
Bull. Aust. Math. Soc. 108 (2023), 244–253
doi:10.1017/S0004972722001289

A PAIR OF EQUATIONS IN EIGHT PRIME CUBES AND
POWERS OF 2

XUE HAN and HUAFENG LIU�

(Received 14 September 2022; accepted 3 October 2022; first published online 14 December 2022)

Abstract

In this paper, we show that every pair of sufficiently large even integers can be represented as a pair of
eight prime cubes and k powers of 2. In particular, we prove that k = 335 is admissible, which improves
the previous result.
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1. Introduction

In 1951 and 1953, Linnik [5, 6] showed that every large even integer N can be
represented in the form of two primes and a bounded number of powers of 2, namely

N′ = p1 + p2 + 2v1 + 2v2 + · · · + 2vk′ . (1.1)

Later, Liu et al. [8] proved that k′ = 54000 is acceptable in (1.1). After many
improvements, up to now, the best result is k′ = 8 established by Pintz and Ruzsa [14].
In 2013, Kong [3] first considered the simultaneous representation of pairs of positive
even integers as sums of two primes and powers of 2, that is,⎧⎪⎪⎨⎪⎪⎩

N′1 = p1 + p2 + 2v1 + 2v2 + · · · + 2vk′ ,
N′2 = p3 + p4 + 2v1 + 2v2 + · · · + 2vk′ .

She proved that these equations are solvable for a pair of sufficiently large positive
even integers N′1 and N′2 satisfying N′2 � N′1 > N′2 for k′ = 63 unconditionally, and for
k′ = 31 under the generalised Riemann hypothesis (GRH). Subsequently, Kong and
Liu [4] improved the value of k′ to 34 unconditionally and to 18 under the GRH.

In 2001, based on the works of Linnik [5, 6] and Gallagher [2], Liu and Liu [7]
proved that every large even integer N can be written as a sum of eight cubes of primes
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and a bounded number of powers of 2, namely

N = p3
1 + p3

2 + · · · + p3
8 + 2v1 + 2v2 + · · · + 2vk .

So far, the best result for this equation is k = 30 obtained by Zhu [19].
As a generalisation, in 2013, Liu [11] first considered the simultaneous representa-

tion of pairs of positive even integers N1 and N2 satisfying N2 � N1 > N2 in the form⎧⎪⎪⎨⎪⎪⎩
N1 = p3

1 + p3
2 + · · · + p3

8 + 2v1 + 2v2 + · · · + 2vk ,
N2 = p3

9 + p3
10 + · · · + p3

16 + 2v1 + 2v2 + · · · + 2vk ,
(1.2)

where k is a positive integer. Liu [11] proved that the equations in (1.2) are solvable for
k = 1432. This number k was improved successively to k = 1364, k = 658 and k = 609
by Platt and Trudgian [15], Zhao [17] and Liu [9], respectively. We make a further
improvement on the value of k in (1.2) by establishing the following result.

THEOREM 1.1. For k = 335, the equations in (1.2) are solvable for every pair of
sufficiently large positive even integers N1 and N2 satisfying N2 � N1 > N2.

To prove Theorem 1.1, we apply the circle method in combination with some new
arguments of Kong and Liu [4]. To apply the circle method, similarly to [4], we divide
[0, 1]2 into three arcs, which means we can avoid the limitation of two arcs in Liu [9]
after applying integral transforms (see Section 4 for details), resulting in the sharper k
in (1.2).

NOTATION 1.2. Throughout this paper, the letter p, with or without a subscript, always
represents a prime. Both N1 and N2 denote sufficiently large positive even integers,
e(x) = exp(2πix) and n ∼ N means N < n ≤ 2N. The letter ε denotes a positive constant
which is arbitrarily small but may not be the same at different occurrences.

2. Outline of the proof

In this section, we give an outline for the proof of Theorem 1.1. To apply the circle
method, we let, for i = 1, 2,

Pi = N1/9−2ε
i , Qi = N8/9+ε

i , L =
log(N1/ log N1)

log 2
.

For i = 1, 2, we define the major arcsMi and minor arcs C(Mi) as

Mi =
⋃

1≤qi≤Pi

⋃
1≤ai≤qi
(ai,qi)=1

Mi(ai, qi), C(Mi) = [0, 1]\Mi, (2.1)

where

Mi(ai, qi) =
{
αi ∈ [0, 1] :

∣∣∣∣∣αi −
ai

qi

∣∣∣∣∣ ≤ 1
qiQi

}

and

1 ≤ ai ≤ qi ≤ Qi, (ai, qi) = 1.
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Note that the major arcs Mi(ai, qi) are mutually disjoint since 2Pi ≤ Qi. We further
define

M = M1 ×M2 = {(α1,α2) ∈ [0, 1]2 : α1 ∈ M1,α2 ∈ M2}, (2.2)

C(M) = [0, 1]2\M. (2.3)

As in [16], let δ = 10−4 and

Ui =

( Ni

16(1 + δ)

)1/3
, Vi = U5/6

i .

For i = 1, 2, we set

S(αi, Ui) =
∑
p∼Ui

(log p)e(p3αi), T(αi, Vi) =
∑
p∼Vi

(log p)e(p3αi), (2.4)

G(αi) =
∑

4≤v≤L

e(2vαi), Eλ = {(α1,α2) ∈ [0, 1]2 : |G(α1 + α2)| ≥ λL}.

Let

R(N1, N2) =
∑

log p1 log p2 · · · log p16

be the weighted number of solutions of (1.2) in (p1, p2, . . . , p16, v1, v2, . . . , vk) with

p1, p2, p3, p4 ∼ U1, p5, p6, p7, p8 ∼ V1,
p9, p10, p11, p12 ∼ U2, p13, p14, p15, p16 ∼ V2,

4 ≤ vj ≤ L, j = 1, 2, . . . , k.

Then we rewrite R(N1, N2) as

R(N1, N2) =
(�

M

+

�
C(M)∩Eλ

+

�
C(M)\Eλ

)
S4(α1, U1)T4(α1, V1)S4(α2, U2)T4(α2, V2)

× Gk(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

:=R1(N1, N2) + R2(N1, N2) + R3(N1, N2).

In Section 3, we first give some lemmas. In Section 4, we shall estimate Ri(N1, N2)
for i = 1, 2, 3 and complete the proof of Theorem 1.1.

3. Auxiliary lemmas

Let

C(q, a) =
q∑

m=1
(m,q)=1

e
(am3

q

)
, B(n, q) =

q∑
a=1

(a,q)=1

C8(q, a)e
(
− an

q

)
,

(3.1)

A(n, q) =
B(n, q)
ϕ8(q)

, S(n) =
∞∑

q=1

A(n, q).
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LEMMA 3.1. Let A (Ni, k) = {ni ≥ 2 : ni = Ni − 2v1 − 2v2 − · · · − 2vk } with k ≥ 35.
Then, for N1 ≡ N2 ≡ 0 (mod 2),

∑
n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)

S(n1)S(n2) ≥ 0.1596600336Lk.

PROOF. From (5.9) of [12] and Lemma 2.3 of [18], for p ≥ 13 and p ≡ 1 (mod 3),

1 + A(n, p) ≥ 1 −
(2
√

p + 1)8

(p − 1)7 ,

and ∏
p≥17

(1 + A(ni, p)) ≥ 0.8206744593.

Then,
∏
p≥13

(1 + A(ni, p)) = (1 + A(ni, 13)) ×
∏
p≥17

(1 + A(ni, p))

≥ 0.4233091149 × 0.8206744593
≥ 0.3473989790 := C.

Noting that S(ni) = 2(1 − 1/28)
∏

p>3(1 + A(ni, p)) and putting q =
∏

3<p<12 = 385,
∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)

S(n1)S(n2)

≥
(
2
(
1 − 1

28

)
C
)2 ∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)

2∏
i=1

∏
3<pi<12

(1 + A(ni, pi))

≥
(
2
(
1 − 1

28

)
C
)2 ∑

1≤j1≤q

∑
1≤j2≤q

∑
n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)
n1≡j1 (mod q)
n2≡j2 (mod q)

2∏
i=1

∏
3<pi<12

(1 + A( ji, pi))

≥
(
2
(
1 − 1

28

)
C
)2 ∑

1≤j1≤q

∑
1≤j2≤q

2∏
i=1

∏
3<pi<12

(1 + A( ji, pi))
∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)
n1≡j1 (mod q)
n2≡j2 (mod q)

1.

https://doi.org/10.1017/S0004972722001289 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001289


248 X. Han and H. F. Liu [5]

Considering the inner sum,

S :=
∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)
n1≡j1 (mod q)
n2≡j2 (mod q)

1 =
∑

4≤vj≤L,1≤j≤k,i=1,2
2v1+2v2+···+2vk≡Ni (mod 2)

2v1+2v2+···+2vk≡Ni−ji (mod q)

1.

Since N1 ≡ N2 ≡ 0 (mod 2),⎧⎪⎪⎨⎪⎪⎩
2v1 + 2v2 + · · · + 2vk ≡ N1 (mod 2)
2v1 + 2v2 + · · · + 2vk ≡ N2 (mod 2)

is equivalent to

2v1 + 2v2 + · · · + 2vk ≡ N1 (mod 2).

Additionally, if N2 ≡ N1 + t (mod q) and j2 ≡ j1 + t (mod q) with 1 ≤ t ≤ q,⎧⎪⎪⎨⎪⎪⎩
2v1 + 2v2 + · · · + 2vk ≡ N1 − j1 (mod q)
2v1 + 2v2 + · · · + 2vk ≡ N2 − j2 (mod q)

is equivalent to

2v1 + 2v2 + · · · + 2vk ≡ N1 − j1 (mod q).

Therefore, when N1 ≡ N2 ≡ 0 (mod 2), N2 ≡ N1 + t (mod q) and j2 ≡ j1 + t (mod q),

S ≥
∑

4≤v1,v2,...,vk≤L
2v1+2v2+···+2vk≡N1 (mod 2)

2v1+2v2+···+2vk≡N1−j1 (mod q)

( L
ρ(3q)

+ O(1)
)k ∑

4≤v1,v2,...,vk≤ρ(3q)
2v1+2v2+···+2vk≡aj (mod 3q)

1,

where the natural number aj ∈ [1, 3q] satisfies the conditions aj ≡ N1 (mod 3) and
aj ≡ N1 − j1 (mod q), and ρ(q) denotes the smallest positive integer ρ such that
2ρ ≡ 1 (mod q).

Noting that

S ≥ 1
3q

( L
ρ(3q)

+ O(1)
)k 3q−1∑

t=0

e
( taj

3q

)( ∑
1≤s≤ρ(3q)

e
( t2s

3q

))k
,

we get

S ≥ 1
3q

( L
ρ(3q)

+ O(1)
)k

( ρ(3q)k − (3q − 1)(max)k)

=
Lk

3q

(
1 − (3q − 1)

( max
ρ(3q)

)k)
+ O(Lk−1),

where

max = max
{∣∣∣∣∣
∑

1≤s≤ρ(3q)

e
( j2s

3q

)∣∣∣∣∣ : 1 ≤ j ≤ 3q − 1
}
.
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Since 3q = 1155 and ρ(3q) = 60, with the help of a computer,

max = 30 . . . , (3q − 1)
( max
ρ(3q)

)50
< 10−10.

Therefore,

S ≥ (1 − 10−10)Lk

3q
+ O(Lk−1).

By a numerical calculation,

max
1≤t≤q

( ∑
1≤j1≤q

∏
3<p1<12

(1 + A( j1, p1))
∏

3<p2<12

(1 + A( j1 + t, p2))
)
≥ 384.9999769.

Then,
∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0 (mod 2)

S(n1)S(n2) ≥ 384.9999769
(
2
(
1 − 1

28

)
C
)2 (1 − 10−10)Lk

3q

≥ 0.1596600336Lk. �

LEMMA 3.2 [12, Lemma 2.1]. LetMi, S(αi, Ui) and T(αi, Vi) be defined as in (2.1) and
(2.4), respectively. For Ni/2 ≤ ni ≤ Ni,∫

Mi

S4(αi, Ui)T4(αi, Vi)e(−niαi) dαi =
1
38S(ni)J(ni) + O(N13/9

i L−1),

whereS(ni) is defined as in (3.1) and satisfiesS(ni) � 1 for ni ≡ 0 (mod 2), and J(ni)
is defined as

J(ni) :=
∑

m1+m2+···+m8=ni
U3

i <m1,m2,m3,m4≤8U3
i

V3
i <m5,m6,m7,m8≤8V3

i

(m1m2 . . .m8)−2/3

and satisfies N13/9
i � J(ni) � N13/9

i .

LEMMA 3.3 [18, Lemma 2.6]. For (1 − δ)Ni ≤ ni ≤ Ni,

J(ni) > 1.42432055N13/9
i .

LEMMA 3.4. We have meas(Eλ) � N−E(λ)
i with E(0.9570253) > 8

9 + 10−10.

PROOF. This is (2.7) in Lemma 2.1 of Zhao [17]. �

LEMMA 3.5 [17, Lemma 2.5]. Let Mi and S(αi, Ui) be defined as in (2.1) and (2.4),
respectively. We have

max
αi∈C(Mi)

|S(αi, Ui)| � N11/36+ε
i .
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LEMMA 3.6. Let S(αi, Ui) and T(αi, Vi) be defined as in (2.4). We have

∫ 1

0
|S(αi, Ui)T(αi, Vi)|4 dαi ≤ 0.134694091N13/9

i .

PROOF. The idea of the proof is similar to that of Lemma 2.6 in Liu and Lü [13].
However, we take ν = 100552 obtained by Elsholtz and Schlage-Puchta [1] instead of
147185.22 obtained by Liu [10]. This leads to a better upper bound.

Here we only consider the case i = 1 since the case i = 2 can be proved similarly.
From (2.7) of Ren [16] and Proposition 2 of Elsholtz and Schlage-Puchta [1],

∑
N1/9<l≤N1

r2(l) ≤ ϑ(0) ≤ (ν + o(1))U1V4
1 L−8,

where ν= 100552, r(n) denotes the number of representations of n as p3
1 + p3

2 +

p3
3 + p3

4 with p1, p2 ∼ U1, p3, p4 ∼ V1 and ϑ(0) denotes the number of solutions of the
equation p3

1 + p3
2 + p3

3 + p3
4 = p3

5 + p3
6 + p3

7 + p3
8 with p1, p2, p5, p6 ∼ U1, p3, p4, p7,

p8 ∼ V1.
Therefore,

∫ 1

0
|S(α1, U1)T(α1, V1)|4 dα1 ≤ (log(2U1))4(log(2V1))4ϑ(0)

≤ 0.134694091N13/9
1 . �

4. Proof of Theorem 1.1

To prove Theorem 1.1, we first estimate R1(N1, N2). By Lemmas 3.1, 3.2 and 3.3,

R1(N1, N2) =
�
M

S4(α1, U1)T4(α1, V1)S4(α2, U2)T4(α2, V2)

× Gk(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≥
( 1
38

)2 ∑
n1∈A (N1,k)
n2∈A (N2,k)

S(n1)S(n2)J(n1)J(n2) (4.1)

≥ 0.1596600336 × (1.42432055)2

316 (N1N2)13/9Lk

≥ 7.524395606 × 10−9(N1N2)13/9Lk,

whereM is defined by (2.2).
Next, we estimate R2(N1, N2). By (2.1) and (2.3),

C(M) ⊂ {(α1,α2) : α1 ∈ C(M1),α2 ∈ [0, 1]} ∪ {(α1,α2) : α1 ∈ [0, 1],α2 ∈ C(M2)}.
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From Lemma 3.5 and the trivial bounds of G(αi) and T(αi, Vi),

R2(N1, N2) =
�

C(M)∩Eλ

S4(α1, U1)T4(α1, V1)S4(α2, U2)T4(α2, V2)

× Gk(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

� Lk
(�

(α1,α2)∈C(M1)×[0,1]
|G(α1+α2)|≥λL

+

�
(α1,α2)∈[0,1]×C(M2)
|G(α1+α2)|≥λL

)

S4(α1, U1)T4(α1, V1)S4(α2, U2)T4(α2, V2) dα1 dα2

� LkN10/9
1 N11/9+ε

1

�
(α1,α2)∈[0,1]2

|G(α1+α2)|≥λL

|S4(α2, U2)T4(α2, V2)| dα1 dα2

+ LkN10/9
2 N11/9+ε

2

�
(α1,α2)∈[0,1]2

|G(α1+α2)|≥λL

|S4(α1, U1)T4(α1, V1)| dα1 dα2.

(4.2)

Let � = α1 + α2. By the periodicity of G(α),

�
(α1,α2)∈[0,1]2

|G(α1+α2)|≥λL

|S4(α2, U2)T4(α2, V2)| dα1 dα2

=

∫ 1

0
|S4(α2, U2)T4(α2, V2)|

( ∫
�∈[α2,1+α2]
|G(�)|≥λL

d�
)

dα2.

By Lemmas 3.4 and 3.6,

�
(α1,α2)∈[0,1]2

|G(α1+α2)|≥λL

|S4(α2, U2)T4(α2, V2)| dα1 dα2 � N13/9
2 N−8/9−10−10

1 . (4.3)

Similarly,

�
(α1,α2)∈[0,1]2

|G(α1+α2)|≥λL

|S4(α1, U1)T4(α1, V1)| dα1 dα2 � N13/9
1 N−8/9−10−10

2 . (4.4)

From (4.2)–(4.4),

R2(N1, N2) � N10/9
1 N11/9+ε

1 N13/9
2 N−8/9−10−10

1 Lk + N10/9
2 N11/9+ε

2 N13/9
1 N−8/9−10−10

2 Lk

� (N1N2)13/9Lk−1, (4.5)

where N2 � N1 > N2.
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Finally, we estimate R3(N1, N2). By Lemma 3.6 and the definition of Eλ,

R3(N1, N2)

=

�
C(M)\Eλ

S4(α1, U1)T4(α1, V1)S4(α2, U2)T4(α2, V2)

× Gk(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≤ (λL)k
∫ 1

0
|S4(α1, U1)T4(α1, V1)| dα1

∫ 1

0
|S4(α2, U2)T4(α2, V2)| dα2

≤ 0.0181424982λk(N1N2)13/9Lk.

(4.6)

Putting (4.1), (4.5) and (4.6) together,

R(N1, N2) > R1(N1, N2) − R3(N1, N2) + O((N1N2)13/9Lk−1)

> (7.524395606 × 10−9 − 0.0181424982λk)(N1N2)13/9Lk,

where λ = 0.9570253. Then we can deduce that

R(N1, N2) > 0

provided that k ≥ 335. Thus, we complete the proof of Theorem 1.1.
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