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Genetic characterization of individuals at risk of Alzheimer’s disease (AD), i.e. people having amyloid deposits in
the brain without symptoms, people suffering from subjective cognitive decline (SCD) or mild cognitive
impairment (MCI), has spurred the interests of researchers. However, their pre-dementia genetic profile remains
mostly unexplored. In this study, we reviewed the loci related to phenotypes of AD, MCI and SCD from
literature and performed the first meta-analyses evaluating the role of apolipoprotein E (APOE) in the risk of
conversion from a healthy status to MCI and SCD. For AD dementia risk, an increased number of loci have
been identified; to date, 28 genes have been associated with Late Onset AD. In MCI syndrome, APOE is
confirmed as a pheno-conversion factor leading from MCI to AD, and clusterin is a promising candidate.
Additionally, our meta-analyses revealed APOE as genetic risk factor to convert from a healthy status to MCI
[OR= 1.849 (1.587–2.153); P= 2.80 × 10−15] and to a lesser extent from healthy status to SCD [OR= 1.151
(1.015–1.304); P= 0.028]. Thus, we believe that genetic studies in longitudinal SCD and MCI series may
provide new therapeutic targets and improve the existing knowledge of AD. This type of studies must be
completed on healthy subjects to better understand the natural disease resistance to brain insults and
neurodegeneration.

Introduction
Although Alzheimer’s disease (AD) is mainly diag-
nosed in the elderly, its pathophysiological processes
begin several years prior to the onset of symptoms
(Ref. 1).
Clinical AD is preceded by a long asymptomatic

period, which has been divided into three stages: (1)
an initial preclinical stage, (2) a second mild, but pro-
gressive, cognitive impairment (MCI) and (3) the
final stage of clinical dementia due to AD (Refs 1, 2,
3). Recently, researchers have increasingly focused
on the characterisation of stages of AD risk, as these
provide a critical opportunity for potential intervention
(Ref. 1).
With ageing, there is a natural decline in cognitive

skills. Thus, it may be difficult to discriminate
between early cognitive changes due to AD and
normal ageing process (Ref. 4). In that context, the
first evidence of dementia may be the subjective
cognitive decline (SCD), defined as a self-reported
memory impairment with normal cognitive perform-
ance (Ref. 5). Complainers present a higher rate of con-
version of SCD to either MCI or dementia (Ref. 6).
Thus, epidemiological studies pointed SCD as a pre-
dictor of cognitive decline (Refs 7, 8) and as an
independent risk factor for dementia (Ref. 9). In suc-
cession, the prodromal stage of dementia, MCI, has
been defined as memory impairment beyond that
expected for normal ageing (Ref. 10). Several MCI
phenotypes have been associated with AD progression

(Ref. 11); however, amnestic MCI (aMCI) confers a
higher risk of conversion (Ref. 11).
The identification of MCI subjects, or even SCD

who will convert to MCI or dementia, puts across an
interesting strategy for secondary prevention of AD.
In that sense, the biomarkers of β-amyloidosis and
tau-mediated neuronal injury are detected in subjects
with normal cognition (Ref. 12). However, these bio-
markers are not sufficient to produce the clinical symp-
toms of MCI and dementia or are not specific to AD
either (Ref. 1). Furthermore, these biomarkers are not
sensitive to disease progression (Ref. 13). Hence,
new approaches are required to improve the differenti-
ation of SCD or MCI converters to AD.
AD’s genetics has gained much attention since AD

presents a heritability of up 70% (Ref. 14). Recently,
researchers have been striving towards the identifica-
tion of new AD’s genetic risk factors. In that sense,
the identification of a genetic risk profile for pre-
dementia stages may prove to be a powerful approach
to select the candidate subjects to prevent or delay
the disease progression during the early preclinical
stages. If a fraction of SCD and MCI patients are in
the pre-AD stages, the identification of an increased
number of AD risk alleles as well as that of additional
genetic factors specifically influencing SCD or MCI
progression can be expected.
In this work, we reviewed the available information

in the literature for genome-wide significant vari-
ants associated with AD and their involvement in
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preclinical, prodromal and dementia stages of AD.
Additionally, we provide new meta-analysed data for
apolipoprotein E (APOE) ε4 in preclinical and pro-
dromal stages.

Methods: meta-analysis
Meta-analysis was performed for exploring the role of
APOE ε4 in: (1) risk of MCI and (2) risk of SCD.

Dataset selection

Literature search was conducted in PubMed (http://
www.ncbi.nlm.nih.gov/pubmed/) using the following
keywords: (1) for MCI: APOE, genetics, risk, mild
cognitive impairment and excluding reviews; and (2)
for SCD: APOE, SCD. A total of 301 articles were
found for MCI and 32 for SCD.
We selected the studies meeting the following cri-

teria: (1) case/control studies or longitudinal studies
where it is possible to distinguish a sub-population of
cases and a sub-population of controls; (2) studies
that provide a complete definition of the participants;
(3) studies that evaluated the APOE ε4 genotype as a
risk factor leading to MCI or SCD, or provided the
numbers of APOE ε4 genotypes or provided sufficient
data to calculate them; and (4) studies that provided an
odds ratio (OR) with 95% confidence interval (CI) as
well as the P-value or provide sufficient data to
calculate them. Finally, of the 301 articles found for
MCI, 207 did not follow inclusion criteria, 29
showed sample overlapping and 41 had restricted
access. A total of 24 articles and 23 668 individuals
on MCI were finally included. In the case of SCD,
21 of the 32 articles did not follow the inclusion criteria
and 3 showed sample overlapping; finally, a total of 8
articles and 6824 individuals were included in the
meta-analysis.

Meta-analysis

Meta-analysis was conducted using the inverse variant
method (fixed-effects model) in Ephisheet Excel appli-
cation. In the case of heterogeneity, DerSimonian and
Liard method (random-effects model) was used.
Heterogeneity was considered significant when I2>
50% and P< 0.05. Meta-analysis results and forest
plots were obtained using OpenMeta.

Dementia stage: genetic risk factors of AD
AD is a genetically heterogeneous disorder. From a
genetic point of view, two patterns of inheritance
have been linked to the genomic loci: the autosomal
dominant and the polygenic. Traditionally, these pat-
terns have been associated with early and late onset
forms of the disease, respectively. However, based on
the family history, AD can be subdivided into auto-
somal dominant, familial and sporadic (Ref. 15).

Autosomal dominant AD

The familial autosomal dominant pattern in AD repre-
sents ∼1% of all the AD cases and is found almost

exclusively in early onset AD (EOAD) (Ref. 15). It
occurs in at least three individuals in two or more gen-
erations, with two of the individuals being first-degree
relatives of the third (Ref. 15).
Linkage and candidate gene studies in EOAD fam-

ilies led to the identification of disease-causing
mutations in β-amyloid precursor protein (APP), prese-
nilin 1 (PSEN1) and presenilin 2 (PSEN2) genes
(Refs 16, 17, 18). Most frequent mutations are shown
in PSEN1 and APP loci, respectively, which present
complete penetrance in contrast to PSEN2, which pre-
sents 95% penetrance (Ref. 15). These identifications
promoted the formulation of amyloid cascade hypoth-
esis, which is still considered as a possible disease
mechanism. Despite that, there are EOAD families
with negative screening for APP, PSEN1 and PSEN2
mutations supporting the existence of additional
causal genes (Ref. 19). In addition, it is seen that
APOE ε4 genotype, the major genetic risk factor for
Late-Onset Alzheimer’s disease (LOAD) (Ref. 20),
also modifies the risk of EOAD (Ref. 21).
Presently, 262 pathogenic mutations have been iden-

tified: 42 in APP, 207 in PSEN1 and 13 in PSEN2
(http://www.molgen.ua.ac.be/ADMutations); no other
genes have been associated with an autosomal domin-
ant form of AD.

Familial AD (FAD)

FAD occurs in more than one individual and, at least,
two of the affected individuals are third-degree rela-
tives or closer (Ref. 15). Most of the FAD cases are
LOAD, but the presence of early onset FAD may be
caused by hidden autosomal-dominant AD mutations
(Ref. 15).

Sporadic AD (SAD)

SAD occurs in isolated cases in families or cases sepa-
rated by more than three degrees of relationship. SAD
represents 75% of all AD cases and typically presents
a LOAD chart (Ref. 15).

The commonest AD phenotype, LOAD

The genetic and molecular basis for the commonest AD
phenotype, i.e. LOAD, remains widely unknown.
However, important progress on the isolation of the
loci associated with AD has been achieved in the past
few years because of the emergence of the genome-
wide association (GWAS) and exome studies.
The ε4 allele of the APOE gene was the first genetic

variant associated with LOAD (Ref. 20), and it remains
as the major risk factor for the disease until now.
Behind the APOE discovery, the candidate gene

approach led to the identification of two clusters of
single nucleotide polymorphisms (SNPs) in SORL1
gene (Ref. 22). Recently, this association has been vali-
dated by International Genomics Alzheimer’s Project
(IGAP) (Ref. 23). However, candidate gene approach
did not show more successful outcomes.
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Most discoveries arrived when the GWAS strategy
was applied to the large case-controlled datasets. In
the GWAS era, common variants located at CLU,
PICALM, CR1, BIN1, ABCA7, CD2AP, CD33,
EPHA1 and MS4A6A-MS4A4E loci were associated
with LOAD (Refs 24, 25, 26).
To validate the original GWAS findings, replication

studies were performed with many independent datasets.
Consequently, CR1, PICALM, CLU and BIN1 signals
have been replicated in Caucasians (Refs 27, 28),
Caribbean Hispanics (Ref. 29) or Asian individuals
(Refs 30, 31). In addition, the EPHA1 and CD33
genetic variants were replicated in Caucasian subjects
(Ref. 32), and ABCA7 in African Americans (Ref. 33).
A recent meta-analysis developed by IGAP in 74

046 individuals of European ancestry confirmed previ-
ously reported GWAS signals (ABCA7, BIN1, CLU,
CR1, CD2AP, EPHA1, MS4A6A-MS4A4E and
PICALM) (Ref. 23). Nevertheless, the CD33 locus, pre-
viously associated with LOAD, did not reach the
genome-wide significance in the replication stages
(Ref. 23). Moreover, the IGAP meta-analysis identified
10 novel genetic regions associated with LOAD:
CASS4, SLC2A4A-RIN1, FERMT2, HLA-DRB5-HLA-
DRB1, INPP5, MEF2C, PTK2B, CELF1, NME8 and
ZCWPW1 and also confirmed a candidate gene,
SORL1 (Ref. 23). Follow-up studies of the IGAP
results revealed additional locus namely TRIP4
(Ref. 34) and a novel AD locus within the micro-
tubule-associated protein tau (MAPT) region at
17q21.31 (Ref. 35). Finally, the gene-wide analyses
of the IGAP dataset identified TP53INP1 and
IGHV1-67 as the novel AD loci (Ref. 36), and an inde-
pendent meta-analysis identified ATP5H/KCTD2 as
the LOAD risk signal (Ref. 37). Most loci reported
after the initial IGAP report would require independent
replications confirming its plausibility.
Despite that, the GWAS approach presented a disad-

vantage, i.e. its inability to detect rare variants, which
might be a source of functional variants with larger
effects on the LOAD risk (Ref. 38). This lack was
covered by the implementation of genome and exome
sequencing technologies. Thus, in the recent years,
rare variants with a significant effect on the risk for
LOAD have been identified in APP, TREM2, PDL3
and UNC5C loci (Refs 38, 39, 40, 41). However,
more efforts are needed to confirm the original
signals. Several studies have confirmed the reported
association of TREM2 with LOAD (Refs 42, 43). In
addition, the existence of TREM2 variants associated
with the Naso–Hakola disease (Ref. 44) and frontotem-
poral dementia (Ref. 45) supports its role in neurode-
generation. Alternatively, the PLD3 variants’
replication did not replicate the previous effect or
overall burden analyses (Refs 46, 47). Therefore, pru-
dence is required to define the genuine signals asso-
ciated with rare variants.
At present, 28 genetic regions have been associated

with LOAD (Table 1), but many of them still require

independent validation. These genes can be divided
into four major functional clusters: (i) amyloid beta
(Aβ) metabolism (APOE, CLU, ABCA7, CASS4,
SORL1 and APP), (ii) Tau metabolism (BIN1,
SLC2A4A-RIN1, CASS4, FERMT2 and 17q21.31
MAPT region), (iii) synaptic function (PICALM,
CD2AP, EPHA1, SLC2A4A-RIN1, MEF2C and
ZCWPW1) and (iv) immune response and inflamma-
tion (CLU, CR1, EPHA1, MS4A cluster, ABCA7,
HLA-DRB5-HLA-DRB1, INPP5; MEF2C, TREM2
and IGHV1-67). Seven identified loci do not have a
well-established pathway (PTK2B, CELF1, NME8,
TRIP4, ATP5H/KCTD2, UNC5C and TP53INP1)
(Fig. 1).
Along with the identification of single locus, GWAS

also permits the genetic confirmation of candidate path-
ways. Recently, pathway analysis studies have pointed
toward the crucial role of the immune system in AD
(Ref. 48), that has been further reinforced by the
IGAP results (Ref. 49). Moreover, the IGAP study
also implicates the regulation of endocytosis, choles-
terol transport and protein ubiquitination as prime
targets in the aetiology of AD (Ref. 49). The knowl-
edge of the biological pathways involved in disease
aetiology is crucial in the development of therapeutic
strategies to aid in the prevention or treatment of
LOAD.

Prodromal stage: genetics of mild cognitive
impairment syndrome

APOE genotype in MCI

Petersen et al. (Ref. 50) were the first to provide evi-
dence that MCI subjects with at least one allele of
APOE ε4 presented a higher probability of conversion
to dementia. Although subsequent genetic studies sup-
ported it (Refs 51, 52), they had small sample sizes,
which only succeeded in providing an approximate
value of the risk effect (Ref. 53). Thus, the meta-
analysis conducted by Elias-Sonnenschein et al.
(Ref. 54) provided the first consistent data corroborat-
ing the role of APOE ε4 as a genetic risk factor for pro-
gression from MCI to AD (Table 2).
The involvement of APOE ε4 as a risk factor for

MCI remains less explored. Therefore, here we have
explored the risk conferred by APOE ε4 genotype to
suffer MCI. Our meta-analysis, which includes 23
668 individuals of different ethnic groups, confirmed
a significant risk association of APOE ε4 genotype
and MCI [OR= 1.849 (1.587–2.153)] (Fig. 2)
(Table 2). Our dataset showed high heterogeneity
(I2= 63%; P-value< 0.001). In that sense, sub-popu-
lation study revealed higher heterogeneity for
Caucasian dataset with respect to Asiatic group (I2=
68%; P-value< 0.001; I2= 51%, P-value= 0.104).
It must be considered that the major number of avail-
able studies is provided for Caucasians. Additionally,
several studies have shown that the risk is higher for
aMCI subpopulation in comparison with the rest of
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the MCI subtypes (Ref. 55) (Table 2). This makes sense
in the context of MCI as the prodromal stage of AD.
Although most of the attention has been focused on

the risk allele ε4 of APOE, the ε2 allele has also demon-
strated its role in AD (Ref. 56). Some studies have
shown that cognitively normal carriers of ε2 allele
were less likely to present with cognitive decline
(Refs 57, 58) and develop AD [relative risk (RR)=
0.76 (0.40–1.44)] (Ref. 57). Others showed that the
MCI patients with ε2 allele had a better memory in
comparison with non-carriers (Ref. 59). Similarly, a
recent study also detected the protective effect of
APOE ε2 against pheno-conversion from MCI to AD
[HR= 0.69 (0.51–0.86), P= 0.004] (Ref. 60). These
observations suggest the role of ε2 allele in the protec-
tion against LOAD and its importance as a possible
mechanism to reverse the APOE ε4 effect (Ref. 60).

Non-APOE LOAD loci in MCI

Apart from APOE, the genome-wide significant var-
iants for LOAD in MCI population remain largely
unknown. However, in the past few years, several
studies have pointed out their influence in cognitive
decline. Thus, CR1 and ABCA7 genes have been asso-
ciated with faster rate of cognitive decline (CR1

P-value= 0.011; ABCA7 P-value= 0.013) (Refs 61,
62). EPHA1 and PICALM loci were also associated
with faster and slower rate of decline (EPHA1 P=
0.013; PICALM P= 0.027), respectively, however
they did not support Bonferroni corrections (Ref. 63).
Following studies for EPHA1 only replicated it margin-
ally (P= 0.05) (Ref. 62). Finally, the CLU locus was
associated with cognitive endophenotypes in several
studies. In that sense, the CLU risk allele has been
associated with a faster rate of decline in some neuro-
psychological characteristics such as verbal immediate
(P= 0.0032) and delayed free recall (P= 0.032)
(Ref. 64) and its protective allele with a decreased
risk of conversion to AD [OR= 0.25 (0.07–0.84),
P= 0.025] (Ref. 65). A study that evaluated the pro-
gression of normal subjects (n> 2000) to MCI/
LOAD pointed the significant effect of CLU on
logical memory delayed recognition (LMDR) (coeffi-
cient for LMDR=−0.51 (−0.92 to −0.11, P=
0.012) (Ref. 62). It further showed a borderline signifi-
cant hazard ratio (HR) in the sensitivity analysis
between CLU risk allele and the risk of progression
from MCI to AD (HR= 1.10, P= 0.13; sensitivity
HZ= 1.14, P= 0.049) (Ref. 62). Recently, another
experiment conducted on 3326 MCI subjects of four

TABLE 1.

GENETIC REGIONS ASSOCIATED WITH LOAD FROM HIGHEST TO LOWEST ODDS RATIO.

Gene Marker OR (95% CI) P-value Author

Common variants
APOE rs429358 3.68 (3.30–4.11) 9.3 × 10−120 Corder et al. (20)b

ATP5H/KCTD2 rs11870474 1.53 (1.33–1.77) 4.7 × 10−9 Boada et al. (37)
TRIP4 rs74615166 1.31 (1.17–1.42) 9.74 × 10−9 Ruiz et al. (34)
BIN1 rs6733839 1.22 (1.18–1.25) 6.9 × 10−44 Seshadri et al. (25)c

ABCA7 rs4147929 1.15 (1.11–1.19) 1.1 × 10–15 Hollingworth et al. (26)c

CR1 rs6656401 1.18 (1.14–1.22) 5.7 × 10–24 Lambert et al. (119)
FERMT2 rs17125944 1.14 (1.09–1.19) 7.9 × 10−9 Lambert et al. (23)
HLA-DRB5 /DRB1 rs9271192 1.11 (1.08–1.15) 2.9 × 10−12 Lambert et al. (23)
PTK2B rs28834970 1.10 (1.08–1.13) 7.4 × 10−14 Lambert et al. (23)
CD2AP rs10948363 1.10 (1.07–1.13) 5.2 × 10−11 Hollingworth et al. (26)c

INPP5D rs35349669 1.08 (1.05–1.11) 3.2 × 10−8 Lambert et al. (23)
CELF1 rs10838725 1.08 (1.05–1.11) 1.1 × 10−8 Lambert et al. (23)
NME8 rs2718058 0.93 (0.90–0.95) 4.8 × 10−9 Lambert et al. (23)
MEF2C rs190982 0.93 (0.90–0.95) 3.2 × 10−8 Lambert et al. (23)
ZCWPW1 rs1476679 0.91 (0.89–0.94) 5.6 × 10−10 Lambert et al. (23)
SLC24A4-RIN3 rs10498633 0.91 (0.88–0.94) 5.5 × 10−9 Lambert et al. (23)
CD33a rs3865444 0.91 (0.88–0.93) 1.6 × 10−9 Hollingworth et al. (26)
MS4A rs983392 0.90 (0.87–0.92) 6.1 × 10–16 Hollingworth et al. (26)c

EPHA1 rs11771145 0.90 (0.88–0.93) 1.1 × 10−13 Hollingworth et al. (26)c

CASS4 rs7274581 0.88 (0.84–0.92) 2.5 × 10−8 Lambert et al. (23)
PICALM rs10792832 0.87 (0.85–0.89) 9.3 × 10−26 Harold et al. (24)c

CLU rs9331896 0.86 (0.84–0.89) 2.8 × 10−25 Harold et al. (24)c

SORL1 rs11218343 0.77 (0.72–0.82) 9.7 × 10−15 Lambert et al. (23)
IGHV1-67 NA NA 7.9 × 10−8 Escott-Price (36)
TP53INP1 NA NA 1.4 × 10−6 Escott-Price (36)
17q21.31 region rs2732703 0.73 (0.65–0.81) 5.8 × 10−9 Jun et al. (35)
APOE rs7412 0.62 (0.46–0.85) 2.7 × 10−3 Corder et al. (20)b

Rare variants
TREM2 rs75932628 5.05 (2.77–9.16) 9.0 × 10−9 Guerreiro et al. (34)
UNC5C rs137875858 2.15 (1.21–3.84) 9.5 × 10−3 Wetzel-Smith et al. (45)
PLD3a rs145999145 2.10 (1.47–2.99) 2.9 × 10−5 Cruchaga et al. (40)
APP rs63750847 0.24 (NA) 4.2 × 10−5 Jonsson et al. (38)

aNot replicated in follow-up studies or IGAP. bEstimator extracted from Bertram et al. (118). cEstimator extracted from Lambert et al. (23).
IGAP: International Genomics Alzheimer’s Project; LOAD: late onset Alzheimer’s disease; NA: not available; OR: odds ratio.
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Genes by pathways associated with subjective cognitive decline (SCD), mild
cognitive impairment (MCI) and clinical Alzheimer’s disease (AD) and
representation of level of genetic information at each stage
Expert Reviews in Molecular Medicine © 2016 Cambridge University Press

FIGURE 1.

Genes by pathways associated with subjective cognitive decline (SCD), mild cognitive impairment (MCI) and clinical Alzheimer’s disease
(AD) and representation of level of genetic information at each stage. Genetic information response to the number of articles (n) found in
the PubMed database with the keywords: Alzheimer’s disease and genetics; mild cognitive impairment and genetics; subjective cognitive
decline and genetics. Circular ideogram was performed using Circos (Ref. 120). ∗Not replicated in follow-up studies or in International

Genomics Alzheimer’s Project (IGAP).

TABLE 2.

GENETIC VARIANTS ASSOCIATED WITH RISK OR PROGRESSION TO DEMENTIA IN MCI AND SCD SUBJECTS.

Gene Marker OR (95%, CI) P-value Type of study

Mild cognitive impairment
Risk factors APOE rs429358 1.85 (1.59–2.15) 2.8 × 10−15 Meta-analysis

2.50 (1.13–5.69)a 0.020 Longitudinal study (55)
Progression factors APOE rs429358 2.29 (1.88–2.8) <0.001 Meta-analysis (54)

CLU rs11136000 1.19 (0·05–1·32)b 0.003 GWAS (60)
ACCOT11 rs1275288 2.26 (1.56–3.26)b <0.001 GWAS (63)
UBR5-RRM2B rs7840202 1.75 (1.21–2.64)b <0.001 GWAS (63)
Unknown rs11637611 2.15 (1.4–3.31)b <0.001 GWAS (63)
MAPT H1 haplotype 2.31 (1.52–3.51) 0.001 Candidate Gene (68)
5-HTT S allele 1.73 (1.05–2.84) 0.002 Candidate Gene (74)
ADRAP2B Deletion (301-303) 0.49 (0.27–0.89) 0.021 Candidate Gene (76)

Subjective cognitive decline
Risk factor APOE rs429358 1.15 (1.02–1.30)b 0.028 Meta-analysis

aAmnestic MCI.
bParameter of association measure hazard ratio; MCI: mild cognitive impairment; SCD: subjective cognitive decline; OR: odds ratio.
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countries supported the association of the CLU locus
with the conversion from MCI to AD [HR= 1.19
(0.05–1.32), P= 0.0035] (Ref. 60) (Table 2).
Most of the identified LOAD loci present small risk

effects and are, therefore, not quite informative for risk
prediction on their own (Ref. 65). Consequently, it is
apprehended that the use of the genetic risk score
(GRS) strategy, where multiple loci with modest
effects are combined, might improve the identification
of people at risk for common diseases (Ref. 65). It was
observed that MCI carriers of six or more non-APOE
LOAD risk alleles showed rapid conversion to AD
(Ref. 65). However, in another study, the significant
effect was only reached when the APOE genotype
was considered (HR= 1.29, P= 1.14 × 10−9; sensitiv-
ity HR= 1.32, P= 5.73 × 10−10) (Ref. 62). In a recent
study, GRS for 19 LOAD loci with genome-wide
significance was associated with MCI (OR= 1.15,
P= 0.011) and with progression from MCI to demen-
tia (HR= 1.59, P< 0.001) (Ref. 66).
With the exception of the APOE and CLU variants, it

seems difficult to arrive at a conclusion about the role
of LOAD SNPs in the context of MCI. Studies devel-
oped in larger cohorts are needed to check and validate

the expected association between the LOAD risk
genetic variants and MCI.

New loci associated with MCI

It has been observed that additional loci have been
associated with MCI. Recently, a GWAS associated
rs12752888 (ACOT11 gene), rs7840202 (UBR5 –
RRM2B region) and rs11637611 (unknown gene)
markers with MCI progression (Ref. 63) (Table 2).
However, establishing a relationship with the present
pathophysiological hypothesis of AD, at this stage,
seems complex. Consequently, these signals require
validation if they were to be discarded as false positive
and either to be accepted as factors responsible for MCI
progression.
Alternatively, candidate gene studies have suggested

several aspirant genes associated with the pheno-con-
version of MCI to AD. One such example is the
MAPT gene. Specifically, a study revealed that the
H1/H1 haplotype carriers presented a higher conver-
sion rate of MCI to dementia (Ref. 67). Moreover,
the H1 haplotype has been associated with the risk of
aMCI in converters to AD and non-converters
(Ref. 68) (Table 2). Recently, the region17q21.31,

Afri-Carib (Ref.140) 166 2.200 (0.900, 5.378)

China (Ref.121) 17 2.420 (0.628, 9.330)

Australia (Ref.141) 301 0.780 (0.417, 1.460)

Australia,OPH (Ref.142) 147 2.350 (1.110, 4.975)

Germany (Ref.143) 2,011 1.020 (0.810, 1.284)

USA,ADNI (Ref.144) 289 1.150 (0.660, 2,004)

USA, APOE (Ref.145) 447 0.800(0.520, 1.231)

USA, NHS (Ref.146) 3375 1.260 (1.050, 1.512)

China,P (Ref.121) 131 4.364 (1.903,10.010)

China,W (Ref.122) 246 2.010 (0.992, 4.447)

Japan (Ref.123) 1,433 1.534 (1.125, 2.091)

S. Korea (Ref.124) 50 1.000 (0.239, 4.184)

Australia (Ref.125) 895 2.605 (1.785, 3.802)

Canada (Ref.126) 45 2.500 (0.724, 8,635)

France (Ref.127) 96 6.012 (2.237,16.016)

Germany (Ref.128) 2,331 1.370 (1.020, 1.840)

Greece (Ref.76) 192 1.445 (0.784, 2.662)

Italy, B (Ref.71) 243 1.773 (0.999, 3.148)

Italy, P (Ref.129) 97 1.702 (0.625, 4.634)

Poland (Ref.130) 99 2.883 (1,172, 6.848)

Spain,C (Ref.131) 185 1.165 (0.766, 3.446)

Spain,P (Ref.132) 1,309 3.584 (2.764, 4.648)

Sweden (Ref.133) 60 3.187 (1.084, 9.373)

Switzerland (Ref.134) 252 1.432 (0.602, 3.167)

USA,CHS (Ref.55) 2,895 1.900 (1.140, 1.490)

USA,FOS (Ref.135) 2,239 1.020 (0.698 1.370)

USA,NAC (Ref.136) 8,084 1.860 (1.688, 2.050)

USA, NS (Ref. 137) 470 1.870 (1.200, 2.753)

USA, TF (Ref. 138) 993 1.550 (1.142, 2.104)

USA,ROS (Ref.139) 607 1.500 (1.020, 2.206)

Hispanics (Ref.138) 615 1.280 (0.836, 1.960)

Brazil (Ref. 72) 101 1.800 (0.900, 3.600)

0.24 0.48 1.2 1.85 4.78 11.95 16.16 0.42 0.831.15 2.08 4.17 8.33
Odds ratio (log scale)

Odds ratio (log scale)

Overall
I2 = 46%,
P = 0,075

6,824Overall
I2 = 63%,
P < 0,001

1.849 (1.587, 2.153)23,668

PM = 2.80 × 10–15 1.151(1.015, 1.304)

PM = 0.028

Study N OR (95% C.I.)

Study N OR (95% C.I.)

a b
Risk to MCI Risk to SCD

Forest plot for APOE e4 genotype in a) risk to MCI and b) risk to SCD
Expert Reviews in Molecular Medicine © 2016 Cambridge University Press

FIGURE 2.

Forest plot for APOE ε4 genotype in (a) risk to mild cognitive impairment (MCI) and (b) risk to subjective cognitive decline (SCD). OR:
odds ratio.
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where MAPT was found, has been associated with
LOAD reaching GWAS significance in non-APOE car-
riers (Ref. 35). However, it remains unknown whether
the casual variant is located in the MAPT or the nearby
genes (Ref. 35). For this reason, theMAPT linkage with
MCI was explained at this point. Although MAPT is
expected to be associated with LOAD because of the
role of Tau protein in the classical AD hallmarks and
the existence of several studies pointing towards this
relationship (Refs 69, 70), prudence is required until
the location of the causal signal is identified.
Other genes associated with the pheno-conversion of

MCI to AD are the vascular endothelial growth factor
(Ref. 71), the brain-derived neurotrophic factor
(BDNF) (Ref. 72) or butyrylcholinesterase (BCHE)
(Ref. 73). An additional marker in the serotonin trans-
porter (5HTT) gene has also been related to MCI
(Ref. 74). It has also been associated with an
emotion-induced retrograde amnesia (Ref. 75), high-
lighting the role of serotonin in the memory system.
The last reported association with MCI is detected in
the α2b-adrenergic receptor (ADRAP2B) [OR=
0.491 (0.268–0.899); P= 0.021]; this association
is also identified in AD subjects [OR= 0.463
(0.261–0.822); P= 0.009] (Ref. 76) (Table 2). Since
none of these genes have been validated for LOAD, it
can be said that they may act as genetic progression
factors. They are capable of modulating the rate of
decline but are not involved in the risk leading to AD.

Preclinical stage: SCD
There is limited research on the genetic variants that
determine the risk to SCD or the progression of SCD
to MCI or AD. Therefore, we have conducted the
first meta-analysis exploring the involvement of
APOE ε4 in the risk to suffer SCD. A significant risk
effect was detected [OR= 1.151 (1.015–1.304)]
(Fig. 2) (Table 2), with a borderline non-significant
heterogeneity (I2= 46%, P-value= 0.075), which
remains when the analysis is only performed for
Caucasians (I2= 48%, P-value= 0.087). However,
this significant association disappears [OR= 1.158
(0.933–1.437); P= 0.184] when a random model is
used to conduct the meta-analysis. From our point of
view, these results must be taken with prudence. SCD
individuals represent a mixed population, where a
pool of subjects may develop dementia, not exclusively
AD and others never develop it. Hence, the sample size
needed to detect Alzheimer’s genuine genes must be
larger.
Apart from the APOE ε4 polymorphism, other

markers have been investigated to assess their possible
association with SCD, such as alpha-2 macroglobulin
gene (Ref. 77), presenilin-1 mutation Glu318Gly
(Ref. 78), gene polymorphisms involved in vascular
alterations (Ref. 79) and inflammatory genes
(Ref. 80). However, all these studies did not report
any association with SCD.

The genetic profile of the SCD subjects is unex-
plored in spite of the fact that its analysis could
provide new ways to manage the disease. The gener-
ation of large SCD datasets integrating genomic infor-
mation with follow-up data would be an essential step
in identifying genetic elements responsible for the pro-
gression of SCD to MCI and AD.

Other approaches: endophenotype-based
approach
The use of quantitative traits closely related to the
disease state, namely, endophenotypes, has been pro-
posed as a simpler way to deal with genetic testing of
LOAD. Thus, several endophenotypes have emerged
across the cognitive spectrum of AD.

Differential amyloid burden and brain volume as
endophenotype

Greater amyloid positron emission tomographic (PET)
uptake is detected in AD, MCI and SCD cases as well
as healthy controls who are carriers of the ε4 allele of
APOE gene (Refs 81, 82). APOE ε4 carriers become
positive for amyloid PET imaging earlier (Ref. 81) and
show a higher cognitive decline (Ref. 83). Moreover,
signals in APOE locus have been detected by GWAS
of longitudinal studies for change in amyloid burden
(Ref. 84). Thus, in the past few years, APOE contribu-
tion to the determination of AD dementia converters
has been reinforced. In addition, recent GWAS of longi-
tudinal studies has also provided novel genetic correla-
tions with the amyloid burden, such as BCHE,
TREM1 and ILR1RAP (Refs 83, 85, 86).
Findings around differential brain volumes have also

involved LOAD loci showing that a reduced hippocam-
pal volume (HCV) is associated with SORL1 in AD
patients (Ref. 87) and CLU gene in young healthy con-
trols (Ref. 88). HLA-DRB1 locus was correlated with a
decrease in total brain volume along large longitudinal
cohorts (Ref. 89). Putamen volume was also associated
with genetic variants, involved in apoptosis, axon guid-
ance and vesicle transport (Ref. 90). In that context,
axon guidance pathway was also associated with
reduced HCV, as well as calcium and ErbB signalling
(Ref. 91). In addition, GRS for LOAD risk variants was
associated with cortical thickness (Ref. 92) and reduced
HCV in cognitively normal subjects, although HCV
association disappears after removing APOE locus
(Ref. 89).

Amyloid-β and tau levels in cerebrospinal fluid (CSF)

CSF levels of Aβ42 and pTau181 have also been used
as LOAD endophenotypes. APOE locus has been asso-
ciated with both Aβ42 (Refs 93, 94, 95) and pTau181
levels (Ref. 94). However, Elias-Sonnenschein et al.
(Ref. 93) showed the correlations of APOE with
Aβ42 but not with CSF tau biomarkers. Correlations
with other LOAD loci remain scarce. Kauwe et al.
(Ref. 96) did not find any association for BIN1, CR1,
CLU and PICALM, although, recently, CLU and
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MSA4A have been associated with Aβ42 levels
(Ref. 93). In addition, GRS for AD loci did not
provide any association (Ref. 97). Novel identifications
have pointed to the 3q28 region, GLIS3 gene and
TREM cluster association with tau biomarkers
(Ref. 94) and SUCLG2 association with Aβ42 levels
(Ref. 95). For further information, refer to Cruchaga
et al. (Ref. 98).
There is an inverse correlation between brain

amyloid burden and Aβ CSF levels (Ref. 99). From
our understanding, both techniques are dealing with
the same pathological process, Aβ deregulation. In
that scenario, the identification of the following two
might be expected: (1) the same genetic factors inde-
pendently of the analysed quantitative trait and (2)
the reported LOAD loci associated with Aβ meta-
bolism. Available data seem to be too far of these requi-
sites, with the exception of APOE, the most consistent
across studies and across AD stages. Therefore, from
our view, an unsuited sample size affecting statistical
power or the use of the incorrect endophenotypes of
AD could be preventing new discoveries.

Brain genetic resistance factors: studies in
healthy people
The presence of Alzheimer-type pathology in healthy
elderly people at death (Ref. 100) evidenced the exist-
ence of compensatory mechanisms avoiding a cogni-
tive decline in populations. A GWAS developed in
this group of subjects suggested the involvement of
the RELN in the compensatory mechanism for AD
(Ref. 101) and illustrated that studies on non-demented
subjects with AD neuropathology are an interesting
starting point to identify brain genetic resistance
factors.
The state of resistance to brain insults, where the

neuropathological hallmarks without clinical AD exist-
ing, has been defined as the cognitive reserve (CR).
Individuals with higher CR tolerate the pathology for
a longer duration and show signs of cognitive decline
later in life (Ref. 102). Environmental and genetic
factors are also believed to influence CR. It has
been observed that the educational level (Ref. 103),
work complexity (Ref. 104), engagement in leisure
(Ref. 105), or social activity (Ref. 106) result in a
reduced risk of dementia, contributing to CR.
However, neuroplastic processes form the base of the
above-mentioned factors. A study showed that the
years of education is associated with genes involved
in synaptic plasticity (Ref. 107), and not surprisingly,
cognition and neuroplasticity seem to be driven by
shared genes (Ref. 108).
The human cognition has a heritable component

(Refs 109, 110). Cognition status is associated with
several genetic variants, such as genes involved in oxi-
dative stress (Ref. 111), biosynthesis of neurotransmit-
ters (Ref. 112), ubiquitin metabolism and immune
system (Ref. 113). It is to be noted that the immune
system is highlighted as a prime pathway in LOAD

(Ref. 49) and is expected to be linked with cognition.
The association of memory with BDNF, 5HTT, and cat-
echol-O-methyl transferase (COMT) genes remains
more controversial (Ref. 114). However, as indicated,
BDNF and 5HTT genes have also been associated
with the conversion of MCI to AD (Refs 72, 74).
These make them suitable candidates for further
studies in genetics with MCI or SCD subjects.
Recently, two studies conducted on non-demented

elderly subjects have showed that genes related to AD
(TOMM40, APOE, MEF2C and ABCG1) are sig-
nificantly associated with the cognitive function
(Refs 113, 115). This suggests that genes involved in
the normal and pathological cognitions somehow
overlap (Ref. 115) and highlight the applicability of
the studies performed on healthy people. In addition,
the cognition status has also been related to differential
brain volumes (Ref. 116), thus, it seems that the HCV is
a key component of the neuroanatomical basis of CR
against memory in multiple sclerosis (Ref. 117).
Thus, although the existence of a genetic component
influencing cognition is evident, its relevance in the
health and disease processes remains unclear.
However, it cannot be denied that its knowledge can
bring new insights.
Either way, the investigation of genetic variants

affecting cognition and brain structure in healthy
people with and without AD neuropathology could
be a starting point to determine the intrinsic genetic
resistance to dementia. The information obtained
through these studies must be comprehensively trans-
lated to evaluate its clinical utility in the preclinical
stages of AD.

Conclusion
There exists an increasing interest in the characteriza-
tion of the stages of pre-dementia. Taking into
account the high genetic component of AD (Ref. 14),
the identification of genetic variants influencing MCI
and SCD can provide a new perspective in tackling
the disease.
Recent technological improvements have promoted

the identification of 28 genetic variants for LOAD.
Despite that, data concerning pre-dementia stages
remain scarce. At present, APOE gene is the most con-
sistent association with risk to MCI and progression
from MCI to AD (Ref. 54). The CLU locus has also
showed promising results (Ref. 60). There are more
inconsistent data for SCD. To the best of our knowl-
edge, we are the first to show meta-analysed data evi-
dencing the role of APOE as a risk factor for SCD
(Fig. 2).
There is highly pronounced absence of genetic data

for pre-dementia stage (Fig. 1). In addition, there is a
high degree of heterogeneity between available
studies in pre-dementia stage. In an extended way,
the MCI studies show a statistical correlation between
the genotype and neuropsychological test scores,
which mainly provides informative data. In most
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cases, studies with SCD and MCI individuals have
small sample sizes. Moreover, the consideration of
population characteristics seems pertinent. SCD and
MCI individuals comprise highly heterogeneous popu-
lation, where converters to AD dementia coexist with
converters to other forms of dementia and non-conver-
ters. In that scenario, the identification of novel and
expected LOAD loci may be hampered by the effect
size of the true AD group. That could explain the reduc-
tion in the effect size of APOE along stages. On the
other hand, the identification of progression factors
that are not previously reported must be considered
with prudence until their validation. This limitation
points to the necessity of using larger cohorts in
studies involving a pre-dementia stage.
Efforts are required to provide useful data, which can

help in designing strategies to stop or modulate the
course of the disease. In that sense, a GWAS in the
MCI population seems mandatory. Moreover, the iden-
tification of the genetic factors conferring resilience to
dementia in non-demented people could provide a
good opportunity in uncovering the compensatory
mechanisms that may prevent the disease progression.
Therefore, a genome-wide approach for endopheno-
types involved in CR also seems affordable and
advisable.
In conclusion, genetic research in the pre-dementia

stages of non-demented people must be potentiated to
obtain advances in AD and design prevention
strategies.
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