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Abstract. This paper is part of a program to understand the parameter spaces of dynamical
systems generated by meromorphic functions with finitely many singular values. We give
a full description of the parameter space for a specific family based on the exponential
function that has precisely two finite asymptotic values and one attracting fixed point. It
represents a step beyond the previous work by Goldberg and Keen [The mapping class
group of a generic quadratic rational map and automorphisms of the 2-shift. Invent. Math.
101(2) (1990), 335–372] on degree two rational functions with analogous constraints: two
critical values and an attracting fixed point. What is interesting and promising for pushing
the general program even further is that, despite the presence of the essential singularity,
our new functions exhibit a dynamic structure as similar as one could hope to the
rational case, and that the philosophy of the techniques used in the rational case could be
adapted.
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1. Introduction
A general principle in complex dynamics is that singular values control the dynamical
behavior. There is now a long history of isolating interesting families of functions whose
singular values can be parameterized in a way that allows one to understand how the
dynamics varies across the family. In practice, one constrains the number of singular values
and the behavior of one or more of them—for example, by demanding that the orbit of one
tends to an attracting fixed point.

This paper is a step along the way to a general theory for meromorphic functions with
finitely many singular values. We adapt a technique developed by Douady, Hubbard, and
their students to study spaces of cubic polynomials, and used in [GK] for rational maps
of degree two, in which the parameter space is modeled on the dynamic space of a fixed
map in the family. We will be looking at a family of meromorphic functions that are close
enough to rational maps of degree two that there should be (and is) a direct similarity
between the behaviors. To put this in context, it helps to review some of the history.

The study of the parameter space for families of complex dynamical systems began
with the family of quadratic polynomials. They have one critical value whose behavior
determines the dynamics and it is this behavior that is captured by the Mandelbrot set and
its complement. The next step was to study families with two free critical values—cubic
polynomials and rational maps of degree two. Moving out of the realm of rational
functions and into that of dynamics of transcendental functions, we see more substantial
differences between entire and meromorphic functions than between polynomials and
rationals. Rational maps define finite coverings of the plane, but transcendental maps
define infinite coverings. Moreover, while the poles of rational maps are no different from
regular points, the poles of (transcendental) meromorphic functions add a new flavor to
the dynamics. It turns out that there are more similarities between the parameter space of
rational maps of degree two and that of the tangent family λ tan z than between quadratic
polynomials and the exponential family. See e.g. [DFJ, DK, FG, K, KK, RG, Sch]. Is this
similarity just good fortune or is it suggestive of a more general pattern of relationships
with rational maps?

Thanks to invariance under Möbius transformations, to study rational maps of degree
two, we can restrict our attention to maps of the form (z + b + 1/z)/ρ where b ∈ C and
ρ ∈ C

∗. This family is often called Rat2 in the literature. These functions fix infinity
where the derivative (multiplier) is ρ �= 0 and have two free critical values, (b ± 2)/ρ,
rather than one as in the quadratic polynomial case. Constraining ρ to lie in the punctured
unit disk, D∗, makes infinity an attracting fixed point for all values of b. In [GK], a
structure theorem is proved for this family that is as close as one could hope to the earlier
examples.

THEOREM 1.1. (Structure theorem for Rat2) Fix ρ ∈ D
∗ and consider the family (z + b +

1/z)/ρ, where b ∈ C. The b plane is divided into three components by a bifurcation locus:
two copies of the Mandelbrot set that meet at the origin and are symmetric about it, and a
‘shift locus’. For b in either copy of the Mandelbrot set, one or the other critical value is
attracted to infinity and the other is not. In the shift locus, both critical values are attracted
to infinity.
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This paper looks at the family of meromorphic functions whose members ‘look like
degree-two rationals’: they have two finite omitted asymptotic values, λ and μ, and an
attracting fixed point (in this case, at the origin) with multiplier ρ:

fλ,ρ(z) = ez − e−z

(ez/λ) − (e−z)/μ
where

1
λ

− 1
μ

= 2
ρ

, ρ ∈ D
∗. (1)

We use F2 to denote this family. Our main result is a structure theorem for the slice
of the parameter space defined by a fixed ρ ∈ D

∗, and those λ for which that ρ has a
corresponding μ, namely λ not equal to 0 or ρ/2. It is a direct analogue of the Rat2

theorem.

THEOREM 1.2. (Main structure theorem) For each ρ ∈ D
∗, the parameter slice,

λ ∈ C \ {0, ρ/2}, divides into three distinct regions: two copies of connected and full
sets, Mλ and Mμ, in which only one of the asymptotic values, μ or λ, is attracted to the
origin and a ‘shift locus’, S, in which both asymptotic values are attracted to the origin.
The shift locus, S, is conformally equivalent to a punctured annulus. The puncture is at
the origin. The other puncture of the parameter plane, ρ/2, is on the boundary of the shift
locus.

We are able to give a description of the sets Mλ and Mμ. Like the Mandelbrot set
in Rat2, Mλ and Mμ contain hyperbolic components in which one or the other of
the asymptotic values tends to a non-zero attracting cycle. Within each component, the
functions are quasiconformally conjugate. Components like this were first studied in [KK]
where they occur in the parameter plane of the tangent family λ tan z. There, and in other
later work (see [CK, FK, KK]), it was proved that each component is a universal cover of
D

∗; based on the computer pictures, these components were called shell components. Thus,
unlike the Mandelbrot set, the hyperbolic components do not contain a ‘center’ where the
periodic cycle contains the critical value and has multiplier zero. Instead, they contain a
distinguished boundary point with the property that as the parameter approaches this point,
the limit of the multiplier of the periodic cycle attracting the asymptotic value is zero. It is
thus called a ‘virtual center’.

Like the characterization of centers of the components of the Mandelbrot set in terms
of the sequence of inverse branches that keep the critical value fixed, a virtual center λ∗
can also be characterized by the property that there is some n such that f n−1

λ∗ (λ∗) = ∞ or
f n−1

λ∗ (μ(λ∗, ρ)) = ∞; the point is thus also called a ‘virtual cycle parameter of order n’.
In this paper, we give a complete combinatorial description of the virtual cycle parameters.

THEOREM 1.3. (Combinatorial structure theorem) The virtual cycle parameters λkn
of

order n can all be labeled by sequences kn = kn−1 . . . k1, where ki ∈ Z, in such a
way that each of the parameters λkn

is an accumulation point in C of a sequence of
parameters λkn+1 of order n + 1 and related to kn; that is, kn+1 = kn−1 . . . k1k0,j , j ∈ Z.
This combinatorial description of the virtual cycle parameters determines combinatorial
descriptions of the sets Mλ and Mμ.

In [CJK], we proved a ‘transversality theorem’ for functions in the tangent family.
Combining the techniques in the proof of this theorem with the results here, we prove
the following.
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THEOREM 1.4. (Common boundary theorem) Every virtual cycle parameter is both a
boundary point of a shell component and a boundary point of the shift locus. Furthermore,
the dynamics of the family {fλ} is transversal at each of these virtual cycle parameters (see
Definition 5.1 and Remark 5.3). And even further, the set of all virtual cycle parameters is
dense in the common boundary of the shift locus S and the sets Mλ ∪ Mμ.

We begin by quickly reviewing the basic definitions and facts we need about the
dynamics of meromorphic functions and a theorem of Nevanlinna, Theorem 2.4, which
characterizes the functions we work with in terms of their Schwarzian derivatives. We
next take a detailed look at F2. In particular, in §3.3, we show that there is a dichotomy
in the dynamics in this family analogous to that for quadratic polynomials: either the Julia
set is a Cantor set or there is a connected ‘filled Julia set’ analogous to the filled Julia set
of a quadratic polynomial.

The heart of the paper begins with the description of the sets Mλ and Mμ from the
main structure theorem and gives the definitions of virtual cycle parameters and virtual
centers. The combinatorial description of the virtual cycle parameters, the combinatorial
structure theorem, is given in §4.2. Pictures of the parameter plane follow and the rest
of the paper contains the the proof of the common boundary theorem, which leads to a
detailed discussion of the shift locus and the rest of the main structure theorem.

2. Background
2.1. Basic dynamics. Here we give the basic definitions, concepts, and notations we
will use. When we say a function is meromorphic, we mean that it is transcendental
meromorphic. We refer the reader to standard sources on meromorphic dynamics for
details and proofs. See e.g. [Berg, BF, BKL1, BKL2, BKL3, BKL4, DK, KK].

We denote the complex plane by C, the Riemann sphere by Ĉ, and the unit disk
by D. We denote the punctured plane by C

∗ = C \ {0} and the punctured disk by
D

∗ = D \ {0}.
Given a family of meromorphic functions, {fλ(z)}, we look at the orbits of points

formed by iterating the function f (z) = fλ(z). If f k(z) = ∞ for some k > 0, z is called
a pre-pole of order k—a pole is a pre-pole of order one. For meromorphic functions, the
poles and pre-poles have finite orbits that end at infinity. The Fatou set or stable set, Ff ,
consists of those points at which the iterates {f n

λ }∞n=0 are well defined and form a normal
family in a neighborhood of each of them. The Julia set Jf is the complement of the Fatou
set and contains infinity as well as all the poles and pre-poles.

A point z such that f n(z) = z is called periodic. The minimal such n > 0 is called
the period. Periodic points are classified by their multipliers, ν(z) = (f n)′(z), where n
is the period: they are repelling if |ν(z)| > 1, attracting if 0 < |ν(z)| < 1, superattracting
if ν = 0, and neutral otherwise. A neutral periodic point is parabolic if ν(z) = e2πip/q

for some rational p/q. The Julia set is the closure of the repelling periodic points. For
meromorphic f, it is also the closure of the pre-poles (see e.g. [BKL1]).

If D is a component of the Fatou set, either f n(D) ⊆ f m(D) for some integers n, m or
f n(D) ∩ f m(D) = ∅ for all pairs of integers m �= n. In the first case, D is called eventually
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periodic and in the latter case, it is called wandering. The periodic cycles of stable domains
are classified as follows.
• Attracting or superattracting if the periodic cycle of domains contains an attracting or

superattracting cycle in its interior.
• Parabolic if there is a parabolic periodic cycle on its boundary.
• Rotation if f n : D → D is holomorphically conjugate to a rotation map. Rotation

domains are either simply connected or topological annuli, which are called Siegel
disks or Herman rings, respectively.

• Essentially parabolic, or Baker, if there is a point z∞ ∈ ∂D such that f n(z∞) is not
well defined and for every z ∈ D, limk→∞ f nk(z) = z∞.

A point a is a singular value of f if f is not a regular covering map over a.
• a is a critical value if for some z, f ′(z) = 0 and f (z) = a.
• a is an asymptotic value if there is a path γ (t), called an asymptotic path, such that

limt→∞ γ (t) = ∞ and limt→∞ f (γ (t)) = a.
• The set of singular values Sf consists of the closure of the critical values and the

asymptotic values. The post-singular set is

Pf =
⋃

a∈Sf

∞⋃
n=0

f n(a) ∪ {∞}.

For notational simplicity, if a pre-pole s of order p is a singular value,
⋃p

n=0 f n(s) is
a finite set with f p(s) = ∞.

Definition 2.1. If an asymptotic value a is isolated, it has neighborhoods U such that for at
least one unbounded simply connected component V of f −1(U \ {a}), f : V → U \ {a}
is a universal covering map and we call V an asymptotic tract for a. If V1 and V2 are
asymptotic tracts for a, and f : V1 ∩ V2 → U \ {a} is a universal covering map, we say V1

and V2 are equivalent. The multiplicity of the asymptotic value a is the number of distinct
equivalence classes of asymptotic tracts of a. An asymptotic value is called simple if its
multiplicity is one.

Another important concept is the following.

Definition 2.2. A map f is hyperbolic if Jf ∩ Pf = ∅.

In rational dynamics, a map is hyperbolic if it satisfies an expansion property on its Julia
set; that is, there exist constants c > 0 and K > 1 such that for all z in a neighborhood
V ⊃ J (f ), |(f n)′(z)| > cKn (see [Mil1]). For such maps, this property is equivalent to
the condition that Jf ∩ Pf = ∅.

Because the Julia set of a meromorphic function is unbounded and its iterates have
singularities at the pre-poles, we need a version of this condition tailored to transcendental
maps. We use the following one proved in [RS], which applies to hyperbolic functions
in F2.

PROPOSITION 2.3. (Rippon–Stallard) If S(f ) is bounded and PS(f ) ∩ J (f ) = ∅, then
there exist two constants c > 0 and K > 1 satisfying
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|(f n)′(z)| > cKn(|f n(z)| + 1)/(|z| + 1), (2)

for all z ∈ J (f ) \ An(f ) and all n, where An(f ) is the set of points where f n is not
analytic (pre-poles of lower order).

A standard result in dynamics is that each attracting, superattracting, parabolic, or Baker
cycle of domains contains a singular value. Moreover, unless the cycle is superattracting,
the orbit of the singular value is infinite and accumulates on the cycle or the orbit of z∞
associated with the Baker domain. The boundary of each rotation domain is contained in
the post-singular set. (See e.g. [Mil1, Chs. 8–11] or [Berg, §4.3].)

2.1.1. Nevanlinna’s theorem. Recall that the Schwarzian derivative is defined by

S(f ) =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

It satisfies the cocycle relation

S(f ◦ g) = S(f )(g′)2 + S(g).

Because the Schwarzian derivative of a Möbius transformations is zero, solutions to the
Schwarzian differential equation S(f )(z) = P(z) are unique up to post-composition by a
Möbius transformation. See [Hil, Nev] for proofs.

Nevanlinna’s theorem characterizes transcendental functions with finitely many singular
values and finitely many critical values in terms of their Schwarzian derivatives.

THEOREM 2.4. (Nevanlinna [Nev, Ch. XI], [Hil]) Every meromorphic function g with p <

∞ asymptotic values and no critical values has the property that its Schwarzian derivative
is a polynomial function of degree p − 2. Conversely, for every polynomial function P(z)

of degree p − 2, the solution to the Schwarzian differential equation S(g) = P(z) is a
meromorphic function with exactly p asymptotic values and no critical points. The only
essential singularity is at infinity.

A summary of the proof is given in [DK1], where the behavior of the function in
a neighborhood of infinity is described. There are p equally spaced asymptotic tracts
separated by Julia directions along which the poles tend asymptotically to infinity. An
immediate corollary of the theorem is the following.

COROLLARY 2.5. If f is a meromorphic function with p finite simple asymptotic values
and no critical values, and h is a homeomorphism of the complex plane C such that g =
h−1 ◦ f ◦ h is holomorphic (meromorphic), then S(g) is a polynomial of degree p.

In [DK1], this corollary is used to prove that if f has polynomial Schwarzian derivative
and all its asymptotic values are finite, then f cannot have a Baker domain.

2.2. Functions with two simple asymptotic values. Our focus in this paper is on
parameter spaces of meromorphic functions with two finite simple asymptotic values and
no critical values. By Theorem 2.4, such functions are characterized by the property that
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they have a constant Schwarzian derivative. Each asymptotic value is simple and there are
exactly two distinct non-equivalent asymptotic tracts. We denote this family by F2.

It is easy to compute that S(e2kz) = −2k2 and therefore that the most general solution
to the equation S(f ) = −2k2 is

f (z) = aekz + be−kz

cekz + de−kz
, ad − bc �= 0, (3)

and its asymptotic values are {a/c, b/d}. Note that both of them are omitted values.
According to Theorem 2.4, the converse is true too. Moreover, by Corollary 2.5, the
solution is unique up to post-composition by an affine map. Pre-composition by an affine
map multiplies the constant k by the scaling factor.

Functions of the form (3) have a single essential singularity at infinity and their
dynamics are invariant under affine conjugation. If one of the asymptotic values is equal
to infinity, c or d = 0 and the family is the well-studied exponential family. See e.g. [DFJ,
RG]. The dynamics are quite different if both asymptotic values are finite and here we
restrict ourselves to this situation.

Because we assume the asymptotic values are finite, neither c nor d can be zero.
We choose a representative of an equivalence class, where the equivalence relation is
defined by affine conjugation, such that k = 1 and f (0) = 0; this implies b = −a. If the
asymptotic values are λ and μ, we have

fλ,μ(z) = ez − e−z

(ez/λ) − (e−z)/μ
,

where λ, μ ∈ C
∗. If f ′(0) = ρ ∈ C

∗, we have the relation

1
λ

− 1
μ

= 2
ρ

. (4)

We still have the freedom to conjugate by the affine map z → −z so we see that the
maps fλ,μ(z) and fλ′,μ′(z) = −fλ,μ(−z) have the same dynamics. That is,

fλ′,μ′(z) = ez − e−z

(ez/λ′) − (e−z)/μ′ = ez − e−z

(ez/(−μ)) − (e−z/(−λ))
,

where

1
λ′ − 1

μ′ = 2
ρ

= − 1
μ

+ 1
λ

. (5)

Set fλ,μ ∼ fλ′,μ′ if λ′ = −μ, μ′ = −λ and use this equivalence relation to define the space
of pairs of functions:

F̂2 =
{
fλ,ρ(z) = ez − e−z

(ez/λ) − (e−z)/μ

∣∣∣∣ ρ ∈ C
∗, λ ∈ C

∗ \ {ρ/2}, 1
λ

− 1
μ

= 2
ρ

}/
∼ .

Note that each pair of complex numbers (λ, ρ) uniquely determines a pair of functions so
that we also use F̂2 to denote the moduli space of F2.

Because of the ambiguity left by the normalization, it is difficult to study F̂2 directly.
This situation is similar to the space Rat2 of rational functions of degree two with a

https://doi.org/10.1017/etds.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.108


106 T. Chen et al

fixed point at infinity discussed in §1. The affine conjugation z → −z identifies maps
with the same dynamics and sends the parameter b to −b. Thus the (b, ρ) space is a
2-fold covering map of the space of functions. To understand the role of the parameters,
however, it is easier to work in this covering space. This can be done by marking the
singular points and choosing a ‘preferred’ point. In [GK], the preferred point was taken
as R(+1). The conjugation z → −z interchanged the marking and corresponded to the
involution b → −b in the lifted parameter space of functions with marked critical values.
See e.g. [GK, Mil1] for more details.

We proceed in the same way here. To mark the asymptotic values, we choose λ as
the ‘preferred’ value and μ as the ‘non-preferred’ value. That is, λ = limt→∞ fλ,ρ(γ (t)),
where �γ (t) → +∞. We call the space with marked asymptotic values F2. Again the
marked space is a 2-fold cover of the space of functions. Note that if λ = ∞, μ = −ρ/2
and if μ = ∞, λ = ρ/2.

Because the stable dynamics of functions in F2 is controlled by the behavior of the
orbits of the asymptotic values, it will be convenient to choose a one-dimensional ‘slice’
in this covering space of F2 in such a way that at each point in the slice, the orbit of one
asymptotic value has fixed dynamics. One way to do this is to require that both asymptotic
values have similar behavior. For example, if μ = −λ, so that λ = ρ, the slice obtained
is the tangent family fρ(z) = ρ tanh z = iρ tan(iz). The properties of this slice have been
investigated in [CJK, KK].

3. The space F2

In this paper, we begin with the two-dimensional subfamily F2 ⊂ F2, where ρ is in the
punctured unit disk D

∗. This means that the origin is an attracting fixed point so the orbit
of at least one of the asymptotic values converges to zero. It may be either the preferred
asymptotic value λ or not. We can parameterize this subspace as

F2 = {fλ,ρ} = (C \ {0, ρ/2}) × D
∗.

Each ρ ∈ D
∗ defines a one-dimensional slice that we denote by F2,ρ . This is a

‘dynamically natural slice’ in the sense of [FK] because one asymptotic value is always
attracted to the origin where the multiplier is fixed and the other is free. We choose the
asymptotic value λ as a parameter for our slice; either it or μ(λ) (determined by equation
(5)) is the free asymptotic value. Note that because of equation (5), when λ = ρ/2, μ = ∞
and the function is in the exponential family, not our family. Also, if λ = 0, the function
reduces to the constant zero. The points of the slice are denoted by λ, fλ, or fλ,ρ if we
want to emphasize the dependence on ρ; if the context is clear, for readablity we use f. We
will prove these slices all have the same structure.

Simple calculations show

fλ,μ,ρ(−z) = fμ,λ,−ρ(z) and fλ,μ,ρ(−z) = f−μ,−λ,ρ(z),

so that interchanging the asymptotic values λ and μ changes the multiplier from ρ to −ρ;
interchanging and negating the asymptotic values changes the marking.
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3.1. Fatou components for fλ ∈ F2. For any fλ ∈ F2, the origin is an attracting fixed
point with multiplier ρ. Denote its attracting basin (which is non-empty) by Aλ.

PROPOSITION 3.1. The attracting basin Aλ is completely invariant.

Proof. Because the origin is fixed, it is sufficient to prove that its immediate basin of
attraction Iλ ⊂ Aλ is backward invariant.

On a neighborhood N ⊂ Iλ of the origin, we can define a uniformizing map φλ(z) such
that φλ(0) = 0, φ′

λ(0) = 1, and φλ ◦ fλ = ρφλ. It extends by analytic continuation to the
whole immediate attractive basin Iλ. Denote by Oλ the largest neighborhood of the origin
on which φλ is injective. One (or both) of the asymptotic values must be on the boundary
of Oλ. Assume for argument’s sake that μ ∈ ∂Oλ. Choose a path γ joining 0 to μ in Oλ.
If g is any inverse branch of fλ, then g(Oλ) contains a path joining g−1(0) to infinity that
passes through the asymptotic tract Aμ of μ. Thus all these paths are contained in the same
component of f −1

λ (Oλ). Therefore this component contains all the pre-images of 0, and
because one branch fixes 0, this component is Iλ. It follows that Iλ is backward invariant
and Iλ = Aλ.

Remark 3.2. The main point in the above argument is that whenever there is an attracting
cycle, its basin contains a singular value, which, in this family, is an omitted asymptotic
value, and thus the component of the basin containing the asymptotic value can have only
one pre-image and it contains the asymptotic tract. Above, because the attracting cycle
consisted of the fixed point 0, these components coincided. If there is a second, non-zero
attracting cycle, and the period of the cycle is one, it too has an invariant basin and the
Fatou set consists of two completely invariant components. If the period is greater than
one, the component containing the asymptotic value and its pre-image are distinct and
the full basin contains infinitely many components; all but the component containing the
asymptotic value have infinitely many pre-images.

3.1.1. No Herman rings. Here we digress to prove a proposition about the non-existence
of Herman rings for slightly larger classes of functions than F2. See also [Nay] for a similar
study.

PROPOSITION 3.3. Suppose f is a meromorphic function with an attracting fixed point
whose basin of attraction has the properties that it contains at least one asymptotic value
and is completely invariant. Then f cannot have a Herman ring.

Proof. We may assume without loss of generality that f fixes the origin and attracts the
asymptotic value μ. By hypothesis, the basin of attraction of the origin, A0, is completely
invariant and hence connected. Moreover, because it contains an asymptotic value, it is
unbounded. It follows that ∂A0 ⊂ J is also completely invariant. A standard property of
Julia sets is that if z ∈ J , then J = ⋃

n∈Z f n(z), so that ∂A0 = J .
If f had a Herman ring R, its complement would consist of two components. Moreover,

because the poles are dense in J, the bounded complementary component, BR , would
contain a pole of some minimal order m and therefore BR would contain an mth pre-image
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of an asymptotic tract of μ so that it would intersect A0. It follows that A0 is disconnected,
which is a contradiction†.

3.2. The parameter space trichotomy. Proposition 3.1 implies the following trichotomy
for F2.
• Aλ contains both asymptotic values; this is called the shift locus and denoted by S.
• Aλ contains only the preferred asymptotic value λ; in this case, the other asymptotic

value μ is not attracted to the origin and we call the set of such λ as Mμ. We denote
the subset where μ is attracted to an attracting periodic cycle by M0

μ.
• Aλ contains only the non-preferred asymptotic value μ; in this case, the other

asymptotic value λ is not attracted to the origin and we call the set of these λ as
Mλ. We denote the subset where λ is attracted to an attracting periodic cycle by
M0

λ.
The maps in S, M0

λ, and M0
μ are hyperbolic because the orbits of their asymptotic

values accumulate on attracting cycles. The connected components of these three subsets
of parameter space are thus called hyperbolic components.

As with the space Rat2, there is an inversion of the space F2 that interchanges the
regions Mλ and Mμ, and leaves S invariant.

Let C0 be the circle in the λ plane centered at the parameter singularity ρ/2 with radius
|ρ/2| and let D be the disk it bounds, punctured at the singularity ρ/2. (See Figure 11
later.) The inversion

I (λ) = −μ = λ

2λ/ρ − 1

leaves C0 invariant and interchanges λ and −μ.

PROPOSITION 3.4. If f n
λ (λ) �→ 0 as n → ∞, then f n

I (λ)(I (λ)) → 0. That is, the inversion
interchanges the regions Mλ and Mμ in the plane where only one of the asymptotic values
goes to zero.

Proof. Suppose f n
λ (λ) �→ 0 so that f n

λ (μ) → 0. Because I (λ) = −μ and I (μ) = −λ, we
can write

f−μ(−μ) = e−2μ − 1
(e−2μ)/(−μ) − (1/(−λ))

= e2μ − 1
(e2μ/λ) − (1/μ)

= fλ(μ)

and

f−μ(−λ) = e−2λ − 1
(e−2λ/(−μ)) − (1/(−λ))

= e2λ − 1
(e2λ/λ) − (1/μ)

= fλ(λ).

It follows that the inversion also preserves the region S where both asymptotic values
go to zero.

When ρ is real, we can say more.

PROPOSITION 3.5. Suppose ρ is real and λ ∈ C0. Then both f n
λ (λ) → 0 and f n

λ (μ) → 0.

† We thank the referee for suggesting this simplification of our original proof.
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Proof. Set λ1 = I (λ). Then −μ = I (λ) = λ̄ = λ1. Thus,

fλ(λ) = fλ̄(λ̄) = fλ1(λ1);

so if f n
λ (λ) → 0, f n

λ1
(λ1) → 0.

We can rewrite this as

fλ(μ) = fλ(−λ̄) = −fλ(λ).

Therefore, either both asymptotic values iterate to zero or neither does. Because the origin
is an attracting fixed point with multiplier ρ, at least one must iterate to zero and so they
both do.

This proposition says when ρ is real, the region where both asymptotic values are
attracted to zero contains the invariant circle of the inversion.

Notice that the point λ = ρ is on the circle C0. At that point, we have μ = −λ,
fλ = λ tanh z, and I (λ) = λ so that it is a branch point of the double covering defined by
the marking. Moreover, because of the symmetry, both asymptotic values are attracted to
zero.

If λ ∈ M0
μ or M0

λ, fλ has an attracting periodic cycle different from the origin. This
cycle has an attractive basin, which we denote by Kλ, and Aλ = Ĉ \ Kλ. Thus ∂Kλ is the
Julia set and Kλ is the ‘filled Julia set’. Both of them are unbounded sets in C.

3.3. The set Kλ and the Julian set dichotomy. In [KK], it is proved that for ρ ∈
D

∗, the Julia set Jλ of the function Tρ(z) = ρ tanh(z) is a Cantor set. Moreover, it
is homeomorphic to a space consisting of finite and infinite sequences on an alphabet
isomorphic to the natural numbers and infinity. The finite sequences end with infinity.
The homeomorphism conjugates Tρ to the shift map on this alphabet. See [DK1, Mo] for
details.

At this point in this paper, we can prove the following.

PROPOSITION 3.6. If 	 is the hyperbolic component of the λ plane containing fλ0 =
ρ tanh z and λ ∈ 	, then the Julia set of fλ is a Cantor set. If λ ∈ Mλ or Mμ, then Kλ is
full.

Remark 3.7. In Theorem 6.14, we will prove that the shift locus S is connected so that 	 =
S. It will then follow that we have a dichotomy similar to that for quadratic polynomials.

Proof. If λ0 = ρ, by symmetry, both λ0 and μ0 = −λ0 are in Aλ. By the results in [KK],
the Julia set of fλ0 is a Cantor set. Suppose λ ∈ 	, and let λ(t), with λ(0) = λ0 and
λ(1) = λ, be a path in 	. By standard arguments using quasiconformal surgery, see e.g.
[BF, McMSul], §6.2.3, and §6.2.4, we can construct quasiconformal homeomorphisms
g(t) conjugating fλ0 to fλ(t) that preserve the dynamics. Because the maps are hyper-
bolic, the Julia sets of fλ(t) are quasiconformally equivalent and thus also topologically
equivalent.

Suppose now that λ ∈ Mλ so that λ is not in Aλ. The same argument works for λ ∈
Mμ, interchanging the roles of λ and μ. Take a generic small r, such that ∂Dr(0) does
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FIGURE 1. The dynamic plane of fλ with ρ = 2/3 and λ = 2 + 2i. The stars are fixed points and the black dot is
a pole.

not contain a point in the forward orbit of μ. Then by definition, Aλ = ⋃
n≥1 f −n(Dr(0))

and f −n(Dr(0)) ⊂ f −(n+1)(Dr(0)). Note that because λ /∈ Aλ, f : f −(n+1)(Dr(0)) →
f −n(Dr(0)) \ {μ} is a covering and so f −1(Dr(0)) is simply connected. Therefore, Aλ is
simply connected, which implies that its complement Kλ is full.

Note that the argument above adapts easily to show that if fλ has a non-zero attracting or
parabolic fixed point, the attracting basin of this fixed point is unbounded and completely
invariant. Other standard arguments [Mil1] show that if fλ has a neutral fixed point with
a Siegel multiplier, its boundary must be contained in the post-singular set. Thus there are
two completely invariant domains in the Fatou set separated by the Julia set. An example
of this is shown in Figure 1, where ρ = 2/3 and λ = 2 + 2i. The yellow is the basin of
0 and the blue is the basin of the fixed point 2.25818 + 2.12632i. The proof of the main
structure theorem uses another example of a function with two attractive fixed points and
its dynamic space is shown in Figure 7 (see later).

4. Shell components: properties of Mλ and Mμ

In this section, we work only with hyperbolic components in M0
λ. By Propositions 3.4 and

3.5, the discussion for M0
μ is essentially the same. By definition, all the maps in M0

λ are
hyperbolic; M0

λ consists of components in which standard arguments (see e.g. [BF]) show
that any two functions corresponding to parameters in the component are quasiconformally
conjugate. Following [FK], we call these components shell components. In that paper,
more general functions were considered and the properties of the shell components were
described. Here we summarize what we need from that description. We begin with some
definitions.

4.1. Virtual cycle parameters and virtual centers. Let 	 be a hyperbolic component in
Mλ and let λ ∈ 	. Both λ and μ are attracted by attracting cycles of fλ, and because
λ ∈ Mλ, μ is attracted to the origin and λ is attracted to a different cycle of order n ≥ 1.
Because all the fλ, λ ∈ 	 are quasiconformally conjugate, all the functions in 	 have
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non-zero attracting cycles of the same period, say n. We say 	 has period n and, where
appropriate, denote it by 	n.

We need the following definitions.

Definition 4.1. If λ ∈ F2 and there exists an integer n > 1 such that either f n−1
λ (λ) = ∞

or f n−1
λ (μ) = ∞, then λ is called a virtual cycle parameter. In the first case, set a1 = λ

and in the second case, set a1 = μ. Next set ai+1 = fλ(ai), where i is taken modulo n so
that a0 = ∞. We call the set a = {a1, a2, . . . , an−1, a0} a virtual cycle, or if we want to
emphasize the period, a virtual cycle of period n.

This definition is justified by the following. Assume for argument’s sake that we are in
the first case. Let γ (t) be an asymptotic path for λ = a1, that is, limt→∞ γ (t) = ∞ and
limt→∞ f (γ (t)) = a1.

Then γ̂ = f −n(γ (t)) is again an asymptotic path where the inverse branches are chosen
so that f −1(ai) = ai−1; that is,

lim
t→∞ f (γ (t)) = lim

t→∞ f n+1(γ̂ (t)) = λ = a1,

so that in this limiting sense, the points form a cycle.

Definition 4.2. Let 	n be a shell component of period n and let

aλ = {a0, a1, . . . , an−2, an−1}
be the attracting cycle of period n that attracts λ or μ. Suppose that as k → ∞, λk → λ∗ ∈
∂	n, and the multiplier νλk

= ν(aλk
) = 
n−1

i=0 f ′(ai(λk)) → 0. Then λ∗ is called a virtual
center of 	n.

Remark 4.3. Note that if n = 1 and a0(λk) is the fixed point, the definition implies that
f ′(a0(λk)) → 0. This in turn implies that either λ tends to ∞ or λ tends to the parameter
singularity ρ/2 so that μ tends to ∞. These ‘would be’ virtual centers do not belong to
the parameter space but they share many properties with proper virtual centers including
transversality (see Definition 5.1).

Because the attracting basin of the cycle aλ must contain an asymptotic value, we will
assume throughout the paper that the points in the cycle are labeled so that λ or μ and a1

are in the same component of the immediate basin.
In the next theorem, we collect the results reported in [FK] about shell components

for fairly general families of functions. The proof of parts (b) and (c) are based on an
estimate of the growth of the orbits of the singular values given in lemma 2.2 of [RS],
and on proposition 6.8 of [FK]. Part (d) is theorem 6.10 of [FK]. Part (e) combines the
accessibility in part (d) and theorem A of [CK], whose proof contains a construction that
shows that every virtual cycle parameter is on the boundary of a shell component.

THEOREM 4.4. (Properties of shell components of F2) Let 	 be a shell component in F2.
Then the following can be stated.
(a) The map νλ : 	 → D

∗ is a universal covering map. It extends continuously to ∂	

and ∂	 is piecewise analytic; 	 is simply connected and νλ is infinite to one.

https://doi.org/10.1017/etds.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.108


112 T. Chen et al

(b) There is a unique virtual center on ∂	. If the period of the component is 1 and 	 is
a shell component of Mλ, the component is unbounded and the virtual center is at
infinity; if, however, 	 is a shell component of Mμ of period 1, then it is bounded
and the virtual center is at the finite point ρ/2 which is a parameter singularity. This
is the only difference between Mλ and Mμ.

(c) If λk ∈ 	 of period greater than 1 is a sequence tending to the virtual center λ∗
and a0(λk) is the periodic point of the cycle a(λk) in the component containing
the asymptotic tract and a1(λk) = fλk

(a0(λk)), then as k → ∞, a0(λk) → ∞ and
a1(λk) → λ∗.

(d) Every virtual center of a shell component is a virtual cycle parameter and is an
accessible boundary point.

(e) Every virtual cycle parameter is a virtual center.

As a corollary, we have the following.

COROLLARY 4.5. If λ∗ is a virtual center of a shell component of period n, there are
virtual centers of period n + 1 accumulating on it.

Proof. The poles of fλ are given by

pk(λ) = 1
2

Log
(

ρ − 2λ

ρ

)
+ ikπ , (6)

where Log is the branch of the logarithm with an imaginary part in [−π , π). They and all
their pre-images are holomorphic functions of λ.

Let V be a neighborhood of λ∗ in the parameter plane that does not contain any poles
of f k

λ for all 1 ≤ k < n − 1. Such a neighborhood exists because the poles of f k
λ form

a discrete set. The holomorphic function h(λ) = f n−1
λ (λ) maps V to a neighborhood

W of infinity and h(λ∗) = ∞. Because infinity is an essential singularity, for λ ∈ V

and large enough |k|, W contains infinitely many poles pk(λ) of the functions fλ(z);
moreover, for each λ, as k → ∞, pk(λ) converge to infinity. The zeroes of the functions
hk(λ) = h(λ) − pk(λ) are virtual centers of components of period n + 1. We want to show
there is a sequence of these zeroes in V converging to λ∗.

The functions ĥ(λ) = 1/h(λ) and p̂k(λ) = 1/pk(λ) take values in a neighborhood of
the origin. Because the pk(λ) converge to infinity as |k| → ∞ uniformly on V as long
as V is small enough, we can find N large enough so that if k > N and λ ∈ ∂V , then
|p̂k(λ)| < |̂h(λ)|. By Rouché’s theorem, we conclude ĥ and ĥ − p̂k have the same number
of zeroes in V; ĥ has a zero at λ∗ and thus each ĥ − p̂k has a zero λk ∈ V . It then follows
that h(λk) = pk(λk) so that λk is a virtual center of period n + 1.

4.2. Combinatorics. Theorem 4.4 allows us to assign a label to each of the shell
components of Mλ in terms of its virtual center. To label the virtual centers, we need
to know that the indices of the poles are well defined. In §6.3.1, we will prove Lemma 6.18
that says that we can find a simply connected domain �, containing Mλ and not containing
Mμ, in which, after an initial choice, as above, of a basepoint and a branch of the
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logarithm, the poles and inverse branches of fλ can be labeled consistently. The discussion
here will assume that lemma.

Pick a basepoint that is not in Mλ, for example, the symmetric point λ0 = −μ0 = ρ. It
has poles pk(λ0) defined by the principal branch of the logarithm. With the poles pk(λ0)

defined by equation (6), denote the branch of f −1
λ0

that maps ∞ to pk(λ0) by gλ,k(z) =
gλ0,k(z). With the choice of a fixed base point and logarithm branch, the inverse branches
are well defined because the set � (to be defined in §6.3.1) is simply connected.

We use these branches to define labels for the pre-poles of all orders, and thus for labels
of the virtual cycle parameters. Because of part (d) of Theorem 4.4, each virtual cycle
parameter is a virtual center of a shell component so the label of the virtual center defines
a label for the shell component.

The formula for pk(λ) shows that the poles are injective functions of λ in �. Let

V1 = {λ∗
k ∈ � | gλ∗,k(∞) = λ∗}.

That is, V1 is the set of λ∗
k such that fλ∗

k
(λ∗

k) = ∞. It is the set of virtual cycle parameters
of order one and hence virtual centers of shell components 	2 of period two. We assign
the label k to each point in V1 and the same label to the component for which it is the
virtual center.

The pre-poles pk1k2(λ) = gλ,k2(pk1(λ)) are defined for all λ ∈ � \ V1. Because they
are holomorphic functions of λ with non-vanishing derivative, each gλ,k is an injective
function of both λ and z. Next, we inductively define the sets of virtual cycle parameters
of order n − 1 with labeled points by

Vn−1 =
{
λ∗

kn−1...k1
∈ � \

n−2⋃
i=1

Vi | gλ∗
kn−1 ...k1

,kn−1...k1(∞) = λ∗
kn−1...k1

}
.

The pre-poles pkn−1...k1(λ) are defined for all λ �∈ Vn−1 and, as above, move injectively.
We now assign the label kn−1 . . . k1 to the shell component of order n for which

λ∗
kn−1...k1

is the virtual center.

Definition 4.6. We call the label kn = knkn−1 . . . k1 assigned to each pre-pole and each
virtual cycle parameter its itinerary.

We can also use the labeling of the inverse branches to assign an itinerary to each
attractive cycle.

Definition 4.7. For simplicity, we suppress the dependence on λ and assume the shell com-
ponent is in Mλ. Suppose f n(a0) = a0 for n ≥ 1, where, by our numbering convention in
part (c) of Theorem 4.4, a0 is in the asymptotic tract of λ and aj = f (aj−1), j = 1, . . . n.
Then for some kj , aj−1 = gkj

(aj ). In fact, there is a unique sequence {k1, . . . , kn} such
that

a0 = gkn ◦ · · · ◦ gk2 ◦ gk1(a0).

We say the cycle a has itinerary kn = knkn−1 . . . k2k1.
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PROPOSITION 4.8. Let 	n be a shell component and suppose for λ0 ∈ 	n, the cycle a(λ0)

has itinerary knkn−1 . . . k1. Then for every λ ∈ 	n, the itinerary of a(λ) is of the form
k0,j kn−1 . . . k1 for some j ∈ Z.

Proof. If the component of the basin a(λ) containing aj (λ) is denoted by Dj(λ), then
for j = 1, . . . n − 1, fλ : Dj(λ) → Dj+1(λ) is one to one. Inside 	n, the points of
the periodic cycle move holomorphically and are related by the inverse branches gλ,kj

:
Dj+1(λ) → Dj(λ). The branch is the same for all λ ∈ 	n because it is simply connected;
in it, the gλ,kj

are quasiconformally conjugate and the aj (λ) move holomorphically. At the
last step in the cycle, however, the map fλ : D0(λ) → D1(λ) is infinite to one and so a1(λ)

has infinitely many inverses, a0,j (λ) ∈ D0(λ). They are all in the asymptotic tract of λ but
only one of them can belong to the cycle. Thus although the inverse branch gj = g0,j is
well defined for each λ, the branch that defines the cycle changes as λ moves in 	n.

Above we assigned a label, or itinerary, to the virtual center of each shell component.
We now address the questions of the uniqueness of these labels and their relation to the
itineraries of their attracting cycles. As we stated above, this is based on Lemma 6.18,
which will be proved later, where the inverse branches are defined as single valued
functions of λ.

PROPOSITION 4.9. Every shell component 	n ∈ Mλ and 	′
n ∈ Mμ, n > 1, has a unique

label defined by the itinerary of its virtual center λ∗, a pre-pole of order n − 1, where n is
the minimal such integer.

Because the shell components of period one have virtual centers that do not belong to
the parameter space, we cannot label them in this way. There are only two such points,
ρ/2 and ∞, and hence only two such components with no label. To have a label for every
component, we arbitrarily assign the label ∞ to these components.

Proof. The boundary of each shell component 	n contains one and only one virtual
center λ∗ and the label kn−1 = kn−1kn−2 . . . k1 of the virtual center is its itinerary. It
will follow from the common boundary theorem that it is on the boundary of only one
shell component. This is different from the tangent family where pairs of shell components
share virtual centers. See e.g. [CJK]. Let V be a neighborhood of λ∗ and let W = 	n ∩ V .
By Proposition 4.8, the itineraries of the points in W agree except for their first entry. By
proposition 6.8 of [FK], as λ ∈ W tends to the virtual center, the point a0(λ) = gj (a1(λ))

of the cycle tends to infinity and the point a1(λ) tends to the virtual cycle parameter λ∗, a
pre-pole of order n − 1 with itinerary kn−1 = kn−1kn−2 . . . k1.

Note that because λ ∈ Mλ or Mμ, the cycle a(λ) attracts only one of the asymptotic
values. Therefore, unlike the tangent family, where both asymptotic values can be attracted
by a single cycle of double the period, n − 1 is minimal.

The proof of Corollary 4.5 also implies the following.

PROPOSITION 4.10. Let λ∗ be the virtual center of a shell component 	n and let 	n+1,i

be a sequence of components whose virtual centers λ∗
i converge to λ∗ as i goes to infinity.
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If the itinerary of λ∗ is given by kn−1 = kn−1kn−2 . . . k1, the itineraries of the λ∗
i are given

by kn,i = kn−1kn−2 . . . k1k0,i .

Remark 4.11. There is an interesting duality here. As we approach the virtual center from
inside a shell component of order n, we are taking a limit of cycle itineraries; the first
entry in the itinerary (corresponding to the last inverse branch applied) disappears. Thus
an itinerary with n entries becomes one with n − 1 entries. However, if we consider the
labels of the shell components of order n + 1 approaching the shell component of order n,
it is the last entry (corresponding to the first inverse branch applied) that disappears in the
limit.

Proof. As above, let V be a small neighborhood of λ∗. We may assume it contains no
virtual center of order less than n − 1. The functions gλ,kj

that define the virtual cycle
aj (λ

∗), j = 1, . . . n − 1, are defined in V ∩ 	n where they track the attracting cycle. They
also extend to all of V \ {λ∗} by analytic continuation. Also for λ ∈ V ∩ 	n, the functions
a0,i (λ) = gλ,k0,i (a1(λ)) are defined for all i but for only one i does it belong to the attracting
cycle. All of these functions extend to V \ {λ∗}.

Now let W be a neighborhood of infinity and let G(λ, z) be a map from V × W to
C defined by gλ,kn−1 ◦ · · · ◦ gλ,k1(z). By Corollary 4.5, the neighborhood W contains
the virtual centers λ∗

i of a sequence of shell components 	n+1,i with limit λ∗. These
are poles p∗

i of f n−1
λ∗

i
so we can find inverse branches of fλ, which we denote by

gλ,k0,i , such that p∗
i = gλ∗

i ,k0,i (∞). It then follows that the itineraries of the λ∗
i are kn,i =

kn−1kn−2 . . . k1k0,i , as claimed.

Thus the combinatorics of the pre-poles enable us to label each shell component 	n ∈
Mλ and 	′

n ∈ Mμ by the itinerary of its virtual center. If kn−1 = kn−1kn−2 . . . k1 is the
itinerary of the virtual center of a shell component of period n, and we want to emphasize
it, we write 	kn−1 or 	′

kn−1
.

The above discussion, modulo the proof of Lemma 6.18, gives us a proof of the
combinatorial structure theorem.

THEOREM 4.12. (Combinatorial structure theorem) The virtual cycle parameters λkn
of

order n can be labeled by sequences kn = knkn−1 . . . k1, where ki ∈ Z, in such a way that
each of the parameters λkn

is an accumulation point in C of a sequence of parameters λkn+1

of order n + 1, where kn+1 = knkn−1 . . . k1k0,j , j ∈ Z. This combinatorial description
of the virtual cycle parameters determines combinatorial descriptions of the sets Mλ

and Mμ.

4.3. Parameter space pictures. Figure 2 shows a picture of the λ parameter plane for
ρ = 2/3. The large region on the left (green in the color version) is S where both λ and μ

are attracted to the origin. The unbounded multishaded (multicolored region) on the right
in Figure 2 is Mλ and the small bounded multishaded (multicolored) region inside S is
Mμ. Since this figure is drawn to scale, in Mμ the different shades (colors other than
yellow) are not visible. To make the structure of this region visible and show it is similar
to Mλ’s, in Figure 3 we place a blown up neighborhood of Mμ near Mλ.
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FIGURE 2. The λ plane divided into the shift locus and shell components. The large region on the left (green in
the color version) is the shift locus S. The region Mμ is the small disk inside it. The region Mλ is on the right
and shell components of different periods are shaded: the large region to the right is period 1; the biggest of the
regions attached are period 2; the next smallest period 3, etc. Because Mμ is so small, only the period-1 region
is visible.

The periods of the shell components decrease with size, with components of the same
period shaded similarly. The period one component is on the right. In the color version, the
shell components are colored according to their period: yellow is period 1, cyan is period
2, red is period 3 and so on. Periods higher than 10 are colored black. Note that there is
only one unbounded domain, the yellow period-1 domain on the right, 	1; its virtual center
is the point at infinity. The virtual center of the period-1 component of Mμ is the leftmost
point. It is the singular point ρ/2 of the parameter space. There is a cusp boundary point
of 	1 on the real axis where the multiplier of the cycle attracted to λ is +1. There are
cyan period-2 components appearing as ‘buds’ off of the yellow component 	1 where the
multiplier of the cycle attracted to λ is e(2m+1)πi ; each of these has a virtual center with
itinerary k1 = m.

In Figure 4, we see a period-2 component 	2 budding off 	1. Although Mλ and Mμ

look disconnected in the figure, as we will prove, they are not. Here we have only computed
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FIGURE 3. Blow-up of Mμ placed near Mλ for comparison. The coloring scheme is the same as in Figure 2 and
is now visible in the blown-up Mμ.

FIGURE 4. Blow-up of the λ plane near Mλ with the periods labeled.
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FIGURE 5. Transversality in the parameter plane.

shell components for periods up to 10. To make a figure where S and Mλ look connected
would require much more computation and many more colors to show components with
much higher periods. What we do see, however, is a period 3, red component that is
not a bud component of the period-1 component. In fact, there are infinitely many such
converging to the virtual center of 	2 marked as v. We postpone a full discussion of the
finer structure of the shell components to future work.

5. Boundaries of hyperbolic components and virtual cycle parameters
In this section, we show that each virtual center is a boundary point of both S and either
Mλ or Mμ. To do this, we need to use the concept of transversality.

Definition 5.1. (Transversality [CJK]) Suppose λ∗ is a virtual cycle parameter. Let
p∗(λ) be the holomorphic pre-pole function such that p∗(λ∗) = f n−2

λ∗ (λ∗). Define the
holomorphic function,

cn(λ) = f n−2
λ (λ) − p∗(λ).

We say fλ is transversal at λ∗ or satisfies a transversality condition at λ∗ if c′
n(λ

∗) �= 0.

THEOREM 5.2. (Common boundary theorem) Every virtual cycle parameter is a bound-
ary point of both a shell component and the shift locus. Furthermore, the family {fλ} is
transversal at these parameters.

Remark 5.3. The transversality property translates to the dynamic planes of the functions
fλ as follows. If fλ is transversal at λ∗ and if λ(t) is any smooth path passing through λ∗
at t∗ such that λ′(t∗) �= 0, then the dynamics of fλ(t) bifurcates at t∗. In particular, as λ(t)

moves from a shell component into the shift locus through the common boundary point, an
asymptotic value, say λ(t), moves from the attracting basin of an attractive cycle of fλ(t),
through the pre-pole λ∗ of the virtual cycle, and into the attracting basin of zero for fλ(t).
Moreover, if ε is small enough so that λ(t) does not contain any other virtual center when
|t − t∗| < ε, then t∗ is the only point in the interval |t − t∗| < ε where the dynamics of
fλ(t) bifurcate. This is illustrated in Figures 5 and 6.
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FIGURE 6. Transversality in the dynamic plane.

In addition, transversality of fλ at λ∗ implies that the holomorphic functions defining
the poles pk(λ) and pre-poles pkn

(λ) satisfy p′
k(λ

∗) �= 0 and p′
kn

(λ∗) �= 0.

Proof of the common boundary theorem. Let λ∗ be a virtual cycle parameter. It follows
from part (e) of Theorem 4.4, that λ∗ is on the boundary of a shell component. Suppose
this component, 	n, is in Mλ so that μ∗ is in Aλ∗ , the attracting basin of 0, and
f n−1

λ∗ (λ∗) = ∞. We can choose U to be a small neighborhood of λ∗ such that ∩λ∈UAλ

contains μ(λ) for all λ ∈ U and an−1(λ) = f n−1
λ (λ) is a holomorphic function on U with

an−1(λ
∗) = ∞. Because infinity is always a boundary point of the basin Aλ, the open

mapping theorem implies that there is a λU ∈ U with λU ∈ Aλ(U). This says λU ∈ S and
thus λ∗ is a boundary point of S.

In [CJK], we proved a transversality theorem for maps in the tangent family, λ tan z

with λ = it , t ∈ R. There λ(t) is in the imaginary axis, and the proof shows that
the function cn(λ(t)) has no critical point at t∗. It involves the use of holomorphic
motions and some ideas adapted from [LSS]. The proof can be adapted here by replacing
the imaginary axis with a path λ(t) in 	n defined by the condition that the multi-
plier of the attracting cycle a(λ) has argument equal to 2πin, for some n. Then the
arguments there can be applied and show that as t → t∗ in 	n, c′

n(λ(t∗) �= 0, and
the dynamics bifurcates smoothly. We refer the interested reader to that paper for the
details.

An immediate corollary of the common boundary theorem is the following.

COROLLARY 5.4. Given an itinerary, kn−1 = kn−1kn−2 . . . k1, there is exactly one
component in each of Mλ and Mμ with that itinerary label.

Proof. Let kn−1 be a given itinerary. The pre-poles pkn−1(λ) of order n − 1 form a discrete
set in dynamic space because they are solutions of f n−1

λ (z) = ∞ and there is only one with
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itinerary kn−1. They are on the boundary of Aλ. The virtual centers form a discrete set in
parameter space because they are solutions of f n−1

λ (λ) = ∞.
We can find a sequence λj ∈ S, tending to ∂S as j goes to infinity, such that

|f n−1
λj

(λj ) − pkn−1(λ)| goes to zero as j goes to infinity. It follows that limj→∞ λj is a
virtual cycle parameter λ∗ with itinerary kn−1. By Theorem 5.1, in a small neighborhood
of λ∗, there is no other virtual center with itinerary kn−1 so that the component 	n with
λ∗ as a virtual center is the only one in Mλ with this itinerary.

We obtain a different component 	′
n if we choose a sequence λ′

j such that f n−1
λj

(μn)

approaches the pre-pole with this itinerary, but that is the only other possibility. In this
case, 	′

n is in Mμ.

5.1. J-stability and the bifurcation locus. Denote the set of virtual cycle parameters by
Bcv . By Theorem 4.4, each such parameter is on the boundary of a unique shell component
and in §4.2, we used these parameters to enumerate the shell components. Here we will
prove that these parameters are dense in the boundary of the shift locus. To do so, we need
two definitions.

Definition 5.5. (Holomorphic family) A holomorphic family of meromorphic maps
over a complex manifold X is a map F : X × C → Ĉ, such that F(x, z) =: fx(z) is
meromorphic for all x ∈ X and x �→ fx(z) is holomorphic for all z ∈ C.

Definition 5.6. The J-stable set of the family F2, denoted by J = Jρ , is the set {λ | f n
λ (λ)}

and f n
λ (μ) are well defined in a neighborhood about λ for all n and form normal families.

Its complement is called the bifurcation locus.

Theorem B of [MSS] in our context states the following.

THEOREM 5.7. In any holomorphic family of meromorphic maps with finite singular
set, J coincides with the set of parameters for which the total number of attracting and
superattracting cycles of fλ is constant on a neighborhood of λ.

As a corollary (see [KK, Corollary 3.2]), we have the following.

PROPOSITION 5.8. If λ0 ∈ J , then the number of attracting cycles of fλ0 is locally
constant in a neighborhood of λ0; in particular, J is open.

Consider a component U of J . Suppose λ and λ′ are two points in U and γ (t) :
[0, 1] → U is an analytic curve connecting λ and λ′ with γ (0) = λ and γ (1) = λ′. In a
neighborhood V of γ with basepoint λ, the set Ec = {pc}, c ∈ V , of all repelling periodic
points of fc defines a holomorphic motion,

h(z, c) = pc : Eλ × V → Ĉ.

The λ-lemma (see [GJW, MSS]) implies that the holomorphic motion h can be extended
to the closure Eλ of Eλ; that is, there is a holomorphic motion

H(z, c) : Eλ × V → Ĉ
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such that H |E × V = h and Hλ,λ′(z) = H(z, λ′) : Eλ → Eλ′ is a quasiconformal home-
omorphism. Because the repelling periodic points of fλ are dense in the Julia set Jλ, it
follows that Eλ = Jλ and

Hλ,λ′ ◦ fλ = fλ′ ◦ Hλ,λ′ on Jλ.

Note that the construction of Hλ,λ′ depends on the choice of the curve γ and it may not be
unique.

We also need the following generation of Montel’s theorem.

THEOREM 5.9. (See Theorem 3.3.6 in [Bea]) Let D be a domain, and suppose that the
functions φ1, φ2, and φ3 are analytic in D, and are such that the closures of the domains
φj (D) are mutually disjoint. If F is a family of functions, each analytic in D, and such that
for every z in D and every f in F , f (z) �= φj (z), j = 1, 2, 3, then F is normal in D.

The set of virtual center parameters Bcv is clearly not contained in J . By Theorem 4.4
and Theorem 5.2, the points in Bcv are on the boundaries of both a shell component and
the shift locus. In addition, we have the following.

THEOREM 5.10. The boundary of J is contained in the closure of Bcv , that is, ∂J ⊂ Bcv .

Proof. Because 0 is an attracting fixed point, at least one of the families {f n
λ (λ)} and

{f n
λ (μ)} converges to 0; that is, for each λ0, one of them is always normal and, by

Proposition 5.8, in a neighborhood of λ0, it is the same family that is normal. Suppose
λ0 ∈ ∂J ; without loss of generality, we may assume that {f n

λ (λ)} is not normal at λ0.
Let U be any neighborhood of λ0. The poles of fλ,

pk(λ) = 1
2

log
(

ρ − 2λ

ρ

)
+ ikπ , k ∈ Z,

form a holomorphic family in U. If f n
λ,μ(λ) �= pk(λ) for any k or λ ∈ U , then Theorem 5.9

implies f n
λ (λ) is normal in U. This contradicts the hypothesis that λ0 ∈ ∂J .

The parabolic cusps and Misiurewicz points are contained in the bifurcation locus.

6. Topological structure of the shift locus
In this section, we will show that the shift locus is homeomorphic to an annulus punctured
at one point. This puncture corresponds to the point λ = 0, where fλ is not defined.

Before we discuss this proof, we need a lemma.

LEMMA 6.1. Suppose V is Riemann surface homeomorphic to a disk from which a
(possibly empty) collection of finitely or countably many pairwise disjoint disks have been
removed. Let λ and μ be two distinct points in V. Then there is a Riemann surface W ,
homeomorphic to a disk minus a countable collection of pairwise disjoint disks, and an
infinite degree holomorphic covering map h : W → V \ {λ, μ}.
Proof. There exists an embedding e : V → Ĉ such that e(λ) = 0 and e(μ) = ∞. Con-
sider the exponential map
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Exp(z) = ez : C → C

and set W = Exp−1(e(V )). Each component U of Ĉ \ e(V ) is simply connected and does
not contain either 0 or ∞. Therefore, Exp−1(U) is the union of infinitely many simply
connected open sets so that W is an open set with infinitely many holes. Thus h = e−1 ◦
Exp : W → V is the required map.

Remark 6.2. We inductively apply this lemma to construct a family of surfaces and infinite
degree covering maps. The direct limit of this process defines a map that is used in a key
step of the proof of the main structure theorem.

As in Lemma 6.1, let V0 be a topological disk and let {Uj } be a (possibly empty)
collection of finitely or countably many pairwise disjoint disks in V0. Set U0 = V0 \⋃

j∈Z Uj and fix two points, λ0 and μ0, in U0. Applying the lemma, we can find a
Riemann surface U1 = V1 \ ⋃

(j1,j)∈Z2 Uj1j , where V1 is a topological disk and the Uj1,j

are pairwise disjoint topological disks in V1, and an infinite degree holomorphic covering
map h1 : U1 → U0 \ {λ0, μ0}.

Iterating this process, we choose points λn−1, μn−1 ∈ Un−1 and obtain Riemann
surfaces Un = Vn \ ⋃

(jn,...j0)∈Zn+1 Ujn···j0 , where Vn is a topological disk and the Ujn···j0

are pairwise disjoint topological disks in Vn, and holomorphic covering maps of infinite
degree

hn : Un → Un−1 \ {λn−1, μn−1}.

To carry out the proof on the structure of S, recall the normalized uniformizing map φλ

defined in the proof of Proposition 3.1 that conjugates fλ to a linear map near the origin.
We divide the discussion into two parts depending on which of the asymptotic values is on
the boundary of Oλ, the domain on which φλ is injective.
• Let Sλ = {λ ∈ S|μ ∈ ∂Oλ}.
• Let Sμ = {λ ∈ S|λ ∈ ∂Oλ}.
These sets have a common boundary, S∗ = Sλ ∩ Sμ, or equivalently,

S∗ = {λ ∈ Sλ|λ ∈ ∂Oλ} = {λ ∈ Sμ|μ ∈ ∂Oλ}.
In §3.1, we defined the map I (λ) which is some kind of the inversion in the circle C0

defined by |z − ρ/2| = |ρ/2|. Using this map we have the following.

PROPOSITION 6.3. The common boundary set S∗ is invariant under I (λ).

Proof. Note that the affine map z → −z conjugates fλ to fI (λ). Therefore, if φλ(z) is the
uniformizing map for fλ, then the uniformizing map φI (λ) for fI (λ) = fλ1,μ1 is φλ(−z).
Thus,

φI (λ)(λ1) = φλ(μ) and φI (λ)(μ1) = φλ(λ).

It follows that I (λ) interchanges Sλ and Sμ and fixes S∗.

Note that the point λ = ρ is in S∗.
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We saw above, in Proposition 3.5, that if ρ is real, the invariant circle C0 of the inversion
I (λ) is in S. If ρ is real, we can say more.

PROPOSITION 6.4. If ρ is real, then S∗ = C0.

Proof. Let σ(z) = −z. Then if ρ is real, it is easy to check that for any z, fλ ◦ σ(z) =
σ ◦ fλ(z). Therefore,

f n
λ (μ) = f n

λ (−λ) = −f n
λ (λ)

and by Proposition 3.5, they both converge to 0.
To show S∗ = C0, we need to show that |φλ(λ)| = |φλ(μ)|, where φλ is the uniformizing

map defined above such that φλ(fλ(z)) = ρφλ(z). We claim, in fact, that φλ(μ) = −φλ(λ).
Let φ = σ ◦ φλ ◦ σ(z). We claim that φλ = φ because

φ(fλ(z)) = σ ◦ φλ ◦ σ(fλ(z)) = σ ◦ φλ(fλ(σ (z))) = σ(ρφλ(σ (z)))

= ρσ ◦ φλ ◦ σ(z) = ρφ(z).

Then φλ(μ) = φλ(σ (z)) = σφλ(λ)) = −φλ(−λ) as claimed.

The following theorem says that the interior S0
λ of Sλ is a topological annulus. It follows

that it is connected.

THEOREM 6.5. There is a homeomorphism E : S0
λ → A, where A is a topological

annulus. The inverse map E−1 extends continuously to all points except one of the
boundary components of A.

Remark 6.6. The proof of this theorem is based on a lemma in which we explicitly
construct a homeomorphism E from S0

λ to an annulus. The construction depends on the
choice of a particular ‘model map’ in the period-1 component 	1.

The proof of the lemma is based on a technique that originally appeared in the
unpublished thesis of Wittner [Wit]. The technique, called ‘critical point surgery’, is
used to model pieces of the cubic connected locus on the dynamical plane of a quadratic
polynomial. In [GK], it was adapted to describe slices of Rat2, the parameter space of
rational maps of degree two with an attracting fixed point. Like the Rat2 case, we have
two singular values, but unlike that case, our singular values are asymptotic values and our
maps are infinite degree and have an essential singularity. We choose as our model an fλ

with λ in the period-1 shell component of Mλ. This is the unbounded yellow component
in Figure 2 and is denoted by 	1. As we saw at the end of §3.1, the attracting basin of the
fixed point of fλ is simply connected and completely invariant. Our model space will be
the annulus formed by removing a dynamically defined disk from this basin.

Before we give the proof in detail, we give an outline. Below, we assume, as we have
been doing, that ρ is fixed and all the functions fλ belong to F2.
(1) Because the multiplier map is a universal cover of a shell component to the punctured

unit disk, we can find a λ0 in 	1 ⊂ Mλ such that the multiplier at the fixed point
q0 of fλ0 equals the fixed value ρ. This choice is convenient because the map
fλ0 is quasiconformally conjugate to a map σ tan z whose Julia set, by [KK], is a
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quasiconformal image of the real line. In fact, if we take ρ real, σ is real, the Julia
set of fλ0 is a line parallel to the imaginary axis and the attracting basin of q0 is a
simply connected, completely invariant half-plane containing the asymptotic value
λ0. Following the notation in §3.1, we denote the basin of q0 by K0.

(2) We make the model space by removing from K0 a closed dynamically defined
topological disk � which contains the fixed point q0 in its interior and λ0 on its
boundary. We define the map E from S0

λ to K0 \ � as follows: to each λ ∈ S0
λ ,

we construct a map ξλ from a subset of the attracting basin Aλ of 0 containing
both asymptotic values into the attracting basin K0 of q0 such that ξλ(0) = q0 and
ξλ(μ) = λ0; we set E(λ) = ξλ(λ). We then prove that E is injective.

(3) To show E is a homeomorphism, we construct an inverse.
• We want to assign a map fλ ∈ S0

λ to each point p in K0 \ �. The point p
should correspond to the asymptotic value λ of fλ. Given p, we use induction to
construct the stable region of a map with two asymptotic values at λ0 and p. At
the nth step, we obtain a domain Un, homeomorphic to a disk minus an infinite
collection of open disks, and a holomorphic map Qn : Un → Un with omitted
values λ0 and p. Taking the direct limit of the pairs (Un, Qn), we obtain a pair
(U∞, Q∞), where Q∞ : U∞ → U∞ is a holomorphic covering map with the
desired topology; that is, an infinite degree covering map with two asymptotic
values.

• We construct a conformal embedding e : U∞ → C such that e ◦ U∞ = fλ ◦ e

for a unique λ ∈ S0
λ such that ξλ(λ) = p. The construction depends on some

Teichmüller theory. We give a brief summary of what we need before the
construction.

• We extend this inverse map to the points of ∂� \ {λ0} whose image, by
construction, is S∗. Note that the map is not defined for p = λ0; its image must
be a parameter singularity in S∗.

The proof of Theorem 6.5 is contained in the next subsections.

6.1. The model space. Every point λ ∈ 	1 corresponds to a function fλ with a non-zero
attracting fixed point denoted by qλ; its attractive basin is denoted by Kλ. By Propositions
3.1 and 3.6, it is simply connected and completely invariant. In fact, fλ is quasiconformally
conjugate to t tan z for some real t ≥ 1 whose Julia set is the real line (see [DK]), so its
Julia set is the quasiconformal image of a line (see Figure 7 where ρ = 2/3). In Figure 7,
the cyan colored region is Kλ and the yellow region is the basin of 0, Aλ. The black dots
are poles on the boundary of Kλ and are in the Julia set. Denote the closure of Kλ by Kλ.
It is the analogue of the filled Julia set for a quadratic map.

Because the multiplier map ν is a universal covering from 	1 to D
∗, we can find a

sequence of points λj ∈ 	1, j ∈ Z such that ν(λj ) = f ′
λj

(q(λj )) = ρ. We choose one,
denote it by λ0, and set q0 = qλ0 . We set Q(z) = fλ0(z) and let K0 denote the attracting
basin of q0.

In Figure 8, the set K0 is depicted for ρ real and λ0 taken as the real solution to ν(λ0) =
f ′

λ0
(q(λ0)) = ρ. Because the multipliers of both attracting fixed points, 0 and q0, are the

same, there is a real t = t (ρ), σ = it , such that Q(z) and it tan iz = t tanh z are not only
quasiconformally conjugate but affine conjugate and the Julia set of Q(z) is a vertical line.
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FIGURE 7. The ‘filled Julia set’ of Q(z). The black dots are poles.
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There is a local uniformizing map, which we denote by φ0, φ0 : K0 → C, normalized
so that φ0 maps q0 to 0, φ′

0(q0) = 1, and φ0 conjugates Q to ζ → ρζ in a neighborhood
of q0. We can extend φ0 to all of K0 by analytic continuation. Note that φ0(z) = 0 if and
only if Qn(z) = q0 for some n.

Let r = |φ0(λ0)| and let γ ∗ = φ−1
0 (reiθ ), θ ∈ R. It is a simple closed curve; let � be

the closed topological disk in K0 bounded by γ ∗. Then φ0 is injective on � and λ0 is
on ∂�.

LEMMA 6.7. There is an injective holomorphic map E : S0
λ → K0 \ �. Set w = E(λ); E

satisfies the following.
(i) For each λ ∈ Sλ such that f n

λ (λ) = 0 for some n, E maps it to a pre-image of q0;
that is, if w = E(λ), then Qn(w) = q0.

(ii) For each λ ∈ Sλ such that f n
λ (λ) = f m

λ (μ) for some m, n, E maps it to a point in
the grand orbit of λ0; that is, if w = E(λ), then Qn(w) = Qm(λ0).

(iii) As λ tends to the boundary S∗ of Sλ, w = E(λ) tends to ∂� \ {λ0}.
Proof. The map E is defined as follows. Given λ ∈ S0

λ , we define a conformal homeo-
morphism φλ from the neighborhood Oλ in the attracting basin Aλ to a disk centered
at zero with φλ(0) = 0 that conjugates fλ to ζ �→ ρζ . The map is defined up to affine
conjugation and depends holomorphically on λ. We assume here that it is normalized so
that φλ(μ) = φ0(λ0). For each λ, define a map

ξλ = φ−1
0 ◦ φλ : Oλ → �.

From the definitions of φλ and φ0, it follows that ξλ(0) = q0 and ξλ(μ) = λ0. Because
f ′

λ0
(0) = Q′(q0) = ρ, the map ξλ is a conformal homeomorphism from Oλ to � and it

conjugates fλ to Q.
Now we are ready to define the map E from S0

λ → K0 \ � as

E(λ) = ξλ(λ).

By construction, E satisfies properties (i) and (ii).
Suppose ξλ′(λ′) = ξλ(λ). The map ξλ′,λ = ξ−1

λ′ ξλ = φ−1
λ′ φλ, restricted to a neighbor-

hood of the origin in the basin Aλ, defines a holomorphic conjugacy between fλ and fλ′
on this neighborhood. Because ξλ′,λ(λ) = λ′, we can extend this holomorphic conjugacy
by the dynamics of fλ and fλ′ to a holomorphic conjugacy, which we still denote by ξλ′,λ,
defined on the whole stable set Aλ. Furthermore, by using dynamics of fλ and fλ′ , we can
extend this holomorphic conjugacy to to the Julia set Jλ as a topological conjugacy that
fixes infinity. Because Ĉ = Aλ ∪ Jλ, if we denote this extension by ξλ,λ′ again, we have

ξλ′,λ ◦ fλ = fλ′ ◦ ξλ′,λ on Ĉ.

From the discussion on J-stability in §5.1, we can find a holomorphic motion H(z, c) :
Eλ × V → Ĉ such that ξλ,λ′ |Eλ = Hλ,λ′ = H(·, λ′) is a quasiconformal homeomorphism
on Eλ = Jλ. On Aλ = Ĉ \ Eλ, ξλ,λ′ is holomorphic and injective, thus it is conformal.
Now by a theorem of Rickman (see [Rick, Theorem 1], [DH], or [J, Theorem 5.1]) it
follows that ξλ,λ′ is a global quasiconformal mapping of Ĉ. It follows from the paper of

https://doi.org/10.1017/etds.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.108


Slices of parameter space for meromorphic maps with two asymptotic values 127

Zheng (see [ZJ, Theorem 3.1]), that the area of the Julia set Jλ is zero and ξλ,λ′ is a global
conformal mapping of Ĉ. Because ξλ′,λ fixes zero and infinity, ξλ′,λ(z) = az. Equation (5)
implies that a = 1, λ = λ′, which proves that E is injective. Note that as we saw in §2.2,
there are two choices for λ′ but if we require that λ′ is the preferred asymptotic value so
that λ′ ∈ Sλ, then ξλ′,λ is the identity.

Property (iii) follows because as λ tends to the boundary S∗ of Sλ, the asymptotic value
λ tends toward the leaf of the dynamically defined level curve containing μ in the dynamic
plane of fλ; thus E(λ) tends to a point on the corresponding level curve, ∂� \ {λ0}
in K0.

Note that the map E−1 is not defined at the point λ0 on ∂� because if it were, the
asymptotic values of the function corresponding to the image point would be equal. Thus
the point omitted by E−1 would be a parameter singularity, and by continuity, a punctured
neighborhood of it would contain points in both Sλ and Sμ. There are only two parameter
singularities, 0 and ρ/2; the latter is a virtual center on the boundary of Mμ so small
neighborhoods do not contain points of Sλ. Therefore, the point omitted by E−1 is 0.
We can extend E−1 to λ0 by setting E−1(λ0) = 0 so that E−1(∂�) is the closed curve
S∗ ∪ {0}.

Remark 6.8. The map ξλ ties together the attractive basin of the origin in the dynamical
space of fλ and the attractive basin of q0 in the dynamical space of Q with the parameter
space of fλ.

6.2. Construction of an inverse for E.

6.2.1. Dynamic decomposition of K0. To define inverse branches Rj of Q on the K0, let
l∗ be the gradient curve joining Q(λ0) to λ0 in � and let l ∈ Q−1(l∗) be the curve joining
λ0 to infinity. Remove the line l from K0 and define an inverse branch on its complement
by the condition R0(q0) = q0. Label the other branches as Rj (q0) = q0 + πij = qj . This
is equivalent to choosing a principal branch for the logarithm. Having made this choice, we
can extend the Rj analytically to all of K0. Denote the pre-images of q0 under Q−1 by qj ,
enumerated so that q0 is fixed, and denote the inverse branch of Q that sends q0 to qj by
Rj . Denote the upper and lower sides of the line l by l+ and l− and let lj = Rj (l

−), lj+1 =
Rj (l

+) = Rj+1(l
−). Then R0 is a homeomorphism between the open region bounded by

the lines l0, l1, and l onto K0 \ l and Rj , j �= 0 is a homeomorphism from the open region
between lj and lj + 1 onto K0 \ l.

If ρ and λ0 are real, this choice for the logarithm agrees with the labeling of the poles
and inverse branches in §4.2 where R0 = gλ0,0, the branch of Q−1 = f −1

λ0
that fixes the

origin. This is the labeling in Figure 8. If ρ and/or λ0 is not real and a different branch
of the logarithm is chosen, there could be a shift by some k in the labeling. It would be
the same shift throughout the rest of the paper so would not change the essence of the
argument.

Recall that γ ∗ is the boundary of � in K0 and it contains λ0. Then, because λ0 is
an omitted value of Q, the curves {γj } = Rj (γ

∗), j ∈ Z, are a countable collection of
bi-infinite disjoint curves whose infinite ends approach infinity asymptotic to the lines lj
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and lj+1. Thus Rj (�) is an unbounded domain, with boundary γj , that contains qj . Note
that R0(�) contains the removed line l. We label the complementary components of the
γj as follows (see Figure 8).
• A0 = R0(�) is the component of the complement of γ0 containing the fixed point q0

and the point λ0.
• Bj , j ∈ Z \ {0} are the components of the complement of γj containing the non-fixed

pre-images qj of q0 and
• C0 is the common complementary component in K0 of A0 and all the Bj .

To define the second pre-images of q0 and γ ∗, we need two indices. Thus qj2j1 =
Rj2Rj1(q0) and γj2j1 = Rj2Rj1(γ

∗), where j1, j2, ∈ Z. They divide K0 into domains as
follows (see Figure 8).
• Because A0 is simply connected and contains one asymptotic value, Q : A1 =

Q−1(A0) → A0 \ {λ0} is a universal covering. Set Aj0 = Rj (A0); it is bounded by
lj , lj+1, and γj0. Each {γj0} joins the pole Rj (∞) to the pole Rj+1(∞); these two
poles are different but adjacent because the infinite ends of γ0 are on opposite sides of
the line l defining the principal branch.

• Because Bj1 is simply connected and contains no asymptotic value for any j1 �= 0,
each component of Q−1(γj1) is homeomorphic to γj1 . The curves γj2j1 bound domains
containing the pre-images qj2j1 . Label these domains Bj2j1 = Rj2(Bj1).

• There are domains Cj0 = Rj (C0).
Inductively we have curves

γjn...j1 = Rjn(γjn−1 . . . j1).

and the regions they define are as follows (see Figure 8).
• An = R0(An−1); it contains q0 and λ0. It also contains all pre-images of q0 up to order

n − 1 but not those of order n. It is bounded by a curve Q−n(γ0) that is a union of open
arcs with endpoints at adjacent pre-poles of order n. These are the red curves without
labels closest to the vertical line in Figure 8.

• Bjnjn−1...j1 = Rjn(Bjn−1...j1); it contains the pre-image qjnjn−1...j1 of q0. These are not
shown in the figure. They are bounded by a single curve with a boundary point at a
pre-pole of order n − 1.

• Cjnjn−1...,0 = Rjn(Cjn−1...0).

6.2.2. Inductive construction of the pair (U∞, Q∞). See Figure 9.
• Pick p ∈ K0 \ �. In Figure 9, p is in A00. Following the outline above in part (3), we

construct a map with the asymptotic values p and λ0 as follows. Let p̂j = Rj (p); in
the figure, the p̂j are in Aj00. Let N be the smallest integer such that p is in AN ∪
BjN ,jN−1...,j1 . The boundaries of the sets in this union are the level sets φ−1

0 (ρ−Nreiθ )

where, as above, r = |φ0(λ0)|. For every small ε > 0, one component of the level
set φ−1

0 ((ρ−Nr + ε)eiθ ) is an analytic curve, except at the pre-poles of order N − 1. It
bounds a simply connected domain containing AN ; it thus contains the points p, q0, λ0
and the curves γjN ,...j1 , but none of pre-images p̂j of p. Fix ε and denote the resulting
domain by U. Its boundary is denoted by the dotted black curve in Figure 9. Because
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FIGURE 9. The point p is in A00 and the set U is the region to the right of the dotted curves.

it is contained in the attracting basin of q0, Q(U) ⊂ U . Moreover, because U does not
contain any of the points p̂j , p �∈ Q(U). Set Ũ = U \ {λ0, p}.

• Lemma 6.1 implies there is a holomorphic unramified covering map 
1 : U1 → Ũ ,
where U1 is a Riemann surface that is topologically a disk minus a countable set of
topological disks.

• Note that Q : U → Q(U) is a holomorphic universal covering map with omitted value
λ0. Set U ′

1 = 
−1
1 (Q(U)); because λ0 ∈ Q(U) and p /∈ Q(U), it is a topological disk

so that 
1 : U ′
1 → Q(U) is also a holomorphic unramified covering map that omits

the value λ0.

U1


1

��

Q1=i1◦
1�� U ′
1


1

��

� � �� U1

U
Q ��

i1

��

Q(U)
� � �� U

• Because both 
1 and Q are regular coverings whose domains are simply connected,
we can lift them to obtain a conformal map i1 : U → U ′

1 such that 
1 ◦ i1 = Q. The
choice of inverse branch will affect i1 but the argument works for any choice. We
now define Q1 : U1 → U ′

1 by Q1 = i1 ◦ 
1. It is an unramified regular infinite to one
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holomorphic endomorphism and omits the values i1(λ0) and i1(p). Moreover,

Q1 ◦ i1 = i1 ◦ 
1 ◦ i1 = i1 ◦ Q;

that is, i1 conjugates Q and Q1, therefore Q1 fixes i1(q0).
We may, without loss of generality, assume i1(λ0) = λ0, i1(p) = p and

i1(q0) = q0.
• Now set Q0 = Q, U0 = U , and U ′

0 = Q(U). We proceed by induction: we assume
that for 1 ≤ j ≤ n − 1, we have the following.
(1) Domains Uj , homeomorphic to an open disk from which infinitely many open

disks have been removed, and infinite to one unramified covering maps 
j :
Uj → Uj−1 with two asymptotic values.

(2) Holomorphic endomorphisms, Qj : Uj → U ′
j ⊂ Uj , that are infinite to one,

unramified, have one fixed point and two asymptotic values.
(3) Conformal maps ij : Uj−1 → U ′

j satisfying

Qj ◦ ij = ij ◦ Qj−1.

For the inductive step, we use Remark 6.2 to obtain the holomorphic
unramified covering map 
n : Un → Un−1, where Un is homeomorphic to
U \ {Ujn−1...j1j , (jn−1, . . . , j1, j) ∈ Z

n}. As in the first step, we set U ′
n =


−1
n (Qn−1(Un−1)). Both

Qn−1 : U ′
n → Qn−1(Un−1) and 
n : Un → Qn−1(Un−1)

are unramified coverings with asymptotic values λ0 and p. Lemma 6.1 implies there
are infinitely many choices for a holomorphic isomorphism

in : Un−1 → U ′
n satisfying 
n ◦ in = Qn−1 on Un−1.

Making one such choice (the choice does not matter), we define Qn : Un → Un by
Qn = in ◦ 
n so that

Qn ◦ in = in ◦ 
n ◦ in = in ◦ Qn−1.

Therefore, in conjugates Qn to Qn−1 and the induction hypotheses are satisfied,
completing the inductive step.

• The direct limit U∞ of the system (Un, in) is the quotient⋃
n

Un/ ∼,

where the equivalence relation is defined by the identifications, z ∼ in(z), and the
equivalence class is denoted by [z]. The Riemann surface U∞ has infinite type. There
is an infinite unramified holomorphic covering map Q∞ defined by

Q∞([z]) = [Qn(z)], z ∈ Un

that has two omitted values [λ0] and [p]. It also fixes [q0] and because the maps 
n

and in are holomorphic, we have Q′∞([q0]) = ρ.
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Topologically, U∞ is the complement in C of a Cantor set C isomorphic to the
space of infinite sequences �∞ = s1, . . . sn−1, sn . . . , sj ∈ Z together with the finite
sequences �n+1 = s1, . . . , sn, ∞ of length n + 1. The map Q∞ is conjugate to the
shift map on C. See [Mo].

The final step of the proof is to show there is a conformal embedding e : U∞ → C such
that

e ◦ Q∞ = fλ ◦ e

for some λ ∈ S0
λ with ξλ(λ) = λ0. To do this, we first give a brief informal review of the

results we need from Teichmüller theory and the theory of mapping classes of tori and
punctured tori. We refer the reader to [Bir, Ma] for a full discussion and to [GK] for a
discussion analogous to what we need here.

6.2.3. Teichmüller theory. Fix λ ∈ S0
λ and set f = fλ.

Definition 6.9. Let QC(f ) be the set of quasiconformal maps h : C → C such that
g = h ◦ f ◦ h−1 is meromorphic. Because g is a meromorphic infinite to one unbranched
cover of the plane with two omitted values, by the corollary to Nevanlinna’s theorem,
Corollary 2.5, it is affine conjugate to a map fλ′ ∈ F2 and we choose the conjugacy so that
λ′ is the preferred asymptotic value.

We define the Teichmüller equivalence relation on QC(f ) as follows: elements h1, h2

of QC(f ) are equivalent if there is an affine map a and an isotopy from h1 to a ◦ h2

through elements of QC(f ). The quotient space of QC(f ) by this equivalence relation is
called the Teichmüller space Teich(f ) with basepoint f.

Let QC0(f ) denote the elements of QC(f ) that conjugate f to itself and QC∗
0 (f ) those

that preserve the marking of the asymptotic values.

Definition 6.10. The mapping class group, MCG(f ), is the quotient of QC0(f ) by the
Teichmüller equivalence relation and the pure mapping class group, MCG∗(f ), is the
quotient of QC∗

0 (f ) by the Teichmüller equivalence relation. The moduli space and pure
moduli space are defined as the quotients M(f ) = Teich(f )/MCG(f ) and M∗(f ) =
Teich(f )/MCG∗(f ).

Remark 6.11. Because we are working in a dynamically natural slice of F2 defined by the
conditions that 0 is fixed and has multiplier a fixed ρ, we restrict our considerations here
to the slice Teich(f , ρ) ⊂ Teich(f ) of equivalence classes of quasiconfomal maps h such
that h ◦ f ◦ h−1 has a fixed point with multiplier ρ. The mapping class group and pure
mapping class group act on Teich(f , ρ). The λ parameter plane is identified with the pure
moduli space M∗(f , ρ). For readability below, because we always assume we are in this
slice, we drop the ρ from the notation.

Because the quasiconformal maps conjugate the dynamics, and the dynamics are
controlled by the orbits of the asymptotic values, the space Teich(fλ) is related to the
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Teichmüller space of a twice punctured torus defined by the dynamics. We explain this
here.

Definition 6.12. The points z1, z2 are grand orbit equivalent if there are integers m, n ≥ 0
such that f m

λ (z1) = f n
λ (z2). They are small orbit equivalent if for some n > 0, f n

λ (z1) =
f n

λ (z2). Denote the grand orbit equivalence classes by [z].

Now φλ(z) = 0 if and only if z is grand orbit equivalent to 0. Let Âλ denote the
complement of the grand orbit of 0 in Aλ. We have the following.

LEMMA 6.13. The restriction of φλ to Âλ is a well-defined map from each small
equivalence class to a point in C

∗.

Proof. If z1, z2 are small orbit equivalent, there is some integer N such that for all n ≥ N ,
f n

λ (z1) = f n
λ (z2). Moreover, for all large n, f n

λ (z) ∈ Oλ and, because φλ is injective on
Oλ, the lemma follows.

Let �ρ be the group generated by z �→ ρz in C
∗. The projection τρ : C∗ → C

∗/�ρ =
Tρ is a holomorphic covering map onto a torus Tρ . Following common usage, we say that
its modulus is ρ. Set T = Tρ because ρ is fixed in this discussion.

Define the composition of φλ with τρ by

�λ : Âλ
φλ→ C

∗ τρ→ T .

By Lemma 6.13, we see that �λ identifies Âλ in the dynamical space of fλ with the
torus T because each grand orbit in Âλ maps to a unique point on T. Notice that T depends
only on ρ and not on λ. Let γ ∗ be the level curve through the asymptotic value μ in Âλ

and β its projection on T.
Because λ ∈ S0

λ , the orbit of μ accumulates on 0 so it cannot be in the grand orbit of
0. It is possible that λ is in the grand orbit of zero or that for some m, n, f n

λ (λ) = f m
λ (μ).

This can happen only on a discrete set and we assume here that it does not happen for the
λ we chose.

There are two special points on T, the points λ∗ = �λ(λ) and μ∗ = �λ(μ). We mark
them so that λ∗ is the preferred point. Let T 2

λ = T \ {λ∗, μ∗}. Let A∗
λ = �−1

λ (T 2
λ ); then

A∗
λ ⊂ Aλ is the complement of the grand orbits of 0 and the asymptotic values. It is easy

to see that �λ : A∗
λ → T 2

λ is a covering projection.
The Teichmüller space Teich(T 2

λ ) is defined as the set of equivalence classes of
quasiconformal maps, [H ], defined on T 2

λ , where, as above, the equivalence is through
isotopy. The pure mapping class group MCG∗(T 2) and pure moduli space M∗(T 2) based
at T 2

λ are defined as for Teich(f ): the pure mapping class group consists of equivalence
classes [H ] that map T 2

λ to itself preserving the marking and the pure moduli space
is formed by identifying points congruent under the pure mapping class group. Thus
the map �λ induces a map � : Teich(f ) → Teich(T 2). By standard arguments, see e.g.
[McMSul], � is a covering map so there is an injection on fundamental groups which
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FIGURE 10. Two examples where the lifted curve is the one we need.

translates to an injection of pure mapping class groups:

�∗ : MCG∗(f ) → MCG∗(T 2).

Because a quasiconformal map H ∈ Teich(T 2
λ ) is not necessarily the projection by �λ

of an h defined on A∗
λ, we need to characterize those that are. To do this, we need to

understand the image �∗(MCG∗(f )) ⊂ MCG∗(T 2).
First of all, to remain in the slice, we require that ω(H(T 2

λ )), the torus obtained by
applying the ‘forgetful map’ ω that fills in the punctures, is conformally equivalent to T
and preserves the isotopy class of β.

Suppose α̃ is a curve in A∗
λ with initial point μ and endpoint λ and [h] ∈ MCG∗(f ).

Then h(α̃) has the same property. The map H = �λ ◦ h ◦ �−1
λ determines a point in

MCG∗(T 2) that maps the curve α∗ on T 2
λ joining μ∗ to λ∗ to a curve H(α∗) with the

same endpoints.
Every curve α′ on T 2 that joins μ∗ to λ∗ has lifts �−1

λ (α′) whose initial point is at a
pre-image of μ∗; let α̃′ be the lift at the asymptotic value μ. The endpoint of α̃ is in the
grand orbit of λ, but it is not necessarily at λ. Therefore, to construct maps in Teich(f )

from maps in Teich(T 2), which we do below, we need to know that we can find those
curves α whose lift to μ lands at λ. Let α∗ be such a curve on T 2.

That we can always find these curves is proved in [Bir], where there is a full treatment of
mapping class groups of surfaces. For a more detailed discussion analogous to the situation
here, see [GK].

In Figure 10, we show how the region Aλ is divided into fundamental domains that
project to T for two different values of λ. In both, μ is on γ ∗, the boundary of Oλ, drawn
in blue. The orange curves are the first pullbacks of γ ∗ by fλ. The domain bounded by
γ ∗ and one of the orange curves defines a fundamental domain for �ρ . In the left figure,
λ is in that fundamental domain. The green curves are the next pullback, and on the right
figure, the red curve is the third pullback and λ is in a fundamental domain between the
second and third pullbacks.
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6.2.4. Construction of the embedding e. We now construct the conformal embedding
e : U∞ → C such that

e ◦ Q∞ = fλ ◦ e

for some λ ∈ S0
λ with ξλ(μ) = λ0.

Delete the grand orbits of [q0], [λ0], and [p] from U∞ to obtain a domain U∗∞. As we
did above for Aλ, we form the projection by the grand orbit equivalence

�∞ : U∗∞ → T 2∞ = T \ {�∞(p), �∞(λ0)}
where again, T is a torus of modulus ρ.

As above, there is some α∞ that is a curve on T 2∞ with initial point �∞(λ0) and
endpoint �∞(p) whose lift to Q∞ at λ0 is a curve α̃∞ joining λ0 to p.

Let H : T 2
λ → T 2∞ be an orientation preserving homeomorphism that preserves the

labeling of the punctures and satisfies H(α∗) = α∞. Then it lifts to a topological
conjugacy h between fλ|Aλ and Q∞.

U∞

Q∞
��

Aλ

fλ

��

h�� g �� Aλ(p)

fλ(p)

��
U∞

�∞
��

Aλ

�∗
��

h�� g �� Aλ(p)

T 2∞ T 2
λ

H��

We may assume that H is quasiconformal with Beltrami differential νT 2
λ

and use �∗ to
lift to a Beltrami differential ν on Aλ compatible with the dynamics. We set ν = 0 on the
complement of Aλ (the Julia set of fλ) and note that because the map is hyperbolic, this
set has measure zero. We now invoke the measurable Riemann mapping theorem [AB] to
obtain a quasiconformal homeomorphism g : Ĉ → Ĉ fixing 0 and ∞, and so unique up to
scale, such that g ◦ fλ ◦ g−1 is holomorphic. By Nevanlinna’s theorem, Theorem 2.4, we
can assume g is normalized so that g ◦ fλ ◦ g−1 is of the form fλ(p),ρ(p) for some λ(p),
where λ(p) = g(λ) and μ(p) = g(μ) is on the boundary of Oλ(p), the region of injectivity
of the uniformizing map at the origin. Because g is compatible with the dynamics, and both
tori T 2

λ and T 2∞ have modulus ρ; it follows that g′(0) = ρ also. Thus λ(p) ∈ S0
λ , and the

map e = g ◦ h−1 is the required embedding.
To complete the proof, we need to show that the correspondence p → λ(p) is an inverse

of the map E.

K0

U0
��

��

i∞ �� U∞
e �� Aλ(p) ⊂ C

ξλ(p)

������������������

By our construction, i∞ is the direct limit of the maps in. It satisfies

e ◦ i∞(p) = λ(p).
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The second asymptotic value of fλ(p) is μ(p). By definition, ξλ(μ(λ(p))) = λ0 and
ξλ(λ(p)) = p ∈ U0 ⊂ K0.

In the non-generic cases, the point p in K0 \ � is either in the grand orbit of the fixed
point q0 or the other asymptotic value λ0 and the quotient of U∞ by the grand orbit relation
is a once punctured torus. The construction of the inverse of E is analogous, but simpler in
these cases, and again yields a unique fλ ∈ S0

λ .
If we choose p on ∂�, the function fλ(p) will have both its asymptotic values on the

boundary of Oλ(p). Only one choice, however, preserves the marking.
By the measurable Riemann mapping theorem, the quasiconformal map g depends

holomorphically on the parameter p. Thus, as we vary p analytically along ∂� \ {λ0},
the image e(p) defines an analytic curve S∗ in S. The construction fails if p = λ0 because
as p approaches λ0, the limit point on the analytic curve in S is a parameter singularity; in
the construction of fλ from the model, as p → λ0, λ → 0. Therefore we can extend E−1

by continuity so that E(0) = λ0; therefore S∗ ∪ {0} is homeomorphic to a circle.
Because the model K0 \ � is topologically an annulus A, the above paragraph shows

that E extends as a map from the boundary component S∗ of Sλ to a boundary component
of A.

6.3. Topology of the shift locus. We are now ready to complete the proof of the main
structure theorem.

THEOREM 6.14. (Topology of the shift locus) S is homeomorphic to a punctured annulus;
that is, there is a homeomorphism � : S → Ĉ \ {0, 1, ∞}.
Proof. We begin by recalling the relation between Mλ and Mμ given by the inversion
I (λ) = −μ defined in §3.1 that shows

fλ(z) = f−μ(−z).

It follows that if λ ∈ Mλ and f m
λ (λ) tends to a periodic orbit z = {z0, z1, . . . , zn}, then

f m−μ(−μ) tends to the orbit −z = {−z0, −z1, . . . , −zn} and −μ ∈ Mμ. This proves the
following.

PROPOSITION 6.15. The inversion I : Mλ → Mμ defined by

I (λ) = −μ = λ

2λ/ρ − 1

maps shell components of period n in Mλ to shell components of period n in Mμ.

This is illustrated in Figure 11. The large green region is the shift locus, Mλ is the
complementary region on the right, and Mμ is the complementary region to the left,
surrounded by the shift locus. The circle of inversion is drawn in Figure 11 where ρ = 2/3.
In this figure, because ρ is real, by Proposition 6.4, it is S∗. For arbitrary fixed ρ, S is the
image of ∂� \ {λ0} under E−1; thus S∗ ∪ {0}, which we still denote as S∗, is a topological
circle.

In Theorem 6.5, we saw that Sλ is homeomorphic to an annulus. One of the
complementary components is Mλ. The other complementary component is bounded by
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FIGURE 11. The λ plane with the regions Mλ, Mμ, and the circle of inversion.

the curve S∗. By Proposition 6.15, I maps Sλ ∪ Mλ to Sμ ∪ Mμ; because I (Mλ) = Mμ,
I (Sλ) = Sμ so that Sμ is also an annulus. Because I maps S∗ to itself, these annuli share
a common boundary component.

Note that although both the invariant circle of inversion C0 and S∗ are invariant under
inversion, unless ρ is real, they are not necessarily the same.

Therefore, S ∪ {0} = Sλ ∪ Sμ ∪ S∗ ∪ {0} is topologically an annulus. Removing the
parameter singularity λ = 0 completes the proof.

Immediate corollaries of this theorem are the following.

COROLLARY 6.16. The sets Mλ and Mμ are connected.

COROLLARY 6.17. The full shift locus in F2 has the product structure D
∗ × C \ {0, 1}.

Figure 12 shows the λ plane when ρ = −2/3. This is another slice in the fibration
and shows how the fibers change as the argument of ρ changes. The picture is similar to
Figure 2 except that we see that the Mλ is translated vertically and there is a period-2
component budding off 	1 on the real axis instead of a cusp.

6.3.1. Single-valued inverse branches. We now prove the lemma we assumed for the
proof of the combinatorial structure theorem in §4.2.

LEMMA 6.18. There is a simply connected domain � ∈ C \ {0, ρ/2} in which, after a
choice of basepoint and branch of the logarithm, the pole functions pk(λ) and the inverse
branches gλ,k can be defined as single-valued functions of λ.

Proof. In the proof of Theorem 6.14, we showed that Sμ and Sλ are homeomorphic to
annuli with a common boundary component that contains the singularity at the origin. It
follows that in a neighborhood of the origin, both asymptotic values are attracted to zero.

Now consider the period-1 shell component 	′
1 of Mμ. It has a virtual center at λ =

ρ/2. Because it is a virtual center, it is on the boundary of both Mμ and S, and so a
neighborhood V of ρ/2 contains points in Sμ.

Applying the inversion, I (V ) is a neighborhood of infinity intersecting the period-1
component 	1 ∈ Sλ and an open set in Sλ. Thus infinity is on the boundary Sλ. Because
a neighborhood of any point in S∗ only contains points in Sλ and Sμ, infinity and zero are
on different boundary components. Hence because Sλ is an annulus, we can find a curve
γ ⊂ Sλ joining zero and infinity. Let W be the component of C \ S∗ containing Mμ and
set � = C \ (W ∪ γ ). This is a simply connected domain. It contains all the virtual cycle
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FIGURE 12. The λ plane when ρ = −2/3. Note the position of the period-2 components.

parameters belonging to Mλ and none of the virtual cycle parameters belonging to Mμ.
Therefore, choosing a basepoint λ0 ∈ � and a branch for Log, we can define pk(λ0) as in
equation (6) by

pk(λ0) = 1
2

Log
(

ρ − 2λ0

ρ

)
+ ikπ ,

and extend analytically to all of � as single-valued functions of λ. Then, as we did in §4.2,
we can define the inverse branches of fλ as single-valued functions of λ.

7. Concluding remarks
There are many more questions one can address about the space of functions we have been
studying. Below we list some of them and leave an investigation of them to future work.
• An important tool in studying the Mandelbrot set is the use of the level curves where

the escape rate of the critical value is constant and their gradient ‘external rays’. Can
we define the analogue for the set Sλ and Sμ using the level curves of φ0 defined on
K0? There will be infinitely many curves for each level so the structure will be much
more complicated. This would lead to more questions such as the following.

(i) In [CJK2], we used the level curves and their gradients to prove that the virtual
centers are accessible points from inside both the shell components and the

https://doi.org/10.1017/etds.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.108


138 T. Chen et al

shift locus. Can we also use it to characterize other types of boundary points of
S such as cusps, root points for bud components, or Misiurewicz points where
an asymptotic value lands on a repelling cycle?

(ii) Can we describe primitive and satellite components in terms of rays in a manner
analogous to the discussion for rational maps?

(iii) In [CJK], we showed there is a renormalization operator defined for the family
it tan z where t is real. Are there renormalization operators that can be defined
in F2?

• We know that at the virtual centers and Misiurewicz points, the only Fatou component
is the attracting basin of the origin. Is the Julia set a Cantor bouquet in the sense of
Devaney? Does it have positive measure? Area?

• In [GK], the mapping class group of the Teichmüller space Rat2 is analyzed. The
analogous space here is F2 from which points with orbit relations have been removed.
Describe the mapping class group of this space.

• How do the results here extend to parameter spaces of families of meromorphic
functions with more than two asymptotic values, or those with both critical values
and asymptotic values?
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