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STRUCTURE OF SUMMABLE TALL IDEALS UNDER
KATETOV ORDER

JIALIANG HE, ZUOHENG LI, AND SHUGUO ZHANG

Abstract. We show that Katétov and Rudin-Blass orders on summable tall ideals coincide. We prove
that Katétov order on summable tall ideals is Galois-Tukey equivalent to (w®, <*). It follows that Katétov
order on summable tall ideals is upwards directed which answers a question of Minami and Sakai. In
addition, we prove that /., is Borel bireducible to an equivalence relation induced by Katétov order on
summable tall ideals.

§1. Introduction. A set Z C P(w) is an ideal on w if it is closed under taking
subsets and finite unions. In this paper we always assume that an ideal is proper, i.e.,
it contains all finite subsets of w and it does not contain w. Given an ideal Z on w,
define Z" = P(w) \ Z. Elements of Z" are called Z-positive sets. The dual filter of T
is denoted by Z* = {w \ 4 : A4 € T}.If Y is an Z-positive set, then Z| Y = {4 N Y :
A €T}isanideal on Y.

The set of all finite subsets of w is denoted by Fin or [0]<“. Note that Fin is an
ideal on w. The set of all infinite subsets of w is denoted by [w]”. We say that an
ideal Z on w is tall if for any A € [w]®, there exists B € [4]” such that B € Z. Let
X. Y be two countably infinite sets. Let Z be an ideal on X and J be an ideal on Y.
We write Z ~ 7 if there exists a bijection e : X — Y suchthat 4 € 7 & e[d] € T
where e[A4] is the image of 4 under e. One may check that an ideal Z is not tall if
there exists an Z-positive set 4 such that 7 |A ~ Fin.

All ideals are assumed to be tall throughout this paper.

The set of all non-negative rational numbers is denoted by Q.. The set of all
non-negative real numbers is denoted by R, . An ideal Z on w is a summable ideal if
there is a function f : v — R, with }_ f(n) = oo such that

n<w

I=1I;:= Agw:Zf(n)<oo
ned

Every summable ideal is an F, subset of 2¢ via characteristic functions (see
Theorem 2.1 in Section 2 or [3]). For each summable ideal Z ., if we take a function
1w — Q. such that

|f(n) - f'(n)] < 2in for each n € o,

Received December 20, 2022.
2020 Mathematics Subject Classification. Primary 03E05, Secondary 03E15, 03E04.
Key words and phrases. summable ideal, Katétov order, Galois—Tukey connection.
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/00/0000-0000
DOIL:10.1017/j51.2023.24

N
CrossMark

https://doi.org/10.1017/js1.2023.24 Published online by Cambridge University Press


www.doi.org/10.1017/jsl.2023.24
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.24&domain=pdf
https://doi.org/10.1017/jsl.2023.24

2 JIALIANG HE ET AL.

then we have 7y = Z,/, so we assume always that / € Q¢ whenever we say that Z,
is a summable ideal. One may easily check that summable ideal Z is tall if and only
if lim f(n) = 0. Define

n—00

summable ideals = {Z, : /' € Q7. Zf(n) = +ooand lim f(n)=0}.
n<w oo
The followings are important tools for studying ideals, we refer the readers to a
survey written by Hrusak [3] for details:
(1) (Katétov ordering) T <y J if there is a function p : @ — w such that

VACw(AeI= pld)ed).

(2) (Katétov-Blass ordering) T <gp J if there is a finite-to-one function
p . w — o such that

VACw(AeI= pl4)e).

(3) (Rudin—Blass ordering) T <gp J if thereis a finite-to-one function p : v — w
such that

VACw(AeIs pld)ed).

Obviously, Z<zp J =Z <k J =L <k J. Denote Z <g J if T <g J and
J £x Z.DenoteZ ~¢ JifZ <g J and J <k Z. Notice that ~ is an equivalence
relation. Similarly we define Z <gxp J.Z <gp J,Z ~kp J.and Z ~pp J.

Farah [2] proved that the Rudin—Blass order on all summable ideals has neither
maximal elements nor minimal elements. He also proved that it is a dense ordering
which includes an isomorphic copy of (P(w)/Fin, C*). Let F,ideals be the family of
all F,-ideals. Minami and Sakai [5] proved that (F,ideals, <g ) and (F,ideals, <yp)
are both upward directed and asked that if this is true for summable ideals
[5. Question 5.1]. We will give a positive answer to this question in Section 3.

Let us consider a variation of the definition of summable ideals. Let

Fost={/ €Q¥: > f(n)=+occ. lim f(n)=0. andVn(f(n) > f(n+1))}

n<w
and
ST = {If : f € Fpst}.

Actually, ST and summable ideals are virtually the same class of ideals (up to
isomorphism) and we will show it in Section 2 (see Propositions 2.2 and 2.3).

In Section 4, we give a characterization of <g on ST which is crucial for later
sections. In particular, we prove that for every T, Z, € ST.Z; <y T, if and only if
Z; <gp I (see Theorem 4.1).

Section 5 and 6 deal with Galois—Tukey connections which is introduced by
Vojtas [7]. For definition of Galois—Tukey connections, we follow the terminology
in[l]. Let A=(A4_,A4,,4A) and B= (B_, B, B) be triplessuch that 4 C A x A,
and B C B_ x B,. We say A <7 B if there is a pair p = (p_. p;) of functions
such that:

(1) p.:A-— B_,

(2) py : B — A, and

(3) Va € ANb € B (p_(a)Bb = aAp,(D)).
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STRUCTURE OF SUMMABLE TALL IDEALS UNDER KATETOV ORDER 3

We write A ~g7 B if A <gr B and B <gr A. We say that A is Galois—Tukey
equivalent to Bif A ~gr B.

Minami and Sakai [5] proved that (F,ideals, <x) and (F,ideals, <gp) are both
Galois-Tukey equivalent to (w®,<*). We prove that (ST.<y) ~gr (®©®,<*) in
Section 5 and that (ST, >g) ~gr (@®, <*) in Section 6.

The last section is devoted to the study of Borel reducibility. We say that a
topological space X is a Borel space if X is a Borel subset of some Polish space. Let
X, Y be Borel spaces. Let E and F be equivalence relations on X and Y, respectively.
We say that E is Borel reducible to F (denote E <p F) if there is a Borel map
®: X — Y such that xEy < ®(x)F®(y) for all x,y € X. We say that E is Borel
bireducible to Fif E <p F and F <p E. Letl, = {f € R? : sup|f(n)| < co}. For

n<w

each x, y € R, define
Xy <= x -y € l.

We will prove that [, is Borel bireducible to ~g on Fpgy. Here, f ~x g means
Ij oy ¢ Ig.

§2. Preliminary. We make two comments in this section. One is that there is a
convenient tool for studying F,-ideals. The other is that ST and summable ideals
are virtually the same class of ideals (up to isomorphism).

Every summable ideal is an F,-ideal. This can be inferred by Mazur’s char-
acterization of F,-ideals using submeasures. A submeasure on @ is a function
i : P(w) — [0, +oo] with the following properties for 4, B C w:

(1) u(4) < u(B)if 4 C B.
(2) u(AUB) < u(A4) + u(B). and
(3) u(®) =o.

A submeasure u is lower semicontinuous (Isc) if for every 4 C w we have that

u(Ad) = lim u(4AnNn).

n—o0
We say that u is unbounded if 11(«) = oo. Mazur proved the following theorem.

THEOREM 2.1. [4] The following are equivalent for every ideal T on w :

(1) T is an Fy-ideal.
(2) T = Fin(u) for some unbounded Isc submeasure u on w, where

Fin(u) ={A C o : u(4) < oo}.

For each summable ideal Z. let uy(4) = ", , f (i) for A C w. It is easy to see
that u, is an unbounded Isc submeasure on @ by

uf(A):Zf(i):nli)n;o > fi) = lim ug(ANn).

n— oo
i€ed icANn

Now we turn to the second comment.
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4 JIALIANG HE ET AL.

PrOPOSITION 2.2. There is a Borel function F : F — Fpst such that Ty ~ Ty ;)
for every f € F where

F= {fe@ﬁizf(n)=mandnlgrgof(n)=0}.

new

Proor. Let f € F. Foreachn € w, let

1 1
= '—<
X, {kEw.n+2_f(k)<n+1}

and N, = |X,|. Since Z, is tall, we have that N, < oo for all n € w. Denote
M, = Zn: N;.Let Yy = [0, My) and Y,, = [M,,_|, M,,) for each n > 0. It follows that
| X :l|:g’,,| for all n. For each n € w, define
mj by f(m]) = max f[X,]
and
mj by f(m}) =max f[X, \ {m].....m7 }]foreach 1 < j < N,.
For each n € w, define a bijection £, : X,, — Y, by
hy(m7) = M, 1 + j —1foreach 1 < j < N,.
For each n € w, define f] : ¥, — Q, by
F1ha(m)) = £ () forall 1 < j < N,.

Let /" = U, ey, /- Define F(f) = f'. It follows that F () is nonincreasing by the
definition of f”. Then Zy ~ Ty, is witnessed by &1 = (J,c,, &

ncw "N

Next we show that F' is Borel. Forany n € w and b > a > 0, define

U={f¢cFpst:f(n)e(ab)}and
U, ={f € Fost: f(n) =q}forallqg € (a.b) N Q.

It follows that U is a basic open set in Fpst and U = U, ¢(,)ng, Uq- Fixn. U. g.
and U, as above. By the definition of Fpst, for each f € U, we have that

f(i)>gqgforall0 <i<nand f(j) < gforall j > n.

LetA = {¢q}, B =[q.+0),and C = [0, q]. Itis easy to see that theset A x B" x C®
is Borel in Q7. For each K € [w]""!, let Px C w""! be the set of all permutations
of K (i.e., all bijections from K to K). For each a = (ayg. ay. ..., a,) € Pk. define
S(a) = (So, St Sy, ) S P(w)w by

Ssy=A.84 = =84, =Band S; = Cforall j € {ag.....a,}.
Denote []S(a) = [];c,, Si- Then
Flloy= | Flupy= U U U [Is.
q€(a.b)NQy g€(a.b)NQ4 K €[w]n+! a€PK

It follows that F~1(U) is a Borel set and F is Borel. o
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STRUCTURE OF SUMMABLE TALL IDEALS UNDER KATETOV ORDER 5
PROPOSITION 2.3.  Define a map A : summable ideals — ST by
A(Zy) = Ip(y) for all Ty € summable ideals.

where F is the function taken from the Proposition 2.2. Then for each pair T, I, €
summable ideals we have that

Iy <k Ig < Ir(s) <& Tr(e)-

PrOOF. (=): Let Z;.Z, € summable ideals such that 7, <x Z,. Then we have
that

Ir(p) =Ty <k Ly = Ip(g).

It follows that IF(f) <k IF(g)'

(«<):LetZ;.Z, € summable idealssuchthatZ, £x Z, and p : ® — w beamap.
Let e and e, be witnesses for 7y ~ Tp () and Z, >~ Ty, respectively. By 7, £x Z,.,
there exists A € 7, such that

(e1' o poe)(4) ¢ Iy

Then we have that e,[4] € Zp(,) and

&' (p ! (ald]) €I, & pl(eilA]) & Tr(y).
Thus IF(]') ﬁK IF(g)' =

§3. An answer to Minami and Sakai’s question. In this section, we prove the
following theorem which give a positive answer to a question of Minami and Sakai’s
[5. Question 5.1].

THEOREM 3.1. (Summable ideals, <) is countably upward directed.

PrOOF. Suppose that 7, € summable ideals. Then li)m f(n)=0 and
Y f(n) = co. Inductively take {k, : n € w} such that for each n € w,

new
(1) kn < kn+1,
(2) f(m) < 1/(n+1) for each m > k,, and
(3) uf([kn:knJrl)) > 1.

Suppose we have already constructed {k; : j < n} such that (1)—(3) holds. Since
lim,_,o f(n) =0, we can find k,,; large enough such that (1) and (2) hold. By
X,cof(n) = co we have u s ([k,. o)) = oo, so we may find k. such that (3) holds.
Denote N, := uy([ky.kni1)) > 1and 1, := [ky.kyy1) forall n € w. Then

up(L) = Ny > 1.

Now let {Z,, : m € w} C summable ideals. For eachm € w. let k). I"

. N be as
above. Then for all n,m € w,

up, (I") =N > 1.
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6 JIALIANG HE ET AL.

For each n € w, let X, = [[ I’ Cw" and X = |J X,. Fix n € w. For any

m<n new

(ig. i1s ... . in_1) € X,,. define a function f by

[T S (im)
. . . _ m<n
f((l()‘rll:"'rln—l)) - 1—[ N’:n .
m<n
Then
uf(Xn) = Z f((ioa'-'einfl)) = Z f((ioa”'sinfl))
(igsenin_1) EXn igell....imer!
1 . 1 m
ZW' Z l_[fm(lm) ZW'H”fm(In)
. : 0 : n-1 \m<n n m<n
m<n W0EL, iy 1 €Ly m<n
= 17
sous(X) = oo.
By (2). for all n € w we have that
(G i in1)) < CENID for every (ig. iy.....0n1) € X,

so Iy is tall.
We will show that for each m cw. Iy, <xpZ;. Fix m € w. Define
m » X = o by

nm((io’ cees in—l)) =0.n<m,
T (0. woe s ino1)) = i > m,

Then |r,!(0)| < oo and uy (m,!(0)) < cc. Let i € w \ {0}. If i € " for some

n < m then 7,!(i) = 0. We assume that i € I/" for some n > m. It follows that

|71 (i)] < |Xu| < o0 and

uy (7t (1)) = sy ({00 o 1) € X 20y = })

15y)
. fm(l.)_ Z j<nl-,_£#m A B Sm(i) < fmli)
_N,f,77(1<) [1 w B
0wt )\ im

Thus, for every 4 C w \ {0} with uy, (A4) < oo we have that u; (m, (4)) <
ur, (A) < Q. =

§4. Characterizations of Katétov order among summable ideals. In this section,
we prove the following theorem which is crucial for later section.
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STRUCTURE OF SUMMABLE TALL IDEALS UNDER KATETOV ORDER 7
THeoreM 4.1. Let Ty, I, € ST. Then the following are equivalent:

(1) Iy <k Z,.
(2) Thereexist p : w — w and 0 < C such that

A[CT={n:ug(p(n) < C- f(n)} €I}

and p' (A[C]) € I;.

(3) There exists 0 < M € w such that for all | > M and ki > ko> M. if
ug ([ko. k1]) > M - us([0.1]). then g (ki) < M - f(I).

(4) There exist an interval-to-one map p : w — w and 0 < ¢ < C such that c -
@) Sug(p'(i)) < C- f(i) forall i.

(5) There exist an interval-to-one map p:w —w and 0< C such that
ug(p71(i)) < C - f(i) forall .

(6) Thereexists0 < M € w suchthat forallk,l € w.ifug([0.k]) > M - us([0.1]).
theng(k) < M - f(1).

(7) Iy <grs Is.

ProoF. (1)=(2): Let p:® — @ be a witness for Z, <x Z,. We show that
there exists C > 0 such that A[C] = {n : ug (p™'(n)) < C - f(n)} € I;. Otherwise,
A[C] & 1 for every C > 0. Thus, we can find pairwise disjoint finite sets {a,: 1<
n<w} such that foreach 1 <n € w,

(i) f(j) < & forany j € a,,
(ii) an Qa)\A ]. and
(111) = <us(ay) S n%

By (ii).

SI»—‘

ug (p ' (an)) > n-uy (ay) >

Let B= |J a,. Then

1<n<w

i% 00, and ug (p*I(B)) > Z% = o0,

This contradicts the definition of p.
(2)=(3): Let p and C be such that A[C]€ Z; and p '(4[C]) € Z;. Then

p ! (w\ A[C]) € Z,. Take M > C + 1 such that ug( 1w\ A[C])\ M) <1 and
us ([OM]) > 2. Assume I>M, ki >ky> M with ug([ko,kl]) > Muf([(), l])
Consider ¢ = [ko. k1] \ p~! ([0.1]). The proof is divided into two cases.
Casel: p(1) N A[C] =0

Then t N p'(A[C]) = 0. By ko > M, we have that t C p'(w \ 4[C])\ M. By
the definition of M we have u,(7) < 1. On the other hand we have

e ([ko. k1) 0 p (01D 0 7! (@ \ ALCD)) < e (p7 (@ \ A[CD\ M) <1
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and

tg (o ki1 0 p7 ([0.1) 11 p (AICT)) < € -1y (0.1 0 AICD) < € -y ([0.1)),
Thus

e ([ko. k1) 0 p ([0.1D) < 14 C -y ([0.1))
=24 C-ur([0.0]) -1 < (C+1)-us(0.1]) -1

and

g (1) = g (o K11\ 27 (10.11) ) = g ([Ko. D) — g (Iko. ka1 01 p(10.1D))
>M-ur([0.1]) - ((C + 1) -up([0.1]) - 1) > 1.

A contradiction.

Case 2: p(t) N A[C] # 0.
Let m € ¢ and p(m) € A[C]. Then m < ky, p(m) > [, and u, (p"'(p(m))) <
C - f(p(m)). By the monotonicity of f and g, we have

glk) <glm) <ug (p'(p(m))) < C- f(p(m)) < C - f(I) < M- f(D).
(3)=(4): Choose kg such that
ug([M. ko)) = ug ([M. ko —1]) > M - uy ([0, M]).

We recursively choose a sequence ko < k; < --- such that for each i, k;; is the
minimal such that ug([k;. k;11)) > M - f(M + 1+ i). Then we have

ug([M.ki1)) > M -up([0. M)+ M-y f(M+1+j)=M-up([0.M +1+1i]).
j=0

Thus g(kis1—1) < M - f(M +1+i) by the assumption of (3). The proof is
divided into two cases.

Case 1. k;i1 — 1 =k;. Clearly we have that g(k;1 — 1) = ug([ki. kis1)) = M -
S(M+1+1).

Case 2. k;11 — 1 > k;. By the definition of k;;;, we have ug([k;. ki1 —1)) < M -
f(M +1 +i). This implies that

M- f(M+1+410) <ug([ki.kit1)) = ug([ki kip1 = 1)) + g(kiz1 — 1)
<2M - f(M +141).

Let p:w — w be an interval-to-one map such that p ([0, M]) = [0.k¢) and
p (M +14i) = [ki. ki) for every i. Define

Cmax{2Mmax{ug(ff—(ln()n)):n§MH

https://doi.org/10.1017/js1.2023.24 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.24

STRUCTURE OF SUMMABLE TALL IDEALS UNDER KATETOV ORDER 9

and

c:min{M,min{ug(upf—(ln()n)):n<M”.

Then, for each n < M we have that

Ug (pil (l’l))
f(n)

(4)=(7): For every A C w, we have that

c-f(n) < -f(n):ug(p’l(n)):—).
up(A) <oo=uy (p'(4)) < C-up(d) < oo
and

ug (p'(A)) < 00 = up(A) < = -uy (p'(4)) < 0.

| —

(4)=(5). (5)=(1), (7)=(1) are clear.

(5)=(6): Let Cbeasin (5). Define M = C. We will show that M is as desired. Let
L.k € wwithug([0.k]) > M - us([0./]). By the assumption of (5). ug (p~'([0.7])) <
M - us([0.1]). so [0.k]\ p7'([0.7]) # 0. Take m € [0,k]\ p~'([0.7]). Then m < k
and p(m) > [. It follows that

gk) < gm) <ug (p™ (p(m))) < M - f(p(m)) < M - f(I).
(6)=(5): Choose kg such that
ug ([0, ko)) = ug ([0, ko — 11) > M - £(0).

Recursively define a sequence ko < k| < --- such that foreachi > 0, k; is the minimal
such that u, ([k;_1.k;)) > M - f(i). Then we have

ug([0. ki) > M - f(j) = M - uy([0.1]).
Jj=0

Thus g(k; — 1) < M - f (i) by the assumption of (5). The proof'is divided into two
cases.

Case 1. k; — 1 = k;_;. Clearly we have that g(k; — 1) = ug([k;1.k;)) = M - f(i).

Case2.k; — 1 > k; 1. By the choice of k;, we have ug ([k; 1. k; — 1)) < M - f(i). This
implies that

M - f(i) S ug(lki kiv1)) = ug([ki. kiy = 1)) + g ki — 1) <2M - £(i).

Let p : w — w be an interval-to-one map such that p~1(0) = [0, k) and p'(i)
[ki_1.k;) for every i > 0. It is easy to see that p and C = 2M .

24l

Remark: It is worth to note that p in the proof of (3)=-(4) and (6)=(5) is a
surjection and max p'(n) < min p~'(n + 1) for n € w (see Figure 1).
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0 1 2 3
. ooe
1 N \\’
. .oe
0 1 2 3 4 5 6 7 8 9 10 11 12
—1 —1 —1 —1
p71(0) p(1) Q) p7'(3)

FIGURE 1. An example of interval-to-one map p in Remark.

§5. The structure of (ST, <y) in the sense of Galois—Tukey connection. In this
section we prove that (ST, <g) ~¢r (w®, <*) (see Theorem 5.6). We first prove
(ST.<k) <gr (w®, <*) (see Lemma 5.4).

We will define an order (H, <°) such that (H, <°) is upward directed and

<er

(ST.<k) <¢r (H.<°) (w®. <").

To define (H., <°), we need the following.
First, we define a set ® C Q5 x o< by (s, p) € @ if and only if (x) there exist
l;, kg € w such that (s, p) satisfies the following (see Figure 2):

(1) s:l;, > Qyands(j) >s(j+1)forall j </, —1,
(i) 0=p(1) < p(2) < < plky) =1, - 1,
(iii) us([p(i). p(i +1))) > 1foreach 0 < i < k,. and
(iv) s(j) < L foreach j > p(i) and 0 < i < kj.
For any (s, p) € @, define a subset of ® by

O(s,p)={(t.q) e®:sCtr,pCgandk, =k, +1}.

Define an order <, ,) on ®(s. p) as follows: for each (71.41).(12.¢2) € ®(s. p).
(t1.q1) (s p) (12.q2) if and only if there exists a map

n: [ga(ks). (kg + 1)) = [q1(ky). g (ks + 1))
such that
u, (' (i) < 11(i) for each i € [q1(ky). q1(ky +1)).
It is easy to see that <, ) is transitive.
LeEMMA 5.1. (®(s. p). () is upward directed for all (s. p) € @.

Proor. Fix (19.qo).(t1.q1) € ®(s. p). Define (z.q) as follows. Define Iy =
[90(ks). qo(ks + 1)) and Iy = [q1 (k). qi(ky + 1)) and 1 = Iy x 1.
Fix i € {0.1}. Denote N; := u,, (Il-) > 1. For every (jo. j1) € I, define ¢ by

1((o- j1)) = —IO(Q()) ;\1151'1).
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Q4
- 1 [
\ .
Y 2
L l
oo~ 5 3
| — . . R
— Lo T
([pr2)) 5 Eus([<2>,zo<3>)) () -
p(1)  p(2)-1 p(2) p(3)-1 p(3) ’

FIGURE 2. An element (s, p) of set @.

Let M = |I;| - |I,]. We can find a bijection e from I to [p(ky) + 1. p(ky) + M]
such that

e (j)) = 1(e'(j +1)) forall j € [plks) + 1. p(ky) + M].
Let q(ky) = p(k,) and q(ky; + 1) = p(ky) + M + 1. Then
I =e'([q(ky). q(ky +1))).

Without loss of generality, we can regard I as [¢(ky). q(k, + 1)).
We will show that (z.¢) € ®(s. p) and (1;.q;) <, ) (t q) fori € {0, 1}.

(1) (t.q) € ®(s. p):
Use

Z -l ]1) 1
N N
(o-J1) €l 0

and

L t0(jo) - t1(j1) 1 1 1 .
t((o. 1)) = 05\0,0_]\1,1]1 SN pﬁk—forall(m,]l)el.

(2) (ti.qi) <) (1.q) fori € {0.1}:
Let 7y and n; be the projection map onto the first coordinate and second
coordinate, respectively. For any j € I, we have that

7o' () = {(.j1) s € I}

and
1 t0(j) n(ji) () .
= — . = < .
Uy (no (J)) No Z N, No — (/)
J1€0)
Similarly. we have u, (7,'(j)) < 11(j). 4
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For any (s. p) € ®@. define a cofinal subset @(s. p) of ®(s. p) such that (O(s. p).
<(s,»)) is an increasing chain. We define ®(s, p) as follows. Enumerate ®(s, p) =
{($n, pu).n € w}. Let (9. q0) = (50. po). Suppose we have already constructed
{(ti.q;) :i < n}. Then we take (t,.q,) such that (z,.1.¢s1) () (ta.¢4) and
($n- Pn) Dsp) (tn- qn) by Lemma 5.1. Define

®(s, p) = {(ta.qu) : n < ©}.
Define
H = {h e ®®:h((s.p)) € (s, p) forall (s, p) € D} .

Define the order <° on H as follows: for each 4,4’ € H, h <° i’ if and only if
h((s. p)) S B ((s. p)) for all but finitely many (s. p) € ®. It is easy to see that
(H, <°) is upward directed by the definition of H.

Next, we prove the following:

Lemma 5.2. (H, <°) <g7 (0®.<*).
PrOOF. Enumerate
® = {(s;, pi).i € w}.
Enumerate

(s, p;) = {(t](f"iWi)’q](_‘\'i’Pi)) e w}

in such way that (¢; (si-pi) qﬁ'gi"’i)) L) (1 (si- p’),qks’ ) for all j < k.

Define p, : o® —> H as follows. For every g € w® and i € w, let
p+(&)((si. pi)) = ([;‘z"i')pi>7q;5<ii~)[?[)>.

Define p_: H — w® as follows. Forevery 7 € Hand i € w, let

_ (Gsipi) , (siopi) .
h((si. pi)) = (Zp,(zf (i).q%(,f)(i)) foralli € w.
We claim that
Vh e HVg € 0®(p_(h) <* g = h <° p,(g)).

Suppose i € H. g € w®. and p_(h) <* g. Thereis n € w such that for eachi > n
we have p_(1)(i) < g(i). Then h((si. pi)) (s, pi) P+(&)((si. pi)) for all but finitely
many i € w,ie.,h <° p,(g). =

Now, we prove the following:
LemMma 5.3. (ST.<g) <gr (H, <°).

Proor. Define p, : H — ST as follows. Define ¢_; € »' by ¢_1(1)
1.1(0) = 1. Foreach h € H. let (¢!. q') = h((t-1.q-1)) and (¢! . 4" |) = h((,’j q”))
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T st
Vo : b ' -
- L L L L L > W
q(1)q(2)  q(3)  q4) q(ke—1) q(kt) pj(kt+1)
(1) pi(2) pi(3)  pi(4) pi (ke —1) pj (ke)
NS f translation
Lo L
- : P : —
p(p(2)  p(3) p(4) p(ke—1) plke) plhe+1)

FIGURE 3. The definition of (s}, p}) in the proof of Lemma 5.3.

for all n € w. Let g = |J ¢! and p.(h) = Z,. Since ¢ 1 = (¢.1(1)), we have that

new
q¢ = (q¢(1).q¢(2)). and
¢ =(q"(1).¢"Q2).....q"(n+2)) forn € w.ie. kp=n+2

(see (x) at the beginning of Section 4 for the definition of k y ).

Define p_ : ST — H as follows. For Z, € ST, take 0 = m; <my < -+ <m; < -
such that for each i > 0,

up([m;,miz1)) > land f(j) < % for every j > m,.

Foreachn > 1, let p(n) = my, p, =
(t.q) € @ with g = (¢(1). ... q(k,)).
pr=(q(0).....q(k;).q(k;) + p(k; + 1) = p(k;))

= (p/(1)..... pi(ky). pi(k; + 1)).

l(p(l), ....,p(n)),and s, = f|[0Ap(n)>. For every
et

‘We have that:

e p(j)=q(j)forl < j<k.

o pi(k;+1) =qlk;) + p(k; + 1) — p(k;). and
! _ —~

U= 1S |tk plie 1)

Then (5], p)) € ®(t. q) (see Figure 3). Take (s}, p}) € o(z, ¢q) such that (s/, p}) Lrg)
(s;. p;). Define p_(Z;)((.q)) = (s. p;).
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14 JIALIANG HE ET AL.
We claim that
Vip€STVhe H(p,(If) <*h=7TI,<g pe(h)).

Suppose Z; € ST, h € H. and p_(Z;) <° h. Let {s, : n € w} and p be like in the
definition of p_(Z,). Then we have that

p-(Zr)((2.q)) S g h((2.q))

for all but finitely many (z,¢) € ®. By the definition of p,, there exists {(¢/.¢/) :
n € w}. Then there is N such that for n > N, we have that

p(Zp)((2!.q!) L(eh gy h((th.qh) = (¢} q!4).

Since p_(Z;) (1. q")) = (s%. p). we have that

h h
*h’pr*,’;) S](t,’,l,q,’,') (tas1: @nr)-

n

(- P) Sy (5,
Then for each n > N, there exists a map
Tt [ (n 4 2). g1 (n 4 3)) = [ply (0 +2). pjy (n +3))
such that

up () < 5/, (i) forall i € [p/, (n +2). pl, (n +3)).

Define o, : [/, (n+ 2),p;h (n+3)) = [p(n+2), p(n+3)) by
an(j) =j fp;),l,(n +2)+ p(n+2)forall j € [p;’,i,(n +2),p;’,1,(n +3)).
Define n,, = ¢, o 7/, for each n > N. We have that

up (m,()) < sny3(i) for each i € [p(n +2). p(n +3)).

There exist 71 : [0, ¢{(2)) — [0, p(2)) and ¢; > 0 such that

u; (271 (i)) < .y - s(i) foreach i € [0, p(2)).

h
)

For every m < N, there exist 7, : [¢",(m 4+ 2),¢" (m +3)) — [p(m +2), p(m + 3))
and ¢;,;, > 0 such that

up (T, (i) < € - sm3(i) for each i € [p(m +2). p(m + 3)).

m+1

Letz= |J m,and C =max{l,c.¢.....cy}. Then we have that
newuU{-1}

ug(n1(i)) < C - f(i) for i € w (see Figure 4).
Then 7 witnesses 7y <x Z, = p (h) by Theorem 4.1(5). -
Combining Lemmas 5.2 and 5.3 we have:
Lemma 5.4. (ST, <k) <gr (0®, <*).

The proof of the other side is short.
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©“
N
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1
1
1
1
54
e J
- | | a2
1 1 1 1 1 | Ont3
1 1 1 1 1
o 1 1 e 1 1 1
' 1 1 1 1
L L L L L L L > a)
0 p2) PO (@) plntl) p(n+2) p(n+3)
o

h

1 o

1]
:\ | Tin
1 ih g
1 1
1 1 . th
1 1 — I
1 1 1 1 In th
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1 1 1 1 eeees 1 h
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a1 () gt 3 4@ al ((n+1)  ghi(n42) gt (n43)

FIGURE 4. 7 witnesses I r <k ZLg in the proof of Lemma 5.3.

LeMMA 5.5. (ST.<g) >¢r (0®, <*).

Proor. Define p; : ST — w® as follows. For each Z, € ST and n > 1, there
exists p, (Z,) such that

”g([/’+<Ig)(n - 1)»P+(Ig)(n))) >n.

Define p_ : @® — ST as follows. For each r € w®, take a partition (4, : n € w)
of w into successive finite intervals such that |4{| > 1,

min(4)) > r(n), and |4,| > max{n,

A, |} foreach n € w \ {0}.
Then define f, : o — Q, by
fr(k) = 1/]|A4}| where n such that k € A.

Let p,(r) = Ifr'
We claim that

Vr € w” VI, € ST(p.(r) <x Iy, = r <* p(Z)).

Take arbitrary r € w® and Z, € ST such that Z, =p (r) <x Z,. By
Theorem 4.1(5), there exist a map p : @ — @ and C > 0 such that

ug(p'(i)) < C - f,(i) foralli € w.
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By the Remark (above Figure 1), we may assume that p is a nondecreasing surjection
and p(i) <i. Thus max p'(i) > i for all i € w. Then for large enough n, there is
Jn such that

2 ([0. ju]) :ug<p ( m))<C uf( U A,’,,)zn-an2

0<m<n 0<m<n
< ttg ([p+(Zg) (n = 1). p+(Zy) (n))) < ug ([0. p(Zg)(n))) .-
Thus j, < p1(Z,)(n) for large enough n. Then for large enough n we have that
ax( U A,’ﬂ) < maxp*( U A;) = jn
0<m<n 0<m<n
Therefore we have that r(n) < j, < p;(Z,)(n) for large enough n. 4
THEOREM 5.6. (ST, <g) ~gr (0®. <*).

Proor. Combine Lemma 5.4 with Lemma 5.5. =

§6. The structure of (ST.>x) in the sense of Galois—Tukey connection. In this
section we prove that (ST, >g) ~gr (w®, <*). First, we prove the following:

LemMa 6.1. (ST.>g) <g7 (0®. <¥).

PrOOF. Let ™ be all strictly increasing functions from w to w \ {0}. It suffices
to show that (ST, >x) <gr (@', <*) because (0!, <*) <gr (0. <*).

Define p_: ST — ' as follows. For each I, € ST, define p (Z;) € ' by
p-(Z;)(0) =1and

p-2)(0) = min fo> . (Z,) = 1) = (7o) < )

forallk > 1.
Define p, : '™ — ST as follows. For each x € »'®, define F : @' — Fpst by
F(x)(k) =1forall0 < k < x(1), and

F(x)(k) = % where 7 is such that k € [x(n). x(n + 1)).

Then Zp(,) is tall for each x € 0. Let p, (x) = Zp(,).
We claim that
VI, € STVx € 0! (p(ZIy) <* x = I; >k pi(x)).

Let Zy € ST and x € o' such that p_(Z;) <* x. We will show that / <* F(x)
and thenid : @ — w will be a witness for Z; >k Zp (). To see that f <* F(x). take
N > 0 such that

p—(Zy)(n) < x(n) foreach n > N.

Then for each n > N and k € [x(n),x(n + 1)) we have k > p_(Z;)(n). By the
definition of p_(Z,). we have f (k) < 1 = F(x)(k). It follows that /* <* F(x). -

LEMMA 6.2. (ST.>g) 67 (0®. <*).
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ProOF. Define p_ : w” — ST as follows. For each x € w®, take a partition {4} :
n € w \ {0}} of w into successive finite intervals such that for all n > 0:

(1) min 4} > min{x(n),n} and

(2) |45 = n?(x(n) + 1)

Then define g, € Fpst by
g.(k) = % where 7 is such that k € 4.

Let p_(x) = Z,, . It follows that p_(x) is tall for all x € ©®.
Define p, : ST — w® asfollows. SupposeZ, € ST. Foreachn > 0. define p,. (Z,)

by p4(Z;)(0) = 0and p, (Z)(n) =

min {m >n+1:m>us([0.p1(Zf)(n—1)]) &Yk >m <f(k) < ﬁ)}

We claim that
VIpeSTVxew”(p(x)>kI;=x<*p.(Zy)).

LetZ; € ST and x € w® such that x £* p,(Z). Let p_(x) = Z,,. We will show
for each M > 0, there are [ > M, k; > ko > M such that:

(3) ug, ([ko.k1]) > M - us([0.1]) and

(4) gu(kr) > M- f(I).
Then, p_(x) ?k Z; follows from Theorem 4.1. To prove (3) and (4). fix M >0
and let ny > M be such that x(ng) > p,(Z,)(ng). Define I = p.(Z;)(ny— 1) and
ko < ki such that [ko. k1] = 4;, . It follows that / > M. ky > ko > M and

ug, ([ko. k11) > no - (x(no) +1) > no - x(no) > M - us([0.1]).
Thus (3) holds. By the definition of /. we have that f(/) < 4 and
&
1 1
o&lk)=—=ny-—>M-f(l).

no no

Thus (4) holds. 4
THEOREM 6.3. (ST,>g) ~gr (@0?, <*).

Proor. Use Lemmas 6.1 and 6.2. =

§7. ~g on FpgT is Borel bireducible to /.. In this section we will prove that /.
is Borel bireducible to ~¢ on FpsT.

DerINITION 7.1, (1) Let C = {(4,) € P(w)® : Vn(4, C A,41)} and for each
(A”)’ (Bn) E C’

(An)H(BM) <~ Elnv’/n(Am g Bn+m A Bm g An+m)-
(2) Let Xo = [] n.wheren ={0.1,....,n — 1}. For each . § € Xj. define

n<mw

aEg, f < InVm(la(m) — p(m)| < n).
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It is proved in [6, Proposition 19] that H ~p I, ~p Ek,. so it suffices to prove
that ':KSB H and EK,, SBQK-

7.1. The proof of ~x<p H. This will be proved in Corollary 7.10. The proof
consists of two steps. We first show that the so-called decomposable equivalence
relations are all Borel reducible to H (Theorem 7.5). Then we prove that ~g is
decomposable (Theorem 7.9). Before this, we need some preparations.

LEMMA 7.2. ~x is an F, subset of Fhgr.
Proor. Denote <x= {(f.g) € Fhst : Iy <k Z;}. By Theorem 4.1(6), <x=
{(f.g) :In € \{0}.Vk €.Vl € w[ug([0.k]) <n-us([0.1]) or g(k) <n- f(I)]}

= U MNNU-8) :ug((0.k]) <n-up(0.1D}U{(f.g) : gk) < n- f(1)}].

new\{0} kew lcw
For eachn > 1, let
Fo= (N (10.K1) < n-ur((0.1D} U{(f.g) s g(k) < - f(D}].
kewlew

Then F,, is closed. Thus <k is F;.
Denote =x= {(f.g) : Z; >k Z,}. Similarly we can prove that = ¢ is F,. It follows
that ~x==<g N =g is F,. =

We need the following characterization of ~g.

LemMmA 7.3. Let f,g € Fpst. Then [ ~g g if and only if there exists n > 0 such
that for each k € w we have that

S ()

n

where I, I are such that

ur ([0, I — 177)

([0, I
n < ug([0.k]) < M
and
ey ([0.1]) < ug([0.k]) < n -y ([0. 7] + 1]).

PROOF. (=): Recall that [ ~g g means Z, <x Z, and Z, <x Z,;. By
Theorem 4.1(6), there exists M such that for all k and /' we have that

ug([0.k1) > My - up([0.1]) = g(k) < My - f(I').
For the same reason, there exists M> such that for all k and / we have that
up([0.11) > Ms - ug([0.k]) = () < M> - g(k).
Let n = max{M,. M>}. Then we have that
ug([0.k1) > n-up([0.1']) > My - up([0.1]) = g(k) < My~ f(I') <n- f(I')
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and
ur([0,1]) > n - ug([0.k]) > Ma - ug([0.k]) = f(I) < My -g(k) <n-g(k).
Define
0./
I, = min {1 € w:uy([0.k]) < M}

and

I =max{l" € w : ug([0.k]) > n-us([0.1')}.
We have that

nup(10.1) < g (10.K1) < -y ([0.1] + 1]
and

0.7, — 1 0./
uy([0. 4 — 171) < uy ([0.%]) < ([ k]).
n n
It follows that
/
f(nk) <glk)<n-f{I)).
(«<=): For each k € w, we have [, = min{/ € w : u, ([0, k]) < uf(LO’l])}. For each
! € o we have that
0,/
g ([0. k1) < w = 1>
For each / > [, we have that
£ S0 _
n n

It follows that for each k € w

up([0.1]) > n-ug([0.k]) = f(I) <n-glk).
By Theorem 4.1(6), we have Z, <x Z,.

Z; <k I, can be proved in a similar way. -

Now we define decomposable equivalence relations.

DEeFINITION 7.4. Let F be a F,; equivalence relation on Borel space X. We call F'is
decomposable on X if there is a sequence {F, : n € w} of closed subsets of X2 such
that:
(1) For each n<w, F,CF,; and F,0F, C F,,; (ie. xF,y AyF,z =
XFn+lZ)-

(2) F = UnEw F,.

(3) [Uly ={x € X : 3z € U(zF,x)} is Borel for each open subset U of X and
neE .

THEOREM 7.5. Let F be an F, equivalence relation such that F is decomposable on
Borel space X. Then F <g H.

https://doi.org/10.1017/js1.2023.24 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.24

20 JIALIANG HE ET AL.

PrROOF. Let {F, : n < w} be a sequence which witnesses that F is decomposable.
Fix a basis {U, : n € o} of X. For each n € w, define a function f, : X — P(w) by

fn(x)={k € w:3z € U (zF,x)}.
By (3) of Definition 7.4, for each m € @ we have that
[ {ACw:me A}) = [Un),

is Borel. It follows that f, is a Borel function for each n € w. By (1) of Definition
7.4, we have that

fu(x) C fus1(x) foreachn € w and x € X.

We prove that @ : x — (f,(x)) is a Borel reduction from F to H. ® is a Borel
map by the following: For any open subset [] U, of C, we have

necw

o (]‘[ un) = () f2' W)

new new

It follows that @ is Borel by f', being Borel for all n € w.

Then we show that @ is a reduction from F to H. Let x, y € X such that xFy.
Then there exists n € w such that xF, y. Therefore, for any z € X such that zF,x
for some m € w, we have that

ZFmax{n,m}+1y-

It follows that f,,(x) C fui14m(y) forallm € w. Similarly, there exists #’ such that
Sm(¥) C fri1om(x) forallm € w. Let N = max{n + 1.n’ + 1}. We have that

Vm e o(fm(x) C frem(@) A fm(y) C frem(x)).

Conversely, let x,y € X such that (f,(x))H(f,(»)). Then there exists n € w
such that

fm(x) - fn+m(y) for all m € w.

Fix n as above. For each m € w, define F,\ = {z : zF,,x}. Then for each k € o we

have that
UNFy#0 =k € fn(x) =k € frim(y) = UNF;,, #0.
Since F,,, is closed, we have F;; C F;,, . Take m large enough such that xF,x.

then we have that

xF,x=x€F, =x€cF

n+m = XF’!-HVly'

It follows that xFy. 4
Next, we will show that ~g is decomposable. We need some observations.
DEFINITION 7.6. For each n € w, define R,,. S,,, E,. and F, on Fpst as follows:
(1) fR,g if and only if there exists an interval-to-one map p : @ — w such that

ug (p'(i)) <n- f(i) foralli € .
(2) fS,g if and only if for all k. / € w. ug([0.k]) > n - us([0,/]) implies g (k) <
n- f(I).
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(3) fE,gifand onlyif fR,g and gR,, .
(4) fF,gif and onlyif f/S,g and gS, 1.

LEmmA 7.7. Let f,g. h € Fpst. For each pair n < m we have follows:

(1) fR.g = fRng: fSng = [Sng: fEng = [Eng: fFng = [Fng.

(2) fRng = fSng:, fSng = fRan-

(3) fR.g ANgRh = fRoh; fE,g NgEh = fE h.

4) £S,g NgSph = SSyph: fF.g NgFyh = fFph.

ProOOF. (1): The proof is obvious.

(2): Use the proof of Theorem 4.1 (5) = (6) and (6) = (5).

(3): Let f.g. h € Fpst such that f R,g and gR, /. Then there exist p; and p, such
that

ug(pi' (i) <m- f(i) and uy(p5' (i) < n-g(i) foralli € w.
Then

up((p1o p2) (i) = wp(py' (p' (i) < - ug(py' (i) < n*- £(i)

forall i € w. It follows that f R, /.

Similarly, we can prove that fE,g.gE,h = fE»h.

(4): By (2) we have that £'S,g = fRy,g and gS,h = gR»,h. Then by (3) we have
that f Rong A gRoh = fRy2h = fSy2h. =

LemMmA 7.8. [U], ={f € Fpst:3g € U(fF,g)} is Borel for every open subset
UofFpstandn > 1.

Proor. Fix n > 1. Without loss of generality, assume U is the form of
(IT(pi.gi) x TT Q4) NFpst for some m € w, where 0 < p; < ¢; € Q. for each

i<m i>m
i < m. Fix m as above. Denote

S={seQ :Vi<m-1(s(i) > s(i+1)) AVi<m(p: <s(i) <q)}
Foreach s € S. let T be the set of all # € QS such that:
(1) Foreach ! < |¢t|—1,¢(1) > t(I +1).

(2) Mt([O-IL’\*Z]) < MS([O, m— 1]) < ur([o-l”*]])'
(3) Foreach !’ < |t] and k < m,

u; ([0.k]) > n-u, ([0.1]) = s(k) <n-t(I').
(4) Foreach! < |t| and k < m,

.1 _

s ([0 k) < =25 s(k) > 22

Claim. [U], = U U {f € Fost: /|, :t}.
seSteTy

Proor. (C): Foreach f € [U], there exists g € U such that fF,g. Then g\m =
s € §. Define /; by

Iy =min{/ > 1:us([0./—1]) > n-ug([0.m —1])}.
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Letr = f|15' It is easy to see that 7 satisfies (1) by / € Fpst. (2) follows from the
definition of /;. By f F,g we have (3) and (4). It follows that ¢t € Tj.

(D):Lets € Sand ¢ € Ty and f € Fpst such thatf||t‘ = ¢. Let/ = |¢|. Then we
have that

([0, -2 ([0, -1
n n

We will find g extending s such that g € U and fF,g. It suffices to construct a
sequence {g(i) € Q, : i < w} such that:

(5) g(i) = s(i) foreachi < mand g(i — 1) > g(i) for each i > m.

(6) Foreachi > m,

0,/ -2+1i- 0./ —14i-
ur([ +i—m]) < ([0, 1]) < ur([ +i-m])
n n
andg(i—1) > M
(7) Foreachi > m, if

nup([0.1]) < ug([0.7—17) < n-uy([0.1"+17).

then!// <! -1+i-mandg(i-1)<n-f(l).
(8) lim g(n)=0.

n—o0
Then (5) = g € U, (3)(5)(7) = fS,g.and (4)—(6) = gS,.f.
Suppose we have already constructed {g(i): i < j} such that (5)—(7) hold for
eachi < j. Let

- up([0.1 -1+ j—m])

g = p —ug ([0, j —17).
Define
[+j-
¢() = max(e, LSy,
By (6) for j — 1, we have
o< LM oy

n

It follows that g(j) < g(j — 1) and g(j) satisfies (5).
By g(j) = max{e;, L)Y e,

M <g(j)ande; < g(j) <Q+M,

we have that
uﬂmJ71+jme<u(w.D<uAWJ71+jme+fU+jfm)
. > Ug(lV. g n n
(0.2 + - m])
— . .

It is follows that g () satisfies (6).
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Assume that
n-up([0.17) < ug([0. 71) < n-up([0.7"+ 1]).
Byn > 1 and

_ w00+ j—m)
n

ug ([0, 1) <n-us([0.1+ j —m)).
we have that [’ <+ j —m and

ey < L IHET=m) o m) < ).

n
It is follows that g () satisfies (7).
(8) follows from (7) for j > m. 4

By the Claim above, we have that [U], is Borel.
THEOREM 7.9. =~ is decomposable on a Borel space Fpst.

PROOF. ~ is decomposable which is witnessed by Fpst being Borel and {F,,» :
n € o} from Definition 7.6. We show that Fpgr is a Borel subset of Q¢. Recall that

n—o00

[ €Fost & (Y f(n) =+o0) A(lim f(n) =0) A (Vn € w(f(n) > f(n+1)).
n=0

Define
A={fe€Q?:) f(n) = +oo}.
n=0
B={f€Q: lim f(n) =0} and
Co={fe€Q?: f(n)> f(n+1)}foreachn € w.
We have
N
feAdeVM ewiN cw <Zf(n)2M>
n=0
and

1
feB&eVmewdN ewVn >N (f(n)<n—1)

Thus 4 and B are Borel.
Obviously, C, is Borel for each n € w. It follows that Fpgt is Borel by Fpst =

ANBN (N GC). -

new

COROLLARY 7.10. ~x<p H.

Proor. Use Theorems 7.5 and 7.9. -
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7.2. The proof of Ex, <p~g. Now we turn to the proof of Ex, <p~g.
THEOREM 7.11. (Xp, Ex,) <p (FpsT.~k).
Proor. First, we defineamap @ : Xy — Fpst as follows. Take ay = 1 and a,,. | =

n
2"y a; foreach n < w. For a € X, define a sequence {c¢% : n > 1} and f, € Fpst

i=0
as follows. For each n > 1:
(1) =1
|[C n+1 | - an 2M (n)’
(3) fali) = o) for each j € [eg.c2, ;).

Then f, is constant on every [co.c2, ) and uy,([cF.c,,)) = a, for each n > 1.

Let ®(a) = f,. We will show that ® is Borel. Take a basic open subset V" of ®[X].
i.e.. there exists A € [Q$”]” such that V' = J,. 4 Vs and V = [s]' for all s € A.
Fix s € A. Then there exist « € Xy and m € w such that s = f, |[0Am]. Letn > 1 be

such that m € [cf. ¢, ;). Then we have that
(V) = {f € Xo: B(j) = alj).j < n}is open.

It follows that ®'(V) = Usea @ (V) is open. Therefore ® is continuous, hence
Borel.
We claim that

Va. f € Xo(aEk, < ®(a) ~x O(f)).
(=): We will find # € w such that for each k € w,

O(B)(Iy)

n

< D(a)(k) <n-®(B)(1).
where [}, is such that

0,7, —1 0,/
ug(p) ([ nk 1)) < gy ([0.K]) < Mqa(/;)(}E k])’

and /; is such that
1 - ugp) ([0. 0]) < tg(e)([0. k1) < 1 - ugg) ([0 1; + 1]).

Then ®(a) ~x ®(B) by Lemma 7.3.
By aEx, . there exists N such that |a(m) — f(m)| < N form > 1. Let n = 2V,
For each k € w, take /; such that

u 0,7, —1 u 0,/
o(p) ([0. I = 1]1) < tgya ([0.K]) < o) ([ k]).
n n
Take ny such that k € [en - ¢ " +1) We have that
nj—
u(D(a)([Ov Crc:k)) 0 cn,‘ Z ai.

"Fors € Q5°. [s]={/ €Q?:sC f}.
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Then we have that

B @
i 0.) s ©E)

ug(p) ([0. x])
D

It follows that

ny (n.—1)
I >l and D(B)(f) <2 Flw),

By

ny (ng—1)

D(a)(k) =22

and a(n;) < B(n;) + N, we have that

O(a)(k) > o )N > % ‘

Take // such that
n - ug(p) ([0, [g]) < toa)([0. K1) < 1 - g ([0. I + 1]).
Then we have that
1 - uep) ([0, 1;]) < o) ([0. K1) < 71+ g ([0, ¢ 1)) = 11 - ua(p) ([0, ka+1))'
It follows that
b <l and (p)(1]) > 2 D i)
By

ny (ng—1)

O(a)(k) = 24 el
and — a(ny) <- B(nx) + N, we have that

ny (n—1)
®(a)(k) <2 F O <N ()i,
Then by n = 2V we have that

w < ®(a)(k) < n-0(B)(1]).

(<): Let a.. B € X such that (o, f) € Eg,. We will show ®(a) #x O(f).
By (o, B) & Ek, . for each N > 0 there exists my > N such that

a(my) — p(my)| > N.

Fix N. Take ky = ¢© —land ly = cf,N. Then

my +1

mN(mN l) almy)

O(a)(ky) =2

and

myr(ma—1)
O(B)(Iy) =22 P,
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Assume B(my) > a(my) + N. Thus

() (ky) > 2V - D(B) Iy ).
By

my my—1 my—1

([0, kx]) Za >2" Y gt Y a
i=1

i=1
and

my-—1 my-1

([0, Ix]) Zaz+® B)y) < Zai-&-Z*N.,
i-1

we have that

o) ([0. kn1) > 27 - ug(s) ([0. In]).

Without loss of generality, we can assume that there exists an infinite set {N; :
i € o} such that for each i, f(my,) > a(my,) + N;. Then for all 0 < M < w. there
exists i € w such that M < 2%i It follows that there exist ky, and /y, such that

Uga) ([0 kn,1) > 2% - ugg)([0. Iy, ]) and @()(ky,) > 2V - ©(B) (L, ).
By M < oNi
Ue(a)([0. kn;1) > M - ugp) ([0.1y,]) and ®(a)(ky,) > MD(B)(Ly,).
It follows that ®(a) %k ©(B) by Theorem 4.1(6). =
THEOREM 7.12. ~k on Fpst is Borel bireducible to [,

Proor. Use Corollary 7.10, Theorem 7.11, and H <p I <p Ek,. =
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