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STRUCTURE OF SUMMABLE TALL IDEALS UNDER
KATĚTOV ORDER

JIALIANG HE, ZUOHENG LI, AND SHUGUO ZHANG

Abstract. We show that Katětov and Rudin–Blass orders on summable tall ideals coincide. We prove
that Katětov order on summable tall ideals is Galois–Tukey equivalent to (��,≤∗). It follows that Katětov
order on summable tall ideals is upwards directed which answers a question of Minami and Sakai. In
addition, we prove that l∞ is Borel bireducible to an equivalence relation induced by Katětov order on
summable tall ideals.

§1. Introduction. A set I ⊆ P(�) is an ideal on � if it is closed under taking
subsets and finite unions. In this paper we always assume that an ideal is proper, i.e.,
it contains all finite subsets of � and it does not contain �. Given an ideal I on �,
define I+ = P(�) \ I. Elements of I+ are called I-positive sets. The dual filter of I
is denoted by I∗ = {� \ A : A ∈ I}. If Y is an I-positive set, then I

∣∣Y = {A ∩ Y :
A ∈ I} is an ideal on Y.

The set of all finite subsets of � is denoted by Fin or [�]<� . Note that Fin is an
ideal on �. The set of all infinite subsets of � is denoted by [�]� . We say that an
ideal I on � is tall if for any A ∈ [�]� , there exists B ∈ [A]� such that B ∈ I. Let
X,Y be two countably infinite sets. Let I be an ideal on X and J be an ideal on Y.
We write I � J if there exists a bijection e : X → Y such that A ∈ I ⇔ e[A] ∈ J
where e[A] is the image of A under e. One may check that an ideal I is not tall if
there exists an I-positive set A such that I

∣∣A � Fin.
All ideals are assumed to be tall throughout this paper.
The set of all non-negative rational numbers is denoted by Q+. The set of all

non-negative real numbers is denoted by R+. An ideal I on � is a summable ideal if
there is a function f : � → R+ with

∑
n<�
f(n) = ∞ such that

I = If :=

{
A ⊆ � :

∑
n∈A
f(n) <∞

}
.

Every summable ideal is an F� subset of 2� via characteristic functions (see
Theorem 2.1 in Section 2 or [3]). For each summable ideal If , if we take a function
f′ : � → Q+ such that

|f(n) – f′(n)| ≤ 1
2n

for each n ∈ �,
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2 JIALIANG HE ET AL.

then we have If = If′ , so we assume always that f ∈ Q�+ whenever we say that If
is a summable ideal. One may easily check that summable ideal If is tall if and only
if lim
n→∞

f(n) = 0. Define

summable ideals = {If : f ∈ Q�+,
∑
n<�

f(n) = +∞ and lim
n→∞

f(n) = 0}.

The followings are important tools for studying ideals, we refer the readers to a
survey written by Hrušák [3] for details:

(1) (Katětov ordering) I ≤K J if there is a function p : � → � such that

∀A ⊆ �(A ∈ I ⇒ p–1(A) ∈ J ).

(2) (Katětov–Blass ordering) I ≤KB J if there is a finite-to-one function
p : � → � such that

∀A ⊆ �(A ∈ I ⇒ p–1(A) ∈ J ).

(3) (Rudin–Blass ordering) I ≤RB J if there is a finite-to-one functionp : � → �
such that

∀A ⊆ �(A ∈ I ⇔ p–1(A) ∈ J ).

Obviously, I ≤RB J ⇒ I ≤KB J ⇒ I ≤K J . Denote I <K J if I ≤K J and
J �≤K I. Denote I �K J if I ≤K J and J ≤K I. Notice that �K is an equivalence
relation. Similarly we define I <KB J , I <RB J , I �KB J , and I �RB J .

Farah [2] proved that the Rudin–Blass order on all summable ideals has neither
maximal elements nor minimal elements. He also proved that it is a dense ordering
which includes an isomorphic copy of (P(�)/Fin,⊆∗). Let F� ideals be the family of
all F�-ideals. Minami and Sakai [5] proved that (F� ideals,≤K ) and (F� ideals,≤KB)
are both upward directed and asked that if this is true for summable ideals
[5, Question 5.1]. We will give a positive answer to this question in Section 3.

Let us consider a variation of the definition of summable ideals. Let

FDST = {f ∈ Q�+ :
∑
n<�

f(n) = +∞, lim
n→∞

f(n) = 0, and ∀n(f(n) ≥ f(n + 1))}

and

ST = {If : f ∈ FDST}.
Actually, ST and summable ideals are virtually the same class of ideals (up to
isomorphism) and we will show it in Section 2 (see Propositions 2.2 and 2.3).

In Section 4, we give a characterization of ≤K on ST which is crucial for later
sections. In particular, we prove that for every If, Ig ∈ ST, If ≤K Ig if and only if
If ≤RB Ig (see Theorem 4.1).

Section 5 and 6 deal with Galois–Tukey connections which is introduced by
Vojtáš [7]. For definition of Galois–Tukey connections, we follow the terminology
in [1]. Let A = (A–, A+, A) and B = (B–, B+, B) be triples such that A ⊆ A– × A+

and B ⊆ B– × B+. We say A ≤GT B if there is a pair � = (�–, �+) of functions
such that:

(1) �– : A– → B–,
(2) �+ : B+ → A+, and
(3) ∀a ∈ A–∀b ∈ B+(�–(a)Bb ⇒ aA�+(b)).
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STRUCTURE OF SUMMABLE TALL IDEALS UNDER KATĚTOV ORDER 3

We write A �GT B if A ≤GT B and B ≤GT A. We say that A is Galois–Tukey
equivalent to B if A �GT B.

Minami and Sakai [5] proved that (F� ideals,≤K ) and (F� ideals,≤KB) are both
Galois–Tukey equivalent to (��,≤∗). We prove that (ST,≤K ) �GT (��,≤∗) in
Section 5 and that (ST,≥K ) �GT (��,≤∗) in Section 6.

The last section is devoted to the study of Borel reducibility. We say that a
topological space X is a Borel space if X is a Borel subset of some Polish space. Let
X, Y be Borel spaces. Let E and F be equivalence relations on X and Y, respectively.
We say that E is Borel reducible to F (denote E ≤B F ) if there is a Borel map
Φ : X → Y such that xEy ⇔ Φ(x)FΦ(y) for all x, y ∈ X . We say that E is Borel
bireducible to F ifE ≤B F and F ≤B E. Let l∞ = {f ∈ R� : sup

n<�
|f(n)| <∞}. For

each x, y ∈ R� , define

xl∞y ⇐⇒ x – y ∈ l∞.

We will prove that l∞ is Borel bireducible to �K on FDST. Here, f �K g means
If �K Ig .

§2. Preliminary. We make two comments in this section. One is that there is a
convenient tool for studying F�-ideals. The other is that ST and summable ideals
are virtually the same class of ideals (up to isomorphism).

Every summable ideal is an F�-ideal. This can be inferred by Mazur’s char-
acterization of F�-ideals using submeasures. A submeasure on � is a function
� : P(�) → [0,+∞] with the following properties for A, B ⊆ �:

(1) �(A) ≤ �(B) if A ⊆ B ,
(2) �(A ∪ B) ≤ �(A) + �(B), and
(3) �(∅) = 0.

A submeasure � is lower semicontinuous (lsc) if for every A ⊆ � we have that

�(A) = lim
n→∞

�(A ∩ n).

We say that � is unbounded if �(�) = ∞. Mazur proved the following theorem.

Theorem 2.1. [4] The following are equivalent for every ideal I on � :

(1) I is an F�-ideal.
(2) I = Fin(�) for some unbounded lsc submeasure � on �, where

Fin(�) = {A ⊆ � : �(A) <∞}.

For each summable ideal If , let uf(A) =
∑
i∈A f(i) for A ⊆ �. It is easy to see

that uf is an unbounded lsc submeasure on � by

uf(A) =
∑
i∈A
f(i) = lim

n→∞

∑
i∈A∩n

f(i) = lim
n→∞

uf(A ∩ n).

Now we turn to the second comment.
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4 JIALIANG HE ET AL.

Proposition 2.2. There is a Borel function F : F → FDST such that If � IF (f)
for every f ∈ F where

F =

{
f ∈ Q�+ :

∑
n∈�
f(n) = ∞and lim

n→∞
f(n) = 0

}
.

Proof. Let f ∈ F. For each n ∈ �, let

Xn =
{
k ∈ � :

1
n + 2

≤ f(k) <
1
n + 1

}
and Nn = |Xn|. Since If is tall, we have that Nn <∞ for all n ∈ �. Denote

Mn =
n∑
i=0
Ni . Let Y0 = [0,M0) and Yn = [Mn–1,Mn) for each n > 0. It follows that

|Xn| = |Yn| for all n. For each n ∈ �, define

mn1 by f(mn1 ) = maxf[Xn]

and

mnj by f(mnj ) = maxf[Xn \ {mn1 , ... , mnj–1}] for each 1 < j ≤ Nn.

For each n ∈ �, define a bijection hn : Xn → Yn by

hn(mnj ) =Mn–1 + j – 1 for each 1 ≤ j ≤ Nn.

For each n ∈ �, define f′
n : Yn → Q+ by

f′
n(hn(m

n
j )) = f(mnj ) for all 1 ≤ j ≤ Nn.

Let f′ =
⋃
n∈� f

′
n. Define F (f) = f′. It follows that F (f) is nonincreasing by the

definition of f′. Then If � IF (f) is witnessed by h =
⋃
n∈� hn.

Next we show that F is Borel. For any n ∈ � and b > a ≥ 0, define

U = {f ∈ FDST : f(n) ∈ (a, b)} and

Uq = {f ∈ FDST : f(n) = q} for all q ∈ (a, b) ∩Q+.

It follows that U is a basic open set in FDST and U =
⋃
q∈(a,b)∩Q+

Uq . Fix n, U, q,
and Uq as above. By the definition of FDST, for each f ∈ Uq we have that

f(i) ≥ q for all 0 ≤ i < n and f(j) ≤ q for all j > n.

LetA = {q},B = [q,+∞), andC = [0, q]. It is easy to see that the setA× Bn × C�
is Borel in Q�+. For each K ∈ [�]n+1, let PK ⊆ �n+1 be the set of all permutations
of K (i.e., all bijections from K to K). For each a = (a0, a1, ... , an) ∈ PK , define
S(a) = (S0, S1, ... , Sn, ...) ∈ P(�)� by

Sa0 = A,Sa1 = ··· = San = B and Sj = C for all j �∈ {a0, ... , an}.

Denote
∏
S(a) =

∏
i∈� Si . Then

F –1(U ) =
⋃

q∈(a,b)∩Q+

F –1(Uq) =
⋃

q∈(a,b)∩Q+

⋃
K∈[�]n+1

⋃
a∈PK

∏
S(a).

It follows that F –1(U ) is a Borel set and F is Borel. �
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Proposition 2.3. Define a map Λ : summable ideals → ST by

Λ(If) = IF (f) for all If ∈ summable ideals,

where F is the function taken from the Proposition 2.2. Then for each pair If, Ig ∈
summable ideals we have that

If ≤K Ig ⇔ IF (f) ≤K IF (g).

Proof. (⇒): Let If, Ig ∈ summable ideals such that If ≤K Ig . Then we have
that

IF (f) � If ≤K Ig � IF (g).

It follows that IF (f) ≤K IF (g).
(⇐): Let If, Ig ∈ summable ideals such that If �≤K Ig andp : � → � be a map.

Let e1 and e2 be witnesses for If � IF (f) and Ig � IF (g), respectively. By If �≤K Ig ,
there exists A ∈ If such that

(e–1
1 ◦ p ◦ e2)–1(A) �∈ Ig .

Then we have that e1[A] ∈ IF (f) and

e–1
2 (p–1(e1[A])) �∈ Ig ⇔ p–1(e1[A]) �∈ IF (g).

Thus IF (f) �≤K IF (g). �

§3. An answer to Minami and Sakai’s question. In this section, we prove the
following theorem which give a positive answer to a question of Minami and Sakai’s
[5, Question 5.1].

Theorem 3.1. (Summable ideals,≤KB) is countably upward directed.

Proof. Suppose that If ∈ summable ideals. Then lim
n→∞

f(n) = 0 and∑
n∈�
f(n) = ∞. Inductively take {kn : n ∈ �} such that for each n ∈ �,

(1) kn < kn+1,
(2) f(m) < 1/(n + 1) for each m ≥ kn, and
(3) uf([kn, kn+1)) ≥ 1.

Suppose we have already constructed {kj : j ≤ n} such that (1)–(3) holds. Since
limn→∞ f(n) = 0, we can find kn+1 large enough such that (1) and (2) hold. By
Σn∈�f(n) = ∞ we have uf([kn,∞)) = ∞, so we may find kn+1 such that (3) holds.
Denote Nn := uf([kn, kn+1)) ≥ 1 and In := [kn, kn+1) for all n ∈ �. Then

uf(In) = Nn ≥ 1.

Now let {Ifm : m ∈ �} ⊆ summable ideals. For eachm ∈ �, let kmn , I mn ,Nmn be as
above. Then for all n,m ∈ �,

ufm (I mn ) = Nmn ≥ 1.
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For each n ∈ �, let Xn =
∏
m<n
I mn ⊆ �n and X =

⋃
n∈�
Xn. Fix n ∈ �. For any

(i0, i1, ... , in–1) ∈ Xn, define a function f by

f
(
(i0, i1, ... , in–1)

)
=

∏
m<n
fm(im)∏

m<n
Nmn

.

Then

uf(Xn) =
∑

(i0,...,in–1)∈Xn

f
(
(i0, ... , in–1)

)
=

∑
i0∈I 0

n ,...,im∈I n–1
n

f
(
(i0, ... , in–1)

)

=
1∏

m<n
Nmn

·
∑

i0∈I 0
n ,··· ,in–1∈I n–1

n

(∏
m<n

fm(im)

)
=

1∏
m<n
Nmn

·
∏
m<n

ufm (I mn )

= 1,

so uf(X ) = ∞.
By (2), for all n ∈ � we have that

f
(
(i0, i1, ... , in–1)

)
≤ 1

(n + 1)n
for every (i0, i1, ... , in–1) ∈ Xn,

so If is tall.
We will show that for each m ∈ �, Ifm ≤KB If . Fix m ∈ �. Define

�m : X → � by

�m
(
(i0, ... , in–1)

)
= 0,n ≤ m,

�m
(
(i0, ... , in–1)

)
= im,n > m,

Then
∣∣�–1
m (0)

∣∣ <∞ and uf
(
�–1
m (0)

)
<∞. Let i ∈ � \ {0}. If i ∈ I mn for some

n ≤ m then �–1
m (i) = ∅. We assume that i ∈ I mn for some n > m. It follows that∣∣�–1

m (i)
∣∣ ≤ |Xn| <∞ and

uf
(
�–1
m (i)

)
= uf

({
(i0, ... , im, ... , in–1) ∈ X : im = i

})
=
fm(i)
Nmn

·
∑

(i0,...,in–1)

⎛⎜⎝
∏

j<n, j 	=m
fj(ij)∏

j<n,j 	=m
Njn

⎞⎟⎠ =
fm(i)
Nmn

≤ fm(i).

Thus, for every A ⊆ � \ {0} with ufm (A) <∞ we have that uf
(
�–1
m (A)

)
≤

ufm (A) <∞. �

§4. Characterizations of Katětov order among summable ideals. In this section,
we prove the following theorem which is crucial for later section.
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Theorem 4.1. Let If , Ig ∈ ST. Then the following are equivalent:

(1) If ≤K Ig .
(2) There exist p : � → � and 0 < C such that

A[C ] = {n : ug(p–1(n)) ≤ C · f(n)} ∈ I∗
f

and p–1(A[C ]) ∈ I∗
g .

(3) There exists 0 < M ∈ � such that for all l > M and k1 > k0 ≥M , if
ug([k0, k1]) > M · uf([0, l ]), then g(k1) ≤M · f(l).

(4) There exist an interval-to-one map p : � → � and 0 < c < C such that c ·
f(i) ≤ ug(p–1(i)) ≤ C · f(i) for all i.

(5) There exist an interval-to-one map p : � → � and 0 < C such that
ug(p–1(i)) ≤ C · f(i) for all i.

(6) There exists 0 < M ∈ � such that for all k, l ∈ �, if ug([0, k]) > M · uf([0, l ]),
then g(k) ≤M · f(l).

(7) If ≤RB Ig .

Proof. (1)⇒(2): Let p : � → � be a witness for If ≤K Ig . We show that
there exists C > 0 such that A[C ] =

{
n : ug

(
p–1(n)

)
≤ C · f(n)

}
∈ I∗

f . Otherwise,
A[C ] �∈ I∗

f for every C > 0. Thus, we can find pairwise disjoint finite sets {an : 1 ≤
n < �} such that for each 1 ≤ n ∈ �,

(i) f(j) ≤ 1
n2 for any j ∈ an,

(ii) an ⊆ � \ A[n], and
(iii) 1

n2 ≤ uf(an) ≤ 2
n2 .

By (ii),

ug
(
p–1 (an)

)
> n · uf (an) ≥

1
n
.

Let B =
⋃

1≤n<�
an. Then

uf(B) ≤
∞∑
n=1

2
n2 <∞, and ug

(
p–1(B)

)
≥

∞∑
n=1

1
n

= ∞.

This contradicts the definition of p.
(2)⇒(3): Let p and C be such that A[C ] ∈ I∗

f and p–1(A[C ]) ∈ I∗
g . Then

p–1 (� \ A[C ]) ∈ Ig . Take M > C + 1 such that ug
(
p–1 (� \ A[C ]) \M

)
< 1 and

uf ([0,M ]) > 2. Assume l > M , k1 > k0 ≥M with ug([k0, k1]) > Muf([0, l ]).
Consider t = [k0, k1] \ p–1 ([0, l ]). The proof is divided into two cases.

Case 1: p(t) ∩ A[C ] = ∅.
Then t ∩ p–1(A[C ]) = ∅. By k0 ≥M , we have that t ⊂ p–1(� \ A[C ]) \M . By

the definition of M we have ug(t) < 1. On the other hand we have

ug

(
[k0, k1] ∩ p–1([0, l ]) ∩ p–1(� \ A[C ])

)
≤ ug

(
p–1(� \ A[C ]) \M

)
< 1
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and

ug

(
[k0, k1] ∩ p–1([0, l ]) ∩ p–1(A[C ])

)
≤ C · uf

(
[0, l ] ∩ A[C ])

)
≤ C · uf([0, l ]).

Thus

ug

(
[k0, k1] ∩ p–1([0, l ])

)
≤ 1 + C · uf([0, l ])

= 2 + C · uf([0, l ]) – 1 < (C + 1) · uf([0, l ]) – 1

and

ug(t) = ug
(

[k0, k1] \ p–1 ([0, l ])
)

= ug([k0, k1]) – ug
(

[k0, k1] ∩ p–1([0, l ])
)

> M · uf([0, l ]) – ((C + 1) · uf([0, l ]) – 1) > 1.

A contradiction.

Case 2: p(t) ∩ A[C ] �= ∅.
Let m ∈ t and p(m) ∈ A[C ]. Then m ≤ k1, p(m) > l , and ug

(
p–1(p(m))

)
≤

C · f(p(m)). By the monotonicity of f and g, we have

g(k1) ≤ g(m) ≤ ug
(
p–1(p(m))

)
≤ C · f(p(m)) ≤ C · f(l) < M · f(l).

(3)⇒(4): Choose k0 such that

ug([M,k0)) = ug([M,k0 – 1]) > M · uf([0,M ]).

We recursively choose a sequence k0 < k1 < ··· such that for each i, ki+1 is the
minimal such that ug([ki , ki+1)) ≥M · f(M + 1 + i). Then we have

ug([M,ki+1)) > M · uf([0,M ]) +M ·
i∑
j=0

f(M + 1 + j) =M · uf([0,M + 1 + i ]).

Thus g(ki+1 – 1) ≤M · f(M + 1 + i) by the assumption of (3). The proof is
divided into two cases.

Case 1. ki+1 – 1 = ki . Clearly we have that g(ki+1 – 1) = ug([ki , ki+1)) =M ·
f(M + 1 + i).

Case 2. ki+1 – 1 > ki . By the definition of ki+1, we have ug([ki , ki+1 – 1)) < M ·
f(M + 1 + i). This implies that

M · f(M + 1 + i) ≤ ug([ki , ki+1)) = ug([ki , ki+1 – 1)) + g(ki+1 – 1)

< 2M · f(M + 1 + i).

Let p : � → � be an interval-to-one map such that p–1([0,M ]) = [0, k0) and
p–1(M + 1 + i) = [ki , ki+1) for every i. Define

C = max
{

2M,max
{
ug(p–1(n))
uf(n)

: n ≤M
}}
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and

c = min
{
M,min

{
ug(p–1(n))
uf(n)

: n ≤M
}}
.

Then, for each n ≤M we have that

c · f(n) ≤
ug
(
p–1(n)

)
f(n)

· f(n) = ug
(
p–1(n)

)
=
ug
(
p–1(n)

)
f(n)

· f(n) ≤ C · f(n).

(4)⇒(7): For every A ⊆ �, we have that

uf(A) <∞ ⇒ ug
(
p–1(A)

)
≤ C · uf(A) <∞

and

ug
(
p–1(A)

)
<∞ ⇒ uf(A) ≤ 1

c
· ug

(
p–1(A)

)
<∞.

(4)⇒(5), (5)⇒(1), (7)⇒(1) are clear.
(5)⇒(6): Let C be as in (5). DefineM = C . We will show that M is as desired. Let

l, k ∈ � with ug([0, k]) > M · uf([0, l ]). By the assumption of (5), ug
(
p–1([0, l ])

)
≤

M · uf([0, l ]), so [0, k] \ p–1([0, l ]) �= ∅. Take m ∈ [0, k] \ p–1([0, l ]). Then m ≤ k
and p(m) > l . It follows that

g(k) ≤ g(m) ≤ ug
(
p–1(p(m))

)
≤M · f(p(m)) ≤M · f(l).

(6)⇒(5): Choose k0 such that

ug([0, k0)) = ug([0, k0 – 1]) > M · f(0).

Recursively define a sequencek0 < k1 < ··· such that for each i > 0,ki is the minimal
such that ug([ki–1, ki)) ≥M · f(i). Then we have

ug([0, ki)) > M ·
i∑
j=0

f(j) =M · uf([0, i ]).

Thus g(ki – 1) ≤M · f(i) by the assumption of (5). The proof is divided into two
cases.

Case 1. ki – 1 = ki–1. Clearly we have that g(ki – 1) = ug([ki–1, ki)) =M · f(i).

Case 2. ki – 1 > ki–1. By the choice of ki , we have ug([ki–1, ki – 1)) < M · f(i). This
implies that

M · f(i) ≤ ug([ki , ki+1)) = ug([ki , ki+1 – 1)) + g(ki+1 – 1) < 2M · f(i).

Let p : � → � be an interval-to-one map such that p–1(0) = [0, k0) and p–1(i) =
[ki–1, ki) for every i > 0. It is easy to see that p and C = 2M . �

Remark: It is worth to note that p in the proof of (3)⇒(4) and (6)⇒(5) is a
surjection and maxp–1(n) < minp–1(n + 1) for n ∈ � (see Figure 1).
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p–1(0)

︸ ︷︷ ︸
p–1(1)

︸ ︷︷ ︸
p–1(2)

︸ ︷︷ ︸
p–1(3)

Figure 1. An example of interval-to-one map p in Remark.

§5. The structure of (ST,≤K ) in the sense of Galois–Tukey connection. In this
section we prove that (ST,≤K ) �GT (��,≤∗) (see Theorem 5.6). We first prove
(ST,≤K ) ≤GT (��,≤∗) (see Lemma 5.4).

We will define an order (H,≤◦) such that (H,≤◦) is upward directed and

(ST,≤K ) ≤GT (H,≤◦) ≤GT (��,≤∗).

To define (H,≤◦), we need the following.
First, we define a set Φ ⊆ Q<�+ × �<� by (s, p) ∈ Φ if and only if (∗) there exist

ls , ks ∈ � such that (s, p) satisfies the following (see Figure 2):

(i) s : ls → Q+ and s(j) ≥ s(j + 1) for all j < ls – 1,
(ii) 0 = p(1) < p(2) < ··· < p(ks) = ls – 1,
(iii) us

([
p(i), p(i + 1)

))
≥ 1 for each 0 < i < ks , and

(iv) s(j) ≤ 1
i for each j ≥ p(i) and 0 < i < ks .

For any (s, p) ∈ Φ, define a subset of Φ by

Φ(s, p) = {(t, q) ∈ Φ : s � t, p � q and kt = ks + 1} .

Define an order �(s,p) on Φ(s, p) as follows: for each (t1, q1), (t2, q2) ∈ Φ(s, p),
(t1, q1) �(s,p) (t2, q2) if and only if there exists a map

� :
[
q2(ks), q2(ks + 1)

)
→
[
q1(ks), q1(ks + 1)

)
such that

ut2(�–1(i)) ≤ t1(i) for each i ∈
[
q1(ks), q1(ks + 1)

)
.

It is easy to see that �(s,p) is transitive.

Lemma 5.1. (Φ(s, p),�(s,p)) is upward directed for all (s, p) ∈ Φ.

Proof. Fix (t0, q0), (t1, q1) ∈ Φ(s, p). Define (t, q) as follows. Define I0 =[
q0(ks), q0(ks + 1)

)
and I1 =

[
q1(ks), q1(ks + 1)

)
and I = I0 × I1.

Fix i ∈ {0, 1}. Denote Ni := uti
(
Ii) ≥ 1. For every (j0, j1) ∈ I , define t by

t
(
(j0, j1)

)
=
t0(j0) · t1(j1)
N0 ·N1

.
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Figure 2. An element (s, p) of set Φ.

Let M = |I1| · |I2|. We can find a bijection e from I to [p(ks) + 1, p(ks) +M ]
such that

t(e–1(j)) ≥ t(e–1(j + 1)) for all j ∈ [p(ks) + 1, p(ks) +M ].

Let q(ks) = p(ks) and q(ks + 1) = p(ks) +M + 1. Then

I = e–1(
[
q(ks), q(ks + 1)

)
).

Without loss of generality, we can regard I as
[
q(ks), q(ks + 1)

)
.

We will show that (t, q) ∈ Φ(s, p) and (ti , qi) �(s,p) (t, q) for i ∈ {0, 1}.
(1) (t, q) ∈ Φ(s, p):
Use

ut(I ) =
∑

(j0,j1)∈I

t0(j0) · t1(j1)
N0 ·N1

= 1

and

t
(
(j0, j1)

)
=
t0(j0) · t1(j1)
N0 ·N1

≤ 1
N0 ·N1

· 1
k2
s

≤ 1
ks

for all (j0, j1) ∈ I.

(2) (ti , qi) �(s,p) (t, q) for i ∈ {0, 1}:
Let �0 and �1 be the projection map onto the first coordinate and second

coordinate, respectively. For any j ∈ I0, we have that

�–1
0 (j) = {(j, j1) : j1 ∈ I1}

and

ut
(
�–1

0 (j)
)

=
t0(j)
N0

·
∑
j1∈I1

t1(j1)
N1

=
t0(j)
N0

≤ t0(j).

Similarly, we have ut
(
�–1

1 (j)
)
≤ t1(j). �
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For any (s, p) ∈ Φ, define a cofinal subset Φ̃(s, p) of Φ(s, p) such that (Φ̃(s, p),
�(s,p)) is an increasing chain. We define Φ̃(s, p) as follows. Enumerate Φ(s, p) =
{(sn, pn), n ∈ �}. Let (t0, q0) = (s0, p0). Suppose we have already constructed
{(ti , qi) : i < n}. Then we take (tn, qn) such that (tn–1, qn–1) �(s,p) (tn, qn) and
(sn, pn) �(s,p) (tn, qn) by Lemma 5.1. Define

Φ̃(s, p) = {(tn, qn) : n < �}.

Define

H =
{
h ∈ ΦΦ : h((s, p)) ∈ Φ̃(s, p) for all (s, p) ∈ Φ

}
.

Define the order ≤◦ on H as follows: for each h, h′ ∈ H, h ≤◦ h′ if and only if
h((s, p)) �(s,p) h

′((s, p)) for all but finitely many (s, p) ∈ Φ. It is easy to see that
(H,≤◦) is upward directed by the definition of H.

Next, we prove the following:

Lemma 5.2. (H,≤◦) ≤GT (��,≤∗).

Proof. Enumerate

Φ = {(si , pi), i ∈ �}.

Enumerate

Φ̃(si , pi) =
{(
t

(si ,pi )
j , q

(si ,pi )
j

)
: j ∈ �

}
in such way that (t(si ,pi )j , q

(si ,pi )
j ) �(si ,pi ) (t(si ,pi )k , q

(si ,pi )
k ) for all j < k.

Define �+ : �� → H as follows. For every g ∈ �� and i ∈ �, let

�+(g)((si , pi)) =
(
t

(si ,pi )
g(i) , q

(si ,pi )
g(i)

)
.

Define �– : H → �� as follows. For every h ∈ H and i ∈ �, let

h((si , pi)) =
(
t

(si ,pi )
�–(h)(i), q

(si ,pi )
�–(h)(i)

)
for all i ∈ �.

We claim that

∀h ∈ H ∀g ∈ ��(�–(h) ≤∗ g ⇒ h ≤◦ �+(g)).

Suppose h ∈ H, g ∈ �� , and �–(h) ≤∗ g. There is n ∈ � such that for each i ≥ n
we have �–(h)(i) ≤ g(i). Then h((si , pi)) �(si ,pi ) �+(g)((si , pi)) for all but finitely
many i ∈ �, i.e., h ≤◦ �+(g). �

Now, we prove the following:

Lemma 5.3. (ST,≤K ) ≤GT (H,≤◦).

Proof. Define �+ : H → ST as follows. Define q–1 ∈ �1 by q–1(1) = 0 and
t–1(0) = 1. For each h ∈ H, let (th0 , q

h
0 ) = h((t–1, q–1)) and (thn+1, q

h
n+1) = h((thn , q

h
n ))
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Figure 3. The definition of (s ′t , p
′
t) in the proof of Lemma 5.3.

for all n ∈ �. Let g =
⋃
n∈�
thn and �+(h) = Ig . Since q–1 = (q–1(1)), we have that

qh0 = (qh0 (1), qh0 (2)), and

qhn = (qhn (1), qhn (2), ... , qhn (n + 2)) for n ∈ �, i.e., kthn = n + 2

(see (∗) at the beginning of Section 4 for the definition of kthn ).
Define �– : ST → H as follows. For If ∈ ST, take 0 = m1 < m2 < ··· < mi < ···

such that for each i > 0,

uf([mi,mi+1)) ≥ 1 and f(j) ≤ 1
i

for every j ≥ mi.

For each n ≥ 1, let p(n) = mn, pn = (p(1), ... , p(n)), and sn = f
∣∣
[0,p(n)). For every

(t, q) ∈ Φ with q = (q(1), ... , q(kt)), let

p′t =
(
q(1), ... , q(kt), q(kt) + p(kt + 1) – p(kt)

)
=
(
p′t(1), ... , p′t(kt), p

′
t(kt + 1)

)
.

We have that:

• p′t(j) = q(j) for 1 ≤ j ≤ kt ,
• p′t(kt + 1) = q(kt) + p(kt + 1) – p(kt), and
• s ′t = t�f

∣∣
[p(kt),p(kt+1)).

Then (s ′t , p
′
t) ∈ Φ(t, q) (see Figure 3). Take (s∗t , p

∗
t ) ∈ Φ̃(t, q) such that (s ′t , p

′
t) �(t,q)

(s∗t , p
∗
t ). Define �–(If)((t, q)) = (s∗t , p

∗
t ).
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We claim that

∀If ∈ ST ∀h ∈ H(�–(If) ≤◦ h ⇒ If ≤K �+(h)).

Suppose If ∈ ST, h ∈ H, and �–(If) ≤◦ h. Let {sn : n ∈ �} and p be like in the
definition of �–(If). Then we have that

�–(If)((t, q)) �(t,q) h((t, q))

for all but finitely many (t, q) ∈ Φ. By the definition of �+, there exists {(thn , q
h
n ) :

n ∈ �}. Then there is N such that for n > N , we have that

�–(If)((thn , q
h
n )) �(thn ,q

h
n ) h((thn , q

h
n )) = (thn+1, q

h
n+1).

Since �–(If)((thn , q
h
n )) = (s∗

thn
, p∗
thn

), we have that

(s ′
thn
, p′
thn

) �(thn ,q
h
n ) (s∗

thn
, p∗
thn

) �(thn ,q
h
n ) (thn+1, q

h
n+1).

Then for each n > N , there exists a map

�′n : [qhn+1(n + 2), qhn+1(n + 3)) → [p′
thn

(n + 2), p′
thn

(n + 3))

such that

uth
n+1

(�′–1
n (i)) ≤ s ′

thn
(i) for all i ∈ [p′

thn
(n + 2), p′

thn
(n + 3)).

Define �n : [p′
thn

(n + 2), p′
thn

(n + 3)) → [p(n + 2), p(n + 3)) by

�n(j) = j – p′
thn

(n + 2) + p(n + 2) for all j ∈ [p′
thn

(n + 2), p′
thn

(n + 3)).

Define �n = �n ◦ �′n for each n > N . We have that

uth
n+1

(�–1
n (i)) ≤ sn+3(i) for each i ∈ [p(n + 2), p(n + 3)).

There exist �–1 : [0, qh0 (2)) → [0, p(2)) and c–1 > 0 such that

uth0
(�–1

–1(i)) ≤ c–1 · s2(i) for each i ∈ [0, p(2)).

For everym ≤ N , there exist �m : [qhm(m + 2), qhm(m + 3)) → [p(m + 2), p(m + 3))
and cm > 0 such that

uth
m+1

(�–1
m (i)) ≤ cm · sm+3(i) for each i ∈ [p(m + 2), p(m + 3)).

Let � =
⋃

n∈�∪{–1}
�n and C = max{1, c–1, c0, ... , cN}. Then we have that

ug(�–1(i)) ≤ C · f(i) for i ∈ � (see Figure 4).

Then � witnesses If ≤K Ig = �+(h) by Theorem 4.1(5). �

Combining Lemmas 5.2 and 5.3 we have:

Lemma 5.4. (ST,≤K ) ≤GT (��,≤∗).

The proof of the other side is short.
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�

�
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p(3) p(4)
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p(n+1)

sn+2

p(n+2)

sn+3

p(n+3)

f

q–1(1)

th0

qh0 (2)

th1

qh1 (3)

th2

qh2 (4) qh
n–1(n+1)

thn

qhn (n+2)

th
n+1

qh
n+1(n+3)

g

�0
�1

�n–1 �n ···

Figure 4. � witnesses If ≤K Ig in the proof of Lemma 5.3.

Lemma 5.5. (ST,≤K ) ≥GT (��,≤∗).

Proof. Define �+ : ST → �� as follows. For each Ig ∈ ST and n ≥ 1, there
exists �+(Ig) such that

ug
([
�+(Ig)(n – 1), �+(Ig)(n)

))
≥ n2.

Define �– : �� → ST as follows. For each r ∈ �� , take a partition (Arn : n ∈ �)
of � into successive finite intervals such that |Ar0| ≥ 1,

min(Arn) ≥ r(n), and |Arn| ≥ max{n, |Arn–1|} for each n ∈ � \ {0}.

Then define fr : � → Q+ by

fr(k) = 1/|Arn| where n such that k ∈ Arn.

Let �–(r) = Ifr .
We claim that

∀r ∈ �� ∀Ig ∈ ST(�–(r) ≤K Ig ⇒ r ≤∗ �+(Ig)).

Take arbitrary r ∈ �� and Ig ∈ ST such that Ifr = �–(r) ≤K Ig . By
Theorem 4.1(5), there exist a map p : � → � and C > 0 such that

ug(p–1(i)) ≤ C · fr(i) for all i ∈ �.
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By the Remark (above Figure 1), we may assume that p is a nondecreasing surjection
and p(i) ≤ i . Thus maxp–1(i) ≥ i for all i ∈ �. Then for large enough n, there is
jn such that

ug([0, jn]) = ug
(
p–1
( ⋃

0≤m≤n
Arm

))
≤ C · ufr

( ⋃
0≤m≤n

Arm

)
= n · C ≤ n2

≤ ug
([
�+(Ig)(n – 1), �+(Ig)(n)

))
≤ ug

([
0, �+(Ig)(n)

))
.

Thus jn ≤ �+(Ig)(n) for large enough n. Then for large enough n we have that

r(n) ≤ max
( ⋃

0≤m≤n
Arm

)
≤ maxp–1

( ⋃
0≤m≤n

Arm

)
= jn.

Therefore we have that r(n) ≤ jn ≤ �+(Ig)(n) for large enough n. �

Theorem 5.6. (ST,≤K ) �GT (��,≤∗).

Proof. Combine Lemma 5.4 with Lemma 5.5. �

§6. The structure of (ST,≥K ) in the sense of Galois–Tukey connection. In this
section we prove that (ST,≥K ) �GT (��,≤∗). First, we prove the following:

Lemma 6.1. (ST,≥K ) ≤GT (��,≤∗).

Proof. Let �↑� be all strictly increasing functions from � to � \ {0}. It suffices
to show that (ST,≥K ) ≤GT

(
�↑�,≤∗) because

(
�↑�,≤∗) ≤GT (��,≤∗).

Define �– : ST → �↑� as follows. For each If ∈ ST, define �–(If) ∈ �↑� by
�–(If)(0) = 1 and

�–(If)(k) = min
{
n > �–(If)(k – 1) : ∀m ≥ n

(
f(m) ≤ 1

k

)}
for all k ≥ 1.

Define �+ : �↑� → ST as follows. For each x ∈ �↑� , define F : �↑� → FDST by
F (x)(k) = 1 for all 0 ≤ k < x(1), and

F (x)(k) =
1
n

where n is such that k ∈ [x(n), x(n + 1)).

Then IF (x) is tall for each x ∈ �↑� . Let �+(x) = IF (x).
We claim that

∀If ∈ ST ∀x ∈ �↑� (�–(If) ≤∗ x ⇒ If ≥K �+(x)
)
.

Let If ∈ ST and x ∈ �↑� such that �–(If) ≤∗ x. We will show that f ≤∗ F (x)
and then id : � → � will be a witness for If ≥K IF (x). To see that f ≤∗ F (x), take
N > 0 such that

�–(If)(n) ≤ x(n) for each n ≥ N.

Then for each n ≥ N and k ∈ [x(n), x(n + 1)) we have k ≥ �–(If)(n). By the
definition of �–(If), we have f(k) ≤ 1

n = F (x)(k). It follows that f ≤∗ F (x). �

Lemma 6.2. (ST,≥K ) ≥GT (��,≤∗).
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Proof. Define �– : �� → ST as follows. For each x ∈ �� , take a partition {Axn :
n ∈ � \ {0}} of � into successive finite intervals such that for all n > 0:

(1) minAxn ≥ min{x(n), n} and
(2) |Axn | ≥ n2(x(n) + 1).

Then define gx ∈ FDST by

gx(k) =
1
n

where n is such that k ∈ Axn .

Let �–(x) = Igx . It follows that �–(x) is tall for all x ∈ �� .
Define�+ : ST → �� as follows. SupposeIf ∈ ST. For eachn > 0, define�+(If)

by �+(If)(0) = 0 and �+(If)(n) =

min
{
m ≥ n + 1 : m ≥ uf

([
0, �+(If)(n – 1)

])
& ∀k ≥ m

(
f(k) ≤ 1

(n + 1)2

)}
.

We claim that

∀If ∈ ST ∀x ∈ ��(�–(x) ≥K If ⇒ x ≤∗ �+(If)).

Let If ∈ ST and x ∈ �� such that x �≤∗ �+(If). Let �–(x) = Igx . We will show
for eachM > 0, there are l > M , k1 > k0 ≥M such that:

(3) ugx ([k0, k1]) > M · uf([0, l ]) and
(4) gx(k1) > M · f(l).

Then, �–(x) �≥K If follows from Theorem 4.1. To prove (3) and (4), fix M > 0
and let n0 > M be such that x(n0) > �+(If)(n0). Define l = �+(If)(n0 – 1) and
k0 < k1 such that [k0, k1] = Axn0

. It follows that l > M , k1 > k0 ≥M and

ugx ([k0, k1]) ≥ n0 · (x(n0) + 1) > n0 · x(n0) > M · uf([0, l ]).

Thus (3) holds. By the definition of l, we have that f(l) ≤ 1
n2

0
and

gx(k1) =
1
n0

= n0 ·
1
n2

0

> M · f(l).

Thus (4) holds. �

Theorem 6.3. (ST,≥K ) �GT (��,≤∗).

Proof. Use Lemmas 6.1 and 6.2. �

§7. �K on FDST is Borel bireducible to l∞. In this section we will prove that l∞
is Borel bireducible to �K on FDST.

Definition 7.1. (1) Let C = {(An) ∈ P(�)� : ∀n(An ⊆ An+1)} and for each
(An), (Bn) ∈ C ,

(An)H (Bn) ⇐⇒ ∃n∀m(Am ⊆ Bn+m ∧ Bm ⊆ An+m).

(2) Let X0 =
∏
n<�
n, where n = {0, 1, ... , n – 1}. For each α, 	 ∈ X0, define

αEK�	 ⇐⇒ ∃n∀m(|α(m) – 	(m)| ≤ n).
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It is proved in [6, Proposition 19] that H �B l∞ �B EK� , so it suffices to prove
that �K≤B H and EK� ≤B�K .

7.1. The proof of �K≤B H . This will be proved in Corollary 7.10. The proof
consists of two steps. We first show that the so-called decomposable equivalence
relations are all Borel reducible to H (Theorem 7.5). Then we prove that �K is
decomposable (Theorem 7.9). Before this, we need some preparations.

Lemma 7.2. �K is an F� subset of F2
DST.

Proof. Denote �K= {(f, g) ∈ F2
DST : If ≤K Ig}. By Theorem 4.1(6), �K=

{(f, g) : ∃n ∈ � \{0},∀k ∈�,∀l ∈ �
[
ug([0, k])≤ n · uf([0, l ]) or g(k)≤ n · f(l)

]
}

=
⋃

n∈�\{0}

⋂
k∈�

⋂
l∈�

[
{(f, g) : ug([0, k]) ≤ n · uf([0, l ])} ∪ {(f, g) : g(k) ≤ n · f(l)}

]
.

For each n > 1, let

Fn =
⋂
k∈�

⋂
l∈�

[
{(f, g) : ug([0, k]) ≤ n · uf([0, l ])} ∪ {(f, g) : g(k) ≤ n · f(l)}

]
.

Then Fn is closed. Thus �K is F� .
Denote�K= {(f, g) : If ≥K Ig}. Similarly we can prove that�K isF� . It follows

that �K=�K ∩ �K is F� . �

We need the following characterization of �K .

Lemma 7.3. Let f, g ∈ FDST. Then f �K g if and only if there exists n > 0 such
that for each k ∈ � we have that

f(lk)
n

≤ g(k) ≤ n · f(l ′k),

where lk, l ′k are such that

uf([0, lk – 1]])
n

≤ ug([0, k]) <
uf([0, lk ])
n

and

n · uf([0, l ′k ]) < ug([0, k]) ≤ n · uf([0, l ′k + 1]).

Proof. (⇒): Recall that f �K g means If ≤K Ig and Ig ≤K If . By
Theorem 4.1(6), there existsM1 such that for all k and l ′ we have that

ug([0, k]) > M1 · uf([0, l ′]) ⇒ g(k) ≤M1 · f(l ′).

For the same reason, there existsM2 such that for all k and l we have that

uf([0, l ]) > M2 · ug([0, k]) ⇒ f(l) ≤M2 · g(k).

Let n = max{M1,M2}. Then we have that

ug([0, k]) > n · uf([0, l ′]) ≥M1 · uf([0, l ′]) ⇒ g(k) ≤M1 · f(l ′) ≤ n · f(l ′)
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and

uf([0, l ]) > n · ug([0, k]) ≥M2 · ug([0, k]) ⇒ f(l) ≤M2 · g(k) ≤ n · g(k).

Define

lk = min
{
l ∈ � : ug([0, k]) <

uf([0, l ])
n

}
and

l ′k = max
{
l ′ ∈ � : ug([0, k]) > n · uf([0, l ′])

}
.

We have that

n · uf([0, l ′k ]) < ug([0, k]) ≤ n · uf([0, l ′k + 1])

and

uf([0, lk – 1]])
n

≤ ug([0, k]) <
uf([0, lk])
n

.

It follows that

f(lk)
n

≤ g(k) ≤ n · f(l ′k).

(⇐): For each k ∈ �, we have lk = min{l ∈ � : ug([0, k]) <
uf ([0,l ])
n }. For each

l ∈ � we have that

ug([0, k]) <
uf([0, l ])
n

⇒ l ≥ lk.

For each l ≥ lk we have that

f(l)
n

≤ f(lk)
n

≤ g(k).

It follows that for each k ∈ �

uf([0, l ]) > n · ug([0, k]) ⇒ f(l) ≤ n · g(k).

By Theorem 4.1(6), we have Ig ≤K If .
If ≤K Ig can be proved in a similar way. �

Now we define decomposable equivalence relations.

Definition 7.4. Let F be a F� equivalence relation on Borel space X. We call F is
decomposable on X if there is a sequence {Fn : n ∈ �} of closed subsets of X 2 such
that:

(1) For each n < �, Fn ⊆ Fn+1 and Fn ◦ Fn ⊆ Fn+1 (i.e., xFny ∧ yFnz ⇒
xFn+1z).

(2) F =
⋃
n∈� Fn.

(3) [U ]n = {x ∈ X : ∃z ∈ U (zFnx)} is Borel for each open subset U of X and
n ∈ �.

Theorem 7.5. Let F be an F� equivalence relation such that F is decomposable on
Borel space X. Then F ≤B H .
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Proof. Let {Fn : n < �} be a sequence which witnesses that F is decomposable.
Fix a basis {Un : n ∈ �} of X. For each n ∈ �, define a functionfn : X → P(�) by

fn(x) = {k ∈ � : ∃z ∈ Uk(zFnx)}.
By (3) of Definition 7.4, for each m ∈ � we have that

f–1
n ({A ⊆ � : m ∈ A}) = [Um]n

is Borel. It follows that fn is a Borel function for each n ∈ �. By (1) of Definition
7.4, we have that

fn(x) ⊆ fn+1(x) for each n ∈ � and x ∈ X.
We prove that Φ : x �→ (fn(x)) is a Borel reduction from F to H. Φ is a Borel

map by the following: For any open subset
∏
n∈�

Un of C, we have

Φ–1

(∏
n∈�

Un

)
=
⋂
n∈�
f–1
n (Un).

It follows that Φ is Borel by fn being Borel for all n ∈ �.
Then we show that Φ is a reduction from F to H. Let x, y ∈ X such that xFy.

Then there exists n ∈ � such that xFny. Therefore, for any z ∈ X such that zFmx
for some m ∈ �, we have that

zFmax{n,m}+1y.

It follows that fm(x) ⊆ fn+1+m(y) for allm ∈ �. Similarly, there exists n′ such that
fm(y) ⊆ fn′+1+m(x) for all m ∈ �. Let N = max{n + 1, n′ + 1}. We have that

∀m ∈ �(fm(x) ⊆ fN+m(y) ∧ fm(y) ⊆ fN+m(x)).

Conversely, let x, y ∈ X such that (fn(x))H (fn(y)). Then there exists n ∈ �
such that

fm(x) ⊆ fn+m(y) for all m ∈ �.
Fix n as above. For each m ∈ �, define F xm = {z : zFmx}. Then for each k ∈ � we
have that

Uk ∩ F xm �= ∅ =⇒ k ∈ fm(x) =⇒ k ∈ fn+m(y) =⇒ Uk ∩ F yn+m �= ∅.
Since F yn+m is closed, we have F xm ⊆ F yn+m. Take m large enough such that xFmx,
then we have that

xFmx ⇒ x ∈ F xm ⇒ x ∈ F yn+m ⇒ xFn+my.

It follows that xFy. �
Next, we will show that �K is decomposable. We need some observations.

Definition 7.6. For each n ∈ �, define Rn, Sn, En, and Fn on FDST as follows:
(1) fRng if and only if there exists an interval-to-one map p : � → � such that
ug
(
p–1(i)

)
≤ n · f(i) for all i ∈ �.

(2) fSng if and only if for all k, l ∈ �, ug([0, k]) > n · uf([0, l ]) implies g(k) ≤
n · f(l).
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(3) fEng if and only if fRng and gRnf.
(4) fFng if and only if fSng and gSnf.

Lemma 7.7. Let f, g, h ∈ FDST. For each pair n ≤ m we have follows:

(1) fRng ⇒ fRmg; fSng ⇒ fSmg; fEng ⇒ fEmg; fFng ⇒ fFmg.
(2) fRng ⇒ fSng; fSng ⇒ fR2ng.
(3) fRng ∧ gRnh ⇒ fRn2h; fEng ∧ gEnh ⇒ fEn2h.
(4) fSng ∧ gSnh ⇒ fS4n2h; fFng ∧ gFnh ⇒ fF4n2h.

Proof. (1): The proof is obvious.
(2): Use the proof of Theorem 4.1 (5) ⇒ (6) and (6) ⇒ (5).
(3): Letf, g, h ∈ FDST such thatfRng and gRnh. Then there exist p1 and p2 such

that

ug(p–1
1 (i)) ≤ n · f(i) and uh(p–1

2 (i)) ≤ n · g(i) for all i ∈ �.

Then

uh((p1 ◦ p2)–1(i)) = uh(p–1
2 (p–1

1 (i))) ≤ n · ug(p–1
1 (i)) ≤ n2 · f(i)

for all i ∈ �. It follows that fRn2h.
Similarly, we can prove that fEng, gEnh ⇒ fEn2h.
(4): By (2) we have thatfSng ⇒ fR2ng and gSnh ⇒ gR2nh. Then by (3) we have

that fR2ng ∧ gR2nh ⇒ fR4n2h ⇒ fS4n2h. �

Lemma 7.8. [U ]n = {f ∈ FDST : ∃g ∈ U (fFng)} is Borel for every open subset
U of FDST and n ≥ 1.

Proof. Fix n ≥ 1. Without loss of generality, assume U is the form of
(
∏
i<m

(pi , qi) ×
∏
i≥m

Q+) ∩ FDST for some m ∈ �, where 0 ≤ pi < qi ∈ Q+ for each

i < m. Fix m as above. Denote

S = {s ∈ Qm+ : ∀i < m – 1
(
s(i) ≥ s(i + 1)

)
∧ ∀i < m

(
pi < s(i) < qi

)
}.

For each s ∈ S, let Ts be the set of all t ∈ Q<�+ such that:

(1) For each l < |t| – 1, t(l) ≥ t(l + 1).
(2) ut ([0,|t|–2])

n ≤ us([0, m – 1]) < ut ([0,|t|–1])
n .

(3) For each l ′ < |t| and k < m,

us([0, k]) > n · ut([0, l ′]) ⇒ s(k) ≤ n · t(l ′).

(4) For each l < |t| and k < m,

us([0, k]) <
ut([0, l ])
n

⇒ s(k) ≥ t(l)
n
.

Claim. [U ]n =
⋃
s∈S

⋃
t∈Ts

{
f ∈ FDST : f

∣∣
|t| = t

}
.

Proof. (⊆): For each f ∈ [U ]n there exists g ∈ U such that fFng. Then g
∣∣
m

=
s ∈ S. Define ls by

ls = min{l > 1 : uf([0, l – 1]) > n · us([0, m – 1])}.
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Let t = f
∣∣
ls

. It is easy to see that t satisfies (1) by f ∈ FDST. (2) follows from the
definition of ls . By fFng we have (3) and (4). It follows that t ∈ Ts .

(⊇): Let s ∈ S and t ∈ Ts and f ∈ FDST such that f
∣∣
|t| = t. Let l = |t|. Then we

have that

uf([0, l – 2])
n

≤ us([0, m – 1]) <
uf([0, l – 1])

n
.

We will find g extending s such that g ∈ U and fFng. It suffices to construct a
sequence {g(i) ∈ Q+ : i < �} such that:

(5) g(i) = s(i) for each i < m and g(i – 1) ≥ g(i) for each i ≥ m.
(6) For each i ≥ m,

uf([0, l – 2 + i – m])
n

≤ ug([0, i – 1]) <
uf([0, l – 1 + i – m])

n

and g(i – 1) ≥ f(l–1+i–m)
n .

(7) For each i ≥ m, if

n · uf([0, l ′]) < ug([0, i – 1]) ≤ n · uf([0, l ′ + 1]),

then l ′ < l – 1 + i – m and g(i – 1) ≤ n · f(l ′).
(8) lim

n→∞
g(n) = 0.

Then (5) ⇒ g ∈ U , (3)(5)(7) ⇒ fSng, and (4)–(6) ⇒ gSnf.
Suppose we have already constructed {g(i) : i < j} such that (5)–(7) hold for

each i < j. Let


j =
uf([0, l – 1 + j – m])

n
– ug([0, j – 1]).

Define

g(j) = max{
j ,
f(l + j – m)

n
}.

By (6) for j – 1, we have


j ≤
f(l – 1 + j – m)

n
≤ g(j – 1).

It follows that g(j) ≤ g(j – 1) and g(j) satisfies (5).
By g(j) = max{
j , f(l+j–m)

n }, i.e.,

f(l + j – m)
n

≤ g(j) and 
j ≤ g(j) < 
j +
f(l + j – m)

n
,

we have that

uf([0, l – 1 + j – m])
n

≤ ug([0, j]) <
uf([0, l – 1 + j – m])

n
+
f(l + j – m)

n

=
uf([0, l + j – m])

n
.

It is follows that g(j) satisfies (6).
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Assume that

n · uf([0, l ′]) < ug([0, j]) ≤ n · uf([0, l ′ + 1]).

By n ≥ 1 and

ug([0, j]) <
uf([0, l + j – m])

n
≤ n · uf([0, l + j – m]),

we have that l ′ < l + j – m and

g(j) ≤ f(l – 1 + j – m)
n

≤ n · f(l – 1 + j – m) ≤ n · f(l ′).

It is follows that g(j) satisfies (7).
(8) follows from (7) for j ≥ m. �

By the Claim above, we have that [U ]n is Borel.

Theorem 7.9. �K is decomposable on a Borel space FDST.

Proof. �K is decomposable which is witnessed by FDST being Borel and {F4n2 :
n ∈ �} from Definition 7.6. We show that FDST is a Borel subset of Q�+. Recall that

f ∈ FDST ⇔ (
∞∑
n=0

f(n) = +∞) ∧ ( lim
n→∞

f(n) = 0) ∧ (∀n ∈ �(f(n) ≥ f(n + 1)).

Define

A = {f ∈ Q�+ :
∞∑
n=0

f(n) = +∞},

B = {f ∈ Q�+ : lim
n→∞

f(n) = 0}, and

Cn = {f ∈ Q�+ : f(n) ≥ f(n + 1)} for each n ∈ �.

We have

f ∈ A⇔ ∀M ∈ � ∃N ∈ �
(
N∑
n=0

f(n) ≥M
)

and

f ∈ B ⇔ ∀m ∈ � ∃N ∈ � ∀n ≥ N
(
f(n) <

1
m

)
.

Thus A and B are Borel.
Obviously, Cn is Borel for each n ∈ �. It follows that FDST is Borel by FDST =

A ∩ B ∩ (
⋂
n∈�
Cn). �

Corollary 7.10. �K≤B H .

Proof. Use Theorems 7.5 and 7.9. �
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7.2. The proof of EK� ≤B�K . Now we turn to the proof of EK� ≤B�K .

Theorem 7.11. (X0, EK� ) ≤B (FDST,�K ).

Proof. First, we define a map Φ : X0 → FDST as follows. Take a0 = 1 and an+1 =

2n
n∑
i=0
ai for each n < �. For α ∈ X0, define a sequence {cαn : n ≥ 1} and fα ∈ FDST

as follows. For each n ≥ 1:

(1) cα1 = 1;

(2)
∣∣[cαn , cαn+1)

∣∣ = an · 2
n(n–1)

2 +α(n);

(3) fα(j) = 2– n(n–1)
2 –α(n) for each j ∈ [cαn , c

α
n+1).

Then fα is constant on every [cαn , c
α
n+1) and ufα ([cαn , c

α
n+1)) = an for each n ≥ 1.

Let Φ(α) = fα . We will show that Φ is Borel. Take a basic open subset V of Φ[X0],
i.e., there exists A ∈ [Q<�+ ]� such that V =

⋃
s∈A Vs and Vs = [s]1 for all s ∈ A.

Fix s ∈ A. Then there exist α ∈ X0 and m ∈ � such that s = fα
∣∣
[0,m]. Let n ≥ 1 be

such that m ∈ [cαn , c
α
n+1). Then we have that

Φ–1(Vs) = {	 ∈ X0 : 	(j) = α(j), j ≤ n} is open.

It follows that Φ–1(V ) =
⋃
s∈A Φ–1(Vs) is open. Therefore Φ is continuous, hence

Borel.
We claim that

∀α, 	 ∈ X0(αEK�	 ⇔ Φ(α) �K Φ(	)).

(⇒): We will find n ∈ � such that for each k ∈ �,

Φ(	)(lk)
n

≤ Φ(α)(k) ≤ n · Φ(	)(l ′k),

where lk is such that

uΦ(	)([0, lk – 1]])

n
≤ uΦ(α)([0, k]) <

uΦ(	)([0, lk])

n
,

and l ′k is such that

n · uΦ(	)([0, l ′k ]) < uΦ(α)([0, k]) ≤ n · uΦ(	)([0, l ′k + 1]).

Then Φ(α) �K Φ(	) by Lemma 7.3.
By αEK�	 , there exists N such that |α(m) – 	(m)| ≤ N for m ≥ 1. Let n = 2N .

For each k ∈ �, take lk such that

uΦ(	)([0, lk – 1]])

n
≤ uΦ(α)([0, k]) <

uΦ(	)([0, lk])

n
.

Take nk such that k ∈ [cαnk , c
α
nk+1). We have that

uΦ(α)([0, cαnk )) = uΦ(	)([0, c	nk )) =
nk–1∑
i=1

ai .

1For s ∈ Q<�+ , [s] = {f ∈ Q�+ : s � f}.
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Then we have that

uΦ(	)([0, c	nk ))

n
=
uΦ(α)([0, cαnk ))

n
< uΦ(α)([0, k)) <

uΦ(	)([0, lk ])

n
.

It follows that

lk > c
	
nk

and Φ(	)(lk) ≤ 2–
nk (nk–1)

2 –	(nk ).

By

Φ(α)(k) = 2–
nk (nk–1)

2 –α(nk )

and α(nk) ≤ 	(nk) +N , we have that

Φ(α)(k) ≥ 2–
nk (nk–1)

2 –	(nk )–N ≥ Φ(	)(lk)
2N

.

Take l ′k such that

n · uΦ(	)([0, l ′k ]) < uΦ(α)([0, k]) ≤ n · uΦ(	)([0, l ′k + 1]).

Then we have that

n · uΦ(	)([0, l ′k]) < uΦ(α)([0, k]) ≤ n · uΦ(α)([0, cαnk+1)) = n · uΦ(	)([0, c	nk+1)).

It follows that

l ′k < c
	
nk+1 and Φ(	)(l ′k) ≥ 2–

nk (nk–1)
2 –	(nk ).

By

Φ(α)(k) = 2–
nk (nk–1)

2 –α(nk )

and – α(nk) ≤– 	(nk) +N , we have that

Φ(α)(k) ≤ 2–
nk (nk–1)

2 –	(nk )+N ≤ 2N · Φ(	)(l ′k).

Then by n = 2N we have that

Φ(	)(lk)
n

≤ Φ(α)(k) ≤ n · Φ(	)(l ′k).

(⇐): Let α, 	 ∈ X0 such that (α, 	) �∈ EK� . We will show Φ(α) ��K Φ(	).
By (α, 	) �∈ EK� , for each N > 0 there exists mN > N such that

|α(mN ) – 	(mN )| > N.

Fix N. Take kN = cαmN+1 – 1 and lN = c	mN . Then

Φ(α)(kN ) = 2–
mN (mN –1)

2 –α(mN )

and

Φ(	)(lN ) = 2–
mN (mN –1)

2 –	(mN ).
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Assume 	(mN ) > α(mN ) +N . Thus

Φ(α)(kN ) > 2N · Φ(	)(lN ).

By

uΦ(α)([0, kN ]) =
mN∑
i=1

ai ≥ 2mN ·
mN –1∑
i=1

ai +
mN –1∑
i=1

ai

and

uΦ(	)([0, lN ]) =
mN –1∑
i=1

ai + Φ(	)(lN ) ≤
mN –1∑
i=1

ai + 2–N ,

we have that

uΦ(α)([0, kN ]) > 2N · uΦ(	)([0, lN ]).

Without loss of generality, we can assume that there exists an infinite set {Ni :
i ∈ �} such that for each i, 	(mNi ) > α(mNi ) +Ni . Then for all 0 < M < �, there
exists i ∈ � such thatM ≤ 2Ni . It follows that there exist kNi and lNi such that

uΦ(α)([0, kNi ]) > 2Ni · uΦ(	)([0, lNi ]) and Φ(α)(kNi ) > 2Ni · Φ(	)(lNi ).

ByM ≤ 2Ni ,

uΦ(α)([0, kNi ]) > M · uΦ(	)([0, lNi ]) and Φ(α)(kNi ) > MΦ(	)(lNi ).

It follows that Φ(α) ��K Φ(	) by Theorem 4.1(6). �

Theorem 7.12. �K on FDST is Borel bireducible to l∞.

Proof. Use Corollary 7.10, Theorem 7.11, and H ≤B l∞ ≤B EK� . �
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