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Abstract
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for
generating a random independent set of a tree. Our focus is obtaining optimal convergence results for
arbitrary trees.We consider themore general problem of sampling from theGibbs distribution in the hard-
core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds
to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz
(2004) obtained optimal mixing time bounds for the complete �-regular tree for all λ. However, Restrepo,
Stefankovic, Vera, Vigoda, and Yang (2014) showed that for sufficiently large λ there are bounded-degree
trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a poly-
nomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of
bounded tree-width.

We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) ofO(n) for the Glauber
dynamics for unweighted independent sets on arbitrary trees. We stress that our results hold for arbitrary
trees and there is no dependence on the maximum degree�. Interestingly, our results extend (far) beyond
the uniqueness threshold which is on the order λ =O(1/�). Our proof approach is inspired by recent work
on spectral independence. In fact, we prove that spectral independence holds with a constant independent
of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing
results of Chen, Liu, and Vigoda (2021) only apply for bounded-degree graphs. We instead utilize the
combinatorial nature of independent sets to directly prove approximate tensorization of variance via a
non-trivial inductive proof.

Keywords: Markov Chain Monte Carlo; mixing time; independent sets; hard-core model; approximate counting algorithms;
sampling algorithms
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1. Introduction
This paper studies the mixing time of the Glauber dynamics for the hard-core model assuming
that the underlying graph is an arbitrary tree. In the hard-core model, we are given a graph
G= (V , E) and an activity λ > 0. The model is defined on the collection of all independent sets
of G (regardless of size), which we denote as �. Each independent set σ ∈ � is assigned a weight
w(σ )= λ|σ | where |σ | is the number of vertices contained in the independent set σ . The Gibbs
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distribution μ is defined on �: for σ ∈ �, let μ(σ )=w(σ )/Z where Z = ∑
τ∈� w(τ ) is known

as the partition function. When λ = 1 then every independent set has weight one and hence the
Gibbs distribution μ is the uniform distribution over (unweighted) independent sets.

Our goal is to sample from μ (or estimate Z) in time polynomial in n= |V|. Our focus is on
trees. These sampling and counting problems are computationally easy on trees using dynamic
programming algorithms. Nevertheless, our interest is to understand the convergence properties
of a simple Markov Chain Monte Carlo (MCMC) algorithm known as the Glauber dynamics for
sampling from the Gibbs distribution.

The Glauber dynamics (also known as the Gibbs sampler) is the simple single-site update
Markov chain for sampling from the Gibbs distribution of a graphical model. For the hard-core
model with activity λ, the transitions Xt → Xt+1 of the Glauber dynamics are defined as follows:
first, choose a random vertex v. Then, with probability λ

1+λ
set X′ = Xt ∪ {v} and with the comple-

mentary probability set X′ = Xt \ {v}. If X′ is an independent set, then set Xt+1 = X′ and otherwise
set Xt+1 = Xt .

We consider two standard notions of convergence to stationarity. The relaxation time is the
inverse spectral gap, i.e., (1− λ∗)−1 where λ∗ =max{λ2, |λN |} and 1= λ1 > λ2 ≥ · · · ≥ λN > −1
are the eigenvalues of the transition matrix P for the Glauber dynamics. The relaxation time is
a key quantity in the running time for approximate counting algorithms (see, e.g., Štefankovič,
Vempala, and Vigoda [33]). The mixing time is the number of steps, from the worst initial state,
to reach within total variation distance ≤ 1/2e of the stationary distribution, which in our case is
the Gibbs distribution μ.

We say that O(n) is the optimal relaxation time and that O(n log n) is the optimal mixing time
(see Hayes and Sinclair [22] for a matching lower bound for any constant-degree graph). Here, n
denotes the size of the underlying graph. More generally, we say the Glauber dynamics is rapidly
mixing when the mixing time is poly(n).

We establish bounds on themixing time of the Glauber dynamics bymeans of approximate ten-
sorization inequalities for the variance of the hard-core model. Interestingly, our analysis utilises
nothing further than the inductive nature of the tree, e.g., we do not make any assumptions about
spatial mixing properties of the Gibbs distribution. As a consequence, the bounds we obtain have
no dependence on the maximum degree of the graph.

To be more specific we derive the following two group of results: We establish approximate
tensorization of variance of the hard-core model on the tree for all λ < 1.1. This implies optimal
O(n) relaxation time for the Glauber dynamics. Notably this also includes the uniform distribution
over independent sets, i.e., λ = 1.

We can now state our main results.

Theorem 1.1. For any n-vertex tree, for any λ < 1.1 the Glauber dynamics for sampling λ-weighted
independent sets in the hard-core model has an optimal relaxation time of O(n).

We believe the optimal mixing results of Theorem 1.1 are related to the reconstruction thresh-
old, which we describe now. Consider the complete �-regular tree of height h; this is the rooted
tree where all nodes at distance � < h from the root have � − 1 children and all nodes at distance
h from the root are leaves. We are interested in how the configuration at the leaves affects the
configuration at the root.

Consider fixing an assignment/configuration σ to the leaves (i.e., specifying which leaves are
fixed to occupied and which are unoccupied), we refer to this fixed assignment to the leaves as a
boundary condition σ . Let μσ denote the Gibbs distribution conditional on this fixed boundary
condition σ , and let pσ denote the marginal probability that the root is occupied in μσ .

The uniqueness threshold λc(�) measures the affect of the worst-case boundary condition on
the root. For all λ < λc(�), all σ 
= σ ′, in the limit h→ ∞, we have pσ = p′

σ ; this is known as
the (tree) uniqueness region. In contrast, for λ > λc(�) there are pairs σ 
= σ ′ (namely, all even
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occupied vs. odd occupied) for which the limits are different; this is the non-uniqueness region.
The uniqueness threshold is at λc(�)= (� − 1)�−1/(� − 2)� =O(1/�).

In contrast, the reconstruction threshold λr(�) measures the affect on the root of a ran-
dom/typical boundary condition. In particular, we fix an assignment c at the root and then
generate the Gibbs distribution via an appropriately defined broadcasting process. Finally, we fix
the boundary configuration σ and ask whether, in the conditional Gibbs distribution μσ , the root
has a bias towards the initial assignment c. The non-reconstruction region λ < λr(�) corresponds
to when we cannot infer the root’s initial value, in expectation over the choice of the boundary
configuration σ and in the limit h→ ∞, see Mossel [28] for a more complete introduction to
reconstruction.

The reconstruction threshold is not known exactly but close bounds were established by
Bhatnagar, Sly, and Tetali [3] and Brightwell and Winkler [5]; they showed that for constants
C1, C2 > 0 and sufficiently large �: C1 log2 �/ log log� ≤ λr(�)≤ C2 log2 �, and hence λr(�)
is “increasing asymptotically” with � whereas the uniqueness threshold is a decreasing function
of �. Martin [25] showed that λr(�)> e− 1 for all �. As a consequence, we conjecture that
Theorem 1.1 holds for all trees for all λ < e− 1, which is close to the bound we obtain. A slow-
down in the reconstruction region is known: Restrepo, Štefankovič, Vera, Vigoda, and Yang [30]
showed that there are trees for which there is a polynomial slow down for λ > C for a constant
C > 0; an explicit constant C is not stated in [30] but using the Kesten–Stigum bound one can
show C ≈ 28 (by considering binary trees).

For general graphs the appropriate threshold is the uniqueness threshold, which is λc(�)=
O(1/�). In particular, for bipartite random �-regular graphs the Glauber dynamics has opti-
mal mixing in the uniqueness region by Chen, Liu and Vigoda [16], and is exponentially slow
in the non-uniqueness region by Mossel, Weitz, and Wormald [29] (see also [21]). Moreover,
for general graphs there is a computational phase transition at the uniqueness threshold: opti-
mal mixing on all graphs of maximum degree � in the uniqueness region [11,12,16], and
NP-hardness to approximately count/sample in the non-uniqueness region by Sly [31] (see also,
[21,32]).

There are a variety ofmixing results for the special case on trees, which is the focus of this paper.
In terms of establishing optimal mixing time bounds for the Glauber dynamics, previous results
only applied to complete, �-regular trees. Seminal work of Martinelli, Sinclair, and Weitz [26,27]
proved optimal mixing on complete �-regular trees for all λ. The intuitive reason this holds for
all λ is that the complete tree corresponds to one of the two extremal phases (all even boundary
or all odd boundary) and hence it does not exhibit the phase co-existence which causes mixing.
As mentioned earlier, [30] shows that there is a fixed assignment τ for the leaves of the complete,
�-regular tree so that the mixing time slows down in the reconstruction region; intuitively, this
boundary condition τ corresponds to the assignment obtained by the broadcasting process.

For more general trees the following results were known. A classical result of Berger, Kenyon,
Mossel and Peres [2] proves polynomial mixing time for trees with constant maximum degree
[2]. A very recent result of Eppstein and Frishberg [19] proved polynomial mixing time nC(λ) of
the Glauber dynamics for graphs with bounded tree-width which includes arbitrary trees, how-
ever the polynomial exponent is C(λ)=O(1+ | log (λ)|) for trees; see more recent work of Chen
[10] for further improvements. For other combinatorial models, rapid mixing for the Glauber
dynamics on trees with bounded maximum degree was established for k-colorings in [24] and
edge-colorings in [18].

Spectral independence is a powerful notion in the analysis of the convergence rate
of MCMC algorithms. For independent sets on an n-vertex graph G= (V , E), spectral
independence considers the n× n pairwise influence matrix IG where IG(v,w)= Probσ∼μ(v ∈
σ |w ∈ σ )− Probσ∼μ(v ∈ σ |w /∈ σ ); this matrix is closely related to the vertex covariance matrix.
We say that spectral independence holds if the maximum eigenvalue of IG′ for all vertex-induced
subgraphsG′ ofG are bounded by a constant. Spectral independence was introduced byAnari, Liu,
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and Oveis Gharan [1]. Chen, Liu, and Vigoda [16] proved that spectral independence, together
with a simple condition known as marginal boundedness which is a lower bound on the marginal
probability of a valid vertex-spin pair, implies optimal mixing time of the Glauber dynamics for
constant-degree graphs. This has led to a flurry of optimal mixing results, e.g., [4,14,15,17,23].

The limitation of the above spectral independence results is that they only hold for graphs with
constant maximum degree �. There are several noteworthy results that achieve a stronger form
of spectral independence which establishes optimal mixing for unbounded degree graphs [11,12];
however all of these results for general graphs only achieve rapid mixing in the tree uniqueness
region which corresponds to λ =O(1/�) whereas we are aiming for λ = �(1).

The inductive approach we use to establish approximate tensorization inequalities can also be
utilised to establish spectral independence. In fact, we show that spectral independence holds for
any tree when λ < 1.3, including the case where λ = 1, see Section 4. Applying the results of Anari,
Liu, and Oveis Gharan [1] we obtain a poly(n) bound on themixing time, but with a large constant
in the exponent of n. For constant-degree trees we obtain the following optimal mixing result by
applying the results of Chen, Liu, and Vigoda [16] (see also [4,11,12]).

Theorem 1.2. For all constant �, all λ ≤ 1.3, for any tree T with maximum degree �, the Glauber
dynamics for sampling λ-weighted independent sets has an optimal mixing time of O(n log n).

Interestingly, combining the spectral independence results from the proof Theorem 1.2 with
results of Chen, Feng, Yin, and Zhang [[13], Theorem 1.9], we are able to strengthen Theorem 1.1
by allowing larger fugacities, i.e., λ ≤ 1.3.

Corollary 1.3. For any n-vertex tree, for any λ ≤ 1.3 the Glauber dynamics for sampling λ-weighted
independent sets in the hard-core model has an optimal relaxation time of O(n).

In the next section we recall the key functional definitions and basic properties of variance that
will be useful later in the proofs. In Section 3 we prove approximate tensorization of variance
which establishes Theorem 1.1. We establish spectral independence and prove Theorem 1.2 in
Section 4.

Remark 1.4. An earlier version of this paper [20] claimed to prove O(n log n) mixing time
for λ ≤ .44 for any tree (without any constraint on the maximum degree). There was a mistake
in that proof. In particular, inequality (54) is false. Moreover, Zongchen Chen pointed out a sim-
ple test function f which shows that entropy tensorization andmodified log-Sobolev inequality do
not hold for the star graph with constants independent of the degree.

A recent paper of Chen, Yang, Yin, and Zhang [9] improves Corollary 1.3 to obtain optimal
relaxation time on trees for λ < e2.

2. Preliminaries
2.1 Standard definitions
Let P be the transition matrix of a Markov chain {Xt} with a finite state space � and equilibrium
distribution μ. For t ≥ 0 and σ ∈ �, let Pt(σ , ·) denote the distribution of Xt when the initial state
of the chain satisfies X0 = σ . Themixing time of the Markov chain {Xt}t≥0 is defined by

Tmix =max
σ∈�

min
{
t > 0 | ‖Pt(σ , ·)− μ‖TV ≤ 1

2e

}
. (1)

The transition matrix P with stationary distribution μ is called time reversible if it satisfies the
so-called detailed balance relation, i.e., for any x, y ∈ � we have μ(x)P(x, y)= P(y, x)μ(y).
For P that is time reversible the set of eigenvalues are real numbers and we denote them as
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1= λ1 ≥ λ2 ≥ . . . λ|�| ≥ −1. Let λ∗ =max{|λ2|, |λ|�||}, then we define the relaxation time
Trelax by

Trelax(P)= 1
1− λ∗ . (2)

The quantity 1− λ∗ is also known as the spectral gap of P. We use Trelax to bound Tmix by using
the following inequality

Tmix(P)≤ Trelax(P) · log
(

2e
minx∈� μ(x)

)
. (3)

2.2 Gibbs distributions and functional analytic definitions
For a graph G= (V , E) and λ > 0, let μ = μG,λ be the hard-core model on this graph with activity
λ, while let � ⊆ 2V be the support of μ, i.e., � are the collection of independent sets of G.

For any function f :� →R≥0, we let μ(f ) is the expected value of f with respect to μ, i.e.,

μ(f )=
∑
σ∈�

μ(σ )f (σ ).

Analogously, we define variance of f with respect to μ by

Var(f )= μ(f 2)− (
μ(f )

)2 .
We are also using the following equation for Var(f ),

Var(f )= 1
2

∑
σ ,τ∈� μ(σ )μ(τ )

(
f (σ )− f (τ )

)2 .
For any subset S⊆V , let �S denote the set of independent sets on S. Then, let μS denote the

marginal of μ on S; that is, for any σ ∈ �S, we have that

μS(σ )=
∑
η∈�

1{η ∩ S= σ }μ(η).

For any S⊂V , any τ ∈ �V\S, we let μτ
S be the distribution μ conditional on the configuration τ

on V \ S, and let �τ
S to be the support of μ

τ
S .

For any S⊆V , for any τ ∈ �V\S, we define the function fτ :�τ
S →R≥0 such that

fτ (σ )= f (τ ∪ σ ) for all σ ∈ �τ
S .

Let
μτ
S (f )=

∑
σ∈�τ

S

μτ
S (σ )fτ (σ ).

Let VarτS (f ) denote the variance of fτ with respect to the conditional distribution μτ
S :

VarτS (f )= μτ
S (f 2)−

(
μτ
S (f )

)2 = 1
2

∑
σ ,η∈�

1{σ \ S= τ , η \ S= τ }μ(σ )μ(η)(∑
σ̂∈� 1{σ̂ \ S= τ }μ(σ̂ ))2 (

f (σ )− f (η)
)2 . (4)

Furthermore, we let

μ(VarS(f ))=
∑

τ∈�V\S
μV\S(τ ) ·VarτS (f ), (5)

i.e., μ(VarS(f )) is the average of VarτS (f ) with respect to τ being distributed as in μV\S(·). For the
sake of brevity, when S= {v}, i.e., the set S is a singleton, we use μ(Varv(f )).

Finally, let

Var(μS(f ))= μ
((

μS(f )
)2) − (

μ
(
μS(f )

))2 =Eτ∼μV\S
[(

μτ
S (f )

)2] − (
Eτ∼μV\S

[
μτ
S (f )

])2 , (6)
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i.e., Var(μS(f )) is the variance of μτ
S (f ) with respect to τ being distributed as in μV\S(·).

When X is the following two-valued random variable:

X =
{
A with probability p
B with probability 1− p,

then one formulation for the variance that will be convenient for us is

Var(X)= p(1− p)(A− B)2. (7)

2.3 Approximate tensorization of variance
To bound the convergence rate of the Glauber dynamics we consider the approximate tensoriza-
tion of variance as introduced in [7].

We begin with the definition of approximate tensorization of variance.

Definition 2.1 (Variance Tensorization). A distribution μ with support � ⊆ {±1}V satisfies the
approximate tensorisation of Variance with constant C > 0, denoted using the predicate VT(C), if
for all f :� →R≥0 we have that

Var(f )≤ C ·
∑
v∈V

μ
(
Varv(f )

)
.

For a vertex x, recall that Varx[f ]= ∑
σ μV\{x}(σ )Varσx [fσ ]. Variance tensorization VT(C) yields

the following bound on the relaxation time of the Glauber dynamics [6,7]:

Trelax ≤ Cn. (8)

2.4 Decomposition of variance
We use the following basic decomposition properties for variance. The following lemma follows
from a decomposition of relative entropy, see [[8], Lemma 3.1] (see also [[4], Lemma 2.3]).

Lemma 2.2. For any S⊂V, for any f ≥ 0:

Var(f )= μ[VarS(f )]+Var(μS(f )), (9)

where Var(μS(f )) is defined in Eq. (6).

We utilise the following variance factorisation for product measures, see [[6], Eqn (4.7)].

Lemma 2.3. Consider U,W ⊂V where dist(U,W)≥ 2. Then for all f ≥ 0 we have:

μ[VarU(μW(f ))]≤ μ[VarU(f )], (10)

On a first account, the reader might find it challenging to parse the expression μ[VarU(μW(f ))].
In that respect, (5) and (6) might be useful. Specifically, μ[VarU(μW(f ))] is the expectation of
VarτU(μW(f )) with respect to τ being distributed as in μŪ∩W̄ . Furthermore, VarτU(μW(f )) corre-
sponds to the variance of μτ ,σ

W (f ) with respect to the configurations τ at V \ (U ∪W) and σ at U,
while τ is fixed and σ is distributed as in μτ

U(·).
Proof. We apply [[6], Equation (4.7)], which reaches the same conclusion under the assumptions
that U ∩W = ∅ and μUμW = μWμU . In the current context, the reason these conditional expec-
tation operators commute here is that, because dist(U,W)≥ 2, if we let S be an independent set
sampled according to distributionμ, then the random variables S∩U and S∩W are conditionally
independent given S \ (U ∪W). �
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3. Variance factorization
In this section we prove Theorem 1.1, establishing an optimal bound on the relaxation time
for the Glauber dynamics on any tree for λ ≤ 1.1. We will prove this by establishing variance
tensorization, see Definition 2.1.

Consider a graph G= (V , E) and a collection of fugacities λi for each i ∈V . Throughout this
section we will assume that all the fugacities are bounded by 1.1. Consider the following more
general definition of the Gibbs distribution μ for the hard-core model, where for an independent
set S,

μ(S)∝
∏
i∈S

λi. (11)

Let T′ = (V ′, E′) be a tree, let {λ′
w}w∈V ′ be a collection of fugacities and let μ′ be the corre-

sponding Gibbs distribution. We will establish the following variance tensorization inequality: for
all f ′ : 2V ′ →R

Var(f ′)≤
∑
x∈V ′

F(λ′
x)μ

′(Varx(f ′)), (12)

where F :R≥0 →R≥0 is a function to be determined later (in Lemma 3.1). We refer to Var(f ′) as
the “global” variance and we refer to μ′(Varx(f ′)) as the “local” variance (of f ′ at x).

We will establish (12) using induction. Let v be a vertex of degree 1 in T′ and let u be the
unique neighbour of v. Let T = (V , E) be the tree by removing v from T′, i.e., T is the induced
subgraph of T′ on V =V ′ \ {v}. Let {λw}w∈V be a collection of fugacities where λw = λ′

w for w 
= u
and λu = λ′

u/(1+ λ′
v). Let μ be the hard-core measure on T with fugacities {λw}w∈V .

Note that for S⊆V we have

μ(S)= μ′(S)+ μ′(S∪ {v})= μ′
V (S). (13)

Fix a function f ′ : 2V ′ →R. Let f : 2V →R be defined by

f (S)= μ′(S)f ′(S)+ μ′(S∪ {v})f ′(S∪ {v})
μ′(S)+ μ′(S∪ {v}) =EZ∼μ′[f ′(Z) | Z ∩V = S]= μ′

v(f
′)(S). (14)

Note that f ′ is defined on independent sets of the tree T′ and f is the natural projection of f ′ to the
tree T. Since f = μ′

v(f ′), then by Lemma 2.2 we have that:

Var(f ′)= μ′(Varv(f ′))+Var(f ). (15)

For measure μ′, when we condition on the configuration at u, the configuration at V \ {u} is
independent of that at {v}. Hence, from Equation (10) for any x 
∈ {u, v} (by setting U = {x} and
W = {v}) we have:

μ′(Varx(f ))≤ μ′(Varx(f ′)).

Since by (13) we have μ(Varx(f ))= μ′(Varx(f )), the above implies that

μ(Varx(f ))≤ μ′(Varx(f ′)). (16)

The following lemma is the main technical ingredient. It bounds the local variance at u for the
smaller graph T in terms of the local variance at u and v in the original graph T′.
Lemma 3.1. For F(x)= 1000(1+ x)2 exp(1.3x) and any λv, λu ∈ (0, 1.1] we have:

F(λu)μ(Varu(f ))≤ (F(λ′
v)− 1)μ′(Varv(f ′))+ F(λ′

u)μ
′(Varu(f ′)). (17)

We now utilise the above lemma to prove the main theorem for the relaxation time. We then
go back to prove Lemma 3.1.
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Proof of Theorem 1.1. Note Equation (17) is equivalent to:

μ′(Varv(f ′))+ F(λu)μ(Varu(f ))≤ F(λ′
v)μ

′(Varv(f ′))+ F(λ′
u)μ

′(Varu(f ′)). (18)

We can prove variance tensorization by induction as follows:

Var(f ′)= μ′(Varv(f ′))+Var(f )

≤ μ′(Varv(f ′))+
∑
x∈V

F(λx)μ(Varx(f ))

≤ μ′(Varv(f ′))+ F(λu)μ(Varu(f ))+
∑

x∈V\{u}
F(λ′

x)μ
′(Varx(f ′))

≤ F(λ′
v)μ

′(Varv(f ′))+ F(λ′
u)μ

′(Varu(f ′))+
∑

x∈V\{u}
F(λ′

x)μ
′(Varx(f ′))

=
∑
x∈V ′

F(λ′
x)μ

′(Varx(f ′)).

For the first line, we use Equation (15). The second line follows from the inductive hypothesis.
For the third line, we use Equation (16) and the fact that F(λx)≤ F(λ′

x), since F is increasing and
λx ≤ λ′

x. The fourth line follows by using Equation (18). �
Our task now is to prove Lemma 3.1. The following technical inequality will be useful.

Lemma 3.2. Let p ∈ [0, 1]. Suppose s1, s2 > 0 satisfy s1s2 ≥ 1. Then for all A, B, C ∈R we have

(C − pA− (1− p)B)2 ≤ (1+ s1)(C −A)2 + (1− p)2(1+ s2)(B−A)2. (19)

Proof. Equation (19) is equivalent to

2(1− p)(C −A)(A− B)≤ s1(C −A)2 + s2(1− p)2(B−A)2. (20)

We derive the above by subtracting (C −A)2 and (1− p)2(B−A)2 from both sides of equation
(19) and rearranging.

A simple application of the AM-GM inequality implies that

2
√
s1s2(1− p)(C −A)(A− B)≤ s1(C −A)2 + s2(1− p)2(B−A)2.

Then, equation (20) follows from the observation that the left-hand side of the above inequality is
at least 2(1− p)(C −A)(A− B), i.e., since s1s2 ≥ 1. �

We can now prove the main lemma.

Proof of Lemma 3.1. Our goal is to prove Eq. (17), let us recall its statement:

F(λu)μ(Varu(f ))≤ (F(λ′
v)− 1)μ′(Varv(f ′))+ F(λ′

u)μ
′(Varu(f ′)). (17)

We will consider each of these local variances μ(Varu(f )), μ′(Varv(f ′)), and μ′(Varu(f ′)). We
will express each of them as a sum over independent sets S of V ′. We can then establish Eq. (17)
in a pointwise manner by considering the corresponding inequality for each independent set S.

Let us begin by looking at the general definition of the expected local variance μ′(Varx(f ′))
for any x ∈V ′. Applying the definition in Eq. (5) and then simplifying we obtain the following
(a reader familar with the notation can apply Eq. (7) to skip directly to the last line):
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μ′(Varx(f ′))
=

∑
S⊆V ′\{x}

μ′
V ′\{x}(S) ·VarSx(fS)

=
∑

S⊆V ′\{x}

⎛⎝ ∑
T⊆{x}

μ′(S∪ T)

⎞⎠ ⎛⎝1
2

∑
T,U⊆{x},T 
=U

μ
′S
x (T)μ

′S
x (U)(f ′(S∪ T)− f ′(S∪U))2

⎞⎠
=

∑
S⊆V ′\{x}

⎛⎝ ∑
T⊆{x}

μ′(S∪ T)

⎞⎠ (
μ

′S
x (x)μ

′S
x (∅)(f ′(S)− f ′(S∪ {x}))2

)
=

∑
S⊆V ′\{x}

(
μ′(S)+ μ′(S∪ {x})

) μ′(S)μ′(S∪ {x})
(μ′(S)+ μ′(S∪ {x}))2

(
f ′(S)− f ′(S∪ {x})

)2
. (21)

Notice in Eq. (21) that the only S⊂V ′ \ {x} which contribute are those where x is unblocked
(i.e., no neighbour of x is included in the independent set S) because we need that S and S∪ {x}
are both independent sets and hence have positive measure in μ′.

Let us now consider each of the local variances appearing in Eq. (17) (expressed using carefully
chosen summations that will allow us to prove (17) term-by-term in terms of S).

LetQ1 := μ(Varu(f )) denote the expected local variance of f at u. We will use (21) (applied to T
instead of T′); note that only S where u is unblocked (that is, when no neighbour of u is occupied)
contribute to the local variance. Moreover, we can express the expected local variance of f at u
in terms of only those S where u ∈ S. In particular, consider an independent set S′ where u /∈ S′.
Note that if u is blocked (i.e., N(u)∩ S′ 
= ∅) then the local variance at u is zero for this term. And
for those S′ where u /∈ S′ and u is unblocked then the local variance has the same contribution as
S= S′ ∪ {u} times 1/λu (since μ(S′ ∪ {u})= λuμ(S′)). Hence the expected local variance of f at u
is given by

Q1 := μ(Varu(f ))=
∑

S⊆V ;u∈S
μ(S)

(
1+ 1

λu

)
λu

1+ λu

1
1+ λu

(
f (S \ {u})− f (S)

)2 .
We have f (S)= f ′(S) (since u ∈ S) and f (S \ {u})= 1

1+λ′
v
f ′(S \ {u})− λ′

v
1+λ′

v
f ′(S \ {u} ∪ {v}).

Plugging these in and simplifying we obtain the following:

Q1 = 1+ λ′
v

1+ λ′
u + λ′

v

∑
S⊆V ;u∈S

μ(S)
(
f ′(S)− 1

1+ λ′
v
f ′(S− u)− λ′

v
1+ λ′

v
f ′(S− u+ v)

)2
. (22)

We now consider Q2 := μ′(Varu(f ′)). As we did for Q1 we can express Q2 as a sum over ind-
pendent sets S where u ∈ S. In this case for an independent set S where u ∈ S, consider S′ = S \ {u}
and note that the following hold

μ′(S′)= μ(S′) 1
1+ λ′

v
= μ(S)

1
λ′
u

1
1+ λ′

v
,

and

μ′(S)= μ(S).

https://doi.org/10.1017/S0963548324000348 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000348


10 C. Efthymiou et al.

Hence, we have the following:

Q2 := μ′(Varu(f ′))=
∑

S⊆V ;u∈S
μ(S)

(
1+ 1

λ′
u

1
1+ λ′

v

)
λ′
u

1+ λ′
u

1
1+ λ′

u

(
f ′(S− u)− f ′(S)

)2
=

(
λ′
u + 1

1+ λ′
v

)
1

(1+ λ′
u)2

∑
S⊆V ;u∈S

μ(S)
(
f ′(S)− f ′(S− u)

)2 . (23)

Finally, we consider μ′(Varv(f ′)), the expected local variance of f ′ at v. We will establish a
lower bound which we will denote by Q3 (note, Q1 and Q2 were identities but here we will have
an inequality).

To compute μ′(Varv(f ′)), the expected local variance of f ′ at v, we need to generate an inde-
pendent set S′ from μ′. Only those S′ where v is unblocked (that is where u is not in S′) contribute
to the local variance. We can generate S′ by generating S from μ (whether we add or do not add v
does not change the contribution to the local variance). As in Eq. (21), we obtain the following:

μ′(Varv(f ′))=
∑

S′⊆V ;u 
∈S′
μ(S′) 1

1+ λ′
v

λ′
v

1+ λ′
v

(
f ′(S′ ∪ {v})− f ′(S′)

)2
≥

∑
S′⊆V ;u 
∈S′

u is unblocked

μ(S′) 1
1+ λ′

v

λ′
v

1+ λ′
v

(
f ′(S′ ∪ {v})− f ′(S′)

)2
=

∑
S⊆V ;u∈S

μ(S)
1
λ′
u

1
1+ λ′

v

λ′
v

1+ λ′
v

(
f ′(S∪ {v} \ {u})− f ′(S \ {u}))2 .

Let Q3 denote the lower bound we obtained above:

Q3 := 1
λ′
u

1
1+ λ′

v

λ′
v

1+ λ′
v

∑
S⊆V ;u∈S

μ(S)
(
f ′(S∪ {v} \ {u})− f ′(S \ {u}))2 ≥ μ′(Varv(f ′)). (24)

Plugging in (22), (23), (24) we obtain that Eq. (17) follows from the following inequality:

F(λu)Q1 ≤ (F(λ′
v)− 1)Q3 + F(λ′

u)Q2. (25)

We will establish (25) term-by-term, that is, for each S in the sums of (22), (23), (24). Fix S⊆V
such that u ∈ S and let A= f ′(S− u), B= f ′(S− u+ v), and C = f ′(S). We need to show

1+ λ′
v

1+ λ′
u + λ′

v

(
C − 1

1+ λ′
v
A− λ′

v
1+ λ′

v
B
)2

F
(

λ′
u

1+ λ′
v

)
≤ 1+ λ′

v + λ′
u

1+ λ′
v

1
(1+ λ′

u)2
(C −A)2 F(λ′

u)+
1

λ′
u(1+ λ′

v)2
(B−A)2

(
F(λ′

v)− 1
)
. (26)

Let p= 1/(1+ λ′
v). We will match (19) to (26), by first dividing both sides of (26) by

1+λ′
v

1+λ′
u+λ′

v
F

(
λ′
u

1+λ′
v

)
and then choosing

1+ s1 =
(

1+ λ′
u + λ′

v
(1+ λ′

v)(1+ λ′
u)

)2
· F(λ′

u)

F
(

λ′
u

1+λ′
v

) and 1+ s2 = 1+ λ′
u + λ′

v
λ′
u(1+ λ′

v)λ′
v
2 · F(λ

′
v)− 1

F
(

λ′
u

1+λ′
v

) .
Note that with this choice of s1 and s2 equations (19) and (26) are equivalent, and hence to prove
(26) it is enough to show s1s2 ≥ 1. �
Claim 3.3. s1s2 ≥ 1.

This completes the proof of the lemma.
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We use the following lemma to prove Claim 3.3

Lemma 3.4. Let α = 1.1 and β = 1.3. Suppose x, y ∈ (0, α] are such that (1+ x)y ∈ [0, α]. Then(
exp(βxy)− 1

) (
(1+ x)

(1+ y)yx2
exp(β(x− y))− 1

)
≥ 1.1. (27)

Proof. We will show that for x, y, (1+ x)y ∈ (0, α] we have
(1+ x)
(1+ y)x

exp(β(x− y))≥ 1.15, (28)

and (
exp(βxy)− 1

) (
1.15
xy

− 1
)

≥ 1.1. (29)

To see that (28) and (29) imply (27) note(
exp(βxy)− 1

) (
(1+ x)

(1+ y)yx2
exp(β(x− y))− 1

)
≥ (

exp(βxy)− 1
) (

1.15
yx

− 1
)

≥ 1.1,

where the first inequality follows from (28) and the second from (29).
Note that the constraints on x, y imply that y+ xy≤ α and xy≤ αy. Hence xy≤ α/(1+ 1/α).

To prove (29) it is sufficient to show for z ∈ [0, α/(1+ 1/α)](
exp(βz)− 1

)
(1.15− z) − 1.1z ≥ 0. (30)

We have
∂2

∂z2
( (

exp(βz)− 1
)
(1.15− z) − 1.1z

)
= exp(βz)β (1.15β − βx− 2) < 0.

Hence
(
exp(βz)− 1

)
(1.15− z) − 1.1z is concave and we only need to check (30) for the end-

points of the interval; for z = 0 LHS of (30) is zero, for z = α/(1+ 1/α) the LHS of (30) has value
larger than 0.005. This concludes the proof of (29).

To prove (28) note that
∂

∂y
(1+ x) exp(β(x− y))− 1.15(1+ y)x= −(1+ x)β exp(β(x− y))− 1.15x< 0. (31)

Hence we only need to prove (28) for y= α/(1+ x); this simplifies to showing

exp(1.3(x− 1.1/(1+ x)))≥
(
1.15(2.1+ x)x

(1+ x)2

)
. (32)

For x= 0 and x= 1.1 we have that (32) is satisfied (using interval arithmetic). Let

Q(x) := 1.3(x− 1.1/(1+ x))− ln
(
1.15(2.1+ x)x

(1+ x)2

)
.

The critical points of Q(x) are roots of

1330x4 + 5330x3 + 8290x2 + 3733x− 2100.

Since this polynomial is increasing when x is non-negative, it has exactly one positive real root,
which is in the interval [0.30765554, 0.30765555]. The value of Q(x) on both endpoints of the
interval is at least 0.0032. The derivative ofQ(x) (a rational function) is bounded in absolute value
by 1 on the interval and hence Q(x)> 0 on the entire interval (in particular at the critical point).
This proves (32). �

We can now complete the proof of Claim 3.3.
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Proof of Claim 3.3. We will use the following substitution to simplify the expression F(x)= (1+
x)2H(x). Note that H(x)= 1000 exp(1.3x)= 1000 exp(βx). In terms of H(x) we have

1+ s1 = H(λ′
u)

H
(

λ′
u

1+λ′
v

) and 1+ s2 = 1+ λ′
v

(1+ λ′
u + λ′

v)λ′
u

· (1+ λ′
v)2H(λ′

v)− 1

H
(

λ′
u

1+λ′
v

) .

Let λ′
v = x and λ′

u = y(1+ x). We have

1+ s1 = H(y(1+ x))
H(y)

and 1+ s2 = 1+ x
y(1+ y)x2

·
H(x)− 1

(1+x)2

H(y)
.

Recall, our goal is to show s1s2 ≥ 1. First we show that for x, y ∈ (0, 1.1] such that (1+ x)y≤ 1.1
we have

s2 = 1+ x
y(1+ y)x2

·
H(x)− 1

(1+x)2

H(y)
− 1≥ 999

1000

(
1+ x

y(1+ y)x2
· H(x)
H(y)

− 1
)
. (33)

Note that (33) is equivalent to
1+ x
x2

exp(1.3x)− 1
x2(1+ x)

≥ y(1+ y) exp(1.3y). (34)

Note that the RHS of (34) is increasing in y and hence it is sufficient to show (34) for the maximal
value of y= 1.1/(1+ x); this is equivalent to

(1+ x)3 exp(1.3x)− (1+ x)≥ 1.1x2(2.1+ x) exp(1.43/(1+ x)),
the last inequality follows from

(1+ x)3
(
1+ 1.3x+ 1.32

2
x2 + 1.33

6
x3 + 1.34

24
x4

)
− (1+ x)≥ 1.1x2(2.1+ x) exp(1.43),

checked using Sturm sequences. This concludes the proof of (33).
Note that Lemma 3.4 is equivalent to the following

s1
(

(1+ x)
y(1+ y)x2

H(x)
H(y)

− 1
)

= (
exp(βxy)− 1

) (
(1+ x)

(1+ y)yx2
exp(β(x− y))− 1

)
≥ 1.1,

and hence

s1 ≥ 1.1
(

(1+ x)
y(1+ y)x2

H(x)
H(y)

− 1
)−1

,

which combined with (33) yields s1s2 ≥ 1.1(999/1000)> 1, concluding the proof. �

4. Spectral independence for trees
Let G= (V , E) be a graph. Suppose we have a set of fugacities λi for each i ∈V , and consider the
corresponding Gibbs distribution. Recall that the influence matrix IG has u, v entry Inf(u→ v),
where

Inf(u→ v)= μ(v ∈ I|u ∈ I)− μ(v ∈ I|u 
∈ I).
Let u, v be any two vertices in a graph. We have∣∣Inf(v→ u)

∣∣ ≤max{μ(u ∈ I|v ∈ I),μ(u ∈ I|v 
∈ I)} ≤ λu
1+ λu

. (35)

We have
Inf(v→ u)μ(v ∈ I)μ(v 
∈ I)= Inf(u→ v)μ(u ∈ I)μ(u 
∈ I). (36)
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Let D be diagonal matrix with entries μ(v ∈ I)μ(v 
∈ I). Equation (36) means that DIG is symmet-
ric. That also means thatD1/2IGD−1/2 is symmetric (since it is obtained fromDIG by multiplying
by the same diagonal matrix on the left and on the right). The u, v entry in D1/2IGD−1/2 is

Inf(u→ v) (μ(v ∈ I)μ(v 
∈ I))−1/2 (μ(u ∈ I)μ(u 
∈ I))1/2 =
Inf(v→ u) (μ(u ∈ I)μ(u 
∈ I))−1/2 (μ(v ∈ I)μ(v 
∈ I))1/2 , (37)

which is equal to±√
Inf(u→ v)Inf(v→ u) (take geometric mean of the sides of (37)). We will call

M =D1/2IGD−1/2 the symmetrised influence matrix (since it is similar to the influence matrix, it
has the same spectral radius).

We will prove the following result.

Lemma 4.1. For any forest T with fugacities in [0, 1.3] the spectral radius of the influence matrix of
the hard-core model on T is bounded by 10000.

We will prove Lemma 4.1 by induction; we will prove the following strengthened statement.

Lemma 4.2. For any forest T with fugacities in [0, 1.3] the symmetrised influence matrix M of the
hard-core model on T satisfies

M � diag
( 400
1.3− λ0.78v

, v ∈V
)
.

Proof. Let T = (V , E) be a forest. Let v be a vertex of degree 1 in T. Let u be the neighbour
of v in T. Let T′ = (V ′, E′) be T with v removed. Let λ′

i = λi for i ∈V ′ \ {u}. Let λ′
u = λu/(1+

λv). Let μ′ be the hard-core model on T′ with fugacities {λ′
i}i∈V ′ . Note that μ′ is the same as the

marginalisation of μ to V ′, that is, for an independent set I of T′ we have

μ′(I)=
∑
J⊇I

μ(J), (38)

where J ranges over independent sets of T that contain I.
Let M be the symmetrised influence matrix for μ and let M′ be the symmetrised influence

matrix for μ′. Note that (38) implies thatM′ is a submatrix ofM (removing the column and row
ofM corresponding to vertex v yieldsM′).

It is standard to show, e.g., see [[1], Lemma B.3], that
Inf(v→w)= Inf(v→ u)Inf(u→w), (39)

and
Inf(w→ v)= Inf(w→ u)Inf(u→ v). (40)

Let τ 2 = Inf(v→ u)Inf(u→ v). Note that, using (35), we have

τ 2 = Inf(u→ v)Inf(v→ u)≤ λv
1+ λv

λu
1+ λu

. (41)

From (39) and (40) we have that M and M′ have the following form (Q is a matrix and z is a
vector):

M′ =
⎛⎝ Q z

zT 0

⎞⎠ and M =

⎛⎜⎜⎝
Q z τz

zT 0 τ

τzT τ 0

⎞⎟⎟⎠ .

Let F be an increasing function on [0, 1.3].We will take F(x)= 1/H(x) whereH(x)= (a− xb)/400
and a= 1.3, b= 0.78. (We will keep a and b as variables to elucidate the choice of a and b in the
proof below.) Suppose that we knowM′ � diag(F(λ′

i)) and we want to concludeM � diag(F(λi)).
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LetW be a diagonal matrix with entries F(λi) for i ∈V \ {u, v}. We can restate our goal as follows.

KNOW:

⎛⎝W −Q −z

−zT F
(

λu
1+λv

) ⎞⎠ � 0 WANT:

⎛⎜⎜⎝
W −Q −z −τz

−zT F(λu) −τ

−τzT −τ F(λv)

⎞⎟⎟⎠ � 0.

Since F will be an increasing function, we have F(λu/(1+ λv))< F(λu).
The condition we want is equivalent (by applying row and column operations, specifically

subtracting u-th row/column times τ from the v-th row/column) to⎛⎜⎜⎝
W −Q −z 0

−zT F(λu) −τ (1+ F(λu))

0 −τ (1+ F(λu)) F(λv)+ 2τ 2 + τ 2F(λu)

⎞⎟⎟⎠ � 0.

If we show ⎛⎝F(λu)− F(λu/(1+ λv)) −τ (1+ F(λu))

−τ (1+ F(λu)) F(λv)+ 2τ 2 + τ 2F(λu)

⎞⎠ � 0, (42)

then the conclusion will follow (adding the “know” positive semidefinite matrix and (42)
(expanded with zeros to match dimensions) yields that the “want” matrix is positive semidefi-
nite). Equation (42) is equivalent to checking if the determinant is positive (since the entry in the
first row/column is positive), that is, we need to check

(F(λu)− F(λu/(1+ λv))) F(λv)> τ 2 (1+ F(λu/(1+ λv))(2+ F(λu))) .

Hence it is sufficient (using (41)) to show(
F(λu)− F

( λu
1+ λv

))
F(λv)>

λv
1+ λv

λu
1+ λu

(
1+ F

( λu
1+ λv

)
(2+ F(λu))

)
.

Letting H(x)= 1/F(x) the condition becomes the following(
H

( λu
1+ λv

)
−H(λu)

)
>H(λv)

λv
1+ λv

λu
1+ λu

(
H

( λu
1+ λv

)
H(λu)+ 2H(λu)+ 1

)
. (43)

We are going to search for H that is 1) bounded from above by 1/300, 2) bounded away from 0
on [0, 1.3] and 3) that satisfies(

H
( λu
1+ λv

)
−H(λu)

)
>H(λv)

λv
1+ λv

λu
1+ λu

(1+ 1/100). (44)

Note that suchH will also satisfy (43) sinceH
(

λu
1+λv

)
H(λu)+ 2H(λu)≤ 1/100 (here the choice of

1/100 is arbitrary; we just need something sufficiently small).
We will search for H of the following form: H(x)∝ a− xb. Note that (44) is invariant under

scaling of H and hence satisfying the upper bound of 1/300 can be achieved by scaling of H.
Ultimately the price we will pay forH being small is that F is big and hence we get a weaker upper
bound on the spectral radius of M; we do not optimise the constants at this point. Consider the
following function L (obtained as LHS of (44) divided by RHS of (44), excluding the constant term
1+ 1/100):

L(λu, λv) := λbu(1+ λu)
λu

(1+ λv)b − 1
(a− λbv)λv(1+ λv)b−1 . (45)
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The minimum of the first term in (45) is attained for λu = (1− b)/b and hence setting b= .78 we
have that:

λbu(1+ λu)
λu

≥ (1− b)b−1

bb
≥ 1.32

.78
. (46)

For the second term in (45) by setting a= 1.3 we have the following:

(1+ λv)b − 1
(a− λbv)λv(1+ λv)b−1 ≥ (1+ λv)b − 1

aλv(1+ λv)b−1 ≥ b
a

= .78
1.3

. (47)

The second inequality in (47) is obtained from the following inequality which is valid for b ∈ [0, 1]
and x≥ 0:

(1+ x)b − 1≥ bx(1+ x)b−1. (48)
For the above, it suffices to prove that

(1+ x)b − bx(1+ x)b−1 ≥ 1. (49)
We have that for b≤ 1:

(1+ x)b − bx(1+ x)b−1 = (1+ x)b−1(1− (b− 1)x)
≥ (1+ x)b−1(1+ x)−(b−1) by Bernoulli’s inequality
≥ 1.

Finally, plugging in (46) and (47) into (45) we obtain:

L(λu, λv)≥ 1.32
1.3

> 1.01. (50)

Equation (50) implies that (44) is satisfied. Recall that the statement of the lemma assumed that
the fugacities are in the interval [0, 1.3]. For λ ∈ [0, 1.3] we have

H(λ)= a− λb

400
≥ 1

10000
and H(λ)= a− λb

400
≤ 1

300
. (51)

This implies that H satisfies (43) and hence for

F(λ)= 1
H(λ)

≤ 10000,

we have (42) and this completes the proof of Lemma 4.2 by induction. �
We can now complete the proof for spectral independence.

Proof of Theorem 1.2. We apply Theorem 1.12 of [16] which says that if for all pinnings we
have η-spectral independence and b-marginally boundedness then the mixing time of the Glauber
dynamics is C(η,�, b)n log n. A pinning refers to a fixed configuration τ on a subset S of vertices;
for the hard-core model a pinning of a tree T corresponds to the hard-core model on a forest
which is an induced subgraph. Hence, Lemma 4.1 implies that η-spectral independence holds for
all pinnings with η = 10000. The condition b-marginally boundedness (see Definition 1.9 in [16])
says that for every pinning τ on a subset S⊂V , for every vertex v /∈ S, for every assignment to v
denoted as σ (v) which has positive probability in the conditional Gibbs distribution μτ , then the
marginal probability is lower bounded as μτ (σ (v))≥ b. This holds for b≥min{1, λ}/[λ + (1+
λ)�]. Hence, [[16], Theorem 1.12] implies Theorem 1.2. �

5. Proof of Corollary 1.3
We prove Corollary 1.3 by combining the spectral independence result in Lemma 4.1 and
Theorem 1.1, while we utilise [[13], Theorem 1.9].
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In [13], they introduce the notion of “complete η-spectral independence”. Let μ be the hard-
core model on graph G= (V , E) with fugacity λ. For η > 0, complete η-spectral independence
for μ corresponds to the following condition: For any induced subgraph G′ of G, for the hard-
core model μ′ on G′ such that each vertex v ∈V has fugacity λ′

v ≤ λ, the corresponding influence
matrix IG′ has spectral radius at most η.

Lemma 4.1 is equivalent to complete η-spectral independence for all λ ≤ 1.3 with η ≤ 10000.
We can now prove Corollary 1.3.

Proof of Corollary 1.3. For the forest T, let μ be the hard-core model with fugacity λ ≤ 1.3. Also,
let γ be the spectral gap for Glauber dynamics on μ. Corollary 1.3 follows by showing that γ =
�(n−1).

First, note that if λ < 1.1, then Theorem 1.1 already implies γ = �(n−1). We now focus on the
case where λ ∈ [1.1, 1.3].

For the same forest T, let μ̂ be the hard-core model on T with fugacity λ̂ = 1. Let γ̂ be the
spectral gap for Glauber dynamics on μ̂. From Theorem 1.1, we have that

γ̂ = �(n−1). (52)

Lemma 4.1 and [[9], Theorem 1.9] imply the following relation between γ and γ̂ : for θ = λ and
η ≤ 10000, we have

γ ≥
(

θ

2

)2η+7
γ̂ >

(
1
2

)20007
γ̂ . (53)

From (52) and (53), we get that γ = �(n−1), for any λ ∈ [1.1, 1.3].
From the above we have established Corollary 1.3. �
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