6. THE THEORETICAL BASIS OF THE FISSION THEORY OF BINARY STARS
By R. A. LYTTLETON

I wish to say something today regarding the theoretical basis of the fission theory of
binary stars. For many years it has been thought to be one of the established conclusions
of astronomy that at least the close binaries have resulted from the fissional break-up
of single massive stars, and theories of stellar evolution have regarded this as one of the
settled issues that must be incorporated in a general theory accounting for all types of
stars.

In discussing the basis of the fission theory it will not be my concern so much to
consider actual stars, but only the theoretical stars as postulated in the dynamical
formulation of the fission theory.

Several tacit assumptions as to the former condition of a binary star are implicit. For
example, that they have evolved from single massive stars, that this single star has come
to possess large angular momentum, that this star has somehow proceeded to a state of
rotational instability. (The whole question of the origin of individual stars is igrniored in
the fission theory.)

In order to render the problem tractable it is necessary to assume uniform density of
the star, however much this assumption may fail to hold. Jeans himself believed that the
central regions of his stars, comprising the main part of the mass, would closely conform
to this assumption.

Stability. In following the evolution of rotating systems, it is necessary to distinguish
between two kinds of stability, usually termed ordinary and secular. For non-rotating
systems the two are the same.

A rod standing upright on its end is simply unstable. Given a slight push the rod falls
away from the position regardless of the presence of friction. The energy contributed by
a disturbance, however slight, is sufficient to rid the time integral of its infinity and the
rod reaches any given angular displacement in a finite time.

Similarly a non-rotating or slowly rotating top standing upright on its point is unstable.
But a sufficiently rapidly rotatirg top can, as we know, stand upright on its point, and
wn the absence of friction will do so indefinitely and moreover if slightly disturbed will only
oscillate about the upright position. The top is said to be ordinarily stable.

But if account is taken of friction, then however small this is, dissipation will set in,
and the top will gradually spiral away from the upright position and precess with ever
increasing inclination of its axis to the vertical. The top is said to be secularly unstable.

Notice that if there is no friction, the path of the top is reversed if all velocities (spin
round the axis as well) are reversed. This is because the equations of motion do not
contain terms involving the velocities, so if we write —¢ for ¢, the equations are unaltered
and we get the same motion described in the reverse direction; e.g. if we reverse the
direction of motion of a planet round the Sun, the orbit is described the other way; but
if we reverse the velocity of a meteor through the atmosphere it will not describe the
reversed path. This complete reversibility is a characteristic property of motion away
from a position of ordinary instability, and indeed of any motion not involving friction.
But where secular instability is concerned the motion is not reversible. 1f we have a top
that has spiralled some distance from the upright position, and reverse its direction of
motion and of spin, it will not proceed to climb back again to the upright position, but
will go on precessing in an ever widening angle. Dissipation is involved and cannot be
reversed. This distinction between ordinary stability (no friction) and secular stability
has constantly to be borne in mind in considering the evolution of rotating systems.

A dynamical system that is secularly stable is necessarily ordinarily stable; e.g. the
conical pendulum.

A dynamical system that is secularly unstable may nevertheless be ordinarily stable, e.g.
top spinning fastenough, or it may be ordinarily unstable, e.g. top spinning slowly enough.

This means that if an evolving system reaches a point at which it becomes secularly
unstable, its ordinary stability may continue to hold, or may cease simultaneously (it
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cannot cease before). Jeans fell into error on just this point in thinking that secular
instability always occurs before ordinary instcbility can set in, and hence that ordinary
stability could not be of any importance in the fission problem.

Finally, a system that is ordinarily unstable is necessarily secularly unstable, e.g.
inverted pendulum or top, with negligible spin.

Evolution of a rotating liguid mass. Evolution with gradually increasing density and
constant angular momentum can readily be shown to be completely equivalent, as to the
series of figures, to evolution with constant density and gradually increasing angular
momentum. It is easier to think in terms of the latter as the mass then preserves its
volume unchanged.

With zero angular momentum the system begins as a uniform sphere, and its angular
velocity is zero. As angular momentum is added, the angular velocity begins by
increasing and the mass flattens to a spheroid, the eccentricity of section increasing with
the angular momentum.

To start with, the spheroidal forms (the Maclaurin spheroids) are thoroughly stable for
all displacements, i.e. both secularly and ordinarily stable. This holds till the form is
reached for which e=0-8127. Its dimensions are:

€ afr clv w2nGp H/Gi My VIGM2y—1 T/GM?2—1
0-8127 11973 0-6976 0-1868 0-3035 —0-5850 0-0805

The investigation of all possible displacements is made by means of ellipsoidal harmonic
analysis. It is found that the harmonic through which instability first enters is a certain
second-order harmonic which when added at the surface of the spheroid transforms it
into an ellipsoid with three unequal axes (the beginning of the Jacobi series).

Spheroidal forms exist beyond this but are secularly unstable. Nevertheless for a time
(e<0°9529) they remain ordinarily stable, but after this they are both secularly and
ordinarily unstable.

W hat does this secular instability mean? The system can (conceptually) be set up in any
spheroidal form. But under the slightest disturbance (for e slightly greater than 0-8127,
say) oscillations would occur causing it to depart more and more from the spheroidal
form. Their amplitude would increase at a rate depending on the amount of friction.
Also dissipation is involved causing a loss of energy and this cannot go on indefinitely;
the system accordingly seeks some new form not involving further dissipation. In this
case the new form is a Jacobi ellipsoid. For equal values of H the Jacobi ellipsoid has
less energy than the corresponding spheroid. In passing over to the Jacobi form, the
excess energy is dissipated by friction, and eventually a steady state (the Jacobi ellipsoid)
1s reached.

For H > 0-3035 there exist equilibrium forms with three unequal axes. Physically the
system cannot ever get into a state represented by any of the secularly unstable spheroids.

Once the system has got on to the Jacobi series, further evolution with increasing
angular momentum now takes place along this series. It begins (at a point coinciding
with the last stable spheroid) as a thoroughly stable configuration. The angular velocity
now diminishes as the angular momentum increases, so that if break-up should eventually
occur the pieces will be endowed with slow rotation and so can revert to stable spheroids
at once without serious change of angular velocity. The (increasing) angular momentum
is now carried in the figure which elongates considerably.

The Jacobi ellipsoids remain stable in all respects until that figure J is reached given by

(@) ®) () w}2nGp  H/GEM¥WE  V/GM%'  T/GM»-1
18858 08150 0-6507 0-1420 0-3896 —0-552 0-0894

The instability (secular) is found to enter for a certain third-order harmonic displace-
ment, which when added to the last ellipsoid transforms it into the so-called ‘pear-
shaped’ figure. The Jacobi series is crossed by a new series of configurations.

What happens next? Is this new series stable or unstable? This in effect was the great

problem attacked by Poincaré, Darwin, Liapounov and Jeans.
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If the new series should turn out to be stable, further evolution with increasing
angular momentum would proceed along it (at least for a time).

The criterion for determining whether the pear is stable or not can be shown to depend
on whether the angular momentum of the pear-shaped members near the last Jacobi
(stable) form is greater than or less than that of /. If it is greater than that of J, then
the pear-shaped series would (to begin with, anyway) be stable. If it were less, then the
pears are unstable. So the question resolves itself into discovering whether the repre-
sentative curve of the pear series turns up or down near J

Darwin maintained that he had proved it turned up, and hence that the series was
stable. Liapounov said he had proved it turned down, and hence that the series was
unstable.

Two-dimensional problem. With a view to helping resolve this difficulty, Jeans took up
the corresponding two-dimensional problem of a rotating gravitating cylinder. He
eventually announced that he had proved that the two-dimensional series was stable,
and this appeared to confirm Darwin’s result.

If Jeans had been correct in this conclusion, it would have been legitimate to regard
the system as evolving next along the pear-shaped series. This would involve a deepening
of the furrow, suggesting an ultimate division into two parts. This was the course of
development envisaged by Darwin and Jeans.

But even had their conclusion as to stability been correct, this description omits to
answer the relevant question whether any other series of configurations may branch off
the pear-shaped series. It would be hard indeed to imagine how this question might even
have been tackled had it occurred to Darwin and Jeans. This then was the position in
1902.

Evidently Jeans gradually came to entertain some deep-rooted suspicions about the
whole theory, and ten years later he recommenced work on the three-dimensional
problem, starting in an entirely fresh way. His final conclusion this time was that the
initial members of the piriform series had /ess angular momentum than the last stable
Jacobi form and were therefore wnstable. Moreover, a re-scrutiny of his work on the
two-dimensional problem disclosed a simple numerical error that had reversed the sign
of the crucial term and which when corrected indicated that this series was also unstable.
Both results were now in agreement with Liapounov’s conclusion.

This altered the whoie position because now the system cannot evolve along the pear-
shaped series.

Jeans, however, seems to have been anxious to retain the fission theory whatever
conclusions his analysis might lead to, and in face of the new result he made several
mistakes which culminated in his retaining the fission hypothesis unchanged from what
it had been when he considered the pear to be stable. First, he still retained his picture
of the system evclving along the pear-shaped series and continued to use his invalid
two-dimensional calculations unchanged. But this course of evolution assumes the
angular momentum to go on increasing, whereas what is required is to find the course of
development with a given angular momentum from an unstable configuration on the
Jacobi series. There is now no question of the system being urged on by further increases
of density, here represented by increase of angular momentum but simply of a system
reaching and slightly passing a point of bifurcation and then undergoing further motion
with constant angular momentum.

As it is, the initial members of the piriform series have Jless angular momentum than
the last Jacobi form and so the system could never evolve along this series. Second,
Jeans believed that the question of ordinary stability did not arise. This would have been
valid if the system were secularly stable, for this would imply that it is also ordinarily
stable, but if a system—here the last Jacobi ellipsoid—is secularly unstable, it may or
may not be ordinarily stable. This becomes a further question that has to be investigated
afresh by setting up the equations of small motion of the system.

What then happens when the system reaches the last stable Jacobi ellipsoid and passes
just beyond?
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If the Jacobi ellipsoid were ordinarily stable, although secularly unstable, it is con-
ceivable that the system might depart only s'owly from the Jacobi series under the effect
of internal friction. (For example, the lunar orbit in the Earth-Moon system, taking
account of the angular momentum of the planet, is secularly unstable but ordinarily
stable, and departure is very slow because friction is very small.) To complete the
discussion of the system it is therefore necessary to discover whether the Jacobi series
remains ordinarily stable when its secular stability ceases, or whether it becomes
ordinarily unstable at the same stage, as it might well do. In fact, Cartan has shown
comparatively simply that ordinary stability disappears at the same time as the secular
stability for third-order harmonic displacements.

Thus beyond the last stable Jacobi form there are no equilibrium forms that possess
either kind of stability. The system has now reached a state similar to that of a nearly
vertical top with insufficient spin for its stability. and it is no more stable than a stick
balanced on end. Given the slightest disturbance it will move away from the position
and attain a finite displacement from it in a finite time, but the direction of fall can only
be predicted if the initial disturbance is known. In the present case the motion must
also be a rapid one and there is no possibility of the system evolving slowly.

As the system is ordinarily unstable, whatever motion it undergoes must of necessity be
strictly reversible. That is, if all velocities are reversed, the system would undergo the
reversed motion describing the same path in the opposite direction. It follows from this
that fission into a binary star is not possible. For if in a binary system every velocity is
reversed, the system simply describes the orbit the other way and does not proceed to
coalesce into a single star. Accordingly it follows from the ordinary instability of the
Jacobi series (beyond the critical member) that fission into two pieces in closed orbital
motion is not possible. The process does not work.

What then 1s the final result of the instability? Certainly it is not motion along the pear-
shaped series. Nor can division into two masses in finite orbital motion round each other
take place.

But somehow the system has got to find its way to another steady state, since dissipa-
tion cannot go on indefinitely.

Nor can the system remain a single mass since there is no equilibrium figure for it to
move to. Some kind of break-up must occur in order to rid the mass of its embarrassment
of angular momentum.

If we assume break-up into two main pieces, then we can show that the system can get
out of all its difficulties and satisfy the various requirements we have indicated provided
that these pieces separate to infinity in hyperbolic orbits.

If the velocity of separation were not hyperbolic, although thz pieces might at first
begin to separate, their attraction would soon reverse this, and they would eventually
re-unite. This could only be temporary, since no loss of angular momentum could take
place. Also it would physically involve dissipation, loss of heat, and therefore some
increase of density, which here would mean an increase in angular momentum with
density remaining constant. So the system would be more unstable than before and
a further break-up of greater violence would ultimately ensue. Obviously the only end
to this would be if the velocity of separation was enough to enable the masses to separate
altogether in (almost) hyperbolic orbits. The excess angular momentum can then be
stored in the orbital motion. Each of the two component pieces can revert to a form
appropriate to the MacLaurin series, without undergoing any serious change of angular
velocity (since the angular velocity diminishes as the Jacobi series is described). Evolu-
tion along the Jacobi series gradually slows up the rotation and so prepares as it were,
to produce stable components.

The final steady state ultimately reached is therefore that of two stable masses sepa-
rating from each other with constant velocity. No further dissipation need take place.
Also the motion is strictly reversible, as required.

Mass-ratio. By considering the energy balance and the angular momentum balance
as between the last stable ellipsoid and the double system it may be shown that the
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mass-ratio cannot be less than about 7' 1. That is, only a small component need or can
be ejected. Equality of masses of the two pieces is quite impossible. (This by the way is
yet another argument against the fission theory. since if we assume stable binary orbits
the least mass-ratio possible is about 3: 1, and so close binaries of equal masses, which are
common enough, could not be explained by fission. If loss of mass by radiation is invoked
to equalize the masses, the orbit evolves and the system is no longer a close one.)

Given every factor in its favour, the theoretical considerations on which the fission
hypothesis has been based are found in fact to be against the process on every count.
This conclusion ignores the question whether actual stars are sufficiently closely repre-
sentable by the assumption of uniform density. Of course we are now pretty certain that
they depart very much from this. It ignores the criticism that evolution by gradually
increasing density has no real valid basis in the theory of the structure and development
of ordinary stars, and it ignores the question whether stars are in fact created as single
massive stars already endowed with large angular momentum.

To sum up, Jeans’s main errors in his theory of fission were as follows:

(1) In believing that secular instability invariably sets in before ordinary instability,
and hence that any question of ordinary instability was irrelevant.

(2) In misunderstanding his own result that the system was secularly unstable, and
reaching exactly the same conclusions as he had reached when he believed he had proved
it was secularly stable.

(3) In supposing that evolution would take place along the pear-shaped series. This
would require angular momentum to be subtracted from the system, whereas once the
gradual increase of angular momentum has brought the system to an unstable state the
subsequent motion is with constant angular momentum. The parameter defining the
series is not to be regarded as a dynamical co-ordinate.

(4) In supposing circular orbits could result. (He actually states at one point that the
masses must be projected away from each other, but then goes on to invoke collisions to
round up the orbits. This in any case is ruled out by the fact that a stable binary system
has a finite separation between its components.)

(5) In supposing that equal components could result. The simplest considerations of
energy and angular momentum show this to be impossible.

Discussion du rapport de LYTTLETON

Martynov demande quel changement subissent les conclusions de Lyttleton pour les
étoiles possédant une concentration de matiere.
Lyttieton pense que la situation est pire et la fission impossible.

7. THE CHEMICAL COMPOSITION OF THE STARS AND ITS RELATION
TO STELLAR EVOLUTION

By JESSE L. GREENSTEIN

Mount Wilson and Palomar Observatories, Carnegie Institution of
Washington, California Institute of Technology

and MARTIN SCHWARZSCHILD
Princeton University Observatory

On the one hand the rate at which stellar evolution progresses will depend on the
chemical composition of the star. On the other, as a by-product of the nuclear processes
involved in the-energy production, the chemical composition of the reacting material
will change. Stellar models can be used to provide information as to the composition of
the reacting zenes, stellar spectroscopy will provide the composition of the atmospheres,
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