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Abstract The fixed points of the generalized Ricci flow are the Bismut Ricci flat (BRF) metrics, i.e., a
generalized metric (g,H ) on a manifold M, where g is a Riemannian metric and H a closed 3-form, such
that H is g-harmonic and Rc(g) = 1

4
H2

g . Given two standard Einstein homogeneous spaces Gi/K, where
each Gi is a compact simple Lie group and K is a closed subgroup of them holding some extra assumption,
we consider M = G1 ×G2/∆K. Recently, Lauret and Will proved the existence of a BRF metric on any
of these spaces. We proved that this metric is always asymptotically stable for the generalized Ricci flow
on M among a subset of G-invariant metrics and, if G1 = G2, then it is globally stable.
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1. Introduction

In the context of generalized Riemannian geometry has arisen an extension of the Ricci
flow equation called generalized Ricci flow. Given a manifold M and a generalized metric
encoded in the pair (g,H ), where g is a Riemannian metric and H a closed 3-form on M,
this flow studied in [5] is given by

∂
∂tg(t) = −2Rc(g(t)) + 1

2 (H(t))2g(t),

∂
∂tH(t) = −dd∗g(t)H(t),

(1)

where H2
g := g(ι·H, ι·H) and d∗g is the adjoint of d with respect to g.

A pair (g,H ) is naturally associated with Bismut connections, i.e., the unique metric
connection on the Riemannian manifold (M, g) with torsion equal to H, in this sense the
generalized Ricci flow is the natural evolution in the direction of the Ricci tensor of this
connection.
In search of canonical generalized geometry, Garćıa-Fernandez and Streets in [5]

proposed to look for the fixed points of this flow, the so-called Bismut Ricci flat
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2 V. Gutiérrez

(BRF for short) generalized metrics or generalized Einstein metrics, i.e., (g,H ) such
that

Rc(g) = 1
4H

2
g and H is g-harmonic.

Let G1, G2 be compact, connected, simple Lie groups and K ⊂ G1, G2 a closed Lie
subgroup. Suppose that for i = 1, 2, there exist constants 0 < a1 ≤ a2 < 1 such that
Bk = ai Bgi

|k, where k, gi are the Lie algebras of K and Gi, respectively, and Bh is the
Killing form of the Lie algebra h. The homogeneous space defined by M = G1 ×G2/∆K

is aligned with (c1, c2) = (
a1+a2

a2
,
a1+a2

a1
) and λ1 = · · · = λt =

a1a2
a1+a2

, as defined in [8],

and so its third Betti number is one. Recently in [7], Lauret and Will found a BRF
G-invariant generalized metric on any aligned homogeneous space M = G/K, where G
is a compact semisimple Lie group with two simple factors generalizing results obtained
in [13, 14].
If G := G1 ×G2, then we consider its Killing metric given by

gB = (−Bg1
) + (−Bg2

), (2)

and let g = k⊕ p be the gB-orthogonal reductive decomposition of g. We fix the standard
metric of M = G1 ×G2/∆K determined by gB|p×p as a background metric and consider
the gB-orthogonal Ad(K )-invariant decomposition

p = p1 ⊕ p2 ⊕ p3,

where each pi is equivalent to the isotropy representation of the homogeneous space
Mi = Gi/K for i = 1, 2 and p3 is equivalent to the adjoint representation k (see [8,
Proposition 5.1]).
Following [8], the closed 3-form H 0 on M given by

H0(X,Y, Z) := Q([X,Y ], Z) +Q([X,Y ]k, Z)−Q([X,Z]k, Y ) +Q([Y, Z]k, X)

for all X,Y, Z ∈ p,

where Q = Bg1
−a2

a1
Bg2

, is g-harmonic for any G-invariant metric g = (x1, x2, x3)gB of

the form:

g := x1gB|p1×p1
+ x2gB|p2×p2

+ x3gB|p3×p3
, x1, x2, x3 > 0, (3)

these metrics will be called diagonal.
The G-invariant BRF generalized metric found in [7] is given, up to scaling, by (g0,H0)

(see [10, Remark A.3]), where

g0 :=
(
1,

a2
a1

,
a1+a2

a1

)
gB

. (4)

In this paper, we study the dynamical stability of this generalized metric as a fixed
point of the generalized Ricci flow given in Equation 1 on homogeneous spaces of the form
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Generalized ricci flow on aligned homogeneous spaces 3

M = G1 × G2/∆K as above, such that the standard metric on Mi = Gi/K is Einstein
for i = 1, 2. Note that since each Gi is simple, the spaces Mi are given in [1] (see also
[6] and [9]), there are 17 families and 50 isolated examples among irreducible symmetric,
isotropy irreducible and non-isotropy irreducible homogeneous spaces. Note that we can
consider G1 = G2 = H, in this case a1 = a2. Our main result is the following.

Theorem 1.1. Let M = G1 × G2/∆K be a homogeneous space as above such that
Bk = ai Bgi

|k and (Mi = Gi/K, giB) is Einstein, where giB is the standard metric on each
Mi for i = 1, 2, then

(i) There exists a neighbourhood U of the metric g0 = (1,
a2
a1

,
a1+a2

a1
)gB in the space of all

diagonal metrics, such that the generalized Ricci flow converges to (g0,H0) starting
at any generalized metric (g,H0) with g in U (see Theorem 3.5 and Proposition 3.2).

(ii) Let M = H ×H/∆K (i.e., a1 = a2) be a homogeneous space such that (H/K, gB)
is Einstein and Bk = aBh |k, then any diagonal generalized Ricci flow solution
converges to the BRF metric (g0,H0), where g0 = (1, 1, 2)gB (see Theorem 4.3).

Remark 1.2. If M = G1×G2/∆K is multiplicity-free, i.e., M1,M2 are both isotropy
irreducible, K is simple, the Ad(K )-representations p1, p2 are inequivalent and neither
of them is equivalent to the adjoint representation k, then the metrics of the form given
in Equation 3 are all the G-invariant metrics on the homogeneous space M.

Finally, in § 5, we give an overview of the generalized Ricci flow and its fixed points
on simple compact Lie groups and an analysis of the stability on SO(n), the only known
simple Lie group admitting a nice basis. Our result is the following.

Theorem 1.3. There exists a neighbourhood U of the Killing metric gB on the compact
Lie group SO(n), such that any generalized Ricci flow solution starting at a diagonal
metric in U converges to gB.

This implies that near the Killing metric of SO(n), the conjecture given in [5,
Conjecture 4.14] holds, i.e., for any initial condition (g,H0) close enough to (gB,H0),
where g is a left-invariant metric on SO(n) diagonal with respect to gB and H 0 is the
Cartan 3-form, the generalized Ricci flow exists on [0,∞) and converges to the BRF
structure (gB,H0).

2. Preliminaries

2.1. Aligned homogeneous spaces

The known results on compact homogeneous spaces G/K differs substantially between
the cases of G simple and non-simple. One potential reason for this could be that the
isotropy representation of G/K is rarely multiplicity-free when G is non-simple. The class
of homogeneous spaces with the richest third cohomology was studied in [8], and they are
called aligned due to their special properties concerning the decomposition in irreducibles
of G and K and their Killing constants. We provide an overview of this definition and
properties when G has only two simple factors (s =2 in [7]).
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4 V. Gutiérrez

Let M = G/K be a homogeneous space, where G is a compact, connected, semisimple
with two simple factors Lie group and K is a connected closed subgroup. We fix the
following decomposition for the Lie algebra of G and K :

g = g1 ⊕ g2, k = k0 ⊕ k1 ⊕ · · · ⊕ kt, (5)

where gi’s and kj ’s are simple ideals of g and k, respectively, and k0 is the center of k. We
call πi : g → gi the usual projections and we set Zi := πi(Z) for any Z ∈ g, i = 1, 2. The
Killing form of any Lie algebra h will always be denoted by Bh.

Definition 2.1. A homogeneous space G/K as above is said to be aligned if there
exist c1, c2 > 0 such that:

(i) The Killing constants, defined by

Bπi(kj)
= aij Bgi

|πi(kj)×πi(kj)
,

satisfy the following alignment property:

(a1j , a2j) = λj(c1, c2) for some λj > 0, ∀j = 1, . . . , t.

(ii) There exists an inner product 〈·, ·〉 on k0 such that

Bgi
(Zi,Wi) = − 1

ci
〈Z,W 〉, ∀Z,W ∈ k0, i = 1, 2. (6)

(iii) 1
c1

+ 1
c2

= 1.

The ideals kj ’s are therefore uniformly embedded on each gi in some sense. From
the definition, G/K is automatically aligned if k is simple or one-dimensional and the
following properties hold:

(i) πi(k) ' k for i = 1, 2.
(ii) The Killing form of kj is given by Bkj

= λj Bg |kj×kj
, ∀j = 1, . . . , t.

From now on, given homogeneous spaces Mi = Gi/K, i = 1, 2, such that each Gi

is simple and their Killing constants satisfy Bk = ai Bgi
|k for i = 1, 2, we consider the

homogeneous space M = G1 ×G2/∆K, which is an aligned homogeneous space with

c1 =
a1+a2

a2
, c2 =

a1+a2
a1

and λ := λ1 = · · · = λt =
a1a2
a1+a2

. (7)

If a1 ≤ a2, then 1 < c1 ≤ 2 ≤ c2.
Let G := G1 × G2 and consider the reductive decomposition g = k ⊕ p, which is

orthogonal with respect to gB, the Killing metric of G. We fix the G-invariant metric on
M called standard given by
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Generalized ricci flow on aligned homogeneous spaces 5

gB = (−Bg1
)|p×p + (−Bg2

)|p×p,

as a background metric. Note that we denote by gB both, the bi-invariant metric on the
Lie group G and the G-invariant metric on M.
Consider the gB-orthogonal Ad(K )-invariant decomposition

p = p1 ⊕ p2 ⊕ p3,

where pi is equivalent to the isotropy representation of the homogeneous space Mi =
Gi/πi(K) for i = 1, 2 and

p3 :=
{
Z̄ =

(
Z1,− c2

c1
Z2

)
: Z ∈ k

}
(8)

is equivalent to the adjoint representation k (see [8, Proposition 5.1]).
In order to use some known results assume the following technical property:

Assumption 2.2. None of the irreducible components of p1, p2 is equivalent to any
of the simple factors of k as Ad(K)-representations and either z(k) = 0 or the trivial
representation is not contained in any of p1, p2 (see [8, Section 6] for more details on
this assumption).

2.2. Bismut connection and generalized Ricci flow

For further information on the subject of this subsection, we refer to the recent book
[5] and the articles [3, 4, 11, 13–17].
Given a compact Riemannian manifold (M, g) and a 3-form H on M, we call Bismut

the unique metric connection on M with torsion T such that it satisfies the 3-covariant
tensor

g(TXY, Z) := H(X,Y, Z), ∀X,Y, Z ∈ χ(M),

is the 3-form H on M. When it holds, this connection ∇B is given by

g(∇B
XY, Z) = g(∇g

XY, Z) + 1
2H(X,Y, Z), ∀X,Y, Z ∈ χ(M),

where ∇g is the Levi Civita connection of (M, g).
If H is closed then the pair (g,H ) is called a generalized metric. A way to make these

structures evolve naturally is provided by the Ricci tensor of the Bismut connection giving
rise to the evolution Equation 1 called generalized Ricci flow (see [5, 11] and references
therein).
The fixed points of this flow are the BRF generalized metrics, also called generalized

Einstein metrics, i.e., (g,H ) such that

Rc(g) = 1
4H

2
g and H is g-harmonic. (9)
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6 V. Gutiérrez

2.3. BRF metrics on aligned homogeneous spaces

We review in this section the homogeneous BRF generalized metrics recently found in
[10], which is a new version of [7] including a Corrigendum.
According to [8], a bi-invariant symmetric bilinear form Q0 on g defined by

Q0 = Bg1
− ( 1

c1−1 )Bg2
,

defines a G-invariant closed 3-form on M denoted H 0 and given by

H0(X,Y, Z) := Q0([X,Y ], Z) +Q0([X,Y ]k, Z)−Q0([X,Z]k, Y ) +Q0([Y, Z]k, X)

for all X,Y, Z ∈ p,

which is g-harmonic for any diagonal G-invariant metric g = (x1, x2, x3)gB of the form:

g := x1gB|p1×p1
+ x2gB|p2×p2

+ x3gB|p3×p3
.

Recently in [10, Theorem A.2], it was proved the existence of a G-invariant BRF
generalized metric on any homogeneous space M = G/K where G has two simple factors
and the Assumption 2.2 holds. Expressed in terms of the standard metric as a background
the result is as follows (see [10, Remark A.3]).

Theorem 2.3. (Lauret and Will [10, Theorem A.2]) Let M = G/K be an aligned
homogeneous space with s= 2 such that Assumption 2.2 holds.

(i) The G-invariant generalized metric (g0,H0) defined by

g0 :=
(
1, 1

c1−1 ,
c1

c1−1

)
gB

(10)

is BRF.
(ii) This is the only G-invariant BRF generalized metric on M = G/K up to scaling of

the form (g = (x1, x2, x3)gB ,H0).

As these metrics are precisely the fixed points of the generalized Ricci flow, we will
utilize the elements involved in the proof of their main theorem. We consider the homo-
geneous space Mi = Gi/K for i = 1, 2, and its Bgi

-orthogonal reductive decomposition
gi = k⊕ pi. For each i = 1, 2, we endowed it with the standard metric, which we denote
by giB (i.e., giB = −Bgi

|pi×pi
). For what follows, we called Cχi

: pi → pi, the Casimir
operator of the isotropy representation

χi : k → End(pi)

of Mi with respect to −Bgi
|k×k, and we fix this notation:

A3 := − c2
c1
, B3 := 1

c1
+A2

3
1
c2
, B4 := 1

c1
+ 1

c2
= 1.
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Generalized ricci flow on aligned homogeneous spaces 7

The following proposition is demonstrated in [7, Proposition 3.2] and gives the formula
for the Ricci operator when condition Equation 7 holds (λ := λ1 = · · · = λt). Note that
the added hypothesis only changes (iii) from the original proposition.

Proposition 2.4. (Lauret and Will [7, Proposition 3.2]) If s= 2 and Equation 7 holds,
then the Ricci operator of the metric g = (x1, x2, x3)gB is given as follows:

(i) Ric(g)|p1 = 1
4x1

Ip1 + 1
2x1

(
1− x3

x1c1B3

)
Cχ1

.

(ii) Ric(g)|p2 = 1
4x2

Ip2 + 1
2x2

(
1− x3

x2c2B3
A2

3

)
Cχ2

.

(iii) Ric(g)|p3 = rIp3 , where

r := λ
4x3B3

(
2x21−x23

x21
+

(2x22−x23)A
2
3

x22
− 1+A3

B3

(
1
c1

+ 1
c2
A3

3

))
+ 1

4x3B3

(
2
(

1
c1

+ 1
c2
A2

3

)
− 2x21−x23

x21c1
− (2x22−x23)A

2
3

x22c2

)
.

(iv) g(Ric(g)pi, pj) = 0 for all i 6= j.

The formula of the symmetric bilinear form (H0)
2
g used in the definition of the gener-

alized Ricci flow is provided in the following results. In general, a bi-invariant symmetric
bilinear form Q on g,

Q = y1 Bg1
+y2 Bg2

such that
y1
c1

+
y2
c2

= 0,

defines a G-invariant closed 3-form on M given by

HQ(X,Y, Z) := Q([X,Y ], Z) +Q([X,Y ]k, Z)−Q([X,Z]k, Y ) +Q([Y, Z]k, X),

for all X,Y, Z ∈ p.

Proposition 2.5. (Lauret and Will [7, Proposition 4.2]) For any X ∈ pk, k = 1, 2,

(HQ)
2
g(X,X) = gB

(((
2Sk
xkck

− 2y2k
x2
k

)
Cχk

+
y2k
x2
k

Ipk

)
X,X

)
,

where

C3 =
y1
c1

+A3
y2
c2
, S1 = 1

x3B3

(
y1 +

C3
B4

)2

, S2 = 1
x3B3

(
A3y2 +

C3
B4

)2

.

Proposition 2.6. (Lauret and Will [10, Proposition A.1]) If Z̄ ∈ p3 (see Equation
8), with gB(Z̄, Z̄) = 1, then

(HQ)
2
g(Z̄, Z̄) = 1

x21B3

(
y1 +

C3
B4

)2
1−c1λ

c1
+ 1

x22B3

(
y2A3 +

C3
B4

)2
1−c2λ

c2

+ λ

x23B
3
3

(
y1
c1

+A3
3
y2
c2

+
3C3
B4

(
1
c1

+A2
3

1
c2

))2

.
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3. Generalized Ricci flow on aligned spaces

The aim of this paper is to study the generalized Ricci flow on homogeneous spaces of the
form M = G1 ×G2/K, such that each Gi is a simple Lie group, K is a closed subgroup
of them and their Killing constants satisfy Bk = ai Bgi

|k for i = 1, 2. As in § 2.1, M is
an aligned homogeneous space satisfying Equation 7, note that ai = λci, for i = 1, 2. We
assume that the standard metric giB on each homogeneous space Mi := Gi/K is Einstein
for i = 1, 2. In that sense, we look for invariant solutions (g(t),H(t)) to the equations
given in Equation 1.
We set x1 := x1(t), x2 := x2(t), x3 := x3(t) smooth positive functions and define

g(t) := x1gB|p1×p1
+ x2gB|p2×p2

+ x3gB|p3×p3
.

As every scalar multiple of H 0 is g(t)-harmonic for every t ≥ 0, the second equation
of the flow in Equation 1 vanishes and H(t) ≡ H0; therefore, we only need to focus on
the first one, starting from some generalized metric of the form (g(0),H0), that is

∂
∂tg(t) = −2Ric(g(t)) + 1

2 (H0)
2
g(t). (11)

Note that by definition, g(t) is diagonal for all t ≥ 0. In the next lemma we see that,
under certain conditions, the set of diagonal metrics is invariant under the flow.

Lemma 3.1. Let M = G1 × G2/K be an aligned homogeneous space satisfy-
ing Equation 7 and assume that (Mi = Gi/K, giB) is Einstein, where giB is the standard
metric on Mi, then the set of diagonal metrics with respect to the decomposition p =
p1 ⊕ p2 ⊕ p3 is invariant under the generalized Ricci flow.

Proof. As (Mi, g
i
B) is Einstein, there exist constants κi ∈ (0, 1

2 ] such that Cχi
= κi Idpi

for i = 1, 2. Therefore, from Propositions 2.4, 2.5 and 2.6, we see that d
dtg(t) is tangent

to the space of diagonal metrics, because all the operators involved are multiples of the
identity in each pj for j = 1, 2, 3. �

Proposition 3.2. Let M = G1×G2/K be as in Lemma 3.1 such that Cχi
= κi Idpi for

i = 1, 2. Fix the standard metric of M, gB, as a background metric, then the generalized
Ricci flow for metrics of the form g = (x1, x2, x3)gB is given by the following system of
ordinary differential equations:



x′1(t) =
2κ1x1x

2
3+c1x3

(
−1+x2

1+2κ1(1+x2
1−2x1x3)

)
+c21

(
x3−x2

1x3−2κ1

(
x3+x2

1x3−x1(1+x2
3)

))
2(c1−1)c1x2

1x3
,

x′2(t) =−
c31(1+2κ2)x

2
2x3−2κ2x2x

2
3+c1x3

(
−1+x2

2+2κ2(1+x2
2+2x2x3)

)
−2c21x2

(
x2x3+κ2(1+2x2x3+x2

3)
)

2(c1−1)2c1x2
2x3

,

x′3(t) =

(
x2
3−2c1x

2
3+c21(x

2
3−1)

)(
−c21(1+2λ)x2

2x
2
3+(x2

1−x2
2)x

2
3+c1

(
(λ−1)x2

1+(2+λ)x2
2

)
x2
3+c31λx

2
2(x

2
3−x2

1)
)

2(c1−1)3c1x2
1x

2
2x

2
3

.

(12)
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Generalized ricci flow on aligned homogeneous spaces 9

Proof. From Definition 2.1 (iii), c2 =
c1

c1−1 . Hence, as in [7, Section 5], we have that

A3 = − 1
c1−1and B3 = 1

c1−1 . Note that for j = 1, 2, 3,

g(Ric(g)pj , pj) = xjgB(Ric(g)pj , pj),

and Ric(g)|pj is a multiple of the identity in pj given by Proposition 2.4.

Given Q0 with y1 = 1 and y2 = − 1
c1−1 , the formula of (H0)

2
g follows from

Propositions 2.5 and 2.6 with

C3 = 1
c1−1 , S1 =

c21
(c1−1)x3

, and S2 =
c21

(c1−1)3x3
.

Therefore, replacing these on Equation 11, the proposition holds. �

Note that we can write these equations using the usual notation of nonlinear systems
of differential equations

x′(t) = f(x), (13)

where x := (x1, x2, x3) and f : R3
>0 → R3 is given by the equations in Equation 12.

According to Theorem 2.3, (g0,H0) defined by Equation 10 is a BRF generalized metric,
which means a fix or an equilibrium point of the flow. If we set x0 := (1, 1

c1−1 ,
c1

c1−1 )

then f(x0) = 0 and the local behaviour of Equation 12 is qualitatively determined by the
behaviour of the linear system x′ = Ax near the origin, where A = Df(x0), the derivative
of f at x 0.
To initiate our study of the generalized Ricci flow on this class of aligned homogeneous

spaces, we define some invariant subspaces and show some plots. Regardless of whether
K is abelian (λ = 0) or not, we see that:

• The plane given by x3 =
c1

c1−1 is invariant by the flow.

• Within the plane, the lines defined by x1 = 1 and x2 = 1
c1−1 are invariant,

and
• when κ1 = κ2, the plane x1 = (c1 − 1)x2 and the line in it given by x3 =

c1
c1−1

are also invariant.

Just to illustrate the flow in those invariant planes we consider M = SU(7) ×
SO(8)/SO(7), a homogeneous space of dimension 55 such that c1 = 10

7 , κ1 = κ2 = 1
2

and λ = 1
4 . In this case, the BRF metric is x0 = (1, 7

3 ,
10
3 ) and the plots of the invariant

planes of the flow are shown in Figure 1 and Figure 2.
For the remainder of this section, we recall some definitions of the local theory of

nonlinear systems. Consider the system given in Equation 13,

Definition 3.3. An equilibrium point x0 (i.e., f(x0) = 0) is called hyperbolic if none
of the eigenvalues of the matrix Df(x0) have zero real part.
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10 V. Gutiérrez

Figure 1. Flow in the invariant plane x3 = 10
3
.

Definition 3.4. Let φt denote the flow of the differential equation in Equation 13
defined for all t ∈ R. An equilibrium point x0 is stable if for all ε> 0 there exists a δ > 0
such that for all x ∈ Nδ(x0) and t ≥ 0 we have

φt(x) ∈ Nε(x0),

where Nα(x0) is the open ball of positive radius α centred at x0.
x0 is asymptotically stable if it is stable and there exists δ > 0 such that for all x ∈

Nδ(x0) we have

lim
t→∞

φt(x) = x0.

Since the stability of an equilibrium point is a local property it is reasonable to expect
that it would be the same as the stability at the origin of the linear system x′(t) =
Df(x0)x. This expectation is not always met, but it holds for hyperbolic equilibrium
points.
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Figure 2. Flow in the invariant plane x1 = 3
7
x2.

The next result gives us a better understanding of the local behaviour of the flow near
the BRF generalized metric.

Theorem 3.5. The metric g0 = (1, 1
c1−1 ,

c1
c1−1 )gB is asymptotically stable for the

dynamical system Equation 12.

Proof. From Theorem 2.3, (g0,H0) is a BRF generalized metric, which means an
equilibrium point of the generalized Ricci flow.
If f := (f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)) satisfies


x′
1(t) = f1(x1, x2, x3),

x′
2(t) = f2(x1, x2, x3),

x′
3(t) = f3(x1, x2, x3),
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12 V. Gutiérrez

as in Equation 12, then f(g0) = 0 and its differential at g0 is given by:

Df(g0) =

−1 0 0

0 1− c1 0

0 0 c1(−1 + λ)

 .

As all the eigenvalues of the matrix are real and negative, the equilibrium point
g0 = (1, 1

c1−1 ,
c1

c1−1 )gB is asymptotically stable by [12, Section 2.9]. �

4. Global stability

In the previous section, we study the local behaviour of the nonlinear dynamical system
given in Equation 12, the study of its global behaviour is substantially harder due to the
possibility of chaos.

Definition 4.1. An equilibrium point x0 of a nonlinear system of differential equations
x′(t) = f(x) is globally stable if it is stable and globally attractive, which means

lim
t→∞

φt(x) = x0 for all x ∈ D,

where D is the domain of f.

This definition says that an equilibrium point is globally stable if the set of points in
the space that are asymptotic to it is the whole space. The Lyapunov stability theorems
provide sufficient conditions for this type of stability as well as asymptotic stability, this
approach is based on finding a scalar function of a state that satisfies certain properties.
Namely, this function has to be continuously differentiable and positive definite. Besides,
if the first derivative of this function with respect to time is negative semidefinite along
the state trajectories, then we can conclude that the equilibrium point is stable. Further, if
the first derivative along every state trajectories is negative definite then we can conclude
that the equilibrium point is globally stable.
As there is no universal method for creating Lyapunov functions for ordinary

differential equations, this problem is far from trivial.

Theorem 4.2. [12, Section 2.9] Let E be an open subset of Rn containing x0, the
equilibrium point. Suppose that f ∈ C1(E) and that f(x0) = 0. Suppose further that there
exists a real-valued function V ∈ C1(E) (called Lyapunov function) satisfying V (x0) = 0
and V (x) > 0 if x 6= x0. Then,

(a) if V ′(x) ≤ 0 for all x ∈ E, x0 is stable.
(b) If V ′(x) < 0 for all x ∈ E \ {x0}, x0 is asymptotically stable.
(c) If V ′(x) > 0 for all x ∈ E \ {x0}, x0 is unstable.

Given the space H/K, where H is a simple Lie group and K ⊆ H, we consider the
homogeneous space M = H ×H/∆K, such that G1 = G2 = H and c1 = 2. We aim to
establish global stability for this specific case, when hypothesis used before hold.
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Theorem 4.3. Let M = H × H/∆K, (c1 = 2) a homogeneous space such that
(H/K, gB) is Einstein (i.e., Cχ = κ Idp for a constant κ ∈ (0, 1

2 ]) and Bk = 2λBh |k.
Then the BRF metric g0 := (1, 1, 2)gB is globally stable.

Proof. Consider the function,

V (x1, x2, x3) :=
λ
10 (x1 − 1)2 + λ

10 (x2 − 1)2 + (x3 − 2)2

2
,

we will prove that this is a Lyapunov function for the dynamical system given in Equation
12 taking c1 = 2 and κ := κ1 = κ2, i.e.,



x′
1(t) =

x3−x21x3+κ
(
−2x3−2x21x3+x1(4+x23)

)
2x21x3

,

x′
2(t) =

x3−x22x3+κ
(
−2x3−2x22x3+x2(4+x23)

)
2x22x3

,

x′
3(t) =−

(x23−4)
(
(x21+x22)x

2
3−2λ

(
x22x

2
3+x21(−4x22+x23)

))
4x12x22x32

.

(14)

Set E := {(x1, x2, x3) ∈ R3 / x1, x2, x3 > 0}, it is evident that V (1, 1, 2) = 0 and V is
clearly positive for all other (x1, x2, x3) ∈ E, and thus V is a Lyapunov function for the
dynamical system Equation 14 if its derivative F is negative definite on E \ {(1, 1, 2)},
where

F (x1, x2, x3) :=
λ

10
(x1 − 1)x′

1 +
λ

10
(x2 − 1)x′

2 + (x3 − 2)x′
3 =

=− 1

4x2
1x

2
2x

2
3

(
64λx2

1x
2
2

+ 8
10λκx

2
1x2x3 +

8
10λκx1x

2
2x3 − 8

10λκx
2
1x

2
2x3 − 8

10λκx
2
1x

2
2x3 − 32λx2

1x
2
2x3

+ 2
10λx

2
1x

2
3 + 8x2

1x
2
3 − 4

10λκx
2
1x

2
3 − 16λx2

1x
2
3 − 2

10λx
2
1x2x

2
3 +

4
10λκx

2
1x2x

2
3

+ 2
10λx

2
2x

2
3 + 8x2

2x
2
3 − 4

10λκx
2
2x

2
3 − 16λx2

2x
2
3 − 2

10λx1x
2
2x

2
3 +

4
10λκx1x

2
2x

2
3

− 2
10λx

2
1x

2
2x

2
3 − 2

10λx
2
1x

2
2x

2
3 − 4

10λκx
2
1x

2
2x

2
3 − 4

10λκx
2
1x

2
2x

2
3 − 16λx2

1x
2
2x

2
3

+ 2
10λx

3
1x

2
2x

2
3 +

4
10λκx

3
1x

2
2x

2
3 +

2
10λx

2
1x

3
2x

2
3 +

4
10λκx

2
1x

3
2x

2
3

− 4x2
1x

3
3 + 8λx2

1x
3
3 +

2
10λκx

2
1x2x

3
3 − 4x2

2x
3
3 + 8λx2

2x
3
3 +

2
10λκx1x

2
2x

3
3

− 2
10λκx

2
1x

2
2x

3
3 − 2

10λκx
2
1x

2
2x

3
3 + 8λx2

1x
2
2x

3
3

− 2x2
1x

4
3 + 4λx2

1x
4
3 − 2x2

2x
4
3 + 4λx2

2x
4
3 + x2

1x
5
3 − 2λx2

1x
5
3 + x2

2x
5
3 − 2λx2

2x
5
3

)
.

Given the symmetries of x 1 and x 2, to establish the negative condition of F, we define
a function g as follows,

F (x1, x2, x3) = − 1

4x21x
2
2x

2
3

(
x2
1g(x2, x3) + x2

2g(x1, x3)
)
,
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where

g(x, y) := 32λx2 + 8
10λκxy −

8
10λκx

2y − 16λx2y + 2
10λy

2 + 8y2 − 4
10λκy

2 − 16λy2

− 2
10λxy

2 + 4
10λκxy

2 − 2
10λx

2y2 − 4
10λκx

2y2 − 8λx2y2 + 2
10λx

3y2 + 4
10λκx

3y2

− 4y3 + 8λy3 + 2
10λκxy

3 − 2
10λκx

2y3 + 4λx2y3 − 2y4 + 4λy4 + y5 − 2λy5.

Hence, it is enough to prove that g(x, y) ≥ 0 on Ẽ, where Ẽ := {(x, y) ∈ R2 / x, y > 0},
and equality is only attained at (x, y) = (1, 2). We split the function g considering the
terms where λ or κ is involved,

g(x, y) :=
1

10
λh1(x, y) + h2(x, y) +

2

10
λκh3(x, y) + 2λh4(x, y),

where

h1(x, y) := 2y2 − 2xy2 − 2x2y2 + 2x3y2,

h2(x, y) := 8y2 − 4y3 − 2y4 + y5,

h3(x, y) := 4xy − 4x2y − 2y2 + 2xy2 − 2x2y2 + 2x3y2 + xy3 − x2y3,

h4(x, y) := 16x2 − 8x2y − 8y2 − 4x2y2 + 4y3 + 2x2y3 + 2y4 − y5.

Now, from its factorization, it is clear that h1 and h2 are greater than zero on Ẽ\{(1, 2)},

h1(x, y) := 2(x− 1)2(1 + x)y2,

h2(x, y) := (y − 2)2y2(2 + y).

We now define the functions g1, g2 as follows:

g1(x, y) := h4(x, y) +
1
20h1(x, y),

g2(x, y) :=
1
20h3(x, y),

such that

g(x, y) := h2(x, y) + 2λg1(x, y) + 4κλg2(x, y).

The proof that g(x, y) > 0 on Ẽ \ {(1, 2)} is going to be by cases, as h2 is already
positive, we have to differenciate if g1 and g2 are positive or not on Ẽ \ {(1, 2)}.

• Case 1: g1 < 0 and g2 < 0, The (x, y) ∈ Ẽ satisfying these conditions are
represented in Figure 3. Note that g1 < 0 if and only if h4 < 0.
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Figure 3. Region of Case 1: g1 < 0 and g2 < 0.

Since g1 < 0 and 2λ < 1, we have that g1 < 2λg1. In the same way, g2 < 4λκg2
and the following inequality hold for all (x, y) ∈ Ẽ,

h2 + g1 + g2 < h2 + 2λg1 + 4λκg2.

Our aim now is to demonstrate that the function h2 + g1 + g2 is greater than
zero on Ẽ. It is a cubic function on x such that p(x ) defined below is quadratic,

(h2 + g1 + g2)(x, y) = x
(

1
20y(4 + y2) + x 1

20 (320− 164y − 84y2 + 39y3) + x2 y2

5

)
:= xp(x).

To understand p(x) ∈ R[y][x], we look for its critical point, which is always a

minimum given that the quadratic coefficient y2

5 is always positive.

p′(x) = 0 if and only if x = x̄ := 1
y2

(
21
2 y2 − 40 + 41

2 y − 39
8 y3

)
.
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Since p(0) = 1
20y(4+y2) is positive for y > 0, and due to the continuity of p(x ),

we conclude that if x̄ < 0 then p(x) ≥ 0 for all x, y > 0 and hence h1+g1+g2 ≥ 0
for all x, y > 0, with equality only occurring a (x, y) = (1, 2).
Thus, the values of y we have to study are those that lead to x̄ > 0, signify-

ing y ∈ I :=
(

1
39

(
81−

√
321

)
, 1
39

(
81 +

√
321

))
. For this interval, we want that

p(x̄) > 0, as the positivity of the minimum implies the positivity of the entire
function.

p(x̄) := − (y−2)2(25600−640y−13756y2−484y3+1521y4)

320y2
,

and this is positive in the interval we are interested in if and only if q(y) :=
(25600 − 640y − 13756y2 − 484y3 + 1521y4) is negative for all y ∈ I. Note that
as q(75 ) > 0, q(32 ) < 0 and q( 135 ) < 0, q(3) > 0 we can localize the positive
roots of q and conclude that there are no roots of q in I (see Figure 6), besides
q(2) = −10240 < 0.
This implies that p(x̄) > 0 for all y ∈ I and therefore, h2 + g1 + g2 > 0 on

Ẽ \ {(1, 2)} as desired.

• Case 2: g1 < 0 and g2 > 0,
The x, y > 0 satisfying these conditions are plotted in Figure 4. As in Case 1,

g1 < 0 implies that h4 < 0 and therefore h4 < 2λh4. It is easy to see that

(h2 + h4)(x, y) = 2x2(y − 2)2(2 + y),

and hence,

0 < h2 + h4 < h2 + 2λh4 < h2 + 2λh4 + 2λ 1
20h1,

proving that g(x, y) > 0 for all (x, y) ∈ Ẽ \ {(1, 2)} in this case.
• Case 3: g1 > 0 and g2 < 0,

This represents the last case for our analysis, it includes the cases when x tends
to infinity and y tends to 0, as illustrated in Figure 5.
Consider g factorized as follows:

g(x, y) = h2 + 2λ(g1 + 2κg2).

Since g2 < 0 in this case, g2 < 2κg2, therefore if g1 + g2 is positive this case is
proved.
On the other hand, if g1+g2 < 0, since g1 > 0, we have the following inequalities

g1 + g2 < 2κ(g1 + g2) < 2κg1 + 2κg2 < g1 + 2κg2.

If the last expression is still negative for some x, y > 0 satisfying the hypothesis
of this case, one obtains that:
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Figure 4. Region of Case 2: g1 < 0 and g2 > 0.

h2 + g1 + g2 < h2 + 2κ(g1 + g2) < h2 + (g1 + 2κg2) < h2 + 2λ((g1 + 2κg2)

= g(x, y),

and the proof is complete due to the proof of Case 1. �

5. Generalized Ricci flow on the Lie group SO(n)

5.1. Setup for any compact Lie group

Before presenting the main problem in this section, we review some known facts for
compact Lie groups, see [7, Section 6].
Let Md = G be a compact, semisimple, connected Lie group and g its Lie algebra. By

[2, Chapter V], we know that every class in the set of all closed 3-forms of G, H3(G) has
a unique bi-invariant representative called Cartan 3-forms of the form:

Q(X,Y, Z) := Q([X,Y ], Z), ∀X,Y, Z ∈ g.
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Figure 5. Region of Case 3: g1 > 0 and g2 < 0.

We note that if G is simple, then H3(G) = R [HB] where HB := Bg, and Bg is the
Killing form of g. It is well-known that Cartan 3-forms are harmonic with respect to any
bi-invariant metric on G.
Following [8, Section 3], we consider a bi-invariant metric gb on G, a gb-orthonormal

basis {e1, . . . ed} and a left-invariant metric g = (x1, . . . , xd) on G, such that g(ei, ej) =
xiδij . The ordered basis {e1, . . . ed} determines structural constants given by

ckij := gb([ei, ej ], ek),

and by [8, Corollary 3.2 (ii)]:

HB is g-harmonic if and only if,
∑

1≤i,j≤n

ckijc
l
ij

xixj
= 0 ∀k, l such that xk 6= xl. (15)

Therefore, within the context of the generalized Ricci flow, if Equation 15 holds, then
H will remain constant along any solution and the flow will be governed by the equation
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Figure 6. q(y).

∂
∂tg(t) = −2Ric(g(t)) + 1

2 (H(t))2g(t). (16)

We will use the formulas derived in [7, Section 6], which are as follows for Hb :=
gb([·, ·], ·):

(Hb)
2
g(ek, el) =

∑
i,j

1
xixj

gb([ek, ei], ej)gb([el, ei], ej) =
∑
i,j

ckijc
l
ij

xixj
, ∀k, l. (17)

Concerning the Ricci curvature, it is well-known that

Rc(g)(ek, el) =
1
2

∑
i,j

ckijc
l
ij − 1

4

∑
i,j

ckijc
l
ij

x2i+x2j−xkxl
xixj

, ∀k, l. (18)

5.2. Case SO(n)

For this section, we consider G = SO(n), the usual basis of its Lie algebra is β =
{ers := Ers − Esr}, which is nice as it satisfies ckijc

l
ij = 0 for all k 6= l.

For computational purposes, we label the elements of the basis as β :=
{e1, e2, . . . , en(n−1)

2

}. This basis is orthogonal with respect to gB, the Killing met-

ric of SO(n), and any diagonal left-invariant metric can be expressed as g =
(x1, . . . , xn(n−1)

2

)gB .

Proposition 5.1. Consider G = SO(n) and fix the Killing metric gB as a background

metric. For

(
g(t) = (x1(t), . . . , xn(n−1)

2

(t))gB ,HB

)
, the generalized Ricci flow is given

by
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x′
k(t) = −

∑
i,j

(ckij)
2 +

1

2

∑
i,j

(ckij)
2
x2
i + x2

j − x2
k

xixj
+

1

2

∑
i,j

(ckij)
2

xixj
∀k = 1, . . . , n(n−1)

2 . (19)

Proof. Replacing Equation 17 and (Equation 18) in Equation 16, the proposition
follows as the basis β is nice. �

It is clear that gB = (1, 1, . . . , 1)gB is a BRF generalized metric, which means a fix
point of the above system. To study the dynamical stability of this point, we examine
the linearization of the provided nonlinear system.

Theorem 5.2. The Killing metric gB on the compact Lie group SO(n) is asymptoti-
cally stable for the dynamical system given in Equation 19.

Proof. We define functions

fk(x1, . . . , xn(n−1)
2

) := −
∑
i,j

(ckij)
2 +

1

2

∑
i,j

(ckij)
2
x2
i + x2

j − x2
k + 1

xixj
, for k = 1, . . . , n(n−1)

2 ,

such that x′(t) = f(x). Therefore, the differential of f is given by:


∂fk
∂xk

=
1

2

∑
i,j

(ckij)
2

xixj
(−2xk) ∀k = 1, . . . , n(n−1)

2 ,

∂fk
∂xi

=
1

2

∑
i,j

(ckij)
2
x2
i − x2

j + x2
k − 1

x2
ixj

∀k 6= i.

Hence, on the Killing metric gB,

Df(1, 1, . . . , 1) =


−
∑

i,j(c
k
ij)

2 0 . . . . . . 0

0 −
∑

i,j(c
k
ij)

2 . . . . . . 0

0 0
. . . . . . 0

0 . . . . . . 0 −
∑

i,j(c
k
ij)

2

 .

As all its eigenvalues are reals and negative the proof is complete. �
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