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In this paper, we study non-isochoric models for mixtures of solid particles, at high volume
concentration, and a gas. One of the motivations for this work concerns geophysics and
more particularly the pyroclastic density currents, whose dense basal parts are precisely
mixtures of pyroclasts and lithic fragments and air. They are extremely destructive
phenomena, capable of devastating urbanised areas, and are known to propagate over long
distances, even over almost flat topography. Fluidisation of these dense granular flows by
pore gas pressure is one response that could explain this behaviour and must therefore be
taken into account in the models. Starting from a solid–gas mixing model and invoking
the compressibility of the gas through a law of state, we rewrite the conservation of mass
equation of the gas phase into an equation of the pore gas pressure whose net effect is to
reduce the friction between the particles. The momentum equation of the solid phase is
completed by generic constitutive laws, specified as in Schaeffer et al. (J. Fluid Mech.,
vol. 874, 2019, pp. 926–951) by a yield function and a dilatancy function. Therefore, the
divergence of the velocity field, which reflects the ability of the granular flow to expand
or compress, depends on the volume fraction, pressure, strain rate and inertial number.
In addition, we require the dilatancy function to describe the rate of volume change of
the granular material near an isochoric equilibrium state, i.e. at constant volume. This
property ensures that the volume fraction, which is the solution to the conservation of mass
equation, is positive and finite at all times. We also require that the non-isochoric fluidised
model be linearly stable and dissipate energy (over time). In this theoretical framework, we
derive the dilatancy models corresponding to classical rheologies such as Drucker–Prager
and μ(I) (with or without expansion effects). The main result of this work is to show
that it is possible to obtain non-isochoric and fluidised granular models satisfying all the
properties necessary to correctly account for the physics of granular flows and which are
well posed, at least linearly stable.
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1. Introduction

Dense granular flows are present in many research areas, e.g. chemistry, geophysics,
biology, engineering and mathematics, in industrial applications, e.g. pharmaceutical
production processes, the food industry and construction engineering, and in nature. In
the latter case, they constitute a major source of potential danger to human life, buildings
and infrastructure in inhabited areas, for example in the case of landslides, which may be
caused by seismic activity, soil instability or volcanic eruptions. Landslides, which are a
potential source of tsunamis, can be subaerial or submarine and are therefore characterised
at first glance by a granular medium submerged in air or water. Pyroclastic density currents
(PDCs), as described in Druitt (2007) for instance, whose dense basal parts are mixtures
of solid particles (pyroclasts and lithic fragments) and air, are one of the most significant
hazards of volcanic eruptions. The basal flows of PDCs behave like a fluid and can travel
long distances from the source of the eruption, sometimes more than 100 km. Although
understanding the mechanisms responsible for this particular behaviour of concentrated
PDCs is one of the main scientific questions related to volcanic processes, modelling the
interactions between the dense granular medium and the interstitial gas (air) remains a real
challenge.

Because of the large amount of material involved in volcanic processes, the small size
of the particles (between 10 and 100 microns) in laboratory experiments and the relatively
high volume concentration, of the order of 40 % for moderately expanded flow to 60 % for
dense flow, it seems preferable to consider the granular material and the fluid containing
it as a continuous medium. In their pioneering work on solid (particle) and fluid mixtures,
Anderson & Jackson (1967) derived a system of coupled equations based on the principles
of conservation of mass and momentum. A drag force reflects the solid–fluid interaction
in each phase. In the particular case of a gas, by using among other things the fact that the
viscosity and density of the gas phase are low, the system can be simplified, resulting in a
Darcy-type law relating the velocities of the two phases. An equation relating the density
and pressure is then deduced from the mass conservation equation of the gas phase. For
compressible gases, the system is closed with a state law, which allows the density to
be eliminated as an unknown, and an equation satisfied by the pressure of the interstitial
gas is obtained. The resulting fluidised gas–particle mixing model is then formed by the
conservation of mass and momentum equations for the solid phase, supplemented by the
pore gas pressure equation. The latter intervenes through its gradient in the conservation
of momentum equation. The net effect of the fluidisation is therefore to decrease the
solid pressure. We thus obtain a system of coupled equations which models the granular
flow while taking into account the interstitial gas through its pressure effects. However,
a rheology for the solid phase still needs to be specified in order to have a complete
and closed system. Two main approaches, which provide constitutive laws for continuous
granular models, have been developed over the last two decades. One is based on kinetic
theory, initiated by Garzó & Dufty (1999) and extended by Berzi and Jenkins among
others – see Berzi, Jenkins & Richard (2020) for recent advances – while the other is
based on phenomenological relationships between characteristic quantities of granular
flows measured in laboratory experiments. The latter is studied in this article.

A granular medium flows only if the stress exceeds a threshold, the yield stress,
otherwise it does not deform and behaves like a solid. The most advanced model, and
certainly the one most used for simulating granular flows as a continuum and that accounts
for this peculiar behaviour, is the μ(I)-rheology proposed by GDR MiDi (2004), Da Cruz
et al. (2005) and Jop, Forterre & Pouliquen (2006). The underlying yield criterion of
the μ(I)-model is of the Drucker–Prager type, i.e. the internal friction coefficient of the
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granular material is proportional to the solid pressure. Recall that the pore gas pressure acts
in the granular momentum conservation equation by decreasing the solid pressure, so the
friction between particles is reduced and the granular flow is fluidised, allowing it to travel
greater distances. The question of a possible fluidisation effect of the pore gas pressure has
been addressed through laboratory experiments on the collapse of dense granular columns
fluidised by air injection from below in Roche (2012). Indeed, it has been shown in Roche
(2012) that fluidised columns flow over distances twice as long as non-fluidised columns.

Since the work of Jop et al. (2006), the μ(I)-rheology has been at the centre of much
research both for its contribution to the production of numerical results (let us quote for
example Lagrée, Staron & Popinet 2011; Ionescu et al. 2015; Martin et al. 2017) and
for theoretical questions related to the well posedness of granular models based on this
constitutive law (see Barker et al. 2015, 2017; Barker & Gray 2017; Goddard & Lee 2017;
Schaeffer et al. 2019). For dense granular flows with a volume concentration φ close to
the packing limit, of the order of 60 % per unit volume, the variation in φ can reasonably
be neglected. In this case, the mass conservation equation implies that the granular flow
is incompressible (isochoric), neglecting to model the packing and dilatant effects of
the granular material when sheared. This approach, because of its apparent simplicity,
is attractive and has been used to conduct numerical simulations for granular column
collapse (see for instance Lagrée et al. 2011; Ionescu et al. 2015). Whilst successful results
have been obtained for predicting the profile of the granular mass during its collapse as
well as for estimating the velocity of the front, the incompressible μ(I)-model is ill posed,
in the sense of Hadamard, as demonstrated by Barker et al. (2015). Indeed, at low and high
inertial numbers, small perturbations grow at an exponential rate in the high-wavenumber
limit. The numerical solutions, when they do not blow up, depend on the grid with bands
of high gradients appearing in the strain rate and pressure, as shown in Martin et al. (2017).
Note that similar instabilities have been observed with a viscous Drucker–Prager model
(see for example Martin et al. 2017; Chupin et al. 2021). A simple way to circumvent
the ill posedness of the incompressible μ(I)-model is to regularise the constitutive law as
proposed in Barker & Gray (2017) and implemented in Gesenhues et al. (2019).

Taking into account the expansion of the granular material, when it is sheared, allows us
to regularise the μ(I)-rheology and to obtain a linearly stable model (as shown in Barker
et al. 2017; Heyman et al. 2017; Schaeffer et al. 2019). In Barker et al. (2017), the authors
introduced a yield function and a dilatancy function, both of which depend on the volume
fraction, the (solid) pressure and the inertial number. The divergence of the velocity field
is assumed to be proportional to the dilatancy function and the strain rate, which makes
local variations of the volume of the granular medium possible. Also, the yield condition
specifies the deviatoric stress in terms of a yield function. Note that, unlike the μ(I)−Φ(I)
rheology which provides a state law defining the pressure in terms of the volume fraction,
here the volume fraction evolves with the flow according to the conservation of mass
equation, and the rate of volume change is specified according to the yield function. As
shown in Barker et al. (2017), if the yield and dilatancy functions satisfy three conditions,
namely one equation and two inequalities, then the resulting compressible μ(I)-model is
linearly well posed.

Without imposing any further constraints, it is possible to find yield and dilatancy
functions that satisfy these stability conditions. However, they are in this case obtained
by purely mathematical arguments and do not take into account the physics of granular
flows. On the other hand, Pailha & Pouliquen (2009) combined the μ(I)-rheology with
a dilatancy model based on the critical state theory proposed by Roux & Radjaï (1998).
This theory introduces a dilatation angle which reflects the need for a granular material to
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expand, by increasing the volume it occupies, when sheared. Unfortunately, the resulting
constitutive laws, rewritten in the terms of the theory developed in Barker et al. (2017), do
not satisfy the stability conditions, so the model may not be well posed.

The objective of this work is to propose non-isochoric granular models, i.e. with local
variations of the volume, which take into account the effects of fluidisation by the pore
gas pressure. The constitutive laws are written in terms of two functions as in the linear
stability theory developed by Barker et al. (2017) (see also Schaeffer et al. 2019). We
require that these models be linearly stable, be compatible with the dilatancy model of
Roux & Radjaï (1998) and dissipate energy over time and that the volume fraction, the
solution of the conservation of mass equation, be positive and bounded from above for
any time. By compatibility with the Roux and Radjaï dilatancy model, we mean that at
equilibrium the divergence of the velocity field must be zero and that the rate of volume
change depends on the deviation of the volume fraction from the equilibrium state. It
should be noted that the requirement that the energy of the system must be dissipated
over time is motivated by two reasons, one numerical and one theoretical. Indeed, if
the energy is dissipated, one can hope to prove that the model is well posed, i.e. that
a solution exists and can be unique. Moreover, in order to develop stable numerical
schemes, i.e. with bounded solutions, it is more than desirable that the continuous model
be dissipative. In this framework, we derive the dilatancy models obtained for specific
choices of classical rheologies, such as Drucker–Prager and μ(I). This approach allows us
to derive non-isochoric fluidised granular models with the above-mentioned properties.

The paper is organised as follows. In § 2, a solid–gas mixing model derived from
Anderson and Jackson’s equations is described. The fluidisation of granular flows by
compressible gases, in the case of a general state law, is studied in § 3. The special case
of a perfect gas (such as air) is also discussed. In § 4, the fluidised model is completed
by generic constitutive laws: the yield condition and the dilatancy law are defined by
introducing functions similar to those used in Barker et al. (2017). Section 5 is devoted
to the study of the main properties of this generic fluidised and non-isochoric granular
model, namely energy dissipation, compatibility of the dilatancy law with equilibrium
conditions, linear stability and volume fraction bounds. Finally, within this theoretical
framework, dilatancy laws corresponding to classical rheologies, such as Drucker–Prager
and μ(I), are derived in § 6. The resulting models of fluidised and non-isochoric granular
flows satisfy all the aforementioned properties.

2. Solid–gas two-phase model

2.1. Governing equations
We consider a mixture of solid particles, i.e. a granular phase of (constant) density ρs, and
a gas whose (variable) density is denoted by ρf . If φ denotes the local volume fraction of
the particles within the mixture, then the mass conservation for both constituents is written
as

∂t(φρs)+ div(φρsu) = 0, (2.1)

∂t((1 − φ)ρf )+ div((1 − φ)ρf uf ) = 0, (2.2)

where u and uf correspond respectively to the velocities of the granular phase and the gas
phase.

The conservation of momentum equations for the two phases involve the forces between
the two components. These equations are derived from Jackson’s book (Jackson 2000).
A detailed explanation of each of the terms involved is also given in Pitman & Le (2005,
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Appendix A). The resulting system of equations is written as

φρs(∂tu + u · ∇u) = φρsg − ∇p + div τ − φ∇pf + F drag, (2.3)

(1 − φ)ρf (∂tuf + uf · ∇uf ) = (1 − φ)ρf g − (1 − φ)∇pf − F drag, (2.4)

where p and pf correspond to the pressures within each of the phases, i.e. the granular
phase and the gas phase, respectively. Note that the pore pressure pf acts equally on both
phases while the solid pressure p, also called the effective pressure, which represents
normal chain forces between particles, is present only in the momentum equation of the
granular phase. The vector g corresponds to the gravity force. The tensor τ expresses
the extra stresses associated with the granular phase (whereas it is assumed that the only
stresses associated with the gas phase are due to pressure). An explicit expression for τ
as a function of φ, p and ∇u will be specified later in the section on the rheology of the
medium. Finally, the drag force, denoted by F drag, acts in the direction of the relative
velocity uf − u and also depends on the particle concentration. The usual models – see for
instance Ergun (1952), Wen (1966) and more recently Gidaspow (1994) and Beetstra, van
der Hoef & Kuipers (2007) – can be written as

F drag = β̃(φ, |uf − u|)(uf − u). (2.5)

Using the arguments of Bouchut et al. (2015), for small values of |uf − u| this force is
proportional to the relative velocity, so we can write

F drag = β(φ)(uf − u), (2.6)

where β, which depends only on φ, is called the drag coefficient. For instance, the
following expressions are obtained:

β(φ) = 150ηfφ
2

d2(1 − φ)
(2.7)

with the model in Gidaspow (1994) and

β(φ) = 18ηf (1 − φ)2φ

d2(1 − φ)

(
10

φ

(1 − φ)2
+ (1 − φ)2

(
1 + 3

2

√
φ

))
(2.8)

with the model given in Beetstra et al. (2007). In the above relations, d is the diameter of
the grains and ηf the viscosity of the gas.

The work of Anderson, Sundaresan & Jackson (1995, p. 331) – see also Pailha &
Pouliquen (2009, (3.12)) – compares the different contributions to the fluid momentum
conservation. The authors introduce approximations associated with the smallness of
density of a typical gas. Following their work, (2.4) reduces to

β(φ)(uf − u) = −(1 − φ)∇pf . (2.9)

This equation can be seen as a Darcy law: it allows us to express the fluid velocity uf
in terms of the solid one u, the gradient of the fluid pressure pf and the volume solid
fraction φ. Using (2.6) and (2.9), equations (2.1), (2.2) and (2.3) now read

∂tφ + div(φu) = 0, (2.10)

∂t((1 − φ)ρf )+ div((1 − φ)ρf u) = div(κ(φ)ρf ∇pf ), (2.11)

φρs(∂tu + u · ∇u) = φρsg − ∇p + div τ − ∇pf . (2.12)

where κ(φ) = (1 − φ)2/β(φ). Note that by using the expression (2.7), the well-known
Carman–Kozeny relationship is obtained (see Carman 1937 or Carman 1997 and Kozeny
1927) namely κ(φ) = d2(1 − φ)3/(150ηfφ

2).
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2.2. Energy estimate
One of the key points we wish to emphasise in this article is that the proposed model is
energetically consistent, i.e. it has an energy that decreases over time (in the absence of
external forces, such as gravity forces). The energy estimates associated with this type of
flow are generally obtained by taking the scalar product of the conservation of momentum
equation (2.12) and the velocity u, then integrating with respect to the spatial variable.
Here, we deduce that∫

φ∂t

(
1
2
ρs|u|2

)
+

∫
φu · ∇

(
1
2
ρs|u|2

)

=
∫
φρsg · u −

∫
∇p · u +

∫
(div τ ) · u −

∫
∇pf · u. (2.13)

Note that, throughout this document, integrations with respect to the space variable are
denoted by

∫
. They are performed over a domain Ω ⊂ R

2 on which we will assume that
there is no exchange with the outside: the velocities and normal stresses are assumed to be
zero on the boundary ∂Ω so that there will never be any boundary terms due to the various
integrations by parts.

Multiplying (2.10) by 1
2ρs|u|2 and integrating, we also obtain

∫
∂tφ

(
1
2
ρs|u|2

)
+

∫
div(φu)

(
1
2
ρs|u|2

)
= 0. (2.14)

The sum of the last two equalities (2.13) and (2.14), combined with integrations by parts,
gives the following estimate:

d
dt

(
1
2

∫
φρs|u|2

)
=

∫
φρsg · u +

∫
pf div u︸ ︷︷ ︸

A

−
∫

τ : ∇u︸ ︷︷ ︸
B

+
∫

p div u︸ ︷︷ ︸
C

. (2.15)

Remark 2.1. Note that it is possible to include other, more realistic boundary conditions in
this study. For instance, if a non-zero (given) velocity is imposed on part of the boundary,
then additional source terms such as those related to gravity forces will have to be taken
into account on the right-hand side of (2.15). These terms can increase the energy of the
system. In order to take into account the friction of the granular material with a boundary,
we may enforce the following conditions:

un = 0 and τt = − tan(αb)(−τn)
+ ut

|ut| , (2.16)

mixing the normal and tangential components ut and un of the velocity u and the normal
and tangential components τ t and τ n of the normal stress τ · n, with n corresponding
to the outward unit normal at the boundary. The coefficient αb depends on the friction
angle of the solid particles with the boundary material. With such boundary conditions,
additional terms appear during integration by parts in order to deduce (2.15), but these
are dissipative terms, i.e. they tend to reduce the energy of the system. For the sake of
completeness, the estimate (2.15) becomes

d
dt

(∫
φ
ρs|u|2

2

)
+

∫
∂Ω

tan(αb)(−τn)
+|ut| =

∫
φρsg · u + A − B + C. (2.17)
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So far, the three-equation model (2.10)–(2.12) has six unknowns, namely φ, u, ρf , pf ,
p and τ . In order to close the system, (2.10)–(2.12) must be completed by three closing
relations. The terms A, B and C of the energy equation are intrinsically linked to the
choice of closure laws. The term A depends on the pore gas pressure pf and thus reflects
the fluidisation of the solid phase by the presence of the gas phase. We will see in the
next section how an equation for pf can be derived from (2.11) by accounting for the gas
compressibility through a (generic) state law. A second closure relation is given by the
constitutive law specifying the deviatoric stress tensor τ as a function of φ, ∇u and p. The
rheology must be physically consistent but must also allow control of the term B in (2.15).
Finally, the last closure relation will specify the divergence of the velocity field u, which
expresses the local change in volume and thus governs the expansion or compression of
the flow when it is sheared. Note that control of the terms A and C depends on div u.

3. Gas compressibility and fluidisation model

The fluidisation phenomenon of the granular flow is mainly due to the fact that the gas
trapped between the particles is compressible. In other words, its density ρf is not constant.
Depending on the nature of the gas considered, a state law relating the pressure pf and the
density can be imposed, namely

pf = Q(ρf ), (3.1)

where Q is a differentiable function.
In order to obtain an energy estimate and to compensate for the term A in (2.15), we take

inspiration from the methods used for the study of compressible fluids; see for instance
Lions (1998). For a general state law of the form (3.1), (2.11) becomes

∂t((1 − φ)ρf )+ div((1 − φ)ρf u) = div(κ(φ)ρf Q′(ρf )∇ρf ). (3.2)

First, we write (3.2) in non-conservative form

(1 − φ)(∂tρf + u · ∇ρf )+ ρf div u = div(κ(φ)ρf Q′(ρf )∇ρf ). (3.3)

By multiplying the last equation by H′(ρf ) where H : R → R is any smooth function, we
obtain

(1 − φ)(∂tH(ρf )+ u · ∇H(ρf ))+ ρf H′(ρf ) div u = H′(ρf ) div(κ(φ)ρf Q′(ρf )∇ρf ),
(3.4)

which can be rewritten in conservative form as

∂t((1 − φ)H(ρf ))+ div((1 − φ)H(ρf )u)

+ (ρf H′(ρf )− H(ρf )) div u = H′(ρf ) div(κ(φ)ρf Q′(ρf )∇ρf ). (3.5)

Noting that the term A that we wish to control is A = ∫
Q(ρf ) div u, it suffices to choose H

such that xH′(x)− H(x) = Q(x) and to integrate with respect to the space variable, which
leads to

−A = d
dt

(∫
(1 − φ)H(ρf )

)
−

∫
H′(ρf ) div(κ(φ)ρf Q′(ρf )∇ρf ). (3.6)

Since xH′′(x) = Q′(x), an integration by parts allows us to rewrite the last term as

−A = d
dt

(∫
(1 − φ)H(ρf )

)
+

∫
κ(φ)|∇pf |2. (3.7)
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Remark 3.1. As previously, in all integrations by parts, the boundary terms are zero. In the
latter case, this cancellation comes from the assumption of zero normal velocities at the
boundary and from Darcy’s law (2.9). More precisely, on the boundary ∂Ω , we have

κ(φ)ρf Q′(ρf )∇ρf · n = −(1 − φ)ρf (uf − u) · n = 0. (3.8)

In practice, to determine the function H involved in the energy estimate from the
function Q specifying the state law, we integrate the differential equation xH′(x)− H(x) =
Q(x). Indeed, we find

H(x) = x
∫ x

c1

Q(ζ )
ζ 2 dζ + c2. (3.9)

The reader is referred to Lions (1998, p. 36), where similar calculations are conducted. It
can be noted here that the choice of integration constants c1 and c2 has no influence on
the energy. Indeed, if we add a constant c2 to H then the quantity A defined above by the
equality (3.7) will be increased by c2(d/dt)

∫
(1 − φ), which is zero owing to the mass

conservation equation (2.10). In the same way, if we add a linear term c1x to H then A will
be increased by c1(d/dt)(

∫
(1 − φ)ρf ), which is zero owing to (3.2) and the remark above.

In the particular case of an ideal gas, the use of an affine relationship between
pressure and density makes it possible, as before, to derive (see supplementary material
S.1 available at https://doi.org/10.1017/jfm.2023.1010) from (2.11) a ‘diffusion’ equation
describing the evolution of pf , namely

∂t((1 − φ)pf )+ div((1 − φ)pf u)+ patm div u = patm div(κ(φ)∇pf ), (3.10)

where patm = 1.013 × 105 Pa is the atmospheric pressure. In the remainder of this article,
this equation will be used to describe the evolution of the pore gas pressure, although a
more general model can be chosen (i.e. for a general gas). Note that a similar equation (see
supplementary material S.1) is used in Goren et al. (2010, (7)) and in McNamara, Flekkøy
& Måløy (2000, (7)), corrected in Anghel et al. (2006).

4. Generic model for rheology and dilatation

The rheology of granular media is complex, and most classical models are known to be
ill posed when granular flow is assumed to be incompressible; see Barker et al. (2015)
and Martin et al. (2017). In Barker et al. (2017) – see also Schaeffer et al. (2019) and
Barker et al. (2023) – the authors have shown that taking into account the dilation of
the granular medium allows us, in the two-dimensional case, to regularise these models
and to remedy these instabilities. More precisely, the constitutive and the dilatancy laws,
prescribing respectively the extra stress and the rate of volume change, must be defined in
a concordant way.

In this section, we will use the same notation as in Schaeffer et al. (2019). We define the
deviatoric strain-rate tensor by

S = ∇u + (∇u)T

2
− 1

2
(div u) Id, (4.1)

which is a symmetric and traceless tensor, and its second invariant |S| by |S|2 = 1
2 S : S =

1
2
∑

i,j SijSij. We also introduce the inertial number (see GDR MiDi 2004; Jop et al. 2006)

I = d|S|√
p/ρs

, (4.2)
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Non-isochoric stable granular models

where d is the grain diameter of the granular medium under consideration (note that in
Barker et al. (2023), the μ(J)-rheology is used to describe granular material immersed
in water; the μ(J)-rheology applies to granular flows with a low Stokes number (St =
ρsd2|S|/ηf ), and because the viscosity of air is approximately 50 times smaller than that
of water, the granular flows we consider have a higher Stokes number; the interstitial gas
is taken into account by the pressure equation (3.10)).

4.1. Granular rheology
The rheology of a granular flow can be described in a fairly general way by the
following relationship (in Barker et al. (2017), Schaeffer et al. (2019) and Barker et al.
(2023), Y(φ, p, I) is used instead of Z(φ, I)p; the latter form seems appropriate, since in
all the models studied subsequently, the stress is proportional to the pressure and this also
makes it relatively easy to write the stability conditions as discussed below):

τ = Z(φ, I)p
S
|S| . (4.3)

To be rigorous, the relation (4.3), having no sense when S vanishes, should be rewritten as

τ : S = 2 Z(φ, I)p|S|,
|τ | ≤ Z(φ, I)p, where τ is symmetric and traceless

}
. (4.4)

This corresponds to the usual threshold rheology in granular media: the value of Z(φ, I)
is related to a threshold at which the flow starts to deform. One of the fundamental points
is therefore to make Z(φ, I) explicit. Currently, only empirical measurements allow us to
have access to this threshold, and we will see in § 6 several examples of such laws obtained
by fitting experimental measurements.

Remark 4.1. It is important to note that the constitutive law (4.3) excludes the case of
purely viscous rheologies, of the form τ = η(φ, |S|)S. The addition of such a term to
(4.3) does not change the results and will be also discussed in Remark 5.2.

4.2. Dilatancy model
The quantity div u expresses the evolution of the elementary volumes of fluid under
the action of a flow moving at the velocity u. Imposing a zero-divergence condition is
therefore equivalent to imposing that, locally, elementary volumes do not vary. If we
want to take into account the expansion and compression of the medium, we need to
impose an additional law which specifies how the divergence of the velocity field depends
on certain characteristic quantities of the flow. One way of expressing the effects of
dilation (see supplementary material S.2) is to impose a relation of the form div u =
2|S| f (φ, I). By adding this expansion law, the constitutive law (4.3) and the equation for
the pressure of the interstitial gas (3.10) to the equations for the conservation of mass and
momentum (respectively (2.10) and (2.12)), we have a complete system whose unknowns
are the volume fraction φ, the granular velocity u, the pressure p and the pore gas
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pressure pf , namely

∂tφ + div(φu) = 0, (4.5)

∂t((1 − φ)pf )+ div((1 − φ)pf u)+ patm div u = patm div(κ(φ)∇pf ), (4.6)

φρs(∂tu + u · ∇u) = φρsg − ∇p + div
(

Z(φ, I)p
S
|S|

)
− ∇pf , (4.7)

div u = 2|S| f (φ, I). (4.8)

5. Main properties of the generic model

5.1. Energy dissipation

As announced in § 2 (see (2.15)), the quantity Es = 1
2

∫
φρs|u|2 satisfies the following

equation:
dEs

dt
= A − B + C +

∫
φρsg · u. (5.1)

Moreover, we have seen in the previous section (see (3.7)) that the term A, owing to the
presence of the interstitial gas, satisfies

−A = dEf

dt
+ Df , (5.2)

where Ef = ∫
(1 − φ)H(ρf ) and Df = ∫

κ(φ)|∇pf |2 so that the energy equation (2.15)
becomes

dEs

dt
+ dEf

dt
+ Df + B − C =

∫
φρsg · u. (5.3)

Let us now examine the effects of the rheology and the dilatancy law on the energy of
the system (4.5)–(4.8). Replacing the deviatoric stress tensor τ and the divergence of the
velocity field by the relations (4.3) and (4.8) in the terms B and C appearing in (2.15), we
obtain

B − C =
∫

τ : ∇u − p div u = 2
∫
(Z − f )p|S|. (5.4)

Substituting this relation into (2.15), we deduce that the total energy defined by E =
Es + Ef satisfies the following equation:

dE
dt

+ D =
∫
φρsg · u, (5.5)

where D = Df + Ds is a dissipation rate composed of the fluid dissipation Df appearing
due to the fluid pressure and the solid dissipation Ds defined by Ds = 2

∫
(Z − f )p|S|.

Indeed, if Z − f ≥ 0, the total energy of the fluidised granular model decreases over time
in the absence of any external force, such as a gravitational force. The positivity of the
dissipation rate, which can be obtained by the condition

Z ≥ f , (5.6)

is one of the main properties of the fluidised granular models proposed in the following,
and can now be stated.
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Non-isochoric stable granular models

THEOREM 5.1. Under the dissipation condition (5.6) and without external force, the
model (4.5)–(4.8) has a decreasing energy.

Remark 5.2. The addition of a viscous term, as suggested in Remark 4.1, does not
affect this result. On the contrary, adding a viscous contribution η(φ, |S|)S to the stress
enhances the dissipation rate by adding the non-negative term Ddis = 2

∫
η(φ, |S|)|S|2 to

the left-hand side of the energy equation (5.5).

5.2. Consistency of the dilatation law at equilibrium
According to the arguments of Pailha & Pouliquen (2009) and those of Roux & Radjaï
(1998), the rate of volume change, which is proportional to the function f , is related to
a deviation from an equilibrium steady state of the granular medium, which is isochoric,
i.e. with constant volume. It has been experimentally observed that at this equilibrium, the
volume fraction φ depends linearly on the inertial number I such that we have

φeq(I) = φmax −�φI. (5.7)

(Other formulations similar to (5.7) exist. In Schaeffer et al. (2019), the authors suggest
φsch

eq (I) = φmax −�φ/(1 + 1/I), arguing that this law would prevent φ from becoming
negative for large values of I. We will show below (see Theorem 5.5) that the φ solution
of (4.5) always remains positive if the equilibrium conditions (5.10) are satisfied, which
makes the expression φsch

eq (I) useless in the present study.)
The parameters φmax and �φ are obtained by fitting (5.7) with experimental

measurements (e.g. φmax = 0.6 and �φ = 0.2 in Forterre & Pouliquen 2008). Note that
discrete element method simulations confirm this result (see Schaeffer et al. (2019) for
example). The relation (5.7) can be used to determine the volume fraction at equilibrium
by setting φ = φeq(I). This empirical law can be transformed (see for instance Heyman
et al. 2017) into a model for the effective pressure p, leading to the μ(I)–φ(I) rheology.
However, the latter is always ill posed in the two-dimensional case as proved by Heyman
et al. (2017) (see also Schaeffer et al. 2019). To overcome this difficulty, a dilatancy
function f (see (4.8)) specifying the rate of volume change was introduced into the
compressible models of Barker et al. (2017) and then Schaeffer et al. (2019). The empirical
law (5.7) is not prescribed in the fluidised granular model (4.5)–(4.8), nor in former
models. The approach we propose below is to impose conditions on f so that the dilation
law (4.8) is compatible with the physics of dense granular media. Note that as (5.7) is
empirical, it is possible to use experimental measurements to refine it and improve its
accuracy in certain cases; see Robinson, Holland & Fullard (2023) and Breard et al.
(2022). In the present article, we will always use (5.7), but any other reasonable choice
could be considered.

In Roux & Radjaï (1998), the authors proposed a dilatancy model inspired by critical
state mechanics that relates the rate of volume change to the deviation from equilibrium,
i.e.

div u = 2a|S|(φ − φeq(I)), (5.8)

where a is a constant. This relation expresses how two layers of beads confined at a given
pressure should expand when subjected to a constant shear rate. When a deformation
occurs (|S| > 0), we deduce from (5.8) that the material dilates (div u > 0) if φ > φeq(I)
while it contracts (div u < 0) if φ < φeq(I). The granular flow is isochoric (div u = 0)
when there is no deformation (i.e. |S| = 0) or when φ = φeq(I). This behaviour is essential
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div u > 0

I > Ieq(φ)
(a) (b) (c)

div u = 0

I = Ieq(φ)

div u < 0

I < Ieq(φ)

Figure 1. Change in volume of a granular medium near an isochoric equilibrium state characterised
by I = Ieq(φ), or equivalently φ = φeq(I).

and must be reproduced by the generic dilatancy law (4.8). Note that (5.8) is found for
f (φ, I) = a(φ − φeq(I)) in (4.8).

From the empirical law (5.7), the inertial number at equilibrium Ieq(φ) can be defined
by

Ieq(φ) = φmax − φ

�φ
. (5.9)

For the rest (see § 6), defining the equilibrium conditions in terms of the deviation of the
inertial number I from the equilibrium state via Ieq(φ), instead of φeq(I), makes things
easier. We now state those conditions.

THEOREM 5.3. Under the equilibrium conditions

f (φ, I) = 0 if I = Ieq(φ),
f (φ, I) > 0 if I > Ieq(φ),
f (φ, I) < 0 if I < Ieq(φ),

⎫⎬
⎭ (5.10)

the model (4.5)–(4.8) is consistent with the physics presented in Roux & Radjaï (1998).

The conditions (5.10) ensure that the dilatancy function f , when it deviates from the
isochoric equilibrium position, is consistent with the Roux and Radjaï model. Indeed, at
equilibrium, the granular flow is isochoric. If I > Ieq(φ), the granular medium expands,
whereas it compresses if I < Ieq(φ). Figure 1 illustrates this behaviour.

5.3. Linear stability of the model
According to Barker et al. (2017), the granular model consisting of (4.5), (4.7) with pf = 0
and (4.8) is linearly stable as soon as the functions Z and f satisfy the following properties:

Z − 1
2 I∂IZ = f + I∂I f , (5.11)

Z + I∂IZ ≥ 0, (5.12)

∂I f > 0. (5.13)

We shall see – the proof is detailed in the supplementary material S.3 – that accounting for
the presence of the pore gas in the granular medium, as achieved in § 3 by supplementing
the mass and momentum conservation equations of the solid particles with (4.6) and
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Non-isochoric stable granular models

adding the term −∇pf to the right-hand side of (4.7), does not change the stability result
stated in Barker et al. (2017). More precisely, we have the following result.

THEOREM 5.4. Under the conditions (5.11), (5.12) and (5.13), the model (4.5)–(4.8) is
linearly stable.

While one might expect the presence of interstitial gas to improve the stability by
reducing friction between particles, this result is similar to that obtained by Barker et al.
(2017) for the non-fluidised model. The presence of the pore gas pressure in the solid-phase
momentum equation tends to lower or even cancel out the effective pressure and so the
friction between particles. In this case, we might expect the system to be well posed. On
the other hand, when the interstitial pressure diffused by (4.6) decreases, the effective
pressure increases and there is no reason why the stability of the fluidised model should
be improved.

5.4. Volume fraction bounds
In order for the model to make sense, it is fundamental to ensure that the volume fraction φ
always remains positive and does not exceed the maximum value φmax previously
introduced. We now state one of the main results of this paper.

THEOREM 5.5. Suppose that the initial condition satisfies 0 ≤ φ|t=0 ≤ φmax and consider
any smooth solution to (4.5)–(4.8). We have φ ≥ 0.Moreover, if the equilibrium conditions
(5.10) are satisfied, then we have φ ≤ φmax.

The technical proof of this result is detailed in Appendix A. Although to show the
positiveness of the volume fraction we only need to assume that the velocity field is regular,
the equilibrium conditions (5.10) are essential to show that φ remains bounded above at
all times.

6. Physical examples

The objective of this section is to complete the generic fluidised (4.5)–(4.8) model
presented in § 4, with constitutive laws specified by the yield function Z and the dilatancy
function f . The fundamental question is how to determine Z and f in such a way that the
physics of granular flows is properly described and the mathematical properties introduced
in the previous section are verified, specifically that the energy of the system must be
dissipated, the volume fraction must be positive and bounded above, and the model must
be linearly stable. According to Theorems 5.1–5.5 these properties hold if the dissipation
condition (5.6), the equilibrium conditions (5.10) and the stability conditions (5.11)–(5.13)
are satisfied.

Note that the assumptions of Theorem 5.3 require that the sign of the function f
correspond to a deviation of the granular flow from an isochoric equilibrium, i.e.
of constant volume. The expansion or contraction of the granular material near this
equilibrium state is then taken into account in the model. The conditions (5.10) must
therefore be fulfilled for both physical and mathematical reasons.

The question of the choice of rheology, i.e. the choice of the function Z, must
now be addressed. This choice is guided by the state of knowledge on the physics of
granular materials. The model classically used is the Drucker–Prager model, which is a
multidimensional form of the Mohr–Coulomb law (see for example Forterre & Pouliquen
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2008). Later, the μ(I)-rheology emerged thanks to the work of the Groupement de
Recherche Milieux Divisés (GDR MiDi 2004) and became established. In practice, these
constitutive laws defining the deviatoric stress tensor are obtained by fitting experimental
measurements and can therefore be used as a starting point for the construction of a model.

Our methodology is as follows: once the yield function Z is prescribed according to
the criteria discussed above, the stability condition (5.11), which can be reduced to a
differential equation, is used to determine f . At this stage, f is known up to a constant
which is independent of the inertial number but may depend on the volume fraction φ.
This constant will be fixed so that at equilibrium the divergence of the velocity field equals
zero, in agreement with the critical state theory proposed in Roux & Radjaï (1998). The
last step will be to make sure that the other conditions (5.6), (5.10), (5.12) and (5.13) are
fulfilled. Following this approach, we propose hereafter several fluidised and non-isochoric
granular models.

Finally, it should be mentioned that relatively simple models should be preferred as
long as a numerical scheme can be designed and implemented. However, this is beyond
the scope of this paper and will be the subject of future work.

6.1. Non-isochoric models with classical rheologies
The μ(I)-rheology, which is almost unanimously accepted, provides an expression for the
friction coefficient in terms of the inertial number, namely

μ(I) = μ1 + μ2 − μ1

1 + I0/I
, (6.1)

where the function μ depends on three parameters, I0 > 0 and μ2 > μ1 > 0. (Following
Forterre & Pouliquen (2008, p. 10), typical values of the constants obtained for
mono-dispersed glass beads are μ1 = tan(21◦), μ2 = tan(33◦) and I0 = 0.3. Note that
these values are obtained experimentally, and that some authors specify that I0 can depend
on φ; see for instance Gray & Edwards (2014, (2.12)) or Jop, Forterre & Pouliquen
(2005, Appendix A).) By replacing Z(φ, I) by μ(I) in (4.3), we can reformulate the
deviatoric stress tensor as in Ionescu et al. (2015), showing that the μ(I)-rheology is a
viscoplastic rheology with a Drucker–Prager plasticity criterion, with a yield stress equal
to μ1 and a viscosity that is variable in space and time. It then becomes attractive to
replace in numerical simulations the variable viscosity of the μ(I)-rheology, which covers
a wide range of values, with a constant viscosity, which amounts to using a viscous
Drucker–Prager rheology. This approach has been successfully used to reproduce granular
column collapse experiments (see Ionescu et al. 2015; Chupin et al. 2021). For this reason,
we also study the latter rheology in what follows. In this case, the function Z is defined by
Z(φ, I) = sin(δ) – see Andreotti, Forterre & Pouliquen (2012, table 4.1) – where δ is the
internal angle of friction (note that this rheology is most often written using the tangent
function instead of the sine function, but with a different angle; see Andreotti et al. (2012,
p. 144) for the details). Before going further in the study of these constitutive laws, we
state a general result.

PROPOSITION 6.1. Let Z be a function depending on the volume fraction and on the
inertial number. The function f given by

f (φ, I) = 1
2

(
Ieq(φ)

I
Z(φ, Ieq(φ))− Z(φ, I)

)
+ 3

2I

∫ I

Ieq(φ)

Z(φ, J) dJ (6.2)

is the solution of (5.11) vanishing at I = Ieq(φ).
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Z(φ, I) f (φ, I)

sin(δ) sin(δ)
(

1 − Ieq(φ)

I

)

μ(I) μ2

(
1 − Ieq(φ)

I

)
+ (μ2−μ1)

2

(
H

(
I
I0

)
− Ieq(φ)

I H
(

Ieq
I0

))
with H(x) = 1

1+x − 3 ln(1+x)
x

sin(δ)+ cos(δ)f (φ, I) sin(δ)
1−cos(δ)

(
1 −

(
Ieq(φ)

I

)β)
where β = 2(1−cos(δ))

2+cos(δ)

μ(I)+ f (φ, I) 2μ1
3 ln

(
I

Ieq(φ)

)
+ 2(μ2−μ1)

3 ln
(

I+I0
Ieq(φ)+I0

)
− 1

3 (μ(I)− μ(Ieq(φ)))

Table 1. Yield and dilatancy functions, i.e. Z(φ, I) and f (φ, I), ensuring that the stability condition (5.11) is
satisfied.

Shear

stress Normal

stress

div u > 0

volume increases
div u < 0

volume decreases

Figure 2. Volume change under shear (left) and normal (right) stresses.

It can be easily checked that the function f so obtained for the Drucker–Prager model,
namely with Z(φ, I) = sin(δ) (see table 1), satisfies the equilibrium condition (5.10) and
the stability condition (5.13). Also, the function Z satisfies (5.12). As Z(φ, I)− f (φ, I) =
2 sin(δ)(φ − φmax)/I is non-negative, since φ ≤ φmax (see Theorem 5.1), the condition
(5.6) is satisfied too.

By using (4.2) and the expression for f , the dilatancy law (4.8) can be rewritten as

div u = 2 sin(δ)|S| − 2 sin(δ)
d
√
ρs

Ieq(φ)
√

p. (6.3)

While the Drucker–Prager rheology is known to be linearly unstable for incompressible
granular flows, as shown in Martin et al. (2017), a stable model is obtained when this
dilatancy law is used. From a physical point of view, this relationship highlights a
competition between shear forces, which tend to increase the volume (solid particles
separate when the material is sheared), and pressure forces, which compress the flow.
Figure 2 illustrates these effects on the granular medium.

Remark 6.2. Using (5.9) and (5.7), the dilatancy law (6.3) can be rewritten as

divu = 2a|S|(φ − φeq(I)), (6.4)

with a = sin(δ)/(�φI). With this formulation, the dilatation law obtained for the
Drucker–Prager rheology is similar to that proposed in Roux & Radjaï (1998) (see (5.8)).
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For the μ(I)-rheology, the function Z, defined by Z(φ, I) = μ(I), satisfies the second
stability condition (5.12). The function f derived from Z using (6.2) is listed in table 1.
By noting that

∂I f (φ, I) = μ2 − μ1

2I0
H′

(
I
I0

)
+ Ieq(φ)

I2

(
μ2 + μ2 − μ1

2
H

(
I
I0

))
(6.5)

and observing that H′(x) > 0 for x > 0 and H(0) = −2, we have ∂I f (φ, I) > 0 so that
(5.13) is satisfied. Moreover, we have

Z(φ, I)− f (φ, I) = 3(μ2 − μ1)

2

(
ln(1 + I/I0)

I/I0
− 1

1 + I/I0

)

+ Ieq(φ)

I

(
μ2 + μ2 − μ1

2
H

(
Ieq(φ)

I0

))
, (6.6)

showing that Z(φ, I)− f (φ, I) is non-negative. This ensures that the energy is dissipated
(see (5.6)). We easily deduce that f also satisfies (5.10). In summary, the fluidised
and non-isochoric granular models, based on the Drucker–Prager model and on the
μ(I)-rheology, that is, with the functions Z and f specified in the two first lines of table 1,
have all the required properties.

6.2. Rheologies with dilatancy effects
In order to take into account the variations of the volume fraction of the granular medium
in the rheology, Wood (1990) proposed to introduce a dilatancy angle ψ . The latter is a
measure of the ratio between the relative vertical and horizontal displacements between
two layers of grains when they are sheared. It can be positive (expansion) or negative
(contraction). The change in volume (see Andreotti et al. 2012) is expressed in terms of
the dilatancy angle by div u = 2|S| sin(ψ), which can be approximated by

div u = 2|S|ψ, (6.7)

as long as ψ remains small. By comparing (6.7) and (4.8), we obtain f (φ, I) = ψ(φ, I)
so that the smallness assumption on ψ is transferred to f . Recalling (5.10), we can deduce
that f will be small near the equilibrium state, which translates into I ≈ Ieq(φ) in terms of
the inertial number.

Intuitively, we can guess that a close packing that has to dilate in order to deform (ψ >

0) has a friction coefficient larger than that of a loose packing that will undergo compaction
(ψ < 0). The granular viscosity is then an increasing function of ψ , cancelling out when
ψ = 0. In the case of the Drucker–Prager rheology, Andreotti (see Andreotti et al. 2012)
proposed the constitutive law τ = sin(δ + ψ) pS/|S|, which can be approximated by

τ = (sin(δ)+ cos(δ)ψ)p
S
|S| , (6.8)

if ψ remains small. (Curiously, it seems that the development used in Andreotti et al.
(2012) (corrected in the next French edition, but repeated in Robinson et al. 2023) is
not correct; the coefficient cos(δ) had been omitted. For their work this does not change
anything, since this constant can be incorporated into the multiplicative coefficient in front
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of ψ .) Similarly, the dilatancy effects can be taken into account in the μ(I)-rheology by
modifying the stress τ (see Robinson et al. 2023) as follows:

τ = (μ(I)+ ψ)p
S
|S| . (6.9)

These laws imply finding functions Z and f such that

Z(φ, I) = sin(δ)+ cos(δ)f (φ, I) (6.10)

for the Drucker–Prager rheology and

Z(φ, I) = μ(I)+ f (φ, I) (6.11)

for the μ(I)-rheology. Using (6.10), the condition (5.11) becomes (2 + cos(δ))I∂I f +
2(1 − cos(δ))f = 2 sin(δ). The solution of this differential equation vanishing at Ieq(φ)
is provided in the two last lines of table 1. Note that, for common materials such as glass
beads or sand, the angle of friction δ is of the order of 30◦ so that the coefficient β (see
table 1) is of the order of 0.1. Now, using (6.11), the condition (5.11) becomes

f (φ, I) = 2
3

∫ I

Ieq(φ)

μ(J)
J

dJ − 1
3
(μ(I)− μ(Ieq)). (6.12)

By substituting (6.1), integrating and enforcing f (φ, Ieq(φ)) = 0, we find the expression
for f which is written in table 1. It can be easily checked that (5.13) is satisfied for both
rheologies.

The condition (5.6) is obviously satisfied for the μ(I)-rheology. For the Drucker–Prager
model, we have Z(φ, I)− f (φ, I) = sin(δ) (Ieq(φ)/I)β so that Z − f is non-negative,
which ensures that the energy is dissipated. We can easily show that, for both rheologies,
(5.12) is not true for all values of I but is satisfied as soon as I ≈ Ieq(φ). Therefore,
the fluidised and non-isochoric granular models obtained with the yield and dilatancy
functions derived in this section are stable near the equilibrium state.

7. Concluding remarks

In this paper, we have studied non-isochoric fluidised granular models, i.e. models which
take into account the fluidisation effects of a compressible interstitial gas and local volume
changes. The motivation is to model mixtures of particles, with a high concentration
(between 40 % and 60 % in volume), and a gas, in particular air. Pyroclastic density flows,
which are frequent and can have devastating effects, fit into this framework. They are
a major hazard in volcanic eruptions because of the great distances they can travel, up to
100 km in some cases, at high speed, even on gentle slopes. The starting point of this study
is the fluid–solid mixing model of Anderson and Jackson, which is simplified here because
of the physical characteristics of the interstitial fluid, which is a gas. The compressibility
of the latter allows us to transform the mass conservation equation of the gas phase into
an equation for the pressure. The effect of the pressure of the interstitial gas is to reduce
the friction between the particles and thus make it possible for the flow to accelerate and
travel greater distances. This phenomenon has been observed in the laboratory (see Roche
2012), showing that columns of particles (glass beads) travel twice as far when fluidised
with an air stream injected from below. In order to close the equations for the solid phase,
the constitutive laws, written as in Schaeffer et al. (2019), are specified in terms of a yield
function and a dilatancy function, both of which depend on the volume fraction, inertial
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number and (solid) pressure. The resulting fluidised granular model is non-isochoric as
it allows for volume change, i.e. the granular flow can expand when sheared. Moreover,
we require that the model be linearly stable, that it dissipate energy (over time), that it be
compatible with the dilatancy model proposed by Roux & Radjaï (1998) and that the
volume fraction, which is the solution of the mass conservation equation, be positive
and bounded at all times. Working within this theoretical framework, we have studied
dilatancy laws that are compatible with classical rheologies, i.e. Drucker–Prager and μ(I),
with or without taking into account the effects of dilation in the yield condition. The
main objective of this work was to derive fluidised and non-isochoric granular models
that satisfy the aforementioned mathematical properties and take into account the known
physics of granular materials, in particular in terms of the rheology and deformation of the
medium when sheared. The next steps will be to prove that these models are well posed,
i.e. that they admit solutions that can be unique, and to propose stable numerical schemes.
Then, numerical studies will have to be carried out to prove the validity of the models, in
particular by comparing the results of the simulations with laboratory experiments such as
those described in Roche (2012). These are the outlines of our future work on the subject.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.1010.
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Appendix A. Proof of Theorem 5.5: volume fraction bounds

The proof is based on the following observation: if (φ,u) are regular and satisfy the
equation ∂tφ + div(φu) = 0, then for any function β ∈ C1(R,R) we have

∂tβ(φ)+ div(β(φ)u)+ (φβ ′(φ)− β(φ)) div u = 0. (A1)

In general, there is no reason why a solution φ of the equation ∂tφ + div(φu) = 0 should
remain bounded if the divergence of the field u is not zero. Here, we will use the
following additional information which comes from the equilibrium conditions (5.10).
Indeed, assume that φ ≥ φmax; then φ ≥ φmax −�φI, which is equivalent to I ≥ Ieq(φ).
According to the condition (5.10) we have, in this case, f ≥ 0, which implies, using (4.8),
that div u ≥ 0. We have thus proved the following implication:

φ ≥ φmax =⇒ div u ≥ 0. (A2)

In order to show that φ remains lower than φmax as soon as φ|t=0 ≤ φmax, we will use
(A1) with the function β defined by β(φ) = 0 if φ ≤ φmax and β(φ) = (φ − φmax)

2

if φ ≥ φmax. This function is of class C1 and we have φβ ′(φ)− β(φ) = 0 if φ ≤ φmax
and φβ ′(φ)− β(φ) = φ2 − φ2

max if φ ≥ φmax. Using this expression and the implication
(A2), we note that (φβ ′(φ)− β(φ)) div u ≥ 0 so that integration with respect to the
space variables of (A1) implies (d/dt)

∫
β(φ) ≤ 0. Thus, if we have φ|t=0 ≤ φmax, then

β(φ|t=0) = 0 and β(φ) = 0 so that the result follows, namely φ ≤ φmax.
The proof that φ remains positive uses the same observation (A1): let ε > 0, and define

the functions βε by βε(φ) = 0 if φ ≥ ε, βε(φ) = −φ if φ ≤ −ε and βε(φ) = (1/4ε)(φ −
ε)2 if |φ| ≤ ε. It is easy to show that βε is of class C1 and that |φβ ′

ε(φ)− βε(φ)| ≤ ε/4 so
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that, after integrating (A1), we obtain (d/dt)
∫
βε(φ) ≤ (ε/4)

∫ |div u|. By passing to the
limit when ε tends to 0, we deduce that (d/dt)

∫
β(φ) ≤ 0 where β(φ) = 0 if φ ≥ 0 and

β(φ) = −φ if φ ≤ 0. The condition φ|t=0 ≥ 0 means that β(φ|t=0) = 0. Since
∫
β(φ)

decreases with time and is by definition always positive, we deduce that for any time,
β(φ) = 0, which means that φ ≥ 0.
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