Gauss and Eisenstein Sums of Order Twelve

S. Gurak

Abstract. Let $q=p^{r}$ with p an odd prime, and \mathbf{F}_{q} denote the finite field of q elements. Let $\operatorname{Tr}: \mathbf{F}_{q} \rightarrow$ \mathbf{F}_{p} be the usual trace map and set $\zeta_{p}=\exp (2 \pi i / p)$. For any positive integer e, define the (modified) Gauss sum $g_{r}(e)$ by

$$
g_{r}(e)=\sum_{x \in \mathbf{F}_{q}} \zeta_{p}^{\operatorname{Tr} x^{e}}
$$

Recently, Evans gave an elegant determination of $g_{1}(12)$ in terms of $g_{1}(3), g_{1}(4)$ and $g_{1}(6)$ which resolved a sign ambiguity present in a previous evaluation. Here I generalize Evans' result to give a complete determination of the sum $g_{r}(12)$.

1 Introduction

Let $q=p^{r}$ with p an odd prime, and \mathbf{F}_{q} denote the finite field of q elements. Fix a generator γ for the multiplicative group \mathbf{F}_{q}^{*} of \mathbf{F}_{q}. Then $G=\gamma^{(q-1) /(p-1)}$ generates \mathbf{F}_{p}^{*}. Let $\operatorname{Tr}: \mathbf{F}_{q} \rightarrow \mathbf{F}_{p}$ be the usual trace map and set $\zeta_{m}=\exp (2 \pi i / m)$ for any positive integer m. For a character χ of \mathbf{F}_{q}^{*} define the Gauss sum $G_{r}(\chi)$ by

$$
\begin{equation*}
G_{r}(\chi)=\sum_{x \in \mathbf{F}_{q}^{*}} \chi(x) \zeta_{p}^{\operatorname{Tr} x} \tag{1}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
G_{r}(\chi) G_{r}\left(\chi^{-1}\right)=\chi(-1) p^{r} \quad \text { for } \chi \neq 1 \tag{2}
\end{equation*}
$$

(We will write $G(\chi)$ for $G_{1}(\chi)$.) For $r>1$, the value of $G_{r}(\chi)$ can be expressed in terms of the Eisenstein sums

$$
\begin{equation*}
E_{r}(\chi)=\sum_{x \in \mathbf{F}_{q}^{*}, \text { Tr } x=1} \chi(x) ; \tag{3}
\end{equation*}
$$

namely (chiefly, Theorem 12.1.1 in [2]),

$$
G_{r}(\chi)= \begin{cases}E_{r}(\chi) G\left(\chi^{*}\right) & \text { if } \chi^{*} \text { is nontrivial } \tag{4}\\ -p E_{r}(\chi) & \text { if } \chi^{*} \text { is trivial, }\end{cases}
$$

where χ^{*} denotes the restriction of χ to \mathbf{F}_{p}^{*}.
Received by the editors October 15, 2001; revised January 2, 2002.
AMS subject classification: 11L05, 11T24.
(C)Canadian Mathematical Society 2003.

When χ is nontrivial, the Davenport-Hasse Theorem on lifted Gauss sums can be applied to give a more refined result (chiefly, Theorem 12.1.3 in [2] or see [6]). Namely, if χ has order $k>1$ and l is the least positive integer such that $k \mid p^{l}-1$, then $l \mid r$ and χ is the lift of some character ψ on $\mathbf{F}_{p^{l}}^{*}$ (that is; $\chi=\psi \circ N_{\mathbf{F}_{p^{r}} / \mathbf{F}_{p^{l}}}$, where N is the relative norm map) and for $s=r / l$,

$$
\frac{E_{r}(\chi)}{E_{l}^{s}(\psi)}= \begin{cases}p^{s-1} & \text { if } \psi^{*} \text { is trivial } \tag{5}\\ (-1)^{s} G^{s}\left(\chi^{*}\right) / p & \text { if } \psi^{*} \text { is nontrivial and } \chi^{*} \text { trivial } \\ (-1)^{s-1} G^{s}\left(\psi^{*}\right) / G\left(\psi^{s *}\right) & \text { if } \chi^{*} \text { is nontrivial }\end{cases}
$$

For any positive integer e, define the modified Gauss sum $g_{r}(e)$ by

$$
\begin{equation*}
g_{r}(e)=\sum_{x \in \mathbf{F}_{q}} \zeta_{p}^{\operatorname{Tr} x^{e}} \tag{6}
\end{equation*}
$$

(We write $g(e)$ for $g_{1}(e)$.) The modified Gauss sums are intimately related to the Gauss sums $G_{r}(\chi)$ for characters χ of order dividing e. Normalizing such characters χ so $\chi_{j}(\gamma)=\zeta_{e}^{j}$ for $1 \leq j \leq e$, one has

$$
\begin{equation*}
g_{r}(e)=\sum_{i=1}^{e-1} G_{r}\left(\chi_{i}\right) \tag{7}
\end{equation*}
$$

For small values of e, the sums $E_{r}(\chi)$ and $g_{r}(e)$ are known or easily derived using (4) and (7). (particularly for $e \mid 6$ or $e \mid 8$.) The modern treatment of Eisenstein sums $E_{r}(\chi)$ stems for the seminal work of Williams, Hardy and Spearman [6], in which they have tabulated the values of $E_{r}(\chi)$ for $e=2,3,4,6,8$. See also [2], where Berndt, Evans and Williams give the value of $g(e)$ for $e=2,3,4,6,8,12$, and of $g_{r}(e)$ for $e=2,3,4$, leaving the computation of $g_{r}(6)$ and $g_{r}(8)$ as exercises. Recently, Evans [3] gave an elegant determination of $g(12)$ in terms of $g(3), g(4)$ and $g(6)$ which resolved a sign ambiguity present in a previous evaluation. Here I generalize Evans' result to give a complete determination of the modified Gauss sum $g_{r}(12)$.

2 Eisenstein Sums of Order 12

Before giving the evaluation of the Eisenstein sums $E_{r}(\chi)$ for χ having order 12, some comments concerning Jacobi sums are in order. Let χ and ψ be characters of \mathbf{F}_{q}^{*}, where $q=p^{r}$. The Jacobi sum $J_{r}(\chi, \psi)$ is defined by

$$
\begin{equation*}
J_{r}(\chi, \psi)=\sum_{x \in \mathbf{F}_{q}^{*}-\{1\}} \chi(x) \psi(1-x) \tag{8}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
J_{r}(\chi, \psi)=\frac{G_{r}(\chi) G_{r}(\psi)}{G_{r}(\chi \psi)} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{r}(\chi, \psi)=\psi(-1) J_{r}\left(\chi^{-1} \psi^{-1}, \psi\right)=\chi(-1) J_{r}\left(\chi^{-1} \psi^{-1}, \chi\right) \tag{10}
\end{equation*}
$$

if χ, ψ and $\chi \psi$ are all non-trivial (chiefly Theorem 2.1.4 and 2.1.5 in [2]). (We write as before $J(\chi, \psi)$ for $J_{1}(\chi \cdot \psi)$.) The explicit evaluation of $J(\chi, \psi)$ has been tabulated by Berndt, Evans and Williams [2] for characters χ and ψ of \mathbf{F}_{p}^{*} of order dividing 12. In particular, if ψ is the normalized character of \mathbf{F}_{q}^{*} satisfying $\psi(G)=\zeta_{12}$, then the Jacobi sums $J\left(\psi^{m}, \chi^{n}\right)$, with m or n relatively prime to 12 , may be determined using (10) from the values $J\left(\psi, \psi^{n}\right)$ given below.

For a prime $p \equiv 1(\bmod 3)$, write $4 p=r_{3}^{2}+3 s_{3}^{2}$ with r_{3} and s_{3} uniquely determined by the conditions $r_{3} \equiv 1(\bmod 3), s_{3} \equiv 0(\bmod 3)$ and $3 s_{3} \equiv\left(2 G^{(p-1) / 3}+\right.$ 1) $r_{3}(\bmod p)$. Put $Z=\operatorname{ind}_{G} 2$ and $T=\operatorname{ind}_{G} 3$. Then the quantity

$$
\begin{equation*}
a_{3}+i b_{3} \sqrt{3}=\zeta_{3}^{2 Z}\left(r_{3}+i \sqrt{3} s_{3}\right) / 2 \tag{11}
\end{equation*}
$$

satisfies $a_{3}^{2}+3 b_{3}^{2}=p$ with $a_{3} \equiv-1(\bmod 3)$ and $3 b_{3} \equiv\left(2 G^{(p-1) / 3}+1\right) a_{3}(\bmod p)$. Similarly, for a prime $p \equiv 1(\bmod 4)$, write $p=a_{4}^{2}+b_{4}^{2}$ with a_{4} and b_{4} uniquely determined by the conditions $a_{4} \equiv-(-1)^{Z}(\bmod 4)$ and $b_{4} \equiv a_{4} G^{(p-1) / 4}(\bmod p)$. For a prime $p \equiv 1(\bmod 12)$, set

$$
\begin{equation*}
a_{12}+i b_{12}=(-1)^{T / 2+Z}\left(a_{4}+i b_{4}\right) \tag{12}
\end{equation*}
$$

(Note that 3 is a quadratic residue modulo p here so T is even.) If c_{12} is the unique 4-th root of unity determined by

$$
c_{12}= \begin{cases} \pm 1 \text { with } c_{12} \equiv-a_{4}(\bmod 3) & \text { if } 3 \mid b_{4} \tag{13}\\ \pm i \text { with } c_{12} \equiv-i b_{4}(\bmod 3) & \text { if } 3 \mid a_{4}\end{cases}
$$

then

$$
\begin{equation*}
a_{12}+i b_{12}=c_{12}^{2}\left(a_{4}+i b_{4}\right) \tag{14}
\end{equation*}
$$

from (12) and Lemma 3.5.1 in [2].
In terms of the quantities defined above, we have (chiefly [2, p. 116])
Proposition 1 The values $J\left(\psi, \psi^{n}\right)(0 \leq n \leq 6)$ are
$J\left(\psi, \psi^{0}\right)=0$
$J(\psi, \psi)=c_{12}^{2} \zeta_{6}^{-Z}\left(a_{4}+i b_{4}\right)$
$J\left(\psi, \psi^{2}\right)=\bar{c}_{12} \zeta_{3}^{-Z}\left(r_{3}+i \sqrt{3} s_{3}\right) / 2$
$J\left(\psi, \psi^{3}\right)=(-1)^{Z} \bar{c}_{12}\left(a_{4}+i b_{4}\right)$
$J\left(\psi, \psi^{4}\right)=\left(r_{3}+i \sqrt{3} s_{3}\right) / 2$
$J\left(\psi, \psi^{5}\right)=(-1)^{T / 2}\left(a_{4}+i b_{4}\right)$
$J\left(\psi, \psi^{6}\right)=c_{12}^{2}\left(a_{4}+i b_{4}\right)$

I am now ready to give the values of the Eisenstein sums $E_{r}(\chi)$ of order 12, where χ is the (normalized) character of \mathbf{F}_{q}^{*} satisfying $\chi(\gamma)=\zeta_{12}$, noting that r is even if $p \not \equiv 1(\bmod 12)$. The results given for $p \equiv 5(\bmod 12)$ agree with the evaluation of the Eisenstein sums of order 12 for $\mathbf{F}_{p^{2}}$ appearing in [2, p. 433].

Theorem 1 The Eisenstein $\operatorname{sum} E_{r}(\chi)$ is explicitly given as follows:
(a) If $p \equiv 1(\bmod 12)$, say $p=12 k+1$, then $E_{r}(\chi)=\epsilon p^{\alpha} \pi^{\beta} \lambda^{\delta}$ where $\pi=a_{4}+i b_{4}$ and $\lambda=\left(r_{3}+i \sqrt{3} s_{3}\right) / 2$, with

$$
\epsilon= \begin{cases}1 & \text { if } r \equiv 0,1,5(\bmod 12) \\ -1 & \text { if } r \equiv 4,8(\bmod 12) \\ (-1)^{k} & \text { if } r \equiv 7,11(\bmod 12) \\ (-1)^{k} c_{12} & \text { if } r \equiv 3(\bmod 12) \\ -(-1)^{T / 2} & \text { if } r \equiv 6(\bmod 12) \\ \bar{c}_{12} & \text { if } r \equiv 9(\bmod 12) \\ -(-1)^{T / 2} \zeta_{6}^{2 Z} & \text { if } r \equiv 2(\bmod 12) \\ -(-1)^{T / 2} \zeta_{6}^{4 Z} & \text { if } r \equiv 10(\bmod 12)\end{cases}
$$

$$
\alpha=[(r-1) / 12]
$$

$$
\beta= \begin{cases}r / 2 & \text { if } r \equiv 0(\bmod 2) \\ (r-1) / 2 & \text { if } r \equiv 1,3,5(\bmod 12) \\ (r+1) / 2 & \text { if } r \equiv 7,9,11(\bmod 12)\end{cases}
$$

and

$$
\delta= \begin{cases}r / 3 & \text { if } r \equiv 0(\bmod 3) \\ (r-1) / 3 & \text { if } r \equiv 1,4,7(\bmod 12) \\ (r-2) / 3 & \text { if } r \equiv 2(\bmod 12) \\ (r+1) / 3 & \text { if } r \equiv 5,8,11(\bmod 12) \\ (r+2) / 3 & \text { if } r \equiv 10(\bmod 12)\end{cases}
$$

(b) If $p \equiv 5(\bmod 12)$, say $p=12 k+5$, then

$$
E_{r}(\chi)= \begin{cases}-(-1)^{k+(r-2) / 4} \beta i p^{(r-2) / 4} \pi^{r / 2} & \text { if } r \equiv 2(\bmod 4) \\ (-1)^{r / 4} p^{r / 4-1} \pi^{r / 2} & \text { if } r \equiv 0(\bmod 4)\end{cases}
$$

where $\beta= \pm 1$ satisfies $\beta \equiv a_{4} b_{4}(\bmod 3)$.
(c) If $p \equiv 7(\bmod 12)$, say $p=12 k+7$, then

$$
E_{r}(\chi)= \begin{cases}-(-1)^{r(k+1) / 2} p^{(r-2) / 3} \lambda^{(r+1) / 3} & \text { if } r \equiv 2(\bmod 6) \\ -(-1)^{r(k+1) / 2} p^{(r-1) / 3} \lambda^{(r-1) / 3} & \text { if } r \equiv 4(\bmod 6) \\ (-1)^{r(k+1) / 2} p^{r / 3-1} \lambda^{r / 3} & \text { if } r \equiv 0(\bmod 6)\end{cases}
$$

(d) If $p \equiv 11(\bmod 12)$, say $p=12 k+11$, then $E_{r}(\chi)=(-1)^{k r / 2} p^{r / 2-1}$.

Proof (a) If $p=12 k+1$ then χ is the lift of the character ψ of \mathbf{F}_{p} satisfying $\psi(G)=$ ζ_{12}. In addition, $\chi(G)=\zeta_{12}^{1+p+\cdots+p^{r-1}}=\zeta_{12}^{r}$ so $\chi^{*}=\psi^{r}$. Thus, by (5)

$$
E_{r}(\chi)= \begin{cases}G^{r}(\psi) / p & \text { if } r \equiv 0(\bmod 12) \tag{15}\\ (-1)^{r-1} G^{r}(\psi) / G\left(\psi^{r}\right) & \text { if } r \not \equiv 0(\bmod 12)\end{cases}
$$

since $E_{1}(\psi)=1$. From Proposition 1 and (9), one finds

$$
\begin{gathered}
G^{2}(\psi) / G\left(\psi^{2}\right)=J(\psi, \psi)=c_{12}^{2} \zeta_{6}^{-Z} \pi \\
G^{3}(\psi) / G\left(\psi^{3}\right)=J(\psi, \psi) J\left(\psi, \psi^{2}\right)=(-1)^{Z} c_{12} \pi \lambda \\
G^{4}(\psi) / G\left(\psi^{4}\right)=J(\psi, \psi) J\left(\psi, \psi^{2}\right) J\left(\psi, \psi^{3}\right)=\pi^{2} \lambda, \\
G^{5}(\psi) / G\left(\psi^{5}\right)=J(\psi, \psi) J\left(\psi, \psi^{2}\right) J\left(\psi, \psi^{3}\right) J\left(\psi, \psi^{4}\right)=\pi^{2} \lambda^{2}, \quad \text { and } \\
G^{6}(\psi)=(-1)^{T / 2} \sqrt{p} \pi^{3} \lambda^{2}
\end{gathered}
$$

Then for $r \equiv r^{\prime}(\bmod 12)$ with $0<r^{\prime} \leq 6, E_{r}(\chi)$ equals

$$
(-1)^{r-1} G^{r^{\prime}}(\psi) G^{r-r^{\prime}}(\psi) / G\left(\psi^{r^{\prime}}\right)=(-1)^{r-1}\left(p \pi^{6} \lambda^{4}\right)^{\left(r-r^{\prime}\right) / 12} G^{r}(\psi) / G\left(\psi^{r}\right)
$$

which yields the desired forms for $E_{r}(\chi)$ when $r \equiv 1,2,3,4,5$ or $6(\bmod 12)$. For $r \equiv r^{\prime}(\bmod 12)$ with $6<r^{\prime}<12$, it follows from (2) and (15) that

$$
E_{r}(\chi)=\frac{(-1)^{r-1} G^{r+\left(12-r^{\prime}\right)}(\psi)}{G^{12-r^{\prime}}(\psi) G\left(\psi^{r^{\prime}}\right)}=\frac{(-1)^{k r+r-1} G\left(\psi^{12-r^{\prime}}\right)}{p G^{12-r^{\prime}}(\psi)}\left(p \pi^{6} \lambda^{4}\right)^{\left(r-r^{\prime}\right) / 12+1}
$$

which yields the desired expressions for $E_{r}(\chi)$ when $r \equiv 7,8,9,10$ and $11(\bmod 12)$. Finally, if $r \equiv 0(\bmod 12)$ then $E_{r}(\chi)=p^{-1}\left(p \pi^{6} \lambda^{4}\right)^{r / 6}=p^{r / 12-1} \pi^{r / 2} \lambda^{r / 3}$ from (15).
(b) If $p=12 k+5$ then χ is the lift of the character ψ of $\mathbf{F}_{p^{2}}$ satisfying

$$
\psi\left(\gamma^{1+p^{2}+\cdots+p^{2 r-2}}\right)=\zeta_{12} \text { with } \psi(G)=\zeta_{12}^{1+p}=-1 \text { and } \chi(G)=\zeta_{12}^{(q-1) /(p-1)}
$$

so ψ^{*} is quadratic and $\chi^{*}=\left(\psi^{*}\right)^{r / 2}$. As $l=2$ in (5) and $G\left(\psi^{*}\right)=\sqrt{p}$,

$$
E_{r}(\chi)= \begin{cases}E_{2}^{r / 2}(\psi) p^{(r-2) / 4} & \text { if } r \equiv 2(\bmod 4) \\ E_{2}^{r / 2}(\psi) p^{r / 4-1} & \text { if } r \equiv 0(\bmod 4)\end{cases}
$$

Since $E_{2}(\psi)=-(-1)^{k} i \beta\left(a_{4}+i b_{4}\right)$ here from Proposition 1 in [4] (see also [2, p. 433]), where $\beta= \pm 1$ satisfies $\beta \equiv a_{4} b_{4}(\bmod 3)$, one finds that $E_{r}(\chi)$ equals

$$
-(-1)^{k} i^{r / 2} \beta p^{(r-2) / 4} \pi^{r / 2}
$$

if $r \equiv 2(\bmod 4)$ or $(-1)^{r / 4} p^{r / 4-1} \pi^{r / 2}$ if $r \equiv 0(\bmod 4)$. This yields (b) since $i^{r / 2}=(-1)^{(r-2) / 4} i$ when $r \equiv 2(\bmod 4)$.
(c) If $p=12 k+7$ then χ is the lift of the character ψ of $\mathbf{F}_{p^{2}}$ satisfying

$$
\psi\left(\gamma^{1+p^{2}+\cdots+p^{r-2}}\right)=\zeta_{12} \text { with } \psi(G)=\zeta_{12}^{1+p}=\zeta_{12}^{8} \text { and } \chi(G)=\zeta_{12}^{(q-1) /(p-1)}=\zeta_{12}^{4 r}
$$

so ψ^{*} is cubic and $\chi^{*}=\left(\psi^{*}\right)^{r / 2}$ in (5). Thus

$$
E_{r}(\chi)= \begin{cases}-(-1)^{r / 2} G^{r / 2-1}\left(\psi^{*}\right) E_{2}^{r / 2}(\psi) & \text { if } r \equiv 2(\bmod 6) \\ -(-1)^{r / 2} G^{r / 2+1}\left(\psi^{*}\right) E_{2}^{r / 2}(\psi) / p & \text { if } r \equiv 4(\bmod 6) \\ (-1)^{r / 2} G^{r / 2}\left(\psi^{*}\right) E_{2}^{r / 2}(\psi) / p & \text { if } r \equiv 0(\bmod 6)\end{cases}
$$

Setting $G_{3}=G\left(\psi^{2^{*}}\right)$ and $\hat{G}_{3}=G\left(\psi^{*}\right)$, and noting that $G_{3}^{3}=p \lambda, \hat{G}_{3}^{3}=p \bar{\lambda}$ and $E_{2}(\psi)=(-1)^{k} \lambda$ from [1, p. 391] (see also Proposition 1 in [4] where the sign of b_{3} should be ' + '), one finds that if $r \equiv 2(\bmod 6)$ then

$$
\begin{aligned}
E_{r}(\chi) & =-(-1)^{r / 2} \hat{G}_{3}^{r / 2-1}\left((-1)^{k} \lambda\right)^{r / 2}=-(-1)^{r(k+1) / 2} p^{(r-2) / 6} \bar{\lambda}^{(r-2) / 6} \lambda^{r / 2} \\
& =-(-1)^{r(k+1) / 2} p^{(r-2) / 3} \lambda^{(r+1) / 3}
\end{aligned}
$$

Similarly one finds the desired expressions for $E_{r}(\chi)$ when $r \equiv 0$ and $4(\bmod 6)$.
(d) If $p=12 k+11$ then $E_{r}(\chi)=(-1)^{k r / 2} p^{r / 2-1}$ by Theorem 12.1.6 in [2].

3 Gauss Sums Over F_{q} of Order Twelve

Before giving the evaluation of the modified Gauss sum $g_{r}(12)$, some comments about $g_{r}(e)$ and the classical Gauss sums $G(\psi)$ for ψ of order $e=2,3,4$ and 6 are in order. Assume, for convenience, that ψ is the (normalized) character satisfying $\psi(G)=\zeta_{e}$. For $e=2, G(\psi)=i^{*} \sqrt{p}$ where $i^{*}=1$ or i according as $p \equiv 1$ or 3 (mod 4). Also,

$$
g_{r}(2)= \begin{cases}-(-1)^{(p-1) r / 4} p^{r / 2} & \text { if } r \equiv 0(\bmod 2) \tag{16}\\ i^{*}(-1)^{(p-1)(r-1) / 4} p^{(r-1) / 2} \sqrt{p} & \text { if } r \equiv 1(\bmod 2)\end{cases}
$$

from Theorem 12.10.2 in [2]. For $e=3$, the modified Gauss sum $g=g(3)$ satisfies $x^{3}-3 p x-p r_{3}=0$ with r_{3} and s_{3} as before. The correct choice of root for $g(3)$ was determined by Matthews [5] and is described in [2]. In terms of $g(3)$, one sees [4, p. 5] that

$$
\begin{equation*}
G_{3}=G(\psi)=\frac{1}{2}\left(g+\left(g-g^{\prime}\right) /(i \sqrt{3})\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{G}_{3}=G\left(\psi^{2}\right)=\frac{1}{2}\left(g-\left(g^{\prime \prime}-g^{\prime}\right) /(i \sqrt{3})\right) \tag{18}
\end{equation*}
$$

where the conjugates g^{\prime} and $g^{\prime \prime}$ of g are given by

$$
g^{\prime}=\left(g^{2}-2 p-\frac{1}{2}\left(s_{3}+r_{3}\right) g\right) / s_{3} \quad \text { and } \quad g^{\prime \prime}=\left(2 p-g^{2}-\frac{1}{2}\left(s_{3}-r_{3}\right) g\right) / s_{3}
$$

In particular (chiefly, Theorem 12.10.3 in $[2])$, if $p \equiv 1(\bmod 3)$,

$$
g_{r}(3)= \begin{cases}-(-1)^{r} p^{r / 3} V_{r / 3} & \text { if } r \equiv 0(\bmod 3) \tag{19}\\ -(-1)^{r} p^{(r-1) / 3}\left(g V_{(r-1) / 3}+\left(g^{\prime \prime}-g^{\prime}\right) U_{(r-1) / 3}\right) / 2 & \text { if } r \equiv 1(\bmod 3) \\ -(-1)^{r} p^{(r-2) / 3}\left(g V_{(r+1) / 3}-\left(g^{\prime \prime}-g^{\prime}\right) U_{(r+1) / 3}\right) / 2 & \text { if } r \equiv 2(\bmod 3)\end{cases}
$$

whereas if $p \equiv 2(\bmod 3)$

$$
\begin{equation*}
g_{r}(3)=-2(-1)^{r / 2} p^{r / 2} \text { or } 0 \quad \text { as } r \text { is even or odd. } \tag{20}
\end{equation*}
$$

Here V_{n} and U_{n} are Lucas sequences given by

$$
\begin{equation*}
V_{n}=\lambda^{n}+\bar{\lambda}^{n}, \quad U_{n}=\frac{1}{i \sqrt{3}}\left(\lambda^{n}-\bar{\lambda}^{n}\right) \tag{21}
\end{equation*}
$$

for $n \geq 0$. For later use we introduce the related sequences

$$
V_{j, n}=\zeta_{6}^{-j} \lambda^{n}+\zeta_{6}^{j} \bar{\lambda}^{n}, U_{j, n}=\frac{1}{i \sqrt{3}}\left(\zeta_{6}^{-j} \lambda^{n}-\zeta_{6}^{j} \bar{\lambda}^{n}\right) \quad(n \geq 0)
$$

for any integer j, noting that $V_{j, n}=V_{n}$ and $U_{j, n}=U_{n}$ when $6 \mid j$.
For $e=6$ one finds from Lemma 4.1.4 in [2] that

$$
\begin{equation*}
G(\psi)=\frac{i *}{\sqrt{p}} \zeta_{6}^{4 Z} \lambda \hat{G}_{3} \quad \text { and } \quad G\left(\psi^{-1}\right)=\frac{i *}{\sqrt{p}} \zeta_{6}^{2 Z} \bar{\lambda} G_{3} \tag{22}
\end{equation*}
$$

using the fact that $G_{3}^{2}=\lambda \hat{G}_{3}$. For χ, the (normalized) character of \mathbf{F}_{q}^{*} satisfying $\chi(\gamma)=\zeta_{6}$, one computes $G_{r}(\chi)+G_{r}\left(\chi^{5}\right)$ for $p \equiv 1(\bmod 6)$ using (4), (22) and Theorem 12.6.1 in [2].

Proposition 2 The value of $G_{r}(\chi)+G_{r}\left(\chi^{5}\right)$ above is given by

$$
\begin{aligned}
-(-1)^{k r / 2} p^{r / 6}\left(\lambda^{2 r / 3}+\bar{\lambda}^{2 r / 3}\right) & \text { if } r \equiv 0(\bmod 6), \\
(-1)^{k(r-1) / 2} p^{(r-1) / 6}\left(\lambda^{(2 r-2) / 3} G(\psi)+\bar{\lambda}^{(2 r-2) / 3} G\left(\psi^{5}\right)\right) & \text { if } r \equiv 1(\bmod 6), \\
-(-1)^{k r / 2} p^{(r-2) / 6}\left(\zeta_{6}^{2 Z} \lambda^{(2 r-1) / 3} G_{3}+\zeta_{6}^{4 Z} \bar{\lambda}^{(2 r-1) / 3} \hat{G}_{3}\right) & \text { if } r \equiv 2(\bmod 6), \\
(-1)^{k(r-1) / 2} p^{(r-3) / 6} i^{*} \sqrt{p}\left(\lambda^{2 r / 3}+\bar{\lambda}^{2 r / 3}\right) & \text { if } r \equiv 3(\bmod 6), \\
-(-1)^{k r / 2} p^{(r-4) / 6}\left(\zeta_{6}^{4 Z} \lambda^{(2 r+1) / 3} \hat{G}_{3}+\zeta_{6}^{2 Z} \bar{\lambda}^{(2 r+1) / 3} G_{3}\right) & \text { if } r \equiv 4(\bmod 6), \\
(-1)^{k(r-1) / 2} p^{(r-5) / 6}\left(\lambda^{(2 r+2) / 3} G\left(\psi^{5}\right)+\bar{\lambda}^{(2 r+2) / 3} G(\psi)\right) & \text { if } r \equiv 5(\bmod 6),
\end{aligned}
$$

where p has the form $6 k+1$.

In view of (7) the above proposition gives the value for $g_{r}(6)-g_{r}(3)-g_{r}(2)$ which may be conveniently expressed in terms of the sequences $V_{j, n}$ and $U_{j, n}$ using relations (17), (18) and (22). Namely, if $p=6 k+1$ then depending on the value of r modulo $6, g_{r}(6)-g_{r}(3)-g_{r}(2)$ equals (23)

$$
\begin{cases}-(-1)^{k r / 2} p^{r / 6} V_{2 r / 3} & \text { if } r \equiv 0 \\ (-1)^{(k(r-1) / 2} p^{(r-1) / 6} \frac{i^{*}}{2 \sqrt{p}}\left(g V_{2 Z,(2 r+1) / 3}-\left(g^{\prime \prime}-g^{\prime}\right) U_{2 Z,(2 r+1) / 3}\right) & \text { if } r \equiv 1 \\ -(-1)^{k r / 2} p^{(r-2) / 6}\left(g V_{4 Z,(2 r-1) / 3}+\left(g^{\prime \prime}-g^{\prime}\right) U_{4 Z,(2 r-1) / 3}\right) / 2 & \text { if } r \equiv 2 \\ (-1)^{k(r-1) / 2} p^{(r-3) / 6} i^{*} \sqrt{p} V_{2 r / 3} & \text { if } r \equiv 3 \\ -(-1)^{k r / 2} p^{(r-2) / 4}\left(g V_{2 Z,(2 r+1) / 3}-\left(g^{\prime \prime}-g^{\prime}\right) U_{2 Z,(2 r+1) / 3}\right) / 2 & \text { if } r \equiv 4 \\ (-1)^{k(r-1) / 2} p^{(r+1) / 6} \frac{i^{*}}{2 \sqrt{p}}\left(g V_{4 Z,(2 r-1) / 3}+\left(g^{\prime \prime}-g^{\prime}\right) U_{4 Z,(2 r-1) / 3}\right) & \text { if } r \equiv 5\end{cases}
$$

If $p=6 k+5$ then

$$
g_{r}(6)= \begin{cases}-\left(3(-1)^{k r / 2}+2(-1)^{r / 2}\right) p^{r / 2} & \text { if } r \text { is even } \tag{24}\\ (-1)^{k(r-1) / 2} p^{(r-1) / 2} i^{*} \sqrt{p} & \text { if } r \text { is odd }\end{cases}
$$

using Theorem 12.6.1 in [2].
For $e=4$ with $p \equiv 1(\bmod 4)$, one has (chiefly, from Theorem 4.2.4 in [2])

$$
\begin{gather*}
G_{4}=G(\psi)=\epsilon(A+i B) \quad \text { and } \tag{25}\\
\hat{G}_{4}=G\left(\psi^{3}\right)=(-1)^{Z} \epsilon(A-i B), \tag{26}
\end{gather*}
$$

where $A=\sqrt{\left.p+(-1)^{Z} a_{4} \sqrt{p}\right) / 2}, B=\frac{(-1)^{z} b_{4}}{\left|b_{4}\right|} \sqrt{\left(p-(-1)^{Z} b_{4} \sqrt{p}\right) / 2}$ and $\epsilon= \pm 1$. The correct choice of sign for ϵ was determined by Matthews [5] and is described in [2, p. 162]. In particular (chiefly Theorem 12.4.1 in [2]), if $p \equiv 1(\bmod 4)$
(27) $g_{r}(4)-g_{r}(2)= \begin{cases}-p^{r / 4} Q_{r / 2} & \text { if } r \equiv 0(\bmod 4) \\ p^{(r-1) / 4}\left(G_{4} \pi^{(r-1) / 2}+\hat{G}_{4} \bar{\pi}^{(r-1) / 2}\right) & \text { if } r \equiv 1(\bmod 4) \\ (-1)^{(p+3) / 4} p^{(r-2) / 4} Q_{r / 2} \sqrt{p} & \text { if } r \equiv 2(\bmod 4) \\ (-1)^{Z} p^{(r-3) / 4}\left(\hat{G}_{4} \pi^{(r+1) / 2}+G_{4} \bar{\pi}^{(r+1) / 2}\right) & \text { if } r \equiv 3(\bmod 4),\end{cases}$
whereas if $p \equiv 3(\bmod 4)$

$$
g_{r}(4)= \begin{cases}-\left(2(-1)^{(p-3) r / 8}+(-1)^{r / 2}\right) p^{r / 2} & \text { if } r \text { even } \tag{28}\\ i(-1)^{(r-1) / 2} p^{(r-1) / 2} \sqrt{p} & \text { if } r \text { odd }\end{cases}
$$

Here Q_{n} and P_{n} are the Lucas sequences given by

$$
\begin{equation*}
Q_{n}=\pi^{n}+\bar{\pi}^{n} \text { and } P_{n}=-i\left(\pi^{n}-\bar{\pi}^{n}\right) \text { for } n \geq 0 \tag{29}
\end{equation*}
$$

I am ready to consider the case $e=12$. For the (normalized) characters χ_{j} of \mathbf{F}_{q}^{*} satisfying $\chi_{j}(\gamma)=\zeta_{12}^{j}$, put $R=G_{r}\left(\chi_{3}\right)+G_{r}\left(\chi_{9}\right)$ and $S=G_{r}\left(\chi_{1}\right)+G_{r}\left(\chi_{5}\right)+G_{r}\left(\chi_{7}\right)+$ $G_{r}\left(\chi_{11}\right)$ so the (modified) Gauss sum

$$
\begin{equation*}
g_{r}(12)=S+R+g_{r}(6) \tag{30}
\end{equation*}
$$

For $p=12 k+1$ and ψ the (normalized) character of \mathbf{F}_{p}^{*} of order 12 satisfying $\psi(G)=$ ζ_{12}, I explicitly evaluate $G\left(\psi^{j}\right)$ next for $\operatorname{gcd}(j, 12)=1$.

Proposition 3 For ψ as above with $p=12 k+1$, one has

$$
\begin{aligned}
G(\psi) & =\bar{c}_{12} G_{3} \hat{G}_{4} / \bar{\pi} & G\left(\psi^{7}\right) & =c_{12} G_{3} G_{4} / \pi \\
G\left(\psi^{5}\right) & =\bar{c}_{12} \hat{G}_{3} \hat{G}_{4} / \bar{\pi} & G\left(\psi^{11}\right) & =c_{12} \hat{G}_{3} G_{4} / \pi
\end{aligned}
$$

where $\pi=a_{4}+i b_{4}$ with G_{3} and G_{4} as in (17) and (25).
Proof In view of (2) it suffices to verify the expressions for $G\left(\psi^{11}\right)$ and $G\left(\psi^{5}\right)$. Using (9) and (10),

$$
G\left(\psi^{11}\right)=\frac{G\left(\psi^{3}\right) G\left(\psi^{8}\right)}{J\left(\psi^{3}, \psi^{8}\right)}=\frac{G_{4} \hat{G}_{3}}{(-1)^{k} J\left(\psi, \psi^{3}\right)}=c_{12} G_{4} \hat{G}_{3} / \pi
$$

by Proposition 1. Also from (9), $G(\psi) G\left(\psi^{5}\right)=G\left(\psi^{6}\right) J\left(\psi, \psi^{5}\right)=(-1)^{T / 2} \pi \sqrt{p}$ so $G\left(\psi^{5}\right)=\frac{(-1)^{T / 2} \pi \sqrt{p} \bar{\pi}}{\bar{c}_{12} G_{3} \hat{G}_{4}}=\bar{c}_{12} \hat{G}_{3} \hat{G}_{4}(-1)^{Z} \sqrt{p} /\left(\hat{G}_{4}^{2}\right)=\bar{c}_{12} \hat{G}_{3} \hat{G}_{4} / \bar{\pi}$ by (26).

For the situation at hand, one finds an elegant expression for S in terms of $R=$ $g_{r}(4)-g_{r}(2), g_{r}(3)$ and $g_{r}(2)$.

Proposition 4 For ψ as in Proposition 3 with $p=12 k+1$, one has

$$
S= \begin{cases}c_{12}^{r} g_{r}(3) R / g_{r}(2) & \text { if } r \text { even or } 3 \mid b_{4} \\ \omega g_{r}(3) P_{r} / R=\frac{(-1)^{k} \omega_{g_{r}}(3) P_{r}}{g_{r}(2)\left(Q_{r}+2 g_{r}(2)\right)} & \text { if } r \text { odd and } 3 \mid a_{4},\end{cases}
$$

where $\omega= \pm 1$ satisfies $\omega \equiv(-1)^{(r+1) / 2+k} b_{4}(\bmod 3)$.
Proof For $r \equiv 0(\bmod 12)$, one finds $S=-p\left(E_{r}\left(\chi_{1}\right)+E_{r}\left(\chi_{5}\right)+E_{r}\left(\chi_{7}\right)+E_{r}\left(\chi_{11}\right)\right)=$ $-p^{r / 12}\left(\pi^{r / 2} \lambda^{r / 3}+\pi^{r / 2} \bar{\lambda}^{r / 3}+\bar{\pi}^{r / 2} \lambda^{r / 3}+\bar{\pi}^{r / 2} \bar{\lambda}^{r / 3}\right)=-p^{r / 3}\left(\lambda^{r / 3}+\bar{\lambda}^{r / 3}\right)\left(\pi^{r / 2}+\bar{\pi}^{r / 2}\right) / p^{r / 4}$ or

$$
\begin{equation*}
p^{r / 4} S=-g_{r}(3) Q_{r / 2} \tag{31}
\end{equation*}
$$

from Theorem 1 and (19).
For $r \not \equiv 0(\bmod 12)$, one finds

$$
S=E_{r}\left(\chi_{1}\right) G\left(\psi^{r}\right)+E_{r}\left(\chi_{5}\right) G\left(\psi^{5 r}\right)+E_{r}\left(\chi_{7}\right) G\left(\psi^{7 r}\right)+E_{r}\left(\chi_{11}\right) G\left(\psi^{11 r}\right)
$$

with $G\left(\psi^{j}\right)$ given in Proposition 3, (17) or (22). In each case one finds a factorization for S. To illustrate for odd r, consider the case $r \equiv 1(\bmod 12)$. Then

$$
\begin{aligned}
S= & p^{(r-1) / 12}\left(\bar{c}_{12} \pi^{(r-1) / 2} \lambda^{(r-1) / 3} G_{3} \hat{G}_{4} / \bar{\pi}+\bar{c}_{12} \pi^{(r-1) / 2} \bar{\lambda}^{(r-1) / 3} \hat{G}_{3} \hat{G}_{4} / \bar{\pi}\right. \\
& \left.+c_{12} \bar{\pi}^{(r-1) / 2} \lambda^{(r-1) / 3} G_{3} G_{4} / \pi+c_{12} \bar{\pi}^{(r-1) / 2} \bar{\lambda}^{(r-1) / 3} \hat{G}_{3} G_{4} / \pi\right) \\
= & p^{(r-13) / 12}\left(\bar{c}_{12} \pi^{(r+1) / 2)} \lambda^{(r-1) / 3} G_{3} \hat{G}_{4}+\bar{c}_{12} \pi^{(r+1) / 2} \bar{\lambda}^{(r-1) / 3} \hat{G}_{3} \hat{G}_{4}\right. \\
& \left.+c_{12} \bar{\lambda}^{(r+1) / 2} \lambda^{(r-1) / 3} G_{3} G_{4}+c_{12} \bar{\pi}^{(r+1) / 2} \bar{\lambda}^{(r-1) / 3} \hat{G}_{3} G_{4}\right) \\
= & p^{(r-1) / 3}\left(\lambda^{(r-1) / 3} G_{3}+\bar{\lambda}^{(r-1) / 3} \hat{G}_{3}\right) \cdot\left(\bar{c}_{12} \pi^{(r+1) / 2} \hat{G}_{4}+c_{12} \bar{\pi}^{(r+1) / 2} G_{4}\right) / p^{(r+3) / 4}
\end{aligned}
$$

or

$$
\begin{equation*}
p^{(r+3) / 4} S=g_{r}(3)\left(\bar{c}_{12} \pi^{(r+1) / 2} \hat{G}_{4}+c_{12} \bar{\pi}^{(r+1) / 2} G_{4}\right) \tag{32}
\end{equation*}
$$

The formula (32) is seen to hold for any $r \equiv 1(\bmod 4)$. Similarly, for $r \equiv 3$ $(\bmod 4)$ one finds

$$
\begin{equation*}
p^{(r+1) / 4} S=g_{r}(3)(-1)^{k}\left(c_{12} \pi^{(r-1) / 2} G_{4}+\bar{c}_{12} \bar{\pi}^{(r-1) / 2} \hat{G}_{4}\right) \tag{33}
\end{equation*}
$$

For $r \equiv 4$ or $8(\bmod 12)$, formula (31) is found to hold. Finally, for $r \equiv 2(\bmod 4)$ one finds that

$$
\begin{equation*}
p^{(r-2) / 4} \sqrt{p} S=(-1)^{T / 2} g_{r}(3) Q_{r / 2} \tag{34}
\end{equation*}
$$

To illustrate formula (34) when $r \equiv 2(\bmod 12)$, one finds

$$
\begin{aligned}
& S=-(-1)^{T / 2} p^{(r-2) / 12}\left(\zeta_{6}^{2 Z} \pi^{r / 2} \lambda^{(r-2) / 3} G\left(\psi^{2}\right)+\zeta_{6}^{4 Z} \pi^{r / 2} \bar{\lambda}^{(r-2) / 3} G\left(\psi^{10}\right)\right. \\
&\left.+\zeta_{6}^{2 Z} \bar{\pi}^{r / 2} \lambda^{(r-2) / 3} G\left(\psi^{2}\right)+\zeta_{6}^{4 Z} \bar{\pi}^{r / 2} \bar{\lambda}^{(r-2) / 3} G\left(\psi^{10}\right)\right) \\
&=-(-1)^{T / 2} p^{(r-2) / 12}\left(\zeta_{6}^{2 Z} \lambda^{(r-2) / 3} G_{6}+\zeta_{6}^{4 Z} \bar{\lambda}^{(r-2) / 3} \hat{G}_{6}\right)\left(\pi^{r / 2}+\bar{\pi}^{r / 2}\right) \\
&=-(-1)^{T / 2} p^{(r-14) / 12} \sqrt{p}\left(\lambda^{(r+1) / 3} \hat{G}_{3}+\bar{\lambda}^{(r+1) / 3} G_{3}\right) Q_{r / 2} \\
& \text { or }=(-1)^{T / 2} g_{r}(3) Q_{r / 2} /\left(p^{(r-2) / 4} \sqrt{p}\right) \text { from }(17)-(19) \text { and }(22) .
\end{aligned}
$$

Comparing the expressions (31)-(34) just derived with (16), (19) and (27) for $g_{r}(2), g_{r}(3)$ and R, one readily obtains the desired formula for S in case r is even or $3 \mid b_{4}$ in view of the fact $c_{12}^{2}=(-1)^{T / 2+k}$.

It remains to establish the formula for S when r is odd and $3 \mid a_{4}$, in which case $c_{12}= \pm i$ satisfies $c_{12} \equiv-i b_{4}(\bmod 3)$ from (13). For $r \equiv 1(\bmod 4)$,

$$
\begin{aligned}
\bar{c}_{12} \pi^{(r+1) / 2} & \hat{G}_{4}+c_{12} \bar{\pi}^{(r+1) / 2} G_{4} \\
& =p^{(r-1) / 4} \bar{c}_{12}\left(\pi^{(r+1) / 2} \hat{G}_{4}-\bar{\pi}^{(r+1) / 2} G_{4}\right)\left(\pi^{(r-1) / 2} G_{4}+\bar{\pi}^{(r-1) / 2} \hat{G}_{4}\right) / R \\
& =p^{(r-1) / 4} \bar{c}_{12}\left(\pi^{r} \hat{G}_{4} G_{4}-\bar{\pi}^{r} G_{4} \hat{G}_{4}+p^{(r-1) / 2}\left(\pi \hat{G}_{4}^{2}-\bar{\pi} G_{4}^{2}\right)\right) / R \\
& =p^{(r+3) / 4} \bar{c}_{12}(-1)^{Z}\left(\pi^{r}-\bar{\pi}^{r}\right) / R \\
& =(-1)^{Z} \bar{c}_{12} p^{(r+3) / 4} P_{r} / R
\end{aligned}
$$

from (27) with $(-1)^{Z} i \bar{c}_{12} \equiv-(-1)^{k} b_{4}(\bmod 3)$. This yields the desired form for S when $r \equiv 1(\bmod 4)$ and its alternatives since R^{2} equals

$$
\begin{aligned}
p^{(r-1) / 2}\left(\pi^{(r-1) / 2} G_{4}+\bar{\pi}^{(r-1) / 2} \hat{G}_{4}\right)^{2} & =p^{(r-1) / 2}\left(\pi^{r-1} G_{4}^{2}+2 p^{(r-1) / 2} G_{4} \hat{G}_{4}+\bar{\pi}^{r-1} \hat{G}_{4}^{2}\right) \\
& =(-1)^{k} p^{(r-1) / 2}\left(\pi^{r} \sqrt{p}+2 p^{(r+1) / 2}+\bar{\pi}^{r} \sqrt{p}\right) \\
& =(-1)^{k} g_{r}(2)\left(Q_{r}+2 g_{r}(2)\right)
\end{aligned}
$$

from (25)-(27). For $r \equiv 3(\bmod 4)$,

$$
\begin{aligned}
&(-1)^{k}\left(c_{12}\right.\left.\pi^{(r-1) / 2} G_{4}+\bar{c}_{12} \bar{\pi}^{(r-1) / 2} \hat{G}_{4}\right) \\
&=p^{(r-3) / 4} c_{12}\left(\pi^{(r-1) / 2} G_{4}-\bar{\pi}^{(r-1) / 2} \hat{G}_{4}\right)\left(\pi^{(r+1) / 2} \hat{G}_{4}+\bar{\pi}^{(r+1) / 2} G_{4}\right) / R \\
& \quad= p^{(r-3) / 4} c_{12}\left(\pi^{r} G_{4} \hat{G}_{4}-\bar{\pi}^{r} G_{4} \hat{G}_{4}+p^{(r-1) / 2}\left(\bar{\pi} G_{4}^{2}-\pi \hat{G}_{4}^{2}\right)\right) \\
& \quad=(-1)^{k} p^{(r+1) / 4} c_{12}\left(\pi^{r}-\bar{\pi}^{r}\right) / R=(-1)^{k} i c_{12} p^{(r+1) / 4} P_{r} / R
\end{aligned}
$$

again from (25)-(27), with $(-1)^{k} i c_{12} \equiv(-1)^{k} b_{4}(\bmod 3)$. This yields the desired form for S when $r \equiv 3(\bmod 4)$ and its alternative since

$$
R^{2}=(-1)^{k} g_{r}(2)\left(Q_{r}+2 g_{r}(2)\right)
$$

in this case, too.
I completely determine $g_{r}(12)$ next without any sign ambiguities.
Theorem 2 The value $g_{r}(12)$ is explicitly given by
(i) If $p=12 k+1$ then

$$
g_{r}(12)= \begin{cases}g_{r}(6)+R\left(1+c_{12}^{r} g_{r}(3) / g_{r}(2)\right) & \text { if } r \text { even or } 3 \mid b_{4} \\ g_{r}(6)+R\left(1+\frac{(-1)^{k} \omega g_{r}(3) P_{r}}{g_{r}(2)\left(Q_{r}+2 g_{r}(2)\right)}\right) & \text { if r odd and } 3 \mid a_{4}\end{cases}
$$

(ii) If $p=12 k+5$ then

$$
g_{r}(12)= \begin{cases}-5 p^{r / 2}-p^{r / 4} Q_{r / 2}\left(2(-1)^{r / 4}+1\right) & \text { if } 4 \mid r \\ -p^{r / 2}+(-1)^{k} p^{(r-2) / 4} \sqrt{p}\left(Q_{r / 2}+(-1)^{(r-2) / 4} 2 \beta P_{r / 2}\right) & \text { if } 2 \| r \\ g_{r}(4) & \text { ifr odd }\end{cases}
$$

(iii) If $p=12 k+7$ then

$$
g_{r}(12)= \begin{cases}g_{r}(6)+2(-1)^{r(k+1) / 2}\left(g_{r}(3)-p^{r / 2}\right) & \text { if r even } \\ g_{r}(6) & \text { if r odd }\end{cases}
$$

(iv) If $p=12 k+11$ then $g_{r}(12)=-\left(6(-1)^{k r / 2}+5(-1)^{r / 2}\right) p^{r / 2}$ or $g_{r}(2)$ according as r is even or odd.

Proof From (30) one knows that $g_{r}(12)=g_{r}(6)+R+S$ and from [2, p. 421] that

$$
\begin{equation*}
g_{r}(12)=g_{r}(d), \quad \text { where } d=\operatorname{gcd}(12, p-1) \tag{35}
\end{equation*}
$$

Thus statement (i) follows immediately from Proposition 4 , and for $p \not \equiv 1(\bmod 12)$ results (ii)-(iv) hold when r is odd due to (35). It remains to verify (ii)-(iv) when r is even.

$$
\begin{aligned}
& \text { If } p=12 k+5 \text { then } \chi^{*}(G)=\zeta_{12}^{(q-1) /(p-1)}=\zeta_{12}^{3 r} . \text { For } r \equiv 0(\bmod 4) \\
& \qquad \begin{aligned}
S & =-p\left(E_{r}\left(\chi_{1}\right)+E_{r}\left(\chi_{5}\right)+E_{r}\left(\chi_{7}\right)+E_{r}\left(\chi_{11}\right)\right)=-2(-1)^{r / 4} p^{r / 2}\left(\pi^{r / 2}+\bar{\pi}^{r / 2}\right) \\
& =-2(-1)^{r / 4} p^{r / 2} Q_{r / 2}
\end{aligned}
\end{aligned}
$$

from Theorem 1, $R=-p^{r / 4} Q_{r / 2}$ from (27) and $g_{r}(6)=-5 p^{r / 2}$ from (24). Whereas for $r \equiv 2(\bmod 4), R=(-1)^{k} p^{(r-2) / 4} Q_{r / 2} \sqrt{p}$ from (27),

$$
\begin{aligned}
S & =\sqrt{p}\left(E_{r}\left(\chi_{1}\right)+E_{r}\left(\chi_{5}\right)+E_{r}\left(\chi_{7}\right)+E_{r}\left(\chi_{11}\right)\right) \\
& =-2(-1)^{k+(r-2) / 4} \beta p^{(r-2) / 4} \sqrt{p}\left(i \pi^{r / 2}-i \bar{\pi}^{r / 2}\right) \\
& =2(-1)^{k+(r-2) / 4} \beta P_{r} p^{(r-2) / 4} \sqrt{p}
\end{aligned}
$$

from Theorem 1 and $g_{r}(6)=-p^{r / 2}$ from (24). In either case, the expression for $g_{r}(12)$ in (ii) follows.

If $p=12 k+7$ then $\chi^{*}(G)=\zeta_{12}^{4 r}$ and one finds from Theorem 1 that

$$
S= \begin{cases}-2(-1)^{r(k+1) / 2} p^{(r-2) / 3}\left(\lambda^{(r+1) / 3} \hat{G}_{3}+\bar{\lambda}^{(r+1) / 3} G_{3}\right) & \text { if } r \equiv 2(\bmod 6) \\ -2(-1)^{r(k+1) / 2} p^{(r-1) / 3}\left(\lambda^{(r-1) / 3} G_{3}+\bar{\lambda}^{(r-1) / 3} \hat{G}_{3}\right) & \text { if } r \equiv 4(\bmod 6) \\ -2(-1)^{r(k+1) / 2} p^{r / 3}\left(\lambda^{r / 3}+\bar{\lambda}^{r / 3}\right) & \text { if } r \equiv 0(\bmod 6)\end{cases}
$$

or equivalently that

$$
\begin{equation*}
S=2(-1)^{r(k+1) / 2} g_{r}(3) \tag{36}
\end{equation*}
$$

from (19) when r is even. Also $R=g_{r}(4)-g_{r}(2)=2(-1)^{r(k+1) / 2} p^{r / 2}$ from (16) and (28). This yields the expression for $g_{r}(12)$ in (iii).

If $p=12 k+11$ then $S=-4(-1)^{k r / 2} p^{r / 2}, R=-2(-1)^{k r / 2} p^{r / 2}$ from Theorem 1 , (16) and (28), and $g_{r}(6)=-5(-1)^{r / 2} p^{r / 2}$ from (24). Thus $g_{r}(12)=-\left(6(-1)^{k r / 2}+\right.$ $\left.5(-1)^{r / 2}\right) p^{r / 2}$ in (iv) when r is even.

The proof of the theorem is now complete.

References

[1] B. Berndt and R. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer. Illinois J. Math. (3) 23(1979), 374-437.
[2] B. Berndt, R. Evans and K. S. Williams, Gauss and Jacobi Sums. Wiley, New York, (1997).
[3] R. Evans, Gauss sums of orders six and twelve. to appear.
[4] S. Gurak, Period polynomials for $\mathbf{F}_{p^{2}}$ of fixed small degree. In: Finite Fields and Applications, (eds., D. Jungnickel and H. Niederreiter), Springer, 2000, 196-207.
[5] C. R. Matthews, Gauss sums and elliptic functions I, II. Invent. Math. 52(1979), 163-185; 54(1979), 23-52.
[6] K. S. Williams, K. Hardy and B. K. Spearman, Explicit evaluation of certain Eisenstein sums. In: Number Theory, (ed., R. A. Mollin), de Gruyter, Berlin, 1990, 553-626.

Department of Mathematics
University of San Diego
San Diego, California 92110
USA

