝜕) is computed using the Čech double complex Č∗(W , 0

‖
K∗) with respect to the open cover

W = {𝑊𝛼}𝛼; here, the Hodge filtration is induced from the filtration 𝐹≥𝑟 0
‖
K∗ =
⊕

𝑝≥𝑟
0
‖
K≥𝑝 .

These two Čech complexes, as well as their corresponding Hodge filtrations, are identified as
0
‖
K∗(𝑊) = 𝑗∗(Ω𝑟0𝑋†/0𝑆† ) (𝜈

−1(𝑊)) for each 𝑊 = 𝑊𝛼1 ∩ · · · ∩ 𝑊𝛼𝑘 . Hence, under Condition 4.16,

we have 𝐸1 degeneracy also for Č∗(W , 0
‖
K∗), or equivalently, that (Č∗(W , 0

‖
K∗) [[𝑡]], 𝛿 + 𝑡 𝜕) is a free

C[[𝑡]]-module. In view of the isomorphisms (0G∗, Δ) � (0
‖
K, 𝜕) and

𝐻∗(0𝑃𝑉∗(𝐵) [[𝑡]], 𝜕 + 𝑡 Δ) � 𝐻∗(Č∗(W , 0
‖
K∗) [[𝑡]], 𝛿 + 𝑡 𝜕),

we conclude that 𝐻∗(0𝑃𝑉∗(𝐵) [[𝑡]], 𝜕 + 𝑡 Δ) is a free C[[𝑡]]-module as well. �

For the purpose of this paper, we restrict ourselves to the case that

𝑘𝜑 = 𝑘𝜙 + 𝑡 (𝑘 𝑓 ),

where 𝑘𝜙 ∈ 𝑘𝑃𝑉−1,1(𝐵) and 𝑘 𝑓 ∈ 𝑘𝑃𝑉0,0 (𝐵). The extended Maurer-Cartan equation (4.10) can be
decomposed, according to orders in t, into the (classical) Maurer–Cartan equation (4.11) for 𝑘𝜙 and the
equation

𝜕 (𝑘 𝑓 ) + [𝑘𝜙, 𝑘 𝑓 ] + Δ (𝑘𝜙) + 𝔫 = 0. (4.13)

Theorem 4.18. Suppose that both Conditions 4.14 and 4.16 hold. Then for any 𝑘 th-order solution
𝑘𝜑 = 𝑘𝜙 + 𝑡 (𝑘 𝑓 ) to the extended Maurer–Cartan equation (4.10), there exists a (𝑘 + 1)st-order solution
𝑘+1𝜑 = 𝑘+1𝜙 + 𝑡 (𝑘+1 𝑓 ) to equation (4.10) lifting 𝑘𝜑. The same statement holds for the Maurer–Cartan
equation (4.11) if we restrict to 𝑘𝜙 ∈ 𝑘𝑃𝑉−1,1 (𝐵).
Proof. The first statement follows from [8, Thm. 5.6] and [8, Lem. 5.12]: Starting with a 𝑘 th-order
solution 𝑘𝜑 = 𝑘𝜙 + 𝑡 (𝑘 𝑓 ) for equation (4.10), one can always use [8, Thm. 5.6] to lift it to a general
element 𝑘+1𝜑 ∈ 𝑘+1𝑃𝑉0(𝐵) [[𝑡]]. The argument in [8, Lem. 5.12] shows that we can choose 𝑘+1𝜑 such
that the component of 𝑘+1𝜑|𝑡=0 in 𝑘+1𝑃𝑉0,0 (𝐵) is zero. As a result, the component of 𝑘+1𝜙 + 𝑡 (𝑘+1 𝑓 ) in
𝑘+1𝑃𝑉−1,1 (𝐵) ⊗ 𝑡 (𝑘+1𝑃𝑉0,0 (𝐵)) is again a solution to (4.10).

For the second statement, we argue that, given 𝑘𝜙, there always exists 𝑘 𝑓 ∈ 𝑘𝑃𝑉0,0 (𝐵) such that
𝑘𝜙 + 𝑡 (𝑘 𝑓 ) is a solution to equation (4.10). We need to solve the equation (4.13) by induction on the
order k. The initial case is trivial by taking 0 𝑓 = 0. Suppose the equation can be solved for 𝑗−1 𝑓 . Then
we take an arbitrary lifting 𝑗

𝑓 to the 𝑗 th-order. We can define an element 𝔬 ∈ 0𝑃𝑉0,0(𝐵) by

𝑞 𝑗𝔬 = 𝜕 (
𝑗
𝑓 ) + [ 𝑗𝜙,

𝑗
𝑓 ] + Δ ( 𝑗𝜙) + 𝔫,
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which satisfies 𝜕 (𝔬) = 0. Therefore, the class [𝔬] lies in the cohomology

𝐻1(0𝑃𝑉0,∗, 𝜕) � 𝐻1(0𝑋,O) � 𝐻1 (𝐵,C),

where the last equivalence is from [27, Prop. 2.37]. By our assumption in §2, we have 𝐻1(𝐵,C) = 0,
and hence we can find an element 𝑓 such that 𝜕 ( 𝑓 ) = 𝔬. Letting 𝑗 𝑓 =

𝑗
𝑓 + 𝑞 𝑗 · 𝑓 (mod 𝑞 𝑗+1) proves

the induction step from the ( 𝑗 − 1)st-order to the 𝑗 th-order. Now, applying the first statement, we can lift
the solution 𝑘𝜑 := 𝑘𝜙 + 𝑡 (𝑘 𝑓 ) to 𝑘+1𝜑 = 𝑘+1𝜙 + 𝑡 (𝑘+1 𝑓 ) which satisfies equation (4.10), and hence 𝑘+1𝜙
solves equation (4.11). �

From Theorem 4.18, we obtain a solution 𝜙 ∈ 𝑃𝑉−1,1 (𝐵) to the Maurer–Cartan equation (4.11),
from which we obtain the sheaves ker(𝜕 + [𝜙, ·]) ⊂ 𝑘𝑃𝑉∗,∗ and ker(𝜕 + L𝜙) ⊂

𝑘
‖
A∗,∗ over B. These

sheaves are locally isomorphic to 𝑘G∗𝛼 and 𝑘
‖
K∗𝛼, so we may treat them as obtained from gluing of

the local sheaves 𝑘G∗𝛼’s and 𝑘
‖
K∗𝛼’s. From these, we can extract consistent and compatible gluings

𝑘𝛷𝛼𝛽 : 𝑘V
†
𝛼 |𝑉𝛼𝛽 →

𝑘V
†
𝛽 |𝑉𝛼𝛽 satisfying the cocycle condition, and hence obtain a k-th order thickening

𝑘𝑋 of 0𝑋 over 𝑘𝑆†; see [8, §5.3]. Also, 𝑒 𝑓 �𝜔, as a section of ker(𝜕+L𝜙) over B, defines a holomorphic
volume form on the k-th order thickening 𝑘𝑋 .

4.4.1. Normalized volume form
For later purposes, we need to further normalize the holomorphic volume

𝛺 := 𝑒 𝑓 � 𝜔 ∈ ker(𝜕 + L𝜙) (𝐵) ⊂
𝑘
‖A

𝑛,0 (𝐵)

by adding a suitable power series ℎ(𝑞) ∈ (𝑞) ⊂ C[[𝑞]] to f, so that the condition that
∫
𝑇
𝑒 𝑓 � 𝜔 = 1,

where T is a nearby n-torus in the smoothing, is satisfied.
The 𝑘 th-order Hodge bundle over Specan(C[𝑞]/𝑞

𝑘+1) is defined as the cohomology

𝑘H := 𝐻𝑛 (𝑘‖A
∗, d),

equipped with a Gauss–Manin connection 𝑘∇, where 𝑘∇ 𝜕
𝜕 log𝑞

is the connecting homomorphism of the
long exact sequence associated to

0→ 𝑘
‖A
∗−1 ⊗C C〈𝑑 log 𝑞〉 → 𝑘A∗ → 𝑘

‖A
∗ → 0; (4.14)

here C〈𝑑 log 𝑞〉 is the one-dimensional graded vector space spanned by the degree 1 element 𝑑 log 𝑞.
We denote Ĥ := lim

←−−𝑘
𝑘H. Restricting to the 0th-order, we have 𝑁 = 0∇ 𝜕

𝜕 log𝑞
, which is a nilpotent

operator acting on 0H = 𝐻𝑛 (0
‖
A∗) � H𝑛 (𝑋, 𝑗∗Ω∗𝑋†/C† ), where 𝑋 = 0𝑋 . If we consider the top

cohomoloy 𝐻2𝑛 (0
‖
A∗), which is one-dimensional, we see that 𝑁 = 0∇ 𝜕

𝜕 log𝑞
= 0. So 𝑘∇ 𝜕

𝜕 log𝑞
is a flat

connection without log poles at 𝑞 = 0. Hence, we can find a basis (order by order in q) to identify
𝐻2𝑛 (𝑘

‖
A∗) � 𝐻2𝑛 (0

‖
A∗) ⊗ C[𝑞]/𝑞𝑘+1, which also trivializes the flat connection ∇ as 𝜕

𝜕 log 𝑞 .
Since 𝐻𝑛 (𝐵,C) � C, we can fix a nonzero generator and choose a representative 𝜚 ∈ Ω𝑛 (𝐵). Then

the element 𝜚 ⊗ 1 ∈ 𝑘
‖
A𝑛 (𝐵) (which may simply be written as 𝜚) represents a section [𝜚] in Ĥ. A direct

computation shows that ∇[𝜚] = 0, that is, it is a flat section to all orders. The pairing with the 0th-order
volume form 0𝜔 gives a nonzero element [0𝜔 ∧ 𝜚] in 𝐻2𝑛 (0

‖
A∗).

Definition 4.19. The volume form 𝛺 = 𝑒 𝑓 � 𝜔 is said to be normalized if [𝛺 ∧ 𝜚] is flat under ∇.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.32
Downloaded from https://www.cambridge.org/core. IP address: 3.145.125.13, on 16 Apr 2025 at 10:19:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.32
https://www.cambridge.org/core


40 K. Chan, N. C. Leung and Z. N. Ma

In other words, we can write [𝛺 ∧ 𝜚] = [0𝜔 ∧ 𝜚] under the identification

𝐻2𝑛 (𝑘‖A
∗) � 𝐻2𝑛 (0

‖
A∗) ⊗ C[𝑞]/𝑞𝑘+1.

By modifying f to 𝑓 + ℎ(𝑞), this can always be achieved. Further, after the modification, 𝜑 = 𝜙 + 𝑡 𝑓 still
solves equation (4.10).

5. From smoothing of Calabi–Yau varieties to tropical geometry

5.1. Tropical differential forms

To tropicalize the pre-dgBV algebra 𝑃𝑉∗,∗, we need to replace the Thom–Whitney resolution used
in [8] by a geometric resolution. To do so, we first need to recall some background materials from
our previous works [7, §4.2.3] and [9, §3.2]. Of crucial importance is the notion of differential forms
with asymptotic support (which will be called tropical differential forms in this paper) that origi-
nated from multivalued Morse theory and Witten deformations. Such differential forms can be re-
garded as distribution-valued forms supported on tropical polyhedral subsets. This key notion allows
us to develop tropical intersection theory via differential forms, and in particular, define the inter-
section pairing between possibly nontransversal tropical polyhedral subsets simply using the wedge
product.

Let U be an open subset of 𝑀R. We consider the space Ω𝑘
ℏ (𝑈) := Γ(𝑈 × R>0,

∧
𝑘 𝑇∨𝑈), where

we take C∞ sections of
∧
𝑘 𝑇∨𝑈 and ℏ is a coordinate on R>0. Let W 𝑘

−∞(𝑈) ⊂ Ω𝑘
ℏ (𝑈) be the subset

of k-forms 𝛼 such that, for each 𝑞 ∈ 𝑈, there exist a neighborhood 𝑞 ∈ 𝑉 ⊂ 𝑈, constants 𝐷 𝑗 ,𝑉 , 𝑐𝑉
and a sufficiently small real number ℏ0 > 0 such that ‖∇ 𝑗𝛼‖𝐿∞ (𝑉 ) ≤ 𝐷 𝑗 ,𝑉 𝑒−𝑐𝑉 /ℏ for all 𝑗 ≥ 0 and
for 0 < ℏ < ℏ0; here, the 𝐿∞-norm is defined by ‖𝛼‖𝐿∞ (𝑉 ) = sup𝑥∈𝑉 ‖𝛼(𝑥)‖ for any section 𝛼 of
the tensor bundle 𝑇𝑈⊗𝑘 ⊗ 𝑇∨𝑈⊗𝑙 , where we fix a constant metric on 𝑀R and use the induced metric
on 𝑇𝑈⊗𝑘 ⊗ 𝑇∨𝑈⊗𝑙; ∇ 𝑗 denotes an operator of the form ∇ 𝜕

𝜕𝑥𝑙1

· · · ∇ 𝜕
𝜕𝑥𝑙 𝑗

, where ∇ is a torsion-free, flat

connection defining an affine structure on U and 𝑥 = (𝑥1, . . . , 𝑥𝑛) is an affine coordinate system (note
that ∇ is not the Gauss–Manin connection in the previous section). Similarly, let W 𝑘

∞(𝑈) ⊂ Ω𝑘
ℏ (𝑈) be

the set of k-forms 𝛼 such that, for each 𝑞 ∈ 𝑈, there exist a neighborhood 𝑞 ∈ 𝑉 ⊂ 𝑈, a constant 𝐷 𝑗 ,𝑉 ,
𝑁 𝑗 ,𝑉 ∈ Z>0 and a sufficiently small real number ℏ0 > 0 such that ‖∇ 𝑗𝛼‖𝐿∞ (𝑉 ) ≤ 𝐷 𝑗 ,𝑉 ℏ−𝑁 𝑗,𝑉 for all
𝑗 ≥ 0 and for 0 < ℏ < ℏ0.

The assignment 𝑈 ↦→ W 𝑘
−∞(𝑈) (resp. 𝑈 ↦→ W 𝑘

∞(𝑈)) defines a sheaf W 𝑘
−∞ (resp. W 𝑘

∞) on 𝑀R ([7,
Defs. 4.15 & 4.16]). Note that W 𝑘

−∞ and W 𝑘
∞ are closed under the wedge product, ∇ 𝜕

𝜕𝑥
and the de Rham

differential d. Since W 𝑘
−∞ is a dg ideal of W 𝑘

∞, the quotient W∗
∞/W∗

−∞ is a sheaf of dgas when equipped
with the de Rham differential.

Now, suppose U is a convex open set. By a tropical polyhedral subset of U, we mean a connected
convex subset of U which is defined by finitely many affine equations or inequalities over Q of the form
𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 ≤ 𝑏.

Definition 5.1 ([7], Definition 4.19). A k-form 𝛼 ∈ W 𝑘
∞(𝑈) is said to have asymptotic support on a

closed codimension k tropical polyhedral subset 𝑃 ⊂ 𝑈 with weight 𝑠 ∈ Z, denoted as 𝛼 ∈ W𝑃,𝑠 (𝑈), if
the following conditions are satisfied:

1. For any 𝑝 ∈ 𝑈 \ 𝑃, there is a neighborhood 𝑝 ∈ 𝑉 ⊂ 𝑈 \ 𝑃 such that 𝛼 |𝑉 ∈ W 𝑘
−∞(𝑉).

2. There exists a neighborhood𝑊𝑃 ⊂ 𝑈 of P such that 𝛼 = ℎ(𝑥, ℏ)𝜈𝑃+𝜂 on𝑊𝑃 , where 𝜈𝑃 ∈
∧𝑘 𝑁R is a

nonzero affine k-form (defined up to nonzero constant) which is normal to P, ℎ(𝑥, ℏ) ∈ 𝐶∞(𝑊𝑃×R>0)
and 𝜂 ∈ W 𝑘

−∞(𝑊𝑃).
3. For any 𝑝 ∈ 𝑃, there exists a convex neighborhood 𝑝 ∈ 𝑉 ⊂ 𝑈 equipped with an affine coordinate

system 𝑥 = (𝑥1, . . . , 𝑥𝑛) such that 𝑥 ′ := (𝑥1, . . . , 𝑥𝑘 ) parametrizes codimension k affine linear
subspaces of V parallel to P, with 𝑥 ′ = 0 corresponding to the subspace containing P. With the
foliation {(𝑃𝑉 ,𝑥′ )}𝑥′ ∈𝑁𝑉 , where 𝑃𝑉 ,𝑥′ = {(𝑥1, . . . , 𝑥𝑛) ∈ 𝑉 | (𝑥1, . . . , 𝑥𝑘 ) = 𝑥 ′} and 𝑁𝑉 is the
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normal bundle of V, we require that, for all 𝑗 ∈ Z≥0 and multi-indices 𝛽 = (𝛽1, . . . , 𝛽𝑘 ) ∈ Z
𝑘
≥0, the

estimate ∫
𝑥′
(𝑥 ′)𝛽

(
sup
𝑃𝑉 ,𝑥′

|∇ 𝑗 (𝜄𝜈∨𝑃𝛼) |

)
𝜈𝑃 ≤ 𝐷 𝑗 ,𝑉 ,𝛽ℏ

−
𝑗+𝑠−|𝛽 |−𝑘

2

holds for some constant 𝐷 𝑗 ,𝑉 ,𝛽 and 𝑠 ∈ Z, where |𝛽 | =
∑
𝑙 𝛽𝑙 and 𝜈∨𝑃 = 𝜕

𝜕𝑥1
∧ · · · ∧ 𝜕

𝜕𝑥𝑘
.7

Observe that ∇ 𝜕
𝜕𝑥𝑙

W𝑃,𝑠 (𝑈) ⊂ W𝑃,𝑠+1(𝑈) and (𝑥 ′)𝛽W𝑃,𝑠 (𝑈) ⊂ W𝑃,𝑠−|𝛽 | (𝑈). It follows that

(𝑥 ′)𝛽∇ 𝜕
𝜕𝑥𝑙1

· · · ∇ 𝜕
𝜕𝑥𝑙 𝑗

W𝑃,𝑠 (𝑈) ⊂ W𝑃,𝑠+ 𝑗−|𝛽 | (𝑈).

The weight s defines a filtration of W 𝑘
∞ (we drop the U dependence from the notation whenever it is

clear from the context):8

W 𝑘
−∞ ⊂ · · · ⊂ W𝑃,−1 ⊂ W𝑃,0 ⊂ W𝑃,1 ⊂ · · · ⊂ W 𝑘

∞ ⊂ Ω𝑘
ℏ (𝑈).

This filtration, which keeps track of the polynomial order of ℏ for k-forms with asymptotic support on
P, provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([9], Definition 3.10). A differential k-form 𝛼 is in W̃ 𝑘
𝑠 (𝑈) if there exist polyhedral

subsets 𝑃1, . . . , 𝑃𝑙 ⊂ 𝑈 of codimension k such that 𝛼 ∈
∑𝑙
𝑗=1 W𝑃𝑗 ,𝑠 (𝑈). If, moreover, 𝑑𝛼 ∈ W̃ 𝑘+1

𝑠+1 (𝑈),
then we write 𝛼 ∈ W 𝑘

𝑠 (𝑈). For every 𝑠 ∈ Z, let W∗
𝑠 (𝑈) =

⊕
𝑘 W 𝑘

𝑠+𝑘 (𝑈).

Example 5.3. Let 𝑈 = R and x be an affine coordinate on U. Then we consider the ℏ-dependent 1-form

𝛿 :=
(

1
ℏ𝜋

) 1
2

𝑒−
𝑥2
ℏ 𝑑𝑥.

Direct calculations in [7, Lem 4.12] showed that 𝛿 ∈ W1
1 (𝑈) has asymptotic support on the hyperplane

P defined by 𝑥 = 0.
The hyperplane P separates U into two chambers 𝐻+ and 𝐻−. If we fix a base point in 𝐻− and apply

the integral operator I in [7, Lem. 4.23], we obtain 𝐼 (𝛿) ∈ 𝑊0
0 (𝑈) which has asymptotic support on

𝐻+ ∪ 𝑃, playing the role of a step function.
Taking finite products of elements of the above form, we obtain 𝛼 ∈ W 𝑘

𝑘 (𝑈) with asymptotic support
on arbitrary tropical polyhedral subsets of U. Any forms obtained from a finite number of steps of
applying the differential d, applying the integral operator I and taking wedge product are in 𝑊∗0 (𝑈).

We say that two closed tropical polyhedral subsets 𝑃1, 𝑃2 ⊂ 𝑈 of codimension 𝑘1, 𝑘2 intersect
transversally if the affine subspaces of codimension 𝑘1 and 𝑘2 which contain 𝑃1 and 𝑃2, respectively,
intersect transversally. This definition applies also when 𝑃1 ∩ 𝑃2 = ∅ or 𝜕𝑃𝑖 ≠ ∅.

Lemma 5.4 [7, Lem. 4.22].

1. Let 𝑃1, 𝑃2, 𝑃 ⊂ 𝑈 be closed tropical polyhedral subsets of codimension 𝑘1, 𝑘2 and 𝑘1 + 𝑘2, respec-
tively, such that P contains 𝑃1 ∩ 𝑃2 and is normal to 𝜈𝑃1 ∧ 𝜈𝑃2 . Then W𝑃1 ,𝑠 (𝑈) ∧W𝑃2 ,𝑟 (𝑈) ⊂
W𝑃,𝑟+𝑠 (𝑈) if 𝑃1 and 𝑃2 intersect transversally with 𝑃1 ∩ 𝑃2 ≠ ∅, and W𝑃1 ,𝑠 (𝑈) ∧W𝑃2 ,𝑟 (𝑈) ⊂

W 𝑘1+𝑘2
−∞ (𝑈) otherwise.

2. We have W 𝑘1
𝑠1 (𝑈) ∧W

𝑘2
𝑠2 (𝑈) ⊂ W 𝑘1+𝑘2

𝑠1+𝑠2 (𝑈). In particular, W∗
0 (𝑈) ⊂ W∗

∞(𝑈) is a dg subalgebra and
W∗
−1 (𝑈) ⊂ W∗

0 (𝑈) is a dg ideal.

7For 𝑘 = 0, we use the convention that 𝜈𝑃 = 1 ∈
∧0 𝑁R = R and also set 𝜈∨𝑃 = 1.

8Note that k is equal to the codimension of 𝑃 ⊂ 𝑈 .
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Definition 5.5. Let W∗
𝑠 be the sheafification of the presheaf defined by 𝑈 ↦→ W∗

𝑠 (𝑈). We call the
quotient sheaf 𝒯∗ := W∗

0/W∗
−1 the sheaf of tropical differential forms, which is a sheaf of dgas on 𝑀R

with structures (∧, 𝑑).

From [9, Lem. 3.6], we learn that R→ 𝒯∗ is a resolution. Furthermore, given any point 𝑥 ∈ 𝑈 and
a sufficiently small neighborhood 𝑥 ∈ 𝑊 ⊂ 𝑈, we can show that there exists 𝑓 ∈ W0

0 (𝑊) with compact
support in W and satisfying 𝑓 ≡ 1 near x (using an argument similar to the proof of Lemma 3.10).
Therefore, 𝒯∗ has a partition of unity subordinate to a given open cover. Replacing the sheaf of de
Rham differential forms on Λ∗𝜌1 ,R

⊕𝒬𝜏,R by the sheaf 𝒯∗ of tropical differential forms, we can construct
a particular complex on the integral tropical manifold B satisfying Condition 4.7, which dictates the
tropical geometry of B.

Definition 5.6. Given a point x as in §3.3.2 (with a chart as in equation (3.10)), the stalk of 𝒯∗ at x is
defined as 𝒯∗𝑥 := (x−1𝒯∗)𝑥 . This defines the complex (𝒯∗, 𝑑) (or simply 𝒯∗) of monodromy invariant
tropical differential forms on B. A section 𝛼 ∈ 𝒯∗(𝑊) is a collection of elements 𝛼𝑥 ∈ 𝒯∗𝑥 , 𝑥 ∈ 𝑊
such that each 𝛼𝑥 can be represented by x−1𝛽𝑥 in a small neighborhood 𝑈𝑥 ⊂ p

−1 (U𝑥) for some tropical
differential form 𝛽𝑥 on U𝑥 , and satisfies the relation 𝛼𝑥̃ = x̃−1 (p∗𝛽𝑥) in 𝒯∗𝑥̃ for every 𝑥 ∈ 𝑈𝑥 .

Notice that the definition of 𝒯∗ requires the projection map p in equation (3.11) to be affine, while
that of Ω∗ in §3.3.2 does not. But like Ω∗, 𝒯∗ satisfies Condition 4.7 and can be used for the purpose
of gluing the sheaf 𝑃𝑉∗ of dgBV algebras in §4.3. In the rest of this section, we shall use the notations
𝑃𝑉∗ and A∗ to denote the complexes of sheaves constructed using 𝒯∗.

5.2. The semiflat dgBV algebra and its comparison with the pre-dgBV algebra 𝑷𝑽∗,∗

In this section, we define a twisting of the semiflat dgBV algebra by the slab functions (or initial wall-
crossing factors) in §2.4 and compare it with the dgBV algebra we constructed in §4.3 using gluing of
local smoothing models. The key result is Lemma 5.10, which is an important step in the proof of our
main result.

We start by recalling some notations from §2.4. Recall that for each vertex v, we fix a representative
𝜑𝑣 : 𝑈𝑣 → R of the strictly convex multivalued piecewise linear function 𝜑 ∈ 𝐻0(𝐵,MPL𝒫) to
define the cone 𝐶𝑣 and the monoid 𝑃𝑣 . The natural projection 𝑇𝑣 ⊕ Z → 𝑇𝑣 induces a surjective ring
homomorphism C[𝜌−1𝑃𝑣 ] → C[𝜌

−1Σ𝑣 ]; we denote by 𝑚̄ ∈ 𝜌−1Σ𝑣 the image of 𝑚 ∈ 𝜌−1𝑃𝑣 under
the natural projection. We consider V(𝜏)𝑣 := Specan(C[𝜏

−1𝑃𝑣 ]) for some 𝜏 containing v and write 𝑧𝑚

for the function corresponding to 𝑚 ∈ 𝜏−1𝑃𝑣 . The element 𝜚 together with the corresponding function
𝑧 𝜚 determine a family Specan(C[𝜏

−1𝑃𝑣 ]) → C, whose central fiber is given by Specan (C[𝜏
−1Σ𝑣 ]).

The variety V(𝜏)𝑣 = Specan(C[𝜏
−1𝑃𝑣 ]) is equipped with the divisorial log structure induced by

Specan (C[𝜏
−1Σ𝑣 ]), which is log smooth. We write V(𝜏)†𝑣 if we need to emphasize the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element 𝜇 ∈ Γ(𝐵 \𝒮𝑒,
∧𝑛 𝑇𝐵,Z).

We fix a local representative 𝜇𝑣 ∈
∧𝑛 𝑇𝑣 for every vertex v and 𝜇𝜎 ∈

∧𝑛 Λ𝜎 for every maximal cell 𝜎.
Writing 𝜇𝑣 = 𝑚1 ∧ · · · ∧ 𝑚𝑛, we have the corresponding relative volume form

𝜇𝑣 = 𝑑 log 𝑧𝑚1 ∧ · · · ∧ 𝑑 log 𝑧𝑚𝑛

in Ω𝑛

V(𝜏)†𝑣/C†
. Now, the relative log polyvector fields can be written as

∧−𝑙
ΘV(𝜏)†𝑣/C† =

⊕
𝑚∈𝜏−1𝑃𝑣

𝑧𝑚𝜕𝑛1 ∧ · · · ∧ 𝜕𝑛𝑙 .
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The volume form 𝜇𝑣 defines a BV operator via contraction (Δ𝛼) � 𝜇𝑣 := 𝜕 (𝛼 � 𝜇𝑣 ), which is given
explicitly by

Δ (𝑧𝑚𝜕𝑛1 ∧ · · · ∧ 𝜕𝑛𝑙 ) =
𝑙∑
𝑗=1
(−1) 𝑗−1〈𝑚, 𝑛 𝑗〉𝑧

𝑚𝜕𝑛1 ∧ · · · 𝜕𝑛 𝑗 · · · ∧ 𝜕𝑛𝑙 .

A Schouten—Nijenhuis-type bracket is given by extending the following formulae skew-symmetrically:

[𝑧𝑚1𝜕𝑛1 , 𝑧
𝑚2𝜕𝑛2] = 𝑧𝑚1+𝑚2𝜕〈𝑚̄1 ,𝑛2 〉𝑛1−〈𝑚̄2 ,𝑛1 〉𝑛2 ,

[𝑧𝑚, 𝜕𝑛] = 〈𝑚̄, 𝑛〉𝑧𝑚.

This gives
∧−∗ ΘV(𝜏)†𝑣/C† the structure of a BV algebra.

5.2.1. Construction of the semiflat sheaves
For each 𝑘 ∈ N, we shall define a sheaf 𝑘G∗sf (resp. 𝑘K∗sf) of 𝑘 th-order semiflat log vector fields (resp.
semiflat log de Rham forms) over the open dense subset 𝑊0 ⊂ 𝐵 defined by

𝑊0 :=
⋃

𝜎∈𝒫 [𝑛]

intre(𝜎) ∪
⋃

𝜌∈𝒫
[𝑛−1]
0

intre(𝜌) ∪
⋃

𝜌∈𝒫
[𝑛−1]
1

(
intre(𝜌) \ (𝒮 ∩ intre(𝜌))

)
,

where 𝒫 [𝑛−1]
0 consists of 𝜌’s such that intre (𝜌) ∩𝒮𝑒 = ∅ and 𝒫

[𝑛−1]
1 of 𝜌’s that intersect with 𝒮𝑒. These

sheaves use the natural divisorial log structure on V(𝜌)†𝑣 and will not depend on the slab functions 𝑓𝑣𝜌’s.
This construction is possible because we are using the much more flexible Euclidean topology on 𝑊0,
instead of the Zariski topology on 0𝑋 .

For 𝜎 ∈ 𝒫 [𝑛] , recall that we have 𝑉 (𝜎) = Specan(C[𝜎
−1Σ𝑣 ]) for some 𝑣 ∈ 𝜎 [0] . We also have

Specan(C[𝜎
−1Σ𝑣 ]) = Λ∗𝜎,C/Λ

∗
𝜎 , which is isomorphic to (C∗)𝑛, because 𝜎−1Σ𝑣 = Λ𝜎,R = 𝑇𝑣,R. The

local 𝑘 th-order thickening

𝑘V(𝜎)† := Specan(C[𝜎
−1𝑃𝑣/𝑞

𝑘+1]) � (C∗)𝑛 × Specan(C[𝑞]/𝑞
𝑘+1)

is obtained by identifying 𝜎−1𝑃𝑣 as Λ𝜎 × N. Choosing a different vertex 𝑣′, we can use the parallel
transport 𝑇𝑣 � 𝑇𝑣′ from v to 𝑣′ within intre(𝜎) and the difference 𝜑𝑣 |𝜎 − 𝜑𝑣′ |𝜎 between two affine
functions to identify the monoids 𝜎−1𝑃𝑣 � 𝜎−1𝑃𝑣′ . We take

𝑘G∗sf |intre (𝜎) := 𝜈∗

(∧−∗
Θ𝑘V(𝜎)†/𝑘𝑆†

)
� 𝜈∗(O𝑘V(𝜎)† ) ⊗R

∧−∗
Λ∗𝜎,R.

Next, we need to glue the sheaves 𝑘G∗sf |intre (𝜎) ’s along neighborhoods of codimension one cells 𝜌’s.
For each codimension, one cell 𝜌, we fix a primitive normal 𝑑𝜌 to 𝜌 and label the two adjacent maximal
cells 𝜎+ and 𝜎− so that 𝑑𝜌 is pointing into 𝜎+. There are two situations to consider.

The simpler case is when 𝒮𝑒 ∩ intre (𝜌) = ∅, where the monodromy is trivial. In this case, we have
𝑉 (𝜌) = Specan(C[𝜌

−1Σ𝑣 ]), with the gluing 𝑉 (𝜎±) ↩→ 𝑉 (𝜌) as described below Definition 2.13 using
the open gluing data 𝑠𝜌𝜎± . We take the 𝑘 th-order thickening given by

𝑘V(𝜌)† := Specan (C[𝜌
−1𝑃𝑣/𝑞

𝑘+1])†,

equipped with the divisorial log structure induced by 𝑉 (𝜌). We extend the open gluing data

𝑠𝜌𝜎± : Λ𝜎± → C
∗
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to

𝑠𝜌𝜎± : Λ𝜎± ⊕ Z→ C
∗

so that 𝑠𝜌𝜎± (0, 1) = 1, which acts as an automorphism of Specan(C[𝜎
−1Σ𝑣 ]). In this way, we can extend

the gluing 𝑉 (𝜎±) ↩→ 𝑉 (𝜌) to

Specan (C[𝜎
−1
± 𝑃𝑣/𝑞

𝑘+1]) → Specan (C[𝜌
−1𝑃𝑣/𝑞

𝑘+1])

by twisting with the ring homomorphism induced by 𝑧𝑚 → 𝑠𝜌𝜎± (𝑚)
−1𝑧𝑚. On a sufficiently small

neighborhood 𝒲𝜌 of intre(𝜌), we take

𝑘G∗sf |𝒲𝜌 := 𝜈∗

(∧−∗
Θ𝑘V(𝜌)†/𝑘𝑆†

)���
𝒲𝜌

.

Choosing a different vertex 𝑣′, we may use parallel transport to identify the fans 𝜌−1Σ𝑣 � 𝜌−1Σ𝑣′ , and
further use the difference 𝜑𝑣 |𝒲𝜌 − 𝜑𝑣′ |𝒲𝜌 to identify the monoids 𝜌−1𝑃𝑣 � 𝜌−1𝑃𝑣′ . One can check that
the sheaf 𝑘G∗sf |𝒲𝜌 is well defined.

The more complicated case is when 𝒮𝑒 ∩ intre(𝜌) ≠ ∅, where the monodromy is nontrivial. We
write intre(𝜌) \𝒮 =

⋃
𝑣 intre(𝜌)𝑣 , where intre (𝜌)𝑣 is the unique component which contains the vertex v

in its closure. We fix one v, the corresponding intre(𝜌)𝑣 , and a sufficiently small open subset 𝒲𝜌,𝑣 of
intre (𝜌)𝑣 . We assume that the neighborhood 𝒲𝜌,𝑣 of intre(𝜌)𝑣 intersects neither 𝒲𝑣′,𝜌′ nor 𝒲𝜌′ for any
possible 𝑣′ and 𝜌′. Then we consider the scheme-theoretic embedding

𝑉 (𝜌) = Specan(C[𝜌
−1Σ𝑣 ]) → Specan(C[𝜌

−1𝑃𝑣 ])

given by

𝑧𝑚 ↦→

{
𝑧𝑚̄ if 𝑚 lies on the boundary of the cone 𝜌−1𝑃𝑣 ,

0 if 𝑚 lies in the interior of the cone 𝜌−1𝑃𝑣 .

We denote by 𝑘V(𝜌)†𝑣 the 𝑘 th-order thickening of 𝑉 (𝜌) |𝜈−1 (𝒲𝜌,𝑣 )
in Specan(C[𝜌

−1𝑃𝑣 ]) and equip it with
the divisorial log structure which is log smooth over 𝑘𝑆† (note that it is different from the local model
𝑘V(𝜌)† introduced earlier in §4 because the latter depends on the slab functions 𝑓𝑣,𝜌, as we can see
explicitly in §5.2.2, while the former doesn’t). We take

𝑘G∗sf |𝒲𝜌,𝑣 :=
∧−∗

Θ𝑘V(𝜌)†𝑣/𝑘𝑆†
.

The gluing with nearby maximal cells 𝜎± on the overlap intre(𝜎±) ∩𝒲𝜌,𝑣 is given by parallel
transporting through the vertex v to relate the monoids 𝜎−1

± 𝑃𝑣 and 𝜌−1𝑃𝑣 constructed from 𝑃𝑣 , and
twisting the map Specan(C[𝜎

−1
± 𝑃𝑣 ]) → Specan (C[𝜌

−1𝑃𝑣 ]) with the open gluing data

𝑧𝑚 ↦→ 𝑠−1
𝜌𝜎± (𝑚)𝑧

𝑚,

using previous liftings of 𝑠𝜌𝜎± to Λ𝜎± ⊕ Z. We obtain a commutative diagram of holomorphic maps

𝑉 (𝜎±) |𝒟 ��

��

𝑘V(𝜎±)
† |𝒟

��
𝑉 (𝜌) |𝒟 �� 𝑘V(𝜌)† |𝒟

,
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Figure 7. Analytic continuation along 𝛾.

where 𝒟 = 𝜈−1(𝒲𝜌,𝑣 ∩ intre (𝜎±)) and the vertical arrow on the right-hand side respects the log
structures. The induced isomorphism

𝜈∗

(∧−∗
Θ𝑘V(𝜌)†𝑣/𝑘𝑆†

)
� 𝜈∗

(∧−∗
Θ𝑘V(𝜎±)

†
𝑣/

𝑘𝑆†

)
of sheaves on the overlap 𝒲𝜌,𝑣 ∩ intre (𝜎±) then gives the desired gluing for defining the sheaf 𝑘G∗sf on
𝑊0. Note that the cocycle condition is trivial here as there is no triple intersection of any three open
subsets from intre(𝜎), 𝒲𝜌 and 𝒲𝜌,𝑣 .

Similarly, we can define the sheaf 𝑘K∗sf of semiflat log de Rham forms, together with a relative volume
form 𝑘𝜔0 ∈

𝑘
‖
K𝑛sf (𝑊0) obtained from gluing the local 𝜇𝑣 ’s specified by the element 𝜇 as described in

the beginning of §5.2.
It would be useful to write down elements of the sheaf 𝑘G∗sf more explicitly. For instance, fixing a

point 𝑥 ∈ intre(𝜌)𝑣 , we may write

𝑘G∗sf,𝑥 = 𝜈∗(O𝑘V(𝜌)𝑣 )𝑥 ⊗R
∧−∗

𝑇∗𝑣,R (5.1)

and use 𝜕𝑛 to stand for the semiflat holomorphic vector field associated to an element 𝑛 ∈ 𝑇∗𝑣,R.
Note that analytic continuation around the singular locus 𝒮𝑒 ∩ intre(𝜌) acts nontrivially on the

semiflat sheaf 𝑘G∗sf due to the presence of nontrivial monodromy of the affine structure. Below is a
simple example.

Example 5.7. We consider the local affine charts which appeared in Example 2.3, equipped with a
strictly convex piecewise linear affine function 𝜑 on Σ𝜌 whose change of slopes is 1. Let us study the
analytic continuation of a local section along the loop 𝛾 which starts at a point 𝑏+, as shown in Figure
7. First, we can identify both 𝜌−1𝑃𝑣+ and 𝜌−1𝑃𝑣− with the monoid in the cone 𝑃 = {(𝑥, 𝑦, 𝑧) | 𝑧 ≥ 𝜑(𝑥)}
via parallel transport through 𝜎+. Writing 𝑢 = 𝑧 (1,0,1) , 𝑣 = 𝑧 (−1,0,0) , 𝑤 = 𝑧 (0,−1,0) and 𝑞 = 𝑧 (0,0,1) , we
have C[𝑃] � C[𝑢, 𝑣, 𝑤±, 𝑞]/(𝑢𝑣 − 𝑞). Now, the analytic continuation of 𝑢 ∈ 𝜈∗(O𝑘V(𝜌)𝑣+

)𝑏+ along 𝛾
(going from the chart 𝑈II to the chart 𝑈I and then back to 𝑈II) is given by as a sequence of elements:

𝑢 �� 𝑠𝜌𝜎+ ((1, 0))−1𝑢 ��𝑢𝑤 �� 𝑠𝜌𝜎− ((1, 0))−1𝑞𝑣−1𝑤 ��𝑤𝑢,

via the following sequence of maps between the stalks over 𝑏+, 𝑐+ ∈ 𝑈II and 𝑏−, 𝑐− ∈ 𝑈I:

𝜈∗(O𝑘V(𝜌)𝑣+
)𝑏+

��𝜈∗(O𝑘V(𝜎+)†
)𝑐+

��𝜈∗(O𝑘V(𝜌)𝑣−
)𝑏−

��𝜈∗(O𝑘V(𝜎−)†
)𝑐−

��𝜈∗(O𝑘V(𝜌)𝑣+
)𝑏+ .

So we see that the analytic continuation along 𝛾 maps u to 𝑤𝑢.
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𝑘G∗sf is equipped with the BV algebra structure inherited from Specan(C[𝜌
−1𝑃𝑣 ])

† (as described in
the beginning of §5.2), which agrees with the one induced from the volume form 𝑘𝜔0. This allows us
to define the sheaf of semiflat tropical vertex Lie algebras as

𝑘𝔥 := Ker(Δ) |𝑘G−1
sf
[−1] . (5.2)

Remark 5.8. The sheaf can actually be extended over the nonessential singular locus 𝒮 \ 𝒮𝑒 because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Explicit gluing away from codimension 2
When we define the sheaves 𝑘G∗𝛼’s in §4.1, the open subset 𝑊𝛼 is taken to be a sufficiently small
neighborhood of 𝑥 ∈ intre (𝜏) for some 𝜏 ∈ 𝒫. In fact, we can choose one of these open subsets to be
the large open dense subset 𝑊0. In this subsection, we construct the sheaves 𝑘G∗0 and 𝑘K∗0 on 𝑊0 using
an explicit gluing of the underlying complex analytic space.

Over intre (𝜎) for 𝜎 ∈ 𝒫 [𝑛] or over 𝒲𝜌 for 𝜌 ∈ 𝒫 [𝑛−1] with 𝒮𝑒 ∩ intre(𝜌) = ∅, we have 𝑘G∗0 = 𝑘G∗sf ,
which was just constructed in §5.2.1. So it remains to consider 𝜌 ∈ 𝒫 [𝑛−1] such that 𝒮𝑒 ∩ intre(𝜌) ≠ ∅.
The log structure of 𝑉 (𝜌)† is prescribed by the slab functions 𝑓𝑣,𝜌 ∈ Γ(O𝑉𝜌 (𝑣) )’s, which restrict to
functions 𝑠−1

𝑣,𝜌 ( 𝑓𝑣,𝜌)’s on the torus Specan(C[Λ𝜌]) � (C
∗)𝑛−1. Each of these can be pulled back via the

natural projection Specan(C[𝜌
−1Σ𝑣 ]) → Specan(C[Λ𝜌]) to give a function on Specan(C[𝜌

−1Σ𝑣 ]). In
this case, we may fix the log chart 𝑉 (𝜌)† |𝜈−1 (𝒲𝜌,𝑣 )

→ Specan(C[𝜌
−1𝑃𝑣 ])

† given by the equation

𝑧𝑚 ↦→

{
𝑧𝑚̄ if 〈𝑑𝜌, 𝑚̄〉 ≥ 0,
𝑧𝑚̄
(
𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌)

) 〈𝑑𝜌 ,𝑚̄〉 if 〈𝑑𝜌, 𝑚̄〉 ≤ 0.

Write 𝑘V(𝜌)†𝑣 for the corresponding 𝑘 th-order thickening in Specan(C[𝜌
−1𝑃𝑣 ]), which gives a local

model for smoothing 𝑉 (𝜌) |𝜈−1 (𝒲𝜌,𝑣 )
(as in §4). We take

𝑘G∗0 |𝒲𝜌,𝑣 := 𝜈∗

(∧−∗
Θ𝑘V(𝜌)†𝑣/

𝑘𝑆†

)
.

We have to specify the gluing on the overlap 𝒲𝜌,𝑣 ∩ intre (𝜎±) with the adjacent maximal cells 𝜎±.
This is given by first using parallel transport through v to relate the monoids 𝜎−1

± 𝑃𝑣 and 𝜌−1𝑃𝑣 as in
the semiflat case, and then an embedding Specan(C[𝜎

−1
± 𝑃𝑣/𝑞

𝑘+1]) → Specan(C[𝜌
−1𝑃𝑣/𝑞

𝑘+1]) via the
formula

𝑧𝑚 ↦→

{
𝑠−1
𝜌𝜎+ (𝑚)𝑧

𝑚 for 𝜎+,
𝑠−1
𝜌𝜎− (𝑚)𝑧

𝑚
(
𝑠−1
𝑣𝜎− ( 𝑓𝑣,𝜌)

) 〈𝑑𝜌 ,𝑚̄〉 for 𝜎−,
(5.3)

where 𝑠𝑣𝜎± , 𝑠𝜌𝜎± are treated as maps Λ𝜎± ⊕ Z→ C
∗ as before. We observe that there is a commutative

diagram of log morphisms

𝑉 (𝜎±)
† |𝒟 ��

��

𝑘V(𝜎±)
† |𝒟

��
𝑉 (𝜌)† |𝒟 �� 𝑘V(𝜌)† |𝒟

,

where 𝒟 = 𝜈−1(𝒲𝜌,𝑣 ∩ intre (𝜎±)). The induced isomorphism

𝜈∗

(∧−∗
Θ𝑘V(𝜌)†𝑣/

𝑘𝑆†

)
� 𝜈∗

(∧−∗
Θ𝑘V(𝜎±)

†
𝑣/

𝑘𝑆†

)
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of sheaves on the overlap𝒟 then provides the gluing for defining the sheaf 𝑘G∗0 on𝑊0. Hence, we obtain a
sheaf 𝑘G∗0 of BV algebras, where the BV structure is inherited from the local models Specan (C[𝜎

−1𝑃𝑣 ])

and Specan (C[𝜌
−1𝑃𝑣 ]). Similarly, we can define the sheaf 𝑘K∗0 of log de Rham forms over 𝑊0, together

with a relative volume form 𝑘𝜔0 ∈
𝑘
‖
K𝑛

0 (𝑊0) by gluing the local 𝜇𝑣 ’s.

5.2.3. Relation between the semiflat dgBV algebra and the log structure
The difference between 𝑘G∗0 and 𝑘G∗sf is that analytic continuation along a path 𝛾 in intre(𝜎±) ∪ intre(𝜌),
where 𝜌 = 𝜎+∩𝜎−, induces a nontrivial action on 𝑘G∗sf (the semiflat sheaf) but not on 𝑘G∗0 (the corrected
sheaf). This is because, near a singular point 𝑝 ∈ Γ of the affine structure on B, there is another local
model 𝑘G∗𝛼 for 𝑝 ∈ 𝑊𝛼 constructed in 4.1, where restrictions of sections are invariant under analytic
continuation (cf. Example 5.7). This is in line with the philosophy that monodromy is being cancelled
by the slab functions 𝑓𝑣,𝜌’s (which we also call initial wall-crossing factors). In view of this, we should
be able to relate the sheaves 𝑘G∗0 and 𝑘G∗sf by adding back the initial wall-crossing factors 𝑓𝑣,𝜌’s.

Recall that the slab function 𝑓𝑣,𝜌 is a function on 𝑉𝜌 (𝑣) ⊂
0𝑋𝜌, whose zero locus is 𝑍

𝜌
1 ∩ 𝑉𝜌 (𝑣)

for 𝜌 such that 𝒮𝑒 ∩ intre(𝜌) ≠ ∅. Also, recall that, for 𝜌 containing v, 𝜌𝑣 is the unique contractible
component in 𝜌∩𝒞−1(𝐵\𝒮) such that 𝑣 ∈ 𝜌𝑣 , as defined in Assumption 3.5. Note that the inverse image
𝜇−1 (𝜌𝑣 ) ⊂ 𝑉𝜌 (𝑣) under the generalized moment map 𝜇 is also a contractible open subset. It contains the
zero-dimensional stratum 𝑥𝑣 in𝑉𝜌 (𝑣) that corresponds to v. Since 𝑓𝑣,𝜌 (𝑥𝑣 ) = 1, we can define log( 𝑓𝑣,𝜌)
in a small neighborhood of 𝑥𝑣 , and it can further be extended to the whole of 𝜇−1(𝜌𝑣 ) ⊂ 𝑉𝜌 (𝑣) because
this subset is contractible. Restricting to the open dense torus orbit Specan(C[Λ𝜌]) ∩𝜇

−1(𝜌𝑣 ), we obtain
log(𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌)), which can in addition be lifted to a section in 𝑘G0
sf (𝒲𝜌,𝑣 ) = Γ(𝒲𝜌,𝑣 ,O𝑘V(𝜌)𝑣 ) for a

sufficiently small 𝒲𝜌,𝑣 .
Now, we resolve the sheaves 𝑘G∗0 and 𝑘G∗sf by the complex 𝒯∗ introduced in §5.1. We let

𝑘PV∗,∗sf := 𝒯∗ |𝑊0 ⊗R
𝑘G∗sf

and equip it with 𝜕◦ = 𝑑 ⊗ 1, Δ and ∧, making it a sheaf of dgBV algebras. Over the open subset 𝒲𝜌,𝑣 ,
using the explicit description of 𝑘G∗sf |𝒲𝜌,𝑣 , we consider the element

𝜙𝑣,𝜌 := −𝛿𝑣,𝜌 ⊗ log(𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌))𝜕𝑑𝜌 ∈

𝑘PV−1,1
sf (𝒲𝜌,𝑣 ), (5.4)

where 𝛿𝑣,𝜌 is any 1-form with asymptotic support in intre(𝜌)𝑣 and whose integral over any curve
transversal to intre(𝜌)𝑣 going from 𝜎− to 𝜎+ is asymptotically 1; such a 1-form can be constructed
using a family of bump functions in the normal direction of intre(𝜌)𝑣 similar to Example 5.3 (see also
[7, §4]). We can further extend the section 𝜙𝑣,𝜌 to the whole 𝑊0 by setting it to be 0 outside a small
neighborhood of intre(𝜌)𝑣 in 𝒲𝜌,𝑣 .

Definition 5.9. The sheaf of semiflat polyvector fields is defined as

𝑘PV∗,∗sf := 𝒯∗ |𝑊0 ⊗R
𝑘G∗sf ,

which is equipped with a BV operator Δ , a wedge product ∧ (and hence a Lie bracket [·, ·]) and the
operator

𝜕sf := 𝜕◦ + [𝜙in, ·] = 𝜕◦ +
∑
𝑣,𝜌

[𝜙𝑣,𝜌, ·],

where 𝜕◦ = 𝑑 ⊗ 1 and 𝜙in :=
∑
𝑣,𝜌 𝜙𝑣,𝜌. We also define the sheaf of semiflat log de Rham forms as

𝑘A∗,∗sf := 𝒯∗ |𝑊0 ⊗R
𝑘K∗sf ,
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equipped with 𝜕, ∧,

𝜕sf := 𝜕◦ +
∑
𝑣,𝜌

L𝜙𝑣,𝜌 ,

and a contraction action � by elements in 𝑘PV∗,∗sf .

It can be easily checked that 𝜕2
sf = [𝜕sf , Δ] = 0, so we have a sheaf of dgBV algebras.

On the other hand, we write

𝑘𝑃𝑉∗,∗0 := 𝒯∗ |𝑊0 ⊗R
𝑘G∗0,

which is equipped with the operators 𝜕0 = 𝑑 ⊗ 1, Δ and ∧. The following important lemma is a
comparison between the two sheaves of dgBV algebras.
Lemma 5.10. There exists a set of compatible isomorphisms

𝛷 : 𝑘𝑃𝑉∗,∗0 →
𝑘PV∗,∗sf , 𝑘 ∈ N

of sheaves of dgBV algebras such that 𝛷 ◦ 𝜕0 = 𝜕sf ◦𝛷 for each 𝑘 ∈ N.
There also exists a set of compatible isomorphisms

𝛷 : 𝑘A∗,∗0 →
𝑘A∗,∗sf , 𝑘 ∈ N

of sheaves of dgas preserving the contraction action � and such that 𝛷 ◦ 𝜕0 = 𝜕sf ◦𝛷 for each 𝑘 ∈ N.
Furthermore, the relative volume form 𝑘𝜔0 is identified via 𝛷.
Proof. Outside those intre(𝜌)’s such that 𝒮𝑒 ∩ intre (𝜌) ≠ ∅, the two sheaves are identical. So we will
take a component intre(𝜌)𝑣 of intre (𝜌) \𝒮 and compare the sheaves on a neighborhood 𝒲𝜌,𝑣 .

We fix a point 𝑥 ∈ intre (𝜌)𝑣 and describe the map Φ at the stalks of the two sheaves. First, the
preimage 𝐾 := 𝜈−1(𝑥) � Λ∗𝜌,R/Λ

∗
𝜌 can be identified as a real (𝑛 − 1)-dimensional torus in the analytic

space Specan(C[Λ𝜌]) � (C
∗)𝑛−1. We have an identification 𝜌−1Σ𝑣 � Σ𝜌 × Λ𝜌, and we choose the

unique primitive element 𝑚𝜌 ∈ Σ𝜌 in the ray pointing into 𝜎+. As analytic spaces, we write

Specan(C[Σ𝜌]) = {𝑢𝑣 = 0} ⊂ C2,

where 𝑢 = 𝑧𝑚𝜌 and 𝑣 = 𝑧−𝑚𝜌 , and

Specan(C[𝜌
−1Σ𝑣 ]) = (C

∗)𝑛−1 × {𝑢𝑣 = 0}.

The germ O𝑉 (𝜌) ,𝐾 of analytic functions can be written as

O𝑉 (𝜌) ,𝐾 =

{
𝑎0 +

∞∑
𝑖=1

𝑎𝑖𝑢
𝑖 +

−∞∑
𝑖=−1

𝑎𝑖𝑣
−𝑖
��� 𝑎𝑖 ∈ O(C∗)𝑛−1 (𝑈) for neigh. 𝑈 ⊃ 𝐾, sup

𝑖≠0

log |𝑎𝑖 |
|𝑖 |

< ∞

}
.

Using the embedding 𝑉 (𝜌) |𝜈−1 (𝒲𝜌,𝑣 )
→ 𝑘V(𝜌)†𝑣 in §5.2.2, we can write

𝑘G0
0,𝑥 = O𝑘V(𝜌)𝑣 ,𝐾

=⎧⎪⎨⎪⎩
𝑘∑
𝑗=0
(𝑎0, 𝑗 +

∞∑
𝑖=1

𝑎𝑖, 𝑗𝑢
𝑖 +

−∞∑
𝑖=−1

𝑎𝑖, 𝑗𝑣
−𝑖)𝑞 𝑗
��� 𝑎𝑖, 𝑗 ∈ O(C∗)𝑛−1 (𝑈) for neigh. 𝑈 ⊃ 𝐾, sup

𝑖≠0

log |𝑎𝑖, 𝑗 |
|𝑖 |

< ∞
⎫⎪⎬⎪⎭ ,

with the relation 𝑢𝑣 = 𝑞𝑙𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌) (here, l is the change of slopes for 𝜑𝑣 across 𝜌). For the elements

(𝑚𝜌, 𝜑𝑣 (𝑚𝜌)) and (−𝑚𝜌, 𝜑𝑣 (−𝑚𝜌)) in 𝜌−1𝑃𝑣 , we have the identities (we omit the dependence on k
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when we write elements in the stalks of sheaves):

𝑧 (𝑚𝜌 ,𝜑𝑣 (𝑚𝜌)) = 𝑢,

𝑧−(−𝑚𝜌 ,𝜑𝑣 (−𝑚𝜌)) = 𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌)

−1𝑣,

describing the embedding 𝑘V(𝜌)†𝑣 ↩→ Specan(C[𝜌
−1𝑃𝑣 ])

†. For polyvector fields, we can write

𝑘G∗0,𝑥 = 𝑘G0
0,𝑥 ⊗R

−∗∧
𝑇∗𝑣,R.

The BV operator is described by the relations Δ (𝜕𝑛) = 0, [𝜕𝑛1 , 𝜕𝑛2] = 0, and⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑧𝑚, 𝜕𝑛] = Δ (𝑧𝑚𝜕𝑛) = 〈𝑚, 𝑛〉𝑧𝑚 for 𝑚 with 𝑚̄ ∈ Λ𝜌, 𝑛 ∈ 𝑇∗𝑣,R; 4
[𝑢, 𝜕𝑛] = Δ (𝑢𝜕𝑛) = 〈𝑚𝜌, 𝑛〉𝑢 for 𝑛 ∈ 𝑇∗𝑣,R;
[𝑣, 𝜕𝑛] = Δ (𝑣𝜕𝑛) = 〈−𝑚𝜌, 𝑛〉𝑣 + 𝜕𝑛 (log 𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌))𝑣 for 𝑛 ∈ 𝑇∗𝑣,R.
(5.5)

Similarly, we can write down the stalk for 𝑘G∗sf,𝑥 = 𝑘G∗sf,𝑥 ⊗R
∧−∗ 𝑇∗𝑣,R. As a module over ring

O(C∗)𝑛−1 ,𝐾 ⊗C C[𝑞]/(𝑞
𝑘+1), we have 𝑘G∗sf,𝑥 = 𝑘G∗0,𝑥 ; the ring structure on 𝑘G0

sf,𝑥 differs from that on
𝑘G0

0,𝑥 and is determined by the relation 𝑢𝑣 = 𝑞𝑙 . The embedding 𝑘V(𝜌)†𝑣 ↩→ Specan(C[𝜌
−1𝑃𝑣 ])

† is
given by

𝑧 (𝑚𝜌 ,𝜑𝑣 (𝑚𝜌)) = 𝑢,

𝑧−(−𝑚𝜌 ,𝜑𝑣 (−𝑚𝜌)) = 𝑣.

The formulae for the BV operator are the same as that for 𝑘G∗0,𝑥 , except that for the last equation in (5.5),
we have [𝑣, 𝜕𝑛] = Δ (𝑣𝜕𝑛) = 〈−𝑚𝜌, 𝑛〉𝑣 instead.

We apply the argument in [7, §4], where we considered a scattering diagram consisting of only
one wall, to relate these two sheaves. We can find a set of compatible elements 𝜃 = (𝑘𝜃)𝑘∈N, where
𝑘𝜃 ∈ 𝑘PV−1,0

sf (𝒲𝜌,𝑣 ) for 𝑘 ∈ N, such that 𝑒𝜃 ∗𝜕◦ = 𝜕sf and Δ (𝜃) = 0. Explicitly, 𝜃 is a step-function-like
section of the form

𝜃 =

{
log(𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌))𝜕𝑑𝜌 on intre(𝜎+) ∩𝒲𝜌,𝑣 ,

0 on intre(𝜎−) ∩𝒲𝜌,𝑣 .

For each 𝑘 ∈ N, we also define 𝜃0 := log(𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌))𝜕𝑑𝜌 , as an element in 𝑘G−1

sf (𝒲𝜌,𝑣 ). Now, we define
the map 𝛷𝑥 : 𝑘𝑃𝑉∗,∗0,𝑥 →

𝑘PV∗,∗sf,𝑥 at the stalks by writing

𝑘𝑃𝑉∗,∗0,𝑥 = 𝒯∗𝑥 ⊗R
𝑘G0

0,𝑥 ⊗R

−∗∧
𝑇∗𝑣,R

(and similarly for 𝑘PV∗,∗sf,𝑥) and extending the formulae⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛷𝑥 (𝛼) = 𝛼 for 𝛼 ∈ 𝒯𝑥 ,
𝛷𝑥 ( 𝑓 ) = 𝑒 [𝜃, ·] 𝑓 = 𝑓 for 𝑓 ∈ O(C∗)𝑛−1 ,𝐾 ,

𝛷𝑥 (𝑢) = 𝑒 [𝜃−𝜃0 , ·]𝑢,

𝛷𝑥 (𝑣) = 𝑒 [𝜃, ·]𝑣,

𝛷𝑥 (𝜕𝑛) = 𝑒 [𝜃−𝜃0 , ·]𝜕𝑛 for 𝑛 ∈ 𝑇∗𝑣,R

through the tensor product ⊗R and skew-symmetrically in 𝜕𝑛’s.
To see that 𝛷 is the desired isomorphism, we check all the relations by computations:
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• Since 𝑒 [𝜃, ·] ◦ 𝜕◦ ◦ 𝑒
−[𝜃, ·] = 𝜕sf , we have

𝜕sf𝛷𝑥 (𝑢) = 𝑒 [𝜃, ·]𝜕◦(𝑒
−[𝜃0 , ·]𝑢) = 0;

similarly, we have 𝜕sf (𝛷𝑥 (𝑣)) = 0 = 𝜕sf (𝛷𝑥 (𝜕𝑛)). Hence, we have 𝛷𝑥 ◦ 𝜕0 = 𝜕sf ◦𝛷𝑥 .
• We have 𝑒−[𝜃0 , ·]𝑢 = 𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌)𝑢 and

𝛷𝑥 (𝑢)𝛷𝑥 (𝑣) = 𝑒 [𝜃, ·] (𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌)𝑢)𝑒

[𝜃, ·]𝑣 = 𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌)𝑒

[𝜃, ·] (𝑢𝑣) = 𝑞𝑙𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌) =𝛷𝑥 (𝑢𝑣),

that is, the map 𝛷𝑥 preserves the product structure.
• From the fact that Δ (𝜃) = 0 = Δ (𝜃0), we see that 𝑒 [𝜃−𝜃0 , ·] commutes with Δ , and hence Δ (𝛷𝑥 (𝜕𝑛)) =

𝑒 [𝜃−𝜃0 , ·] Δ (𝜕𝑛) = 0. We also have [𝛷𝑥 (𝜕𝑛1),𝛷𝑥 (𝜕𝑛2 )] = 𝑒 [𝜃−𝜃0 , ·] [𝜕𝑛1 , 𝜕𝑛2] = 0.
• Again from Δ (𝜃) = 0 = Δ (𝜃0), we have

Δ (𝛷𝑥 (𝑢)𝛷𝑥 (𝜕𝑛)) = Δ (𝑒 [𝜃−𝜃0 , ·] (𝑢𝜕𝑛)) = 𝑒 [𝜃−𝜃0 , ·]
(
Δ (𝑢𝜕𝑛)

)
= 〈𝑚𝜌, 𝑛〉𝑒

[𝜃−𝜃0 , ·] (𝑢) = 〈𝑚𝜌, 𝑛〉𝛷𝑥 (𝑢) =𝛷𝑥 (Δ (𝑢𝜕𝑛)).

• Finally, we have

Δ (𝛷𝑥 (𝑣)𝛷𝑥 (𝜕𝑛)) = Δ
(
𝑒 [𝜃−𝜃0 , ·] ((𝑒 [𝜃0 , ·]𝑣)𝜕𝑛)

)
= 𝑒 [𝜃−𝜃0 , ·]

(
Δ (𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌)𝑣𝜕𝑛)
)

= 𝑒 [𝜃−𝜃0 , ·]
(
〈−𝑚𝜌, 𝑛〉𝑠

−1
𝑣𝜌 ( 𝑓𝑣,𝜌)𝑣 + 𝜕𝑛 (𝑠

−1
𝑣𝜌 ( 𝑓𝑣,𝜌))𝑣

)
= 〈−𝑚𝜌, 𝑛〉(𝑒

[𝜃, ·]𝑣) + 𝜕𝑛
(
log 𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌)
)
(𝑒 [𝜃, ·]𝑣)

= 〈−𝑚𝜌, 𝑛〉𝛷𝑥 (𝑣) + 𝜕𝑛
(
log 𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌)
)
𝛷𝑥 (𝑣)

=𝛷𝑥 (Δ (𝑣𝜕𝑛)).

We conclude that 𝛷𝑥 : 𝑘𝑃𝑉∗,∗0,𝑥 →
𝑘PV∗,∗sf,𝑥 is an isomorphism of dgBV algebras. We need to check

that the map 𝛷𝑥 agrees with the isomorphism 𝑘𝑃𝑉∗,∗0 |𝒞 →
𝑘PV∗,∗sf |𝒞 induced simply by the identity

𝑘G∗0 |𝒞 �
𝑘G∗sf |𝒞 , where 𝒞 = 𝑊0 \

⋃
𝒮𝑒∩intre (𝜌)≠∅ intre(𝜌). For this purpose, we consider two nearby

maximal cells 𝜎± such that 𝜎+ ∩ 𝜎− = 𝜌. We have 𝑘V(𝜎±) = Specan(C[𝜎
−1
± 𝑃𝑣 ]/𝑞

𝑘+1), and the gluing
of 𝑘G∗0 over 𝒲𝜌,𝑣 ∩ 𝜎+ is given by parallel transporting through v, and then by the formulae

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑚 ↦→ 𝑠−1

𝜌𝜎+ (𝑚)𝑧
𝑚 for 𝑚 ∈ Λ𝜌,

𝑢 ↦→ 𝑠−1
𝜌𝜎+ (𝑚𝜌)𝑧

𝑚𝜌 ,

𝑣 ↦→ 𝑞𝑙𝑠−1
𝑣𝜎+ ( 𝑓𝑣,𝜌)𝑠

−1
𝜌𝜎+ (−𝑚𝜌)𝑧

−𝑚𝜌 .

(5.6)

The only difference for gluing of 𝑘G∗sf is the last equation in (5.6), which is now replaced by the formula
𝑣 ↦→ 𝑞𝑙𝑠−1

𝜌𝜎+ (−𝑚𝜌)𝑧
−𝑚𝜌 . Since we have

𝛷𝑥 (𝑣) =

{
𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌)𝑣 on 𝑈𝑥 ∩ intre(𝜎+),
𝑣 on 𝑈𝑥 ∩ intre(𝜎−)

on a sufficiently small neighborhood 𝑈𝑥 of x, we see that𝛷𝑥 (𝑣) ↦→ 𝑞𝑙𝑠−1
𝑣𝜎+ ( 𝑓𝑣,𝜌)𝑠

−1
𝜌𝜎+ (−𝑚𝜌)𝑧

−𝑚𝜌 under
the gluing map of 𝑘G∗sf on 𝑈𝑥 ∩ intre (𝜎+). This shows the compatibility of 𝛷𝑥 with the gluing of 𝑘G∗0
and 𝑘G∗sf over 𝑈𝑥 ∩ intre(𝜎+). A similar argument applies for 𝑈𝑥 ∩ intre(𝜎−).

The proof for𝛷 : 𝑘A∗,∗0 →
𝑘A∗,∗sf is similar and will be omitted. The volume form is preserved under

𝛷 because we have Δ (𝜃) = 0 = Δ (𝜃0). This completes the proof of the lemma. �
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5.2.4. A global sheaf of dgLas from gluing of the semiflat sheaves
We shall apply the procedure described in §4.3 to the semiflat sheaves to glue a global sheaf of dgLas. First
of all, we choose an open cover {𝑊𝛼}𝛼∈ℐ satisfying the Condition 4.1, together with a decomposition
ℐ = ℐ1 �ℐ2 such that W1 = {𝑊𝛼}𝛼∈ℐ1 is a cover of the semiflat part 𝑊0, and W2 = {𝑊𝛼}𝛼∈ℐ2 is a
cover of a neighborhood of

( ⋃
𝜏∈𝒫 [𝑛−2] 𝜏

)
∪
( ⋃

𝜌∩𝒮𝑒≠∅𝒮 ∩ intre(𝜌)
)
.

For each 𝑊𝛼, we have a compatible set of local sheaves 𝑘G∗𝛼 of BV algebras, local sheaves 𝑘K∗𝛼 of
dgas, and relative volume elements 𝑘𝜔𝛼, 𝑘 ∈ N (as in §4.1). We can further demand that, over the semiflat
part 𝑊0, we have 𝑘G∗𝛼 = 𝑘G∗0 |𝑊𝛼 , 𝑘K∗𝛼 = 𝑘K∗0 |𝑊𝛼 and 𝑘𝜔𝛼 = 𝑘𝜔0 |𝑊𝛼 , and hence 𝑘𝑃𝑉∗,∗𝛼 = 𝑘𝑃𝑉∗,∗0 |𝑊𝛼

and 𝑘A∗,∗𝛼 = 𝑘A∗,∗0 |𝑊𝛼 for 𝛼 ∈ ℐ1.
Using the construction in §4.3, we obtain a Gerstenhaber deformation 𝑘𝑔𝛼𝛽 = 𝑒 [𝜃𝛼𝛽 , ·] ◦ 𝑘𝜓𝛼𝛽

specified by 𝜃𝛼𝛽 ∈
𝑘𝑃𝑉−1,0

𝛽 (𝑊𝛼𝛽), which give rise to sets of compatible global sheaves 𝑘𝑃𝑉∗,∗ and
𝑘A∗,∗, 𝑘 ∈ N. Restricting to the semiflat part, we get two Gerstenhaber deformations 𝑘𝑃𝑉∗,∗0 and
𝑘𝑃𝑉∗,∗ |𝑊0 , which must be equivalent as 𝐻̌>0(W1,

0𝑃𝑉−1,0 |𝑊0 ) = 0. So we have a set of compatible
isomorphisms locally given by ℎ𝛼 = 𝑒 [b𝛼 , ·] : 𝑘𝑃𝑉∗,∗0 |𝑊𝛼 →

𝑘𝑃𝑉∗,∗ |𝑊𝛼 �
𝑘𝑃𝑉∗,∗𝛼 for some element

b𝛼 ∈ 𝑘𝑃𝑉−1,0
0 (𝑊𝛼), for each 𝑘 ∈ N, and they fit into the following commutative diagram

𝑘𝑃𝑉∗,∗0 |𝑊𝛼𝛽

id ��

ℎ𝛼

��

𝑘𝑃𝑉∗,∗0 |𝑊𝛼𝛽

ℎ𝛽

��
𝑘𝑃𝑉∗,∗𝛼 |𝑊𝛼𝛽

𝑘𝑔𝛼𝛽 �� 𝑘𝑃𝑉∗,∗𝛽 |𝑊𝛼𝛽 .

Since the predifferential on 𝑘𝑃𝑉∗,∗ |𝑊0 obtained from the construction in §4.3 is of the form 𝜕𝛼 + [𝜂𝛼, ·]

for some 𝜂𝛼 ∈
𝑘𝑃𝑉−1,1

0 (𝑊𝛼), pulling back via ℎ𝛼 gives a global element 𝜂 ∈ 𝑘𝑃𝑉−1,1
0 (𝑊0) such that

ℎ−1
𝛼 ◦ (𝜕𝛼 + [𝜂𝛼, ·]) ◦ ℎ𝛼 = 𝜕0 + [𝜂, ·] .

Theorem 4.18 gives a Maurer–Cartan solution 𝜙 ∈ 𝑘𝑃𝑉−1,1 (𝐵) such that (𝜕 + [𝜙, ·])2 = 0, together
with a holomorphic volume form 𝑒 𝑓 𝜔, compatible for each k. We denote the pullback of 𝜙 under ℎ𝛼’s
to 𝑘𝑃𝑉−1,1

0 (𝑊0) as 𝜙0 and that of volume form to 𝑘
‖
A𝑛,0

0 (𝑊0) as 𝑒𝑔 𝜔0. We see that the equation

(𝜕0 + L𝜂+𝜙0 )𝑒
𝑔 𝜔0 = 0

is satisfied, or equivalently, that 𝜂 + 𝜙0 + 𝑡𝑔 is a solution to the extended Maurer–Cartan equation 4.10.

Lemma 5.11. If the holomorphic volume form 𝑒 𝑓 𝜔 is normalized in the sense of Definition 4.19, then
we can find a set of compatible V ∈ 𝑘𝑃𝑉−1,0

0 (𝑊0), 𝑘 ∈ N such that

𝑒−LV 𝜔0 = 𝑒𝑔 𝜔0.

As a consequence, the Maurer–Cartan solution 𝜂 + 𝜙0 + 𝑡𝑔 is gauge equivalent to a solution of the form
𝜁0 + 𝑡 · 0 for some 𝜁0 ∈

𝑘𝑃𝑉−1,1
0 (𝑊0), via the gauge transformation 𝑒 [V , ·] : 𝑘𝑃𝑉∗,∗0 →

𝑘𝑃𝑉∗,∗0 .

Proof. We should construct V by induction on k as in the proof of Lemma 4.6. Namely, suppose V is
constructed for the (𝑘 − 1)st-order, then we shall lift it to the 𝑘 th-order. We prove the existence of a
lifting V𝑥 ∈ 𝑘𝑃𝑉−1,0

0,𝑥 at every stalk 𝑥 ∈ 𝑊0 and use partition of unity to glue a global lifting V .
First of all, we can always find a gauge transformation 𝜃 ∈ 𝑘𝑃𝑉−1,0

0,𝑥 such that

𝑒−[𝜃, ·] ◦ 𝜕0 ◦ 𝑒
[𝜃, ·] = 𝜕0 + [𝜂 + 𝜙0, ·] .
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So we have 𝜕0(𝑒
L𝜃 𝑒𝑔 𝜔0) = 0, which implies that 𝑒L𝜃 𝑒𝑔 𝜔0 ∈

𝑘
‖
K𝑛

0,𝑥 . We can write 𝑒L𝜃 𝑒𝑔 𝜔0 = 𝑒ℎ 𝜔0

in the stalk at x for some germ ℎ ∈ 𝑘G0
0,𝑥 of holomorphic functions. Applying Lemma 4.6, we can

further choose 𝜃 so that ℎ = ℎ(𝑞) ∈ (𝑞) ⊂ C[𝑞]/𝑞𝑘+1. In a sufficiently small neighborhood 𝑈𝑥 , we
find an element 𝜚𝑥 ∈ 𝒯𝑛 (𝑈𝑥) as in Definition 4.19. The fact that the volume form is normalized forces
𝑒ℎ (𝑞) [𝜔0 ∧ 𝜚𝑥] to be constant with respect to the Gauss–Manin connection 𝑘∇. Tracing through the
exact sequence (4.14) on 𝑈𝑥 , we can lift 𝜔0 to 𝑘K𝑛

0 (𝑈𝑥) which is closed under 𝜕. As a consequence,
we have 𝑘∇ 𝜕

𝜕 log𝑞
[𝜔0 ∧ 𝜚𝑥] = 0, and hence we conclude that ℎ(𝑞) = 0.

Now, we have to solve for a lifting V𝑥 such that 𝑒L𝜃 𝑒−LV𝑥 𝜔0 = 𝜔0 up to the 𝑘 th-order. This is
equivalent to solving for a lifting u satisfying 𝑒L𝑢 𝜔0 = 𝜔0 for the 𝑘 th-order once the (𝑘 − 1)st-order is
given. Take an arbitrary lifting 𝑢̃ to the 𝑘 th-order, and making use of the formula in [8, Lem. 2.8], we have

𝑒L𝑢̃ 𝜔0 = exp

(
∞∑
𝑠=0

𝛿𝑠𝑢̃
(𝑠 + 1)!

Δ (𝑢̃)

)
𝜔0,

where 𝛿𝑢̃ = −[𝑢̃, ·]. From 𝑒L𝑢̃ 𝜔0 = 𝜔0 (mod m𝑘 ), we use induction on the order j to prove that
Δ (𝑢̃) = 0 up to order (𝑘 − 1). Therefore, we can write

Δ (𝑢̃) = 𝑞𝑘 Δ (𝑢̆) (mod m𝑘 )

for some 𝑢̆ ∈ 0𝑃𝑉−1,0
0,𝑥 by the fact that the cohomology sheaf under Δ is free over 𝑘𝑅 = C[𝑞]/(𝑞𝑘+1)

(see the discussion right after Condition 4.14). Setting 𝑢 = 𝑢̃ − 𝑞𝑘 𝑢̆ will then solve the equation. �

The element V obtained in Lemma 5.11 can be used to conjugate the operator 𝜕0 + [𝜂 + 𝜙0, ·] to get
𝜕0 + [𝜁0, ·], that is,

𝑒−[V , ·] ◦ (𝜕0 + [𝜁0, ·]) ◦ 𝑒
[V , ·] = 𝜕0 + [𝜂 + 𝜙0, ·] .

The volume form 𝜔0 will be holomorphic under the operator 𝜕0 + [𝜁0, ·]. From the equation (4.13), we
observe that Δ (𝜁0) = 0. Furthermore, the image of 𝜁0 under the isomorphism 𝛷 : 𝑘𝑃𝑉∗,∗0 →

𝑘PV∗,∗sf in
Lemma 5.10 gives 𝜙s ∈

𝑘PV−1,1
sf (𝑊0), and an operator of the form

𝜕◦ + [𝜙in + 𝜙s, ·] = 𝜕◦ +
∑
𝑣,𝜌

[𝜙𝑣,𝜌, ·] + [𝜙s, ·], (5.7)

where 𝜙in =
∑
𝑣,𝜌 𝜙𝑣,𝜌, that acts on 𝑘PV∗,∗sf .

Equipping with this operator, the semiflat sheaf 𝑘PV∗,∗sf can be glued to the sheaves 𝑘𝑃𝑉∗,∗𝛼 ’s for
𝛼 ∈ ℐ2, preserving all the operators. More explicitly, on each overlap 𝑊0𝛼 := 𝑊0 ∩𝑊𝛼, we have

𝑘𝑔0𝛼 : 𝑘PV∗,∗sf |𝑊0𝛼 →
𝑘𝑃𝑉∗,∗ |𝑊0𝛼 (5.8)

defined by

𝑘𝑔𝛼𝛽 ◦
𝑘𝑔0𝛼 |𝑊𝛼𝛽 := ℎ𝛽 ◦ 𝑒

−[V , ·] ◦𝛷−1 |𝑊𝛼𝛽

for 𝛽 ∈ ℐ1, which sends the operator 𝜕◦ + [𝜙in + 𝜙s, ·] to 𝜕𝛼 + [𝜂𝛼 + 𝜙, ·].

Definition 5.12. We call 𝑘TL∗sf := Ker(Δ) [−1] ⊂ 𝑘PV−1,∗
sf [−1], equipped with the structure of a dgLa

using 𝜕◦ and [·, ·] inherited from 𝑘PV−1,∗
sf , the sheaf of semiflat tropical vertex differential graded Lie

algebras (abbreviated as sf-TVdgLa).
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Note that 𝑘TL∗sf � 𝒯∗ |𝑊0 ⊗R
𝑘𝔥. Also, we have Δ (𝜙s) = 0 since Δ (𝜁0) = 0, and a direct computation

shows that Δ (𝜙in) = 0. Thus, 𝜙in, 𝜙s ∈
𝑘TL1

sf (𝑊0), and the operator 𝜕◦ + [𝜙in + 𝜙s, ·] preserves the
sub-dgLa 𝑘TL∗sf .

From the description of the sheaf 𝒯∗, we can see that locally on 𝑈 ⊂ 𝑊0, 𝜙s is supported on finitely
many codimension one polyhedral subsets, called walls or slabs, which are constituents of a scattering
diagram. This is why we use the subscript ‘s’ in 𝜙s, which stands for ‘scattering’.

5.3. Consistent scattering diagrams and Maurer–Cartan solutions

5.3.1. Scattering diagrams
In this subsection, we recall the notion of scattering diagrams introduced by Kontsevich–Soibelman
[36] and Gross–Siebert [29], and make modifications to suit our needs. We begin with the notion of
walls from [29, §2]. Let

𝒮̂ =

( ⋃
𝜏∈𝒫 [𝑛−2]

𝜏

)
∪

/00001
⋃

𝜌∈𝒫 [𝑛−1]

𝜌∩𝒮𝑒≠∅

𝒮 ∩ intre(𝜌)
233334

be equipped with a polyhedral decomposition induced from 𝒫 and 𝒮. For the exposition below, we will
always fix 𝑘 > 0 and consider all these structures modulo m𝑘+1 = (𝑞𝑘+1).

Definition 5.13. A wall (w, 𝜎w, 𝑑w,Θw) consists of

• a maximal cell 𝜎w ∈ 𝒫
[𝑛] ,

• a closed (𝑛 − 1)-dimensional tropical polyhedral subset w of 𝜎w such that

intre(w) ∩
/00001
⋃

𝜌∈𝒫 [𝑛−1]

𝜌∩𝒮𝑒≠∅

intre(𝜌)
233334
= ∅,

• a choice of a primitive normal 𝑑w, and
• a section Θw of the tropical vertex group exp(𝑞 · 𝑘𝔥) over a sufficiently small neighborhood of w.

We call Θw the wall-crossing factor associated to the wall w. We may write a wall as (w,Θw) for
simplicity.

A wall cannot be contained in 𝜌 with 𝜌 ∩ 𝒮𝑒 ≠ ∅. We define a notion of slabs for these subsets of
codimension one strata 𝜌 intersecting 𝒮𝑒. The difference is that we have an extra term 𝛩𝑣,𝜌 coming
from the slab function 𝑓𝑣,𝜌.

Definition 5.14. A slab (b, 𝜌b, 𝑑𝜌, 𝛯b) consists of

• an (𝑛 − 1)-cell 𝜌b ∈ 𝒫
[𝑛−1] such that 𝜌b ∩𝒮𝑒 ≠ ∅,

• a closed (𝑛 − 1)-dimensional tropical polyhedral subset b of 𝜌b \ (𝜌b ∩𝒮),
• a choice of a primitive normal 𝑑𝜌, and
• a section 𝛯b of exp(𝑞 · 𝑘𝔥) over a sufficiently small neighborhood of b.

The wall-crossing factor associated to the slab b is given by

Θb := 𝛩𝑣,𝜌 ◦ 𝛯b,
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Figure 8. Supports of walls/slabs.

where v is the unique vertex such that intre(𝜌)𝑣 contains b and

𝛩𝑣,𝜌 = exp([log(𝑠−1
𝑣𝜌 ( 𝑓𝑣,𝜌))𝜕𝑑𝜌 , ·])

(cf. equation (5.4)). We may write a slab as (b,Θb) for simplicity.

Remark 5.15. In the above definition, a slab is not allowed to intersect the singular locus 𝒮. This is
different from the situation in [29, §2]. However, in our definition of consistent scattering diagrams, we
will require consistency around each stratum of 𝒮.

Example 5.16. We consider the three-dimensional example shown in Figure 8, from which we can see
possible supports of the walls and slabs. There are two adjacent maximal cells intersecting at 𝜌 ∈ 𝒫 [𝑛−1]

with 𝒮𝑒∩ 𝜌 = 𝒮∩ 𝜌 colored in red. The two-dimensional polyhedral subsets colored in blue can support
walls and the polyhedral subset colored in green can support a slab because it is lying inside 𝜌 with
𝒮𝑒 ∩ 𝜌 ≠ ∅.

Definition 5.17. A (𝑘 th-order) scattering diagram is a countable collection

𝒟 = {(w𝑖 ,Θ𝑖)}𝑖∈N ∪ {(b 𝑗 ,Θ 𝑗 )} 𝑗∈N

of walls or slabs such that the intersections of any two walls/slabs is at most an (𝑛 − 2)-dimensional
tropical polyhedral subset, and {w𝑖 ∩𝑊0}𝑖∈N ∪ {b 𝑗 ∩𝑊0} 𝑗∈N is locally finite in 𝑊0.

Our notion of scattering diagrams is more flexible than the one defined in [36, 29] in two ways: First,
there is no relation between the affine direction orthogonal to a wall w or a slab b and its wall crossing
factor. As a result, we cannot allow overlapping of walls/slabs in their relative interior because in that
case their associated wall crossing factors are not necessarily commuting. Second, we only require that
the intersection of 𝒟 with 𝑊0 is a locally finite collection of 𝑊0, which implies that we allow a possibly
infinite number of walls/slabs approaching strata of 𝒮̂. In the construction of the scattering diagram
𝒟(𝜑) associated to a Maurer–Cartan solution 𝜑 below, all the walls/slabs will be compact subsets of𝑊0.
These walls will not intersect 𝒮̂, as illustrated in Figure 8. However, there could be a union of infinitely
many walls limiting to some strata of 𝒮̂. See also Remark 1.2.

Example 5.18. For the two-dimensional example shown in Figure 9, we see a vertex v and its adjacent
cells, and the singular locus 𝒮𝑒 consists of the red crosses. In our version of scattering diagrams, we
allow infinitely many intervals limiting to {𝑣} or 𝒮𝑒.

Given a scattering diagram 𝒟̂, we can define its support as |𝒟| :=
⋃
𝑖∈Nw𝑖 ∪

⋃
𝑗∈N b 𝑗 . There is an

induced polyhedral decomposition on |𝒟| such that its (𝑛 − 1)-cells are closed subsets of some walls
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Figure 9. Walls/slabs around 𝒮̂.

or slabs, and all intersections of walls or slabs are lying in the union of the (𝑛 − 2)-cells. We write
|𝒟| [𝑖 ] for the collection of all the i-cells in this polyhedral decomposition. We may assume, after further
subdividing the walls or slabs in 𝒟 if necessary, that every wall or slab is an (𝑛− 1)-cell in |𝒟|. We call
an (𝑛 − 2)-cell 𝔧 ∈ |𝒟| [𝑛−2] a joint, and a connected component of 𝑊0 \ |𝒟| a chamber.

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of elements
in the tropical vertex group as in [29], we will express it in terms of the action by the tropical vertex group
on the local sections of 𝑘G0

sf . There is no harm in doing so since we have the inclusion of sheaf of Lie
algebra 𝑘G−1

sf ↩→ Der(𝑘G0
sf ,

𝑘G0
sf), that is, a relative vector field is determined by its action on functions.

In this regard, we would like to define the (𝑘 th-order) wall-crossing sheaf 𝑘𝒪𝒟 on the open set

𝑊0 (𝒟) := 𝑊0 \
⋃

𝔧∈ |𝒟 | [𝑛−2]

𝔧,

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall/slab. We first consider the sheaf 𝑘G0

sf of holomorphic functions over the subset 𝑊0 \ |𝒟|,
and let

𝑘𝒪𝒟 |𝑊0\ |𝒟 | := 𝑘G0
sf |𝑊0\ |𝒟 | .

To extend it through the walls/slabs, we will specify the analytic continuation through intre (w) for each
w ∈ |𝒟| [𝑛−1] . Given a wall/slab w with two adjacent chambers C+, C− and 𝑑w pointing into C+, and a
point 𝑥 ∈ intre(w) with the germ Θw,𝑥 of wall-crossing factors near x, we let

𝑘𝒪𝒟,𝑥 := 𝑘G0
sf,𝑥 ,

but with a different gluing to nearby chambers C±: In a sufficiently small neighborhood 𝑈𝑥 of x, the
gluing of a local section 𝑓 ∈ 𝑘𝒪𝒟,𝑥 is given by

𝑓 |𝑈𝑥∩C± :=

{
Θw,𝑥 ( 𝑓 ) |𝑈𝑥∩C+ on 𝑈𝑥 ∩ C+,
𝑓 |𝑈𝑥∩C− on 𝑈𝑥 ∩ C−.

(5.9)

In this way, the sheaf 𝑘𝒪𝒟 |𝑊0\ |𝒟 | extends to 𝑊0 (𝒟).
Now, we can formulate consistency of a scattering diagram 𝒟 in terms of the behaviour of the sheaf

𝑘𝒪𝒟 over the joints 𝔧’s and (𝑛 − 2)-dimensional strata of 𝒮̂. More precisely, we consider the push-
forward 𝔦∗(𝑘𝒪𝒟) along the embedding 𝔦 : 𝑊0 (𝒟) → 𝐵, and its stalk at 𝑥 ∈ intre(𝔧) and 𝑥 ∈ intre(𝜏) for
strata 𝜏 ⊂ 𝒮̂. Similar to above, we can define the (𝑙th-order) sheaf 𝑙𝒪𝒟 by using 𝑙G0

sf and considering
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equation (5.9) modulo (𝑞)𝑙+1. There is a natural restriction map 𝑘,𝑙♭ : 𝔦∗(𝑘𝒪𝒟) → 𝔦∗(𝑙𝒪𝒟). Taking
tensor product, we have 𝑘,𝑙♭ : 𝔦∗(𝑘𝒪𝒟) ⊗𝑘𝑅

𝑙𝑅 → 𝔦∗(𝑙𝒪𝒟), where 𝑘𝑅 = C[𝑞]/(𝑞𝑘+1).
The proof of the following lemma will be given in Appendix §A.

Lemma 5.19 (Hartogs extension property). We have

𝜄∗(
0G0 |𝑊0) =

0G0,

where 𝜄 : 𝑊0 → 𝐵 is the inclusion. Moreover, for any scattering diagram 𝒟, we have

𝔦∗(
0G0 |𝑊0 (𝒟) ) =

0G0,

where 𝔦 : 𝑊0 (𝒟) → 𝐵 is the inclusion.
Lemma 5.20. The 0th-order sheaf 𝔦∗(0𝒪𝒟) is isomorphic to the sheaf 0G0.
Proof. In view of Lemma 5.19, we only have to show that the two sheaves are isomorphic on the
open subset 𝑊0 (𝒟). Since we work modulo (𝑞), only the wall-crossing factor 𝛩𝑣,𝜌 associated to a
slab matters. So we take a point 𝑥 ∈ intre(b) ⊂ intre(𝜌)𝑣 for some vertex v and compare 0𝒪𝒟,𝑥 with
0G0

𝑥 =
0G0

sf,𝑥 . From the proof of Lemma 5.10, we have

0G0
𝑥 =

0G0
sf,𝑥 = O𝑘V(𝜌)𝑣 ,𝐾

=

{
𝑎0, 𝑗 +

∞∑
𝑖=1

𝑎𝑖𝑢
𝑖 +

−∞∑
𝑖=−1

𝑎𝑖𝑣
−𝑖
��� 𝑎𝑖 ∈ O(C∗)𝑛−1 (𝑈) for some neigh. 𝑈 ⊃ 𝐾, sup

𝑖≠0

log |𝑎𝑖 |
|𝑖 |

< ∞

}
,

with the relation 𝑢𝑣 = 0. The gluings with nearby maximal cells 𝜎± of both 0G0 and 0G0
sf are simply

given by the parallel transport through v and the formulae

𝜎+ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑚 ↦→ 𝑠−1

𝜌𝜎+ (𝑚)𝑧
𝑚 for 𝑚 ∈ Λ𝜌,

𝑢 ↦→ 𝑠−1
𝜌𝜎+ (𝑚𝜌)𝑧

𝑚𝜌 ,

𝑣 ↦→ 0,
𝜎− :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧𝑚 ↦→ 𝑠−1

𝜌𝜎− (𝑚)𝑧
𝑚 for 𝑚 ∈ Λ𝜌,

𝑢 ↦→ 0,
𝑣 ↦→ 𝑠−1

𝜌𝜎− (−𝑚𝜌)𝑧
−𝑚𝜌

in the proof of Lemma 5.10.
Now, for the wall-crossing sheaf 0𝒪𝒟,𝑥 � 0G0

sf,𝑥 , the wall-crossing factor 𝛩𝑣,𝜌 acts trivially except
on the two coordinate functions 𝑢, 𝑣 because 〈𝑚, 𝑑𝜌〉 = 0 for 𝑚 ∈ Λ𝜌. The gluing of u to the nearby
maximal cells which obeys wall crossing is given by

𝑢 |𝑈𝑥∩𝜎± :=

{
𝑢 |𝑈𝑥∩𝜎+ on 𝑈𝑥 ∩ 𝜎+,

𝛩−1
𝑣,𝜌,𝑥 (𝑢) |𝑈𝑥∩𝜎− = 0 on 𝑈𝑥 ∩ 𝜎−,

in a sufficiently small neighborhood 𝑈𝑥 of x. Here, the reason that we have 𝛩−1
𝑣,𝜌,𝑥 (𝑢) |𝑈𝑥∩𝜎− = 0 on

𝑈𝑥 ∩ 𝜎− is simply because we have 𝑢 ↦→ 0 in the gluing of 0G0
sf . For the same reason, we see that the

gluing of v agrees with that of 0G0 and 0G0
sf . �

Definition 5.21. A (𝑘 th-order) scattering diagram 𝒟 is said to be consistent if there is an isomorphism
𝔦∗(𝑘𝒪𝒟) |𝑊𝛼 �

𝑘G0
𝛼 as sheaves of C[𝑞]/(𝑞𝑘+1)-algebras on each open subset 𝑊𝛼.

The above consistency condition would imply that 𝑘,𝑙♭ : 𝔦∗(𝑘𝒪𝒟) → 𝔦∗(𝑙𝒪𝒟) is surjective for any
𝑙 < 𝑘 and hence 𝔦∗(𝑘𝒪𝒟) is a sheaf of freeC[𝑞]/(𝑞𝑘+1)-modules on B. We are going to see that 𝔦∗(𝑘𝒪𝒟)

agrees with the push-forward of the sheaf of holomorphic functions on a (𝑘 th-order) thickening 𝑘𝑋 of
the central fiber 0𝑋 under the modified moment map 𝜈.

Let us elaborate a bit on the relation between this definition of consistency and that in [29]. Assuming
we have a consistent scattering diagram in the sense of [29], then we obtain a 𝑘 th-order thickening 𝑘𝑋
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of 0𝑋 which is locally modeled on the thickenings 𝑘V𝛼’s by [28, Cor. 2.18]. Pushing forward via
the modified moment map 𝜈, we obtain a sheaf of algebras over C[𝑞]/(𝑞𝑘+1) lifting 0G0, which is
locally isomorphic to the 𝑘G0

𝛼’s. This consequence is exactly what we use to formulate our definition of
consistency.

Lemma 5.22. Suppose we have 𝑊 ⊂ 𝑊𝛼 ∩𝑊𝛽 such that 𝑉 = 𝜈−1(𝑊) is Stein, and an isomorphism
ℎ : 𝑘G0

𝛽 |𝑊 →
𝑘G0

𝛼 |𝑊 of sheaves of C[𝑞]/(𝑞𝑘+1)-algebras which is the identity modulo (𝑞). Then there
is a unique isomorphism 𝜓 : 𝑘V𝛼 |𝑉 →

𝑘V𝛽 |𝑉 of analytic spaces inducing h.

Proof. From the description in §2.4, we can embed both families 𝑘V𝛼, 𝑘V𝛽 over Specan(C[𝑞]/(𝑞
𝑘+1))

as closed analytic subschemes of C𝑁+1 = C𝑁 ×C𝑞 and C𝐿+1 = C𝐿 ×C𝑞 , respectively, where projection
to the second factor defines the family over C[𝑞]/(𝑞𝑘+1). Let J𝛼 and J𝛽 be the corresponding ideal
sheaves, which can be generated by finitely many elements. We can take Stein open subsets 𝑈𝛼 ⊆ C

𝑁+1

and 𝑈𝛽 ⊆ C
𝐿+1 such that their intersections with the subschemes give 𝑘V𝛼 |𝑉 and 𝑘V𝛽 |𝑉 , respectively.

By taking global sections of the sheaves over W, we obtain the isomorphism ℎ : O𝑘V𝛽
(𝑉) → O𝑘V𝛼

(𝑉).
Using the fact that 𝑈𝛼 is Stein, we can lift ℎ(𝑧𝑖)’s, where 𝑧𝑖’s are restrictions of coordinate functions
to 𝑘V𝛽 |𝑉 ⊂ 𝑈𝛽 , to holomorphic functions on 𝑈𝛼. In this way, h can be lifted as a holomorphic map
𝜓 : 𝑈𝛼 → 𝑈𝛽 . Restricting to 𝑘V𝛼 |𝑉 , we see that the image lies in 𝑘V𝛽 |𝑉 , and hence we obtain the
isomorphism 𝜓. The uniqueness follows from the fact the 𝜓 is determined by 𝜓∗(𝑧𝑖) = ℎ(𝑧𝑖). �

Given a consistent scattering diagram 𝒟 (in the sense of Definition 5.21), the sheaf 𝔦∗(𝑘𝒪𝒟) can be
treated as a gluing of the local sheaves 𝑘G0

𝛼’s. Then from Lemma 5.22, we obtain a gluing of the local
models 𝑘V𝛼’s yielding a thickening 𝑘𝑋 of 0𝑋 . This justifies Definition 5.21.

5.3.2. Constructing consistent scattering diagrams from Maurer–Cartan solutions
We are finally ready to demonstrate how to construct a consistent scattering diagram 𝒟(𝜑) in the sense
of Definition 5.21 from a Maurer–Cartan solution 𝜑 = 𝜙 + 𝑡 𝑓 obtained in Theorem 4.18. As in §5.2.4,
we obtain a 𝑘 th-order Maurer–Cartan solution 𝜁0 and define its scattered part as 𝜙s ∈

𝑘TL1
sf (𝑊0). From

this, we want to construct a 𝑘 th-order scattering diagram 𝒟(𝜑).
We take an open cover {𝑈𝑖}𝑖 by precompact convex open subsets of 𝑊0 such that, locally on 𝑈𝑖 ,

𝜙in + 𝜙s can be written as a finite sum

(𝜙in + 𝜙s) |𝑈𝑖 =
∑
𝑗

𝛼𝑖 𝑗 ⊗ 𝑣𝑖 𝑗 ,

where 𝛼𝑖 𝑗 ∈ 𝒯1(𝑈𝑖) has asymptotic support on a codimension one polyhedral subset 𝑃𝑖 𝑗 ⊂ 𝑈𝑖 , and
𝑣𝑖 𝑗 ∈

𝑘𝔥(𝑈𝑖). We take a partition of unity {𝜚𝑖}𝑖 subordinate to the cover {𝑈𝑖}𝑖 such that supp(𝜚𝑖) has
asymptotic support on a compact subset 𝐶𝑖 of 𝑈𝑖 . As a result, we can write

𝜙in + 𝜙s =
∑
𝑖

∑
𝑗

(𝜚𝑖𝛼𝑖 𝑗 ) ⊗ 𝑣𝑖 𝑗 , (5.10)

where each (𝜚𝑖𝛼𝑖 𝑗 ) has asymptotic support on the compact codimension one subset 𝐶𝑖 ∩ 𝑃𝑖 𝑗 ⊂ 𝑈𝑖 . The
subset

⋃
𝑖 𝑗 𝐶𝑖 ∩ 𝑃𝑖 𝑗 will be the support |𝒟| of our scattering diagram 𝒟 = 𝒟(𝜑).

We may equip |𝒟| :=
⋃
𝑖 𝑗 𝐶𝑖 ∩ 𝑃𝑖 𝑗 with a polyhedral decomposition such that all the boundaries and

mutual intersections of 𝐶𝑖∩𝑃𝑖 𝑗 ’s are contained in (𝑛−2)-dimensional strata of |𝒟|. So, for each (𝑛−1)-
dimensional cell 𝜏 of |𝒟|, if intre(𝜏) ∩ (𝐶𝑖 ∩ 𝑃𝑖 𝑗 ) ≠ ∅ for some 𝑖, 𝑗 , then we must have 𝜏 ⊂ 𝐶𝑖 ∩ 𝑃𝑖 𝑗 .
Let I(𝜏) := {(𝑖, 𝑗) | 𝜏 ⊂ 𝐶𝑖 ∩ 𝑃𝑖 𝑗 }, which is a finite set of indices. We will equip the (𝑛 − 1)-cells 𝜏’s
of |𝒟| with the structure of walls or slabs.

We first consider the case of a wall. Take 𝜏 ∈ |𝒟| [𝑛−1] such that intre(𝜏) ∩ intre(𝜌) = ∅ for all 𝜌 with
𝜌 ∩𝒮𝑒 ≠ ∅. We let w = 𝜏, choose a primitive normal 𝑑w of 𝜏, and give the labels C± to the two adjacent
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chambers C± so that 𝑑w is pointing into C+. In a sufficiently small neighborhood 𝑈𝜏 of intre(𝜏), we have
𝜙in |𝑈𝜏 = 0 and we may write

𝜙s |𝑈𝜏 =
∑

(𝑖, 𝑗) ∈I(𝜏)

(𝜚𝑖𝛼𝑖 𝑗 ) ⊗ 𝑣𝑖 𝑗 ,

where each (𝜚𝑖𝛼𝑖 𝑗 ) has asymptotic support on intre(𝜏). Since locally on𝑈𝜏 any Maurer–Cartan solution
is gauge equivalent to 0, there exists an element 𝜃𝜏 ∈ 𝒯0(𝑈𝜏) ⊗ 𝑞 · 𝑘𝔥(𝑈𝜏) such that

𝑒 [𝜃𝜏 , ·] ◦ 𝜕◦ ◦ 𝑒
−[𝜃𝜏 , ·] = 𝜕◦ + [𝜙s, ·] .

Such an element can be constructed inductively using the procedure in [37, §3.4.3] and can be chosen
to be of the form

𝜃𝜏 |𝑈𝜏∩C± =

{
𝜃𝜏,0 |𝑈𝜏∩C+ on 𝑈𝜏 ∩ C+,
0 on 𝑈𝜏 ∩ C−,

(5.11)

for some 𝜃𝜏,0 ∈ 𝑞 · 𝑘𝔥(𝑈𝜏). From this, we obtain the wall-crossing factor associated to the wall w

Θw := 𝑒 [𝜃𝜏,0 , ·] . (5.12)

Remark 5.23. Here, we need to apply the procedure in [37, §3.4.3], which is a generalization of that in
[7], because of the potential noncommutativity: [𝑣𝑖 𝑗 , 𝑣𝑖 𝑗′ ] ≠ 0 for 𝑗 ≠ 𝑗 ′.

For the case where 𝜏 ⊂ intre (𝜌)𝑣 for some 𝜌 with 𝜌 ∩𝒮𝑒 ≠ ∅, we will define a slab. We take 𝑈𝜏 and
I(𝜏) as above, and let the slab b = 𝜏. The primitive normal 𝑑𝜌 is the one we chose earlier for each 𝜌.
Again, we work in a small neighborhood 𝑈𝜏 of intre (𝜏) with two adjacent chambers C±. As in the proof
of Lemma 5.10, we can find a step-function-like element 𝜃𝑣,𝜌 of the form

𝜃𝑣,𝜌 =

{
log(𝑠−1

𝑣𝜌 ( 𝑓𝑣,𝜌))𝜕𝑑𝜌 on 𝑈𝜏 ∩ C+,
0 on 𝑈𝜏 ∩ C−

to solve the equation 𝑒 [𝜃𝑣,𝜌 , ·] ◦ 𝜕◦ ◦ 𝑒
−[𝜃𝑣,𝜌 , ·] = 𝜕◦ + [𝜙in, ·] on 𝑈𝜏 . In other words,

𝛹 := 𝑒−[𝜃𝑣,𝜌 , ·] : (𝑘TL∗sf |𝑈𝜏 , 𝜕sf) → (
𝑘TL∗sf |𝑈𝜏 , 𝜕◦)

is an isomorphism of sheaves of dgLas. Computations using the formula in [8, Lem. 2.5] then gives the
identity

𝛹−1 (𝜕◦ + [𝛹 (𝜙s), ·]) ◦𝛹 = 𝜕◦ + [𝜙in + 𝜙s, ·] .

Once again, we can find an element 𝜃𝜏 such that

𝑒 [𝜃𝜏 , ·] ◦ 𝜕◦ ◦ 𝑒
−[𝜃𝜏 , ·] = 𝜕◦ + [𝛹 (𝜙s), ·],

and hence a corresponding element 𝜃𝜏,0 ∈ 𝑞 · 𝑘𝔥(𝑈𝜏) of the form (5.11). From this, we get

𝛯b := 𝑒 [𝜃𝜏,0 , ·] (5.13)

and hence the wall-crossing factor Θb := 𝛩𝑣,𝜌 ◦ 𝛯b associated to the slab b.
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Next, we would like to argue that consistency of the scattering diagram 𝒟 follows from the fact that
𝜙 is a Maurer–Cartan solution. First of all, on the global sheaf 𝑘𝑃𝑉∗,∗ over B, we have the operator
𝜕𝜙 := 𝜕 + [𝜙, ·] which satisfies [Δ , 𝜕𝜙] = 0 and 𝜕2

𝜙 = 0. This allows us to define the sheaf of 𝑘 th-order
holomorphic functions as

𝑘O𝜙 := Ker(𝜕𝜙) ⊂ 𝑘𝑃𝑉0,0,

for each 𝑘 ∈ N. It is a sequence of sheaves of commutative C[𝑞]/(𝑞𝑘+1)-algebras over B, equipped with
a natural map 𝑘,𝑙♭ : 𝑘O𝜙 →

𝑙O𝜙 for 𝑙 < 𝑘 that is induced from the maps for 𝑘𝑃𝑉∗,∗. By construction,
we see that 0O𝜙 � 0G0 � 𝜈∗(O0𝑋 ).

We claim that the maps 𝑘,𝑙♭’s are surjective. To prove this, we fix a point 𝑥 ∈ 𝐵 and take an open
chart 𝑊𝛼 containing x in the cover of B we chose at the beginning of §5.2.4. There is an isomorphism
𝛷𝛼 : 𝑘𝑃𝑉∗,∗ |𝑊𝛼 �

𝑘𝑃𝑉∗,∗𝛼 identifying the differential 𝜕 with 𝜕𝛼 + [𝜂𝛼, ·] by our construction. Write
𝜙𝛼 =𝛷𝛼 (𝜙) and notice that 𝜕𝛼 + [𝜂𝛼 + 𝜙𝛼, ·] squares to zero, which means that 𝜂𝛼 + 𝜙𝛼 is a solution to
the Maurer–Cartan equation for 𝑘𝑃𝑉∗,∗𝛼 (𝑊𝛼). We apply the same trick as above to the local open subset
𝑊𝛼, namely, any Maurer–Cartan solution lying in 𝑘𝑃𝑉−1,1

𝛼 (𝑊𝛼) is gauge equivalent to the trivial one,
so there exists 𝜃𝛼 ∈ 𝑘𝑃𝑉−1,0

𝛼 (𝑊𝛼) such that

𝑒 [𝜃𝛼 , ·] ◦ 𝜕𝛼 ◦ 𝑒
−[𝜃𝛼 , ·] = 𝜕𝛼 + [𝜂𝛼 + 𝜙𝛼, ·] .

As a result, the map 𝑒−[𝜃𝛼 , ·] ◦𝛷𝛼 : (𝑘𝑃𝑉∗,∗ |𝑊𝛼 , 𝜕 + [𝜙, ·]) � (
𝑘𝑃𝑉∗,∗𝛼 , 𝜕𝛼) is an isomorphism of dgLas,

sending 𝑘O𝜙 isomorphically onto 𝑘G0
𝛼.

We shall now prove the consistency of the scattering diagram𝒟 = 𝒟(𝜑) by identifying the associated
wall-crossing sheaf 𝑘𝒪𝒟 with the sheaf 𝑘O𝜙 |𝑊0 (𝒟) of 𝑘 th-order holomorphic functions.

Theorem 5.24. There is an isomorphism Φ : 𝑘O𝜙 |𝑊0 (𝒟) →
𝑘𝒪𝒟 of sheaves of C[𝑞]/(𝑞𝑘+1)-algebras

on 𝑊0(𝒟). Furthermore, the scattering diagram 𝒟 = 𝒟(𝜑) associated to the Maurer–Cartan solution
𝜙 is consistent in the sense of Definition 5.21.

Proof. To prove the first statement, we first notice that there is a natural isomorphism

𝑘O𝜙 |𝑊0\ |𝒟 | �
𝑘𝒪𝒟 |𝑊0\ |𝒟 | ,

so we only need to consider those points 𝑥 ∈ intre(𝜏), where 𝜏 is either a wall or a slab. Since
𝑊0 (𝒟) ⊂ 𝑊0, we will work on the semiflat locus 𝑊0 and use the model 𝑘PV∗,∗sf , which is equipped with
the operator 𝜕◦ + [𝜙in + 𝜙s, ·]. Via the isomorphism

𝛷 : (𝑘𝑃𝑉∗,∗0 , 𝜕𝜙) → (
𝑘PV∗,∗sf , 𝜕◦ + [𝜙in + 𝜙s, ·])

from Lemma 5.10, we may write

𝑘O𝜙 |𝑊0 = Ker(𝜕𝜙) ⊂ 𝑘PV0,0
sf .

We fix a point 𝑥 ∈ 𝑊0 (𝒟) ∩ |𝒟| and consider the stalk at x for both sheaves. In the above construction
of walls and slabs from the Maurer–Cartan solution 𝜙, we first take a sufficiently small open subset
𝑈𝑥 and then find a gauge transformation of the form𝛹 = 𝑒 [𝜃𝜏 , ·] in the case of a wall, and of the form
𝛹 = 𝑒 [𝜃𝑣,𝜌 , ·] ◦ 𝑒 [𝜃𝜏 , ·] in the case of a slab. We have

𝛹 ◦ 𝜕◦ ◦𝛹
−1 = 𝜕◦ + [𝜙in + 𝜙s, ·]
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by construction, so this further induces an isomorphism

𝛹 : 𝑘G0
sf |𝑈𝑥 →

𝑘O𝜙 |𝑈𝑥

of C[𝑞]/(𝑞𝑘+1)-algebras.
It remains to see how the stalk𝛹 : 𝑘G0

sf,𝑥 →
𝑘O𝜙,𝑥 is glued to nearby chambers C±. For this purpose,

we let

Ψ0 := 𝑒 [𝜃𝜏,0 , ·]

as in equation (5.12) in the case of a wall, and

Ψ0 := 𝛩𝑣,𝜌 ◦ 𝑒
[𝜃𝜏,0 , ·]

as in equation (5.13) in the case of a slab. Then, the restriction of an element 𝑓 ∈ 𝑘G0
sf,𝑥 to a nearby

chamber is given by

𝛹 ( 𝑓 ) =

{
Ψ0( 𝑓 ) on 𝑈𝑥 ∩ C+,
𝑓 on 𝑈𝑥 ∩ C−

in a sufficiently small neighborhood 𝑈𝑥 . This agrees with the description of the wall-crossing sheaf
𝑘𝒪𝒟,𝑥 in equation (5.9). Hence, we obtain an isomorphism 𝑘O𝜙 |𝑊0 (𝒟) �

𝑘𝒪𝒟.
To prove the second statement, we first apply pushing forward via 𝔦 : 𝑊0 (𝒟) → 𝐵 to the first statement

to get the isomorphism

𝔦∗(
𝑘O𝜙 |𝑊0 (𝒟) ) � 𝔦∗(

𝑘𝒪𝒟).

Now, by the discussion right before this proof, we may identify 𝑘O𝜙 with 𝑘G0
𝛼 locally. But the sheaf

𝑘G0
𝛼, which is isomorphic to the restriction of 0G0 ⊗C C[𝑞]/(𝑞

𝑘+1) to 𝑊𝛼 as sheaves of C[𝑞]/(𝑞𝑘+1)-
modules, satisfies the Hartogs extension property from𝑊0 (𝒟) ∩𝑊𝛼 to 𝑊𝛼 by Lemma 5.19. So we have
𝔦∗(𝑘O𝜙 |𝑊0 (𝒟) ) �

𝑘O𝜙 . Hence, we obtain

𝔦∗(
𝑘𝒪𝒟) |𝑊𝛼 � (

𝑘O𝜙) |𝑊𝛼 �
𝑘G0

𝛼,

from which follows the consistency of the diagram 𝒟 = 𝒟(𝜑). �

Remark 5.25. From the proof of Theorem 5.24, we actually have a correspondence between step-
function-like elements in the gauge group and elements in the tropical vertex group as follows. We fix
a generic point x in a joint 𝔧, and consider a neighborhood of x of the form 𝑈𝑥 × 𝐷𝑥 , where 𝑈𝑥 is a
neighborhood of x in intre (𝔧) and 𝐷𝑥 is a disk in the normal direction of 𝔧. We pick a compact annulus
𝐴𝑥 ⊂ 𝐷𝑥 surrounding x, intersecting finitely many walls/slabs. We let 𝜏1, . . . , 𝜏𝑠 be the walls/slabs in
anticlockwise direction. For each 𝜏𝑖 , we take an open subset 𝒲𝑖 just containing the wall 𝜏𝑖 such that
𝒲𝑖 \ 𝜏𝑖 = 𝒲𝑖,+ ∪𝒲𝑖,−. The following Figure 10 below illustrates the situation.

As in the proof of Theorem 5.24, there is a gauge transformation on each 𝒲𝑖 of the form

𝛹𝑖 : (𝑘PV∗,∗sf |𝒲𝑖 , 𝜕◦) → (
𝑘PV∗,∗sf |𝒲𝑖 , 𝜕◦ + [𝜙in + 𝜙s, ·]),
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Figure 10. Wall crossing around a joint 𝔧.

where𝛹𝑖 = 𝑒 [𝜃𝑣,𝜌 , ·] ◦ 𝑒 [𝜃𝜏 , ·] for a slab and𝛹𝑖 = 𝑒 [𝜃𝜏 , ·] for a wall. These are step-function-like elements
in the gauge group satisfying

𝛹𝑖 =

{
Θ𝑖 on 𝒲𝑖,+,

id on 𝒲𝑖,−,

where Θ𝑖 is the wall crossing factor associated to 𝜏𝑖 .
On the overlap 𝒲𝑖,+ = 𝒲𝑖 ∩𝒲𝑖+1 (where we set 𝑖 + 1 = 1 if 𝑖 = 𝑠), there is a commutative diagram

(𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦)
Θ𝑖 ��

𝛹𝑖

��

(𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦)

𝛹𝑖+1
��

(𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦ + [𝜙in + 𝜙s, ·])
id �� (𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦ + [𝜙in + 𝜙s, ·])

allowing us to interpret the wall crossing factor Θ𝑖 as the gluing between the two sheaves 𝑘PV∗,∗sf |𝒲𝑖 and
𝑘PV∗,∗sf |𝒲𝑖+1 over 𝒲𝑖,+.

Notice that the Maurer–Cartan element 𝜙 is global. On a small neighborhood𝑊𝛼 containing𝑈𝑥×𝐷𝑥 ,
we have the sheaf (𝑘𝑃𝑉∗,∗𝛼 , 𝜕𝜙) on 𝑊𝛼, and there is an isomorphism

𝑒 [𝜃𝛼 , ·] : (𝑘𝑃𝑉∗,∗𝛼 , 𝜕𝛼) � (𝑘𝑃𝑉∗,∗𝛼 , 𝜕𝜙).

Composing with the isomorphism

(𝑘𝑃𝑉∗,∗𝛼 |𝒲𝑖 , 𝜕𝜙) � (
𝑘PV∗,∗sf |𝒲𝑖 , 𝜕◦ + [𝜙in + 𝜙s, ·]),

we have a commutative diagram of isomorphisms

(𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦)
𝛹𝑖,0 ��

����
���

���
���

��
(𝑘PV∗,∗sf |𝒲𝑖,+ , 𝜕◦)

		���
���

���
���

�

(𝑘𝑃𝑉∗,∗𝛼 |𝒲𝑖,+ , 𝜕𝛼)

.
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This is a Čech-type cocycle condition between the sheaves 𝑘PV∗,∗sf |𝒲𝑖 ’s and 𝑘𝑃𝑉∗,∗𝛼 , which can be
understood as the original consistency condition defined using path-ordered products in [36, 29]. In
particular, taking a local holomorphic function in 𝑘G0

𝛼 (𝑊𝛼) and restricting it to 𝑈𝑥 × 𝐴𝑥 , we obtain
elements in 𝑘G0

sf (𝒲𝑖) that jump across the walls according to the wall crossing factors Θ𝑖’s.

A. The Hartogs extension property

The following lemma is an application of the Hartogs extension theorem [41].

Lemma A.1. Consider the analytic space (C∗)𝑘 × Specan(C[Σ𝜏]) for some 𝜏 and an open subset
of the form 𝑈 × 𝑉 , where 𝑈 ⊂ (C∗)𝑘 and V is a neighborhood of the origin 𝑜 ∈ Specan(C[Σ𝜏]). Let
𝑊 := 𝑉 \

( ⋃
𝜔 𝑉𝜔
)
, where dimR(𝜔) +2 ≤ dimR(Σ𝜏) (i.e., W is the complement of complex codimension

2 orbits in V). Then the restriction O(𝑈 ×𝑉) → O(𝑈 ×𝑊) is a ring isomorphism.

Proof. We first consider the case where dimR (Σ𝜏) ≥ 2 and 𝑊 = 𝑉 \ {0}. We can further assume that
Σ𝜏 consists of just one cone 𝜎 because the holomorphic functions on V are those on 𝑉 ∩ 𝜎 that agree
on the overlaps. So we can write

O(𝑈 ×𝑊) =
{ ∑
𝑚∈Λ𝜎

𝑎𝑚𝑧
𝑚
��� 𝑎𝑚 ∈ O(C∗)𝑘 (𝑈)} ,

that is, as Laurent series converging in W. We may further assume that W is a sufficiently small Stein
open subset. Take 𝑓 =

∑
𝑚∈Λ𝜎

𝑎𝑚𝑧
𝑚 ∈ O(𝑈 ×𝑊). We have the corresponding holomorphic function∑

𝑚∈Λ𝜎
𝑎𝑚 (𝑢)𝑧

𝑚 on W for each point 𝑢 ∈ 𝑈, which can be extended to V using the Hartogs extension
theorem [41] because {0} is a compact subset of V such that 𝑊 = 𝑉 \ {0} is connected. Therefore, we
have 𝑎𝑚 (𝑢) = 0 for 𝑚 ∉ 𝜎 ∩ Λ𝜎 for each u, and hence 𝑓 =

∑
𝜎∩Λ𝜎

𝑎𝑚𝑧
𝑚 is an element in O(𝑈 ×𝑉).

For the general case, we use induction on the codimension of𝜔 to show that any holomorphic function
can be extended through 𝑉𝜔 \

⋃
𝜏 𝑉𝜏 with dimR(𝜏) < dimR(𝜔). Taking a point 𝑥 ∈ 𝑉𝜔 \

⋃
𝜏 𝑉𝜏 , a

neighborhood of x can be written as (C∗)𝑙 ×Specan(C[Σ𝜔]). By the induction hypothesis, we know that
holomorphic functions can already be extended through (C∗)𝑙 ×{0}. We conclude that any holomorphic
function can be extended through 𝑉𝜔 \

⋃
𝜏 𝑉𝜏 . �

We will make use of the following version of the Hartogs extension theorem, which can be found in,
for example, [31, p. 58], to handle extension within codimension one cells 𝜌’s and maximal cells 𝜎’s.

Theorem A.2 (Hartogs extension theorem, see, for example, [31]). Let 𝑈 ⊂ C𝑛 be a domain with
𝑛 ≥ 2, and 𝐴 ⊂ 𝑈 such that 𝑈 \ 𝐴 is still a domain. Suppose 𝜋(𝑈) \ 𝜋(𝐴) is a nonempty open subset,
and 𝜋−1(𝜋(𝑥)) ∩ 𝐴 is compact for every 𝑥 ∈ 𝐴, where 𝜋 : C𝑛 → C𝑛−1 is projection along one of the
coordinate direction. Then the natural restriction O(𝑈) → O(𝑈 \ 𝐴) is an isomorphism.

Proof of Lemma 5.19. To prove the first statement, we apply Lemma A.1. So we only need to show that,
for 𝜌 ∈ 𝒫 [𝑛−1] , a holomorphic function f in 𝑈𝑥 \𝒮 ⊂ 𝑉 (𝜌) can be extended uniquely to 𝑈𝑥 , where 𝑈𝑥

is some neighborhood of 𝑥 ∈ intre(𝜌) ∩𝒮. Writing 𝑉 (𝜌) = (C∗)𝑛−1 × Specan(C[Σ𝜌]), we may simply
prove that this is the case with Σ𝜌 consisting of a single ray 𝜎 as in the proof of Lemma A.1. Thus,
we can assume that 𝑉 (𝜌) = (C∗)𝑛−1 × C and the open subset 𝑈𝑥 = 𝑈 × 𝑉 for some connected U. We
observe that extensions of holomorphic functions from (𝑈 \𝒮) × 𝑉 to 𝑈 × 𝑉 can be done by covering
the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extensions through intre(𝔧) for a joint
𝔧. For those joints lying in some codimension one stratum 𝜌, the argument is similar to the above. So
we assume that 𝜎𝔧 = 𝜎 is a maximal cell. We take a point 𝑥 ∈ intre(𝔧) and work in a sufficiently small
neighborhood U of x. In this case, we may find a codimension one rational hyperplane 𝜔 containing
𝔧, together with a lattice embedding Λ𝜔 ↩→ Λ𝜎 which induces the projection 𝜋 : (C∗)𝑛 → (C∗)𝑛−1

along one of the coordinate directions. Letting 𝐴 = 𝜈−1(𝐴 ∩𝑈) and applying Theorem A.2, we obtain
extensions of holomorphic functions in U. �
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List of notations.

M, 𝑀𝐴 §2.1 lattice, 𝑀𝐴 := 𝑀 ⊗Z 𝐴 for any Z-module A
N, 𝑁𝐴 §2.1 dual lattice of M, 𝑁𝐴 := 𝑁 ⊗Z 𝐴 for any Z-module A
(𝐵,𝒫) Def. 2.2 integral tropical manifold equipped with a polyhedral decomposition
Λ𝜎 §2.1 lattice generated by integral tangent vectors along 𝜎
intre (𝜏) §2.1 relative interior of a polyhedron 𝜏
𝑈𝜏 §2.1 open neighborhood of intre (𝜏)
𝒬𝜏 §2.1 lattice generated by normal vectors to 𝜏
𝑆𝜏 : 𝑈𝜏 → 𝒬𝜏,R §2.1 fan structure along 𝜏
Σ𝜏 §2.1 complete fan in 𝒬𝜏,R constructed from 𝑆𝜏
𝐾𝜏𝜎 §2.1 𝐾𝜏𝜎 = R≥0𝑆𝜏 (𝜎 ∩𝑈𝜏 ) is a cone in Σ𝜏 corresponding to 𝜎
𝑇𝑥 §2.2 lattice of integral tangent vectors of B at x
Δ𝑖 (𝜏) , Δ̌𝑖 (𝜏) Def. 2.9 monodromy polytope of 𝜏, dual monodromy polytope of 𝜏
A 𝑓 𝑓 Def. 2.5 sheaf of affine functions on B
PL𝒫 Def. 2.5 sheaf of piecewise affine functions on B with respect to 𝒫
MPL𝒫 Def. 2.6 sheaf of multivalued piecewise affine functions on B with respect to 𝒫
𝜑 Def. 2.7 strictly convex multivalued piecewise linear function
𝜏−1Σ𝑣 §2.3 localization of the fan Σ𝑣 at 𝜏
𝑉 (𝜏) §2.3 local affine scheme associated to 𝜏 used for open gluing
PM(𝜏) §2.3 group of piecewise multiplicative maps on 𝜏−1Σ𝑣

𝐷 (𝜇, 𝜌, 𝑣) Def. 2.15 number encoding the change of 𝜇 ∈ PM(𝜏) across 𝜌 through v
0𝑋 𝜏 §2.3 closed stratum of 0𝑋 associated to 𝜏
𝐶𝜏 §2.4 cone defined by the strictly convex function 𝜑̄𝜏 : Σ𝜏 → R

representing 𝜑
𝑃̄𝜏 §2.4 monoid of integral points in 𝐶𝜏

𝑞 = 𝑧 𝜚 §2.4 parameter for a toric degeneration
N𝜌 §2.4 line bundle on 0𝑋𝜌 having slab functions 𝑓𝜌 as sections
𝑓𝑣𝜌 §2.4 local slab function associate to 𝜌 in the chart 𝑉 (𝑣)
𝜘𝜏,𝑖 : 0𝑋 𝜏 → P

𝑟𝜏,𝑖 §2.4 toric morphism induced from the monodromy polytope Δ𝑖 (𝜏)
𝑃𝜏,𝑥 §2.4 toric monoid describing the local model of toric degeneration near 𝑥 ∈ 0𝑋 𝜏

𝑄𝜏,𝑥 §2.4 toric monoid isomorphic to 𝑃𝜏,𝑥/( 𝜚 + 𝑃𝜏,𝑥 )

𝒩𝜏 §2.4 normal fan of a polytope 𝜏
𝜇 : 0𝑋 → 𝐵 §3.1 generalized moment map
Υ𝜏 §3.2 coordinate chart on 𝑊 (𝜏) ⊂ 𝐵
𝒮 (resp. 𝒮𝑒) §3.3 (resp. essential) tropical singular locus in B
𝜈 : 0𝑋 → 𝐵 Def. 3.6 surjective map with 𝜈 (𝑍 ) ⊂ 𝒮𝑒

W = {𝑊𝛼 }𝛼 §4 good cover (Condition 4.1) of B with 𝑉𝛼 := 𝜈−1 (𝑊𝛼) being Stein
𝑘V
†
𝛼 §4 𝑘 th-order local smoothing model of 𝑉𝛼

𝑘G∗𝛼 Def. 4.2 sheaf of 𝑘 th-order holomorphic relative log polyvector fields on 𝑘V
†
𝛼

𝑘K∗𝛼 Def. 4.2 sheaf of 𝑘 th-order holomorphic log de Rham differentials on 𝑘V
†
𝛼

𝑘
‖K∗𝛼 §4.1 sheaf of 𝑘 th-order holomorphic relative log de Rham differentials on 𝑘V

†
𝛼

𝑘𝜔𝛼 Def. 4.2 𝑘 th-order relative log volume form on 𝑘V
†
𝛼

𝑘Δ𝛼 §4.1 BV operator on 𝑘G𝛼
𝑘𝑃𝑉 ∗,∗𝛼 Def. 4.8 local sheaf of 𝑘 th-order polyvector fields
𝑘A∗,∗𝛼 Def. 4.9 local sheaf of 𝑘 th-order de Rham forms
𝑘𝑃𝑉 ∗,∗ Def. 4.13 global sheaf of 𝑘 th-order polyvector fields from gluing of 𝑘𝑃𝑉 ∗,∗𝛼 ’s
𝑘A∗,∗ Def. 4.13 global sheaf of 𝑘 th-order de Rham forms from gluing of 𝑘A∗,∗𝛼 ’s
𝒯∗ Def. 5.6 global sheaf of tropical differential forms on B
𝑊0 §5.2.1 semiflat locus
𝑘G∗sf §5.2.1 sheaf of 𝑘 th-order semiflat holomorphic relative vector fields
𝑘K∗sf §5.2.1 sheaf of 𝑘 th-order semiflat holomorphic log de Rham forms
𝑘𝔥 eqt. (5.2) sheaf of 𝑘 th-order semiflat holomorphic tropical vertex Lie algebras
𝑘PV∗,∗sf Def. 5.9 sheaf of 𝑘 th-order semiflat polyvector fields
𝑘A∗,∗sf Def. 5.9 sheaf of 𝑘 th-order semiflat log de Rham forms
𝑘TL∗sf Def. 5.12 sheaf of 𝑘 th-order semiflat tropical vertex Lie algebras
(w,Θw) Def. 5.13 wall equipped with a wall-crossing factor
(b,Θb) Def. 5.14 slab equipped with a wall-crossing factor
𝒟 Def. 5.17 scattering diagram
𝑊0 (𝒟) §5.3.1 complement of joints in the semiflat locus
𝔦 §5.3.1 the embedding 𝔦 : 𝑊0 (𝒟) → 𝐵
𝑘𝒪𝒟 §5.3.1 𝑘 th-order wall-crossing sheaf associated to 𝒟
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