ADDENDUM
 DIAGRAMS OF AN ABELIAN GROUP - ADDENDUM

THEODORE G. FATICONI

doi:10.1017/S0004972708001238, Published by The Australian Mathematical Society, 6 July 2009

The results in this addendum extend [1, Theorems 1.1 and 8.7].
Let $h>0$ be an integer. We characterize algebraic number fields possessing class number h in terms of the sequence of rational primes.

Using the notation of [1], let \mathbf{k} be an algebraic number field, let $[\mathbf{k}: \mathbb{Q}]=f$, and let $h(\mathbf{k})$ denote the class number of \mathbf{k}. Let \bar{E} be the ring of algebraic integers in \mathbf{k}. Then \bar{E} is a ring whose additive group $\bar{E},+$ is a free Abelian group of finite rank f. For each rational prime p let $E(p)=\mathbb{Z}+p \bar{E}$. Let $G(p)$ be a reduced torsion-free rank- f Abelian group such that $\operatorname{End}(G(p)) \cong E(p)$. These groups exist by Butler's theorem [3, Theorem I.2.6]. There is a torsion-free reduced group $\bar{G}(p)$ of rank f such that $\bar{G}(p) / G(p)$ is finite, and $\operatorname{End}(\bar{G}(p))=\bar{E}$.

Let $L(p)=\operatorname{card}(u(\bar{E}) / u(E(p)))$ where $u(R)$ is the group of units in the ring R. For an Abelian group H let $h(H)$ be the number of isomorphism classes of groups L that are locally isomorphic to H. (See [3].) Sequences s_{n} and t_{n} are asymptotically equal if $\lim _{n \rightarrow \infty} s_{n} / t_{n}=1$.

The main theorem of this paper follows.
THEOREM 1. Let \mathbf{k} be an algebraic number field, let $[\mathbf{k}: \mathbb{Q}]=f$, and let $h(\mathbf{k})=h$. Then $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to the sequence $\left\{h p^{f-1} \mid\right.$ rational primes $\left.p\right\}$.

Proof. In addition to the the stated notation we let:
(1) $\quad \widehat{m}_{p}=\operatorname{card}(u(\bar{E} / p \bar{E}))$;
(2) $\widehat{n}_{p}=\operatorname{card}(u(E(p) / p \bar{E}))$;
(3) $L(p)=\operatorname{card}(u(\bar{E}) / u(E(p)))$.

[^0]There are at most finitely many rational primes that ramify in \mathbf{k}, so let us avoid those primes. By [2, Theorem 8.4],

$$
\begin{equation*}
L(p) h(G(p)) \frac{\widehat{n}_{p}}{\widehat{m}_{p}}=h(\bar{G}(p)) \tag{1}
\end{equation*}
$$

Because $\operatorname{End}(\bar{G}(p))=\bar{E},[2$, Corollary 3.2] implies that $h(\bar{G}(p))=h(\bar{E})=h(\mathbf{k})=h$. Hence

$$
\begin{equation*}
L(p) h(G(p)) \frac{\widehat{n}_{p}}{\widehat{m}_{p}}=h \tag{2}
\end{equation*}
$$

Since p does not ramify in \mathbf{k}, there are distinct prime ideals I_{1}, \ldots, I_{g} in \bar{E} and integers f_{1}, \ldots, f_{g} such that $\Sigma_{i=1}^{g} f_{i}=f$,

$$
p \bar{E}=I_{1} \cap \cdots \cap I_{g}
$$

and $\left[\bar{E} / I_{i}: \mathbb{Z} / p \mathbb{Z}\right]=f_{i}$ for each $i=1, \ldots, g$. Then

$$
\bar{E} / p \bar{E}=\frac{\bar{E}}{I_{1}} \times \cdots \times \frac{\bar{E}}{I_{g}}
$$

so that

$$
u(\bar{E} / p \bar{E})=u\left(\frac{\bar{E}}{I_{1}}\right) \times \cdots \times u\left(\frac{\bar{E}}{I_{g}}\right)
$$

Since \bar{E} / I_{i} is a finite field of characteristic p,

$$
\begin{equation*}
\widehat{m}_{p}=\left(p^{f_{1}}-1\right) \cdots\left(p^{f_{g}}-1\right) \tag{3}
\end{equation*}
$$

Since $E(p) / p \bar{E} \cong \mathbb{Z} / p \mathbb{Z}, \widehat{n}_{p}=p-1$.
Form the polynomial of degree $f-1$,

$$
\begin{equation*}
x^{f-1}+Q_{p}(x)=\frac{\left(x^{f_{1}}-1\right) \cdots\left(x^{f_{g}}-1\right)}{x-1} \tag{4}
\end{equation*}
$$

The coefficients of $\left(x^{f_{2}}-1\right) \cdots\left(x^{f_{g}}-1\right)$ are multinomial coefficients $\binom{f-1}{r_{1}, \ldots, r_{t}}$ for some partitions r_{1}, \ldots, r_{t} of $f-1$. These coefficients are bounded above by $(f-1)$!. The coefficients of $Q_{p}(x)$ in (4) are then bounded above by f !. Thus $Q_{p}(x)$ has degree $\leq f-2$, and the coefficients of $Q_{p}(x)$ are bounded above by f !. Hence

$$
\begin{equation*}
\lim _{p} \frac{p^{f-1}+Q_{p}(p)}{p^{f-1}}=1+\lim _{p} \frac{Q_{p}(p)}{p^{f-1}}=1 \tag{5}
\end{equation*}
$$

Now, $p^{f-1}+Q_{p}(p)=\widehat{m}_{p} / \widehat{n}_{p}$ when p replaces x in (4), so by (2),

$$
\begin{equation*}
\frac{L(p) h(G(p))}{p^{f-1}+Q_{p}(p)}=L(p) h(G(p)) \frac{\widehat{n}_{p}}{\widehat{m}_{p}}=h \tag{6}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
\frac{L(p) h(G(p))}{p^{f-1}} & =\frac{\left(L(p) h(G(p)) / p^{f-1}\right)}{\left(L(p) h(G(p)) / p^{f-1}+Q_{p}(p)\right)} \cdot \frac{L(p) h(G(p))}{p^{f-1}+Q_{p}(p)} \\
& =\frac{p^{f-1}+Q_{p}(p)}{p^{f-1}} \cdot h
\end{aligned}
$$

by (6). Using the limit in (5) we see that

$$
\lim _{p} \frac{L(p) h(G(p))}{h p^{f-1}}=1 .
$$

Therefore, $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to $\left\{h p^{f-1} \mid\right.$ rational primes $p\}$.
COROLLARY 2. Let \mathbf{k} be a quadratic number field, and let $h(\mathbf{k})=h$. Then $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to the sequence $\{h p \mid$ rational primes $p\}$.

THEOREM 3. Let \mathbf{k} be an algebraic number field and let $h>0$ be an integer. The following are equivalent.
(1) $h(\mathbf{k})=h$.
(2) The sequence $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to the sequence $\left\{h p^{f-1} \mid\right.$ rational primes $\left.p\right\}$.
Proof. $\quad 1 \Rightarrow 2$. This is Theorem 1.
$2 \Rightarrow 1$. The sequence $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to the sequence $\left\{h p^{f-1} \mid\right.$ rational primes $\left.p\right\}$ for some integer $h>0$. Then by Theorem 1 and part 2,

$$
\lim _{p} \frac{L(p) h(G(p))}{h(\mathbf{k}) p^{f-1}}=1=\lim _{p} \frac{L(p) h(G(p))}{h p^{f-1}} .
$$

Hence $h(\mathbf{k})=h$ which completes the proof.
Corollary 4. Let \mathbf{k} be a quadratic number field and let $h>0$ be an integer. The following are equivalent.
(1) $h(\mathbf{k})=h$.
(2) The sequence $\{L(p) h(G(p)) \mid$ rational primes $p\}$ is asymptotically equal to the sequence $\{h p \mid$ rational primes $p\}$.

References

[1] T. G. Faticoni, 'Diagrams of an abelian group', Bull. Aust. Math. Soc. 80(1) (2009), 38-64.
[2] -, 'Class number of an abelian group', J. Algebra 314 (2007), 978-1008.
[3] Direct Sum Decompositions of Torsion-free Finite Rank Groups (Chapman and Hall/CRC, New York/Boca Raton, FL, 2007).

[^0]: (C) 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

