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Abstract. We investigate the problem of giant planet formation around stars with various
masses based on the core accretion/gas capture model. At first, we follow the evolution of gas
and solids from the moment when all solids are in the form of small grains to the stage when
most of them have reached planetesimal size. We show that the surface density of a planetesimal
swarm tends to be higher around less massive stars. Subsequently, we derive the minimum
surface density of the planetesimal swarm required for the formation of giant planets, both in a
numerical and in an approximate analytical approach. We combine these results by calculating
a set of representative disk models, characterized by different masses, sizes, and metallicities.
This allows us to quantify the probability of each individual disk model to form giant planets.
Furthermore, we take the fact into account, that in some of these models, the outer regions of
the disks become gravitationally unstable.
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1. Introduction

Radial velocity surveys led to discovery of over 150 extrasolar planets around main
sequence stars Marcy et al. (2005), Mayor et al. (2004). Those surveys have been most
successful in the case of G dwarf stars. Due to the constant progress in the detection
techniques, the observational programs recently started to include also stars with lower
masses on a larger scale, namely M dwarfs. Moreover, some of these surveys are now
particularly dedicated to lower-mass stars Endl et al. (2003), Bonfils et al. (2004).

From the theoretical point of view the problem of giant planet formation around M
dwarfs was studied recently by Laughlin et al. (2004). They addressed it within the core
accretion - gas capture model (CAGCM). They conclude that M dwarfs have a limited
ability to form Jupiter-mass planets. This is a direct consequence of their assumption that
the surface density of the planetesimal swarm out of which planetary cores are formed
scales linearly with the mass of the central star. However, the solid component of the pro-
toplanetary disk evolves in a different way than the gaseous component Weidenschilling
& Cuzzi (1993). Due to the gas drag a significant redistribution of solids takes place, and
in the inner disk their surface density can be substantially enhanced compared to the
initial one Weidenschilling (2003), Stepinski & Valageas (1997). An obvious conclusion
is that the analysis of the formation of giant planets around stars with various masses
should include the global evolution of solids in protoplanetary disks.

2. Methods of calculation

We model the protoplanetary disk as a two component fluid, consisting of gas and
solids. The gaseous component is described as an alpha disk by the analytical model of
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Stepinski (1998) which describes its properties, as a function of distance a from the star
and time ¢, in terms of a self-similar solution to the viscous diffusion equation.

The main assumptions underlying our approach to the evolution of solids are (1) at each
radial distance from the central star the particles have the same size (which in general
varies over time), (2) there is only one component of dust, in this case corresponding
to high-temperature silicates with the evaporation temperature Tivap = 1350 K and
bulk density 3.3 ¢ cm™3, (3) all collisions between particles lead to coagulation. At each
radius, the vertical extent of the solid particle distribution is calculated and is evolved
in time, so the effect of sedimentation of solids toward the midplane of the disk is taken
into account. All assumptions and approximations are discussed in Stepinski & Valageas
(1997), Stepinski (1998) and Kornet et al. (2001).

We model the formation of a giant planet in situ, so the orbital parameters of the
planet do not vary in time. Our procedure is based on the following assumptions: (1)
core accretion starts when solids at a given distance a from the star reach radii of 2 km,
(2) at each time, the planetesimals are well mixed through the feeding zone of the planet;
thus, their surface density X is always uniform in space, but usually decreasing with time
as planetesimals accrete onto the planet, (3) the planetesimals do not migrate into the
feeding zone from outside or inside, and vice versa, but they can be overtaken by the
boundary of the feeding zone as it expands due to the growing mass of the planet, (4) to
calculate the rate of gas accretion onto the planet, following Ida & Lin (2004a), we use
a simplified approach based on fits to the numerical results Bryden et al. (2000).

3. Results

In the CAGCM the process of planet formation is naturally split in two main phases.
In the first one a planetesimal swarm is formed in the protoplanetary disk. In the second
phase planetary cores are assembled which subsequently accrete planetesimals and gas
from the disk.

To illustrate how the mass of the central star influences the formation of the plan-
etesimal swarm, we follow the evolution of a protoplanetary disk with an initial mass
My = 0.1 Mg and initial outer radius Ry = 1000 AU for three values of M, (0.5,1 and
4 Mpg). Initially, the dust is well mixed with the gas, with the ratio Xs/3; = 6 x 1073
being constant everywhere in the disk. As the disk evolves the grains grow in size due to
mutual collisions and gain inward radial velocities due to the gas drag. If their growth
time of is shorter than the timescale of inward migration, they manage to reach sizes of
a few km before reaching the evaporation radius. Their radial motions are then stopped
and the planetesimal swarm attains its final form. Fig. 1 shows the distribution of plan-
etesimals in our model after 10® yr from the beginning of its evolution. In all three cases,
the outer radius of the planetesimal swarm is much smaller than the initial outer radius
of the disk. The difference is larger for models with smaller M,. This is because small
solid bodies evolving in disks around less massive stars gain larger inward velocities and
tend to migrate to smaller radii before reaching kilometer sizes. Due to the inward mi-
gration of solids and their confinement to much smaller radii, the final surface density of
planetesimals is increased locally by factor of a few in comparison with the initial value
of 3. This effect is larger in disks around less massive stars.

To quantify the influence of M, on the effectiveness of giant planet formation from a
planetesimal swarm, we introduce the concept of the minimum surface density s min.
We define it as the minimum value of the initial surface density of planetesimals g inis
needed to from a Jupiter-mass (1Mj) planet in less than the lifetime of the protoplanetary
disk 7¢. For 7t we adopt a value of 3 x 106 yr. Fig. 2 shows X ini¢ as function of distance
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Figure 1. The surface density of solids as a function of the distance from the star in a pro-
toplanetary disk with an initial mass 0.1 Mg and outer radius 1000 AU after 10%yr from the
beginning of its evolution. Different curves correspond to different values of the mass of the
central star in solar masses as described by the labels.
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Figure 2. The minimum surface density of a planetesimal swarm needed to from a 1Mj planet
in less than 3 x 10° yr as a function of distance from the central star. Different curves are
obtained for different masses of the central star, as labeled in units of solar masses in the upper
right corner.

from the star, for the same values of M, as before. Close to the star (a < 10AU),
Y init ~ a2, so it is a decreasing function of the radius a. For sufficiently large radii
(a > 10 AU), X min(a) changes its slope and becomes an increasing function of a. In this
regime g init ~ al/2. We also obtained the approximate, analytical formulas for 3 init,
which are in a good agreement with the results of numerical calculations.

To investigate the influence of the mass of the central star on the whole process of
giant planet formation we calculate a grid of models characterized by different values of
the initial disk mass My and outer radius Ry. We choose Mj in the range between 0.02
and 0.2 Mg . The range of Ry is adjusted for every metallicity so that all models in which
the formation of giant planets is possible is accounted for.

We follow the evolution of each model until all solids are in the form of planetesimals or
are accreted onto the star. Then, we evaluate every model with planetesimals to determine
whether the surface density of planetesimals exceeds the minimum surface density X min
anywhere in the disk. Models with this property are labeled as planet bearing. For every
such model we determine the minimum and maximum distance from the star at which
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Figure 3. The plane of initial parameters of protoplanetary disk models [Mo, log Ro]. Minimum
and maximum distance from a 1M (left panel) and 0.5My (right panel) star at which the
formation of a 1Mj planet is possible within 3 x 10° yr is indicated by contours and grey scale,
respectively. White circles indicate disk models in which the surface density of the planetesimal
swarm is everywhere lower than the critical value for planet formation. Black circles indicate
disks in which all solids are accreted onto the star.

the surface density of the planetesimal swarm is larger than g 1,i,. The results obtained
for different values of the stellar mass are shown in Fig. 3.

The area of the region occupied on the [My, Ry| plane by the planet bearing disks is
clearly anticorrelated with the mass of the central star. Solid grains gain higher inward
velocities in disks around less massive stars, and the resulting planetesimal swarms have
higher surface densities. We see that, reducing the mass of the central star increases
the maximum Ry for which planet formation is possible in disks with the same initial
mass My. We can also see that in a given disk the inner edge of the planet-bearing
region moves inward as we decrease the mass of the star. This effect is mainly caused by
the larger surface density of planetesimal swarms produced by disks around less massive
stars. Differences in ¥ n,in, while appreciable, are much less important. The outer edge
of the planet-bearing region also moves closer to the star. This is because in most cases it
coincides with the outer edge of the planetesimal swarm which is more compact around
less massive stars. The difference in the minimum surface density g min also tends to
decrease the outer radius of the planet bearing region, but it is again a second order
factor.

One of the main results of extrasolar planet searches is the discovery that planet bear-
ing stars tend to have higher metallicities than field stars Santos et al. (2000), Fischer
& Valenti (2003). Ida & Lin (2004b) and Kornet et al. (2005) showed that this corre-
lation can be quantitatively reproduced within CAGCM. Herein we extend calculations
of Kornet et al. (2005) onto disks around stars with various masses. The change in the
disk metallicity influences the processes leading to the formation of planets in two ways.
Firstly, it changes the structure of the gaseous disk by changing the opacity in the disk.
In our models we scaled the opacity by a constant factor Z equal to the metallicity of the
disk expressed in solar units. Secondly, the primordial metallicity of the disk determines
the initial ratio of dust to gas surface densities. In our models this ratio is initially inde-
pendent of the distance from the star and is equal to Xs/3; = 6 x 10~3Z. We compute
grids of models similar to those described above for eight different values of Z distributed
between 0.2 and 3. Additionally, for every value of [My, Ry] we check the gravitational
stability of the corresponding gaseous disk. In some cases the value of the Toomre pa-
rameter () drops below 1 in the outer region of the disk. We assume that such region
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Figure 4. The rate of planet occurrence as a function of the primordial metallicity of proto-
planetary disks. Different lines are obtained for models with different masses of the central star,
as labeled in solar units in the upper left corner. The histogram shows the observational data
compiled by Fischer & Valenti (2003).

fragments and some giant planets are formed there on a very short time scale. In that
case, we use modified initial values of My and Ry, which correspond to the mass and
outer radius of the stable part of the original disk. Following the procedure described by
Kornet et al. (2005), for every Z we calculate the area A 5 of the region occupied on the
[Mo,log Rp] plane by disks that form planets at distances smaller than 5 AU from the
central star. A measure of the rate of planet occurrence can be defined as P, = A, 5/C,
where the normalization factor C is chosen in such a way as to reproduce the observed
value of P, for Z =3 and M, =1 M.

The results are presented on Fig. 4, showing the rate of planet occurrence as a function
of disk metallicity for three values of M,. As expected, P, is an increasing function of
Z. The minimum value of Z below which no giant planets are formed at orbits smaller
than 5 AU decreases with the mass of the central star from Z,,;, ~ 0.6 for M, = 0.5Mp,
t0 Zmin = 0.2 for M, = 4Ms.

We see that for Z smaller than ~0.2, P, is an increasing function of M,. This is
because most disks in which formation of planets would be possible around less massive
stars have outer parts which are gravitationally unstable, and the amount of solids present
in their stable parts is too low to enable subsequent formation of giant planets according
to the CAGCM. However, as Z increases, smaller and smaller disks become planet-
bearing for every M,, and the percentage of gravitationally unstable disks in which
formation of giant planets is not possible decreases. Consequently, the factors promoting
the formation of giant planets around less massive stars as described in previous sections
become important, and P, changes into a decreasing function of M,.

4. Discussion

Obviously, our description of the evolution of solids is very simplified. The basic under-
lying assumptions like the single-size distribution of solid grains or the neglect of planet
migration were already discussed by Kornet et al. (2004) and Kornet et al. (2005). The
main additional assumption introduced in the present paper is the independence of the
initial parameters of protoplanetary disks on the mass of the central star. While admit-
tedly ad hoc, it seems to be better than that adopted by Laughlin et al. (2004), who scaled
their initial surface density of planetesimals linearly with the mass of the star. They did

https://doi.org/10.1017/5S1743921306009161 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921306009161

104 K. Kornet et al.

not take into account the antecedent evolution of solids leading to the formation of plan-
etesimal swarms, and concluded that the formation of giant planets around low-mass
stars is difficult. Our models show that it is a vital factor facilitating the formation of
giant planets, whose role should be particularly well seen for low-mass stars.
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