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Abstract
A complete description of all possible multiplicative groups of finite

skew left braces whose additive group has trivial centre is given. As
a consequence, some earlier results of Tsang can be improved and an
answer to an open question set by Tsang at Ischia Group Theory 2024
Conference is provided.
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1 Introduction
Skew brace structure plays a key role in the combinatorial theory of Yang-
Baxter equation. Skew left braces, introduced in [9], can be regarded as
extensions of Jacobson radical rings and show connections with several areas
of mathematics such as triply factorised groups and Hopf-Galois structures
(see [1, 4, 5])

Skew left braces classify solutions of the Yang-Baxter equation (see [9]).
This connection to the Yang-Baxter equation motivates the search for con-
structions of skew braces and classification results.

Recall that a skew left brace is a set endowed with two group struc-
tures (B,+), not necessarily abelian, and (B, ·) which are linked by the
distributive-like law a(b+ c) = ab− a+ ac for a, b, c ∈ B.
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In the sequel, the word brace refers to a skew left brace.
Given a brace B, there is an action of the multiplicative group on the

additive group by means of the so-called lambda map:

λ : a ∈ (B, ·) 7−→ λa ∈ Aut(B,+), λa(b) = −a+ ab, for all a, b ∈ B.

Braces can be described in terms of regular subgroups of the holomorph of
the additive group. Recall that the holomorph of a group G is the semidirect
product Hol(G) = [G] Aut(G). Let B be a brace and set K = (B,+). Then
H = {(a, λa) | a ∈ B} is a regular subgroup of the holomorph Hol(K)
isomorphic to (B, ·) (see [9, Theorem 4.2]). If we consider the subgroup
S = KH ≤ Hol(K), then

S = KH = KE = HE,

where E = {(0, λb) | b ∈ B} and CE(K) = K ∩ E = H ∩ E = 1. We call
S(B) = (S,K,H,E) the small trifactorised group associated with B.

In [11], Tsang showed it is possible to construct finite braces by just
looking at the automorphism group of the additive group instead of looking
at the whole holomorph. This is a significant improvement both from an
algebraic and computational approach.

Theorem 1 (see [11, Corollary 2.2]). If the finite group G is the multiplicative
group of a brace with additive group K, then there exist two subgroups X and
Y of Aut(K) that are quotients of G satisfying

XY = XInn(K) = Y Inn(K).

She looks for a sort of converse of the above theorem in the case of finite
braces with an additive group of trivial centre, and proved the following:

Theorem 2 (see [11, Proposition 2.7]). Suppose that the centre of a finite
group (K,+) is trivial and let P be a subgroup of Aut(K) containing Inn(K).
If P = XY is a factorisation by two subgroups X and Y such that X ∩ Y =
1, XInn(K) = Y Inn(K) = P and X splits over X ∩ Inn(K), then there
exists a brace B whose additive group is isomorphic to (K,+) and whose
multiplicative group is isomorphic to a semidirect product [X ∩ Inn(K)]Y for
a suitable choice of the action α : Y −→ Aut(X ∩ Inn(K)).

The above two theorems are the key to prove the main results of [11,12].
In [13], Tsang posed the following question:

Question 3. Is it possible to extend Theorem 2 by dropping the assumption
that X splits over X ∩ Inn(K)?
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The aim of this paper is to give a complete characterisation of the mul-
tiplicative groups of a brace with additive group of trivial centre. As a
consequence, we present an improved version of Theorem 2 (on which the
main result of [11] heavily depends), and we give an affirmative answer to
Question 3.

Theorem A. Let K be a finite group with trivial centre. For every brace B
with additive group K = (B,+) and multiplicative group C = (B, ·), there
exist subgroups X and Y of Aut(K) satisfying the following properties:

(a) XY = XInn(K) = Y Inn(K),

(b) there are two subgroups N and M of Inn(K) such that N⊴X and M⊴Y ,

(c) there exists an isomorphism γ : Y/M −→ X/N such that

Inn(K) = {xy−1 | x ∈ X, y ∈ Y, γ(yM) = xN},

(d) |K| = |X||M | = |Y ||N |.

In this case,

(e) C has two normal subgroups T and V with T ∩ V = 1, X ∼= C/T and
Y ∼= C/V , that is, C is a subdirect product of X and Y .

Conversely, for every pair X, Y of subgroups of Aut(K) satisfying con-
ditions (a)–(d), there exists a brace B with K = (B,+) and C = (B, ·)
satisfying (e).

Corollary 4. Let K be a finite group with trivial centre. Suppose that there
exist subgroups X, Y of Aut(K) such that X∩Y = 1 and XY = XInn(K) =
Y Inn(K). Then there exists a brace with additive group K and a multiplic-
ative group that is isomorphic to a subdirect product of X and Y .

Proof. Assume that X∩Y = 1. Consider N = X∩Inn(K), M = Y ∩Inn(K).
Then |X||M | = |K| as |X||Y | = |Inn(K)||Y |/|Y ∩ Inn(K)|. Analogously,
|Y ||N | = |K|. Moreover, since

Y/M ∼= Y Inn(K)/Inn(K) = XInn(K)/Inn(K) ∼= X/N,

we have an isomorphism γ : Y/M −→ X/N given by γ(bM) = aN , where
b ∈ Y , a ∈ X such that ab−1 ∈ Inn(K). Since X ∩ Y = 1, for each
k ∈ K, conjugation by k can be expressed as ab−1, for a unique a ∈ X and
b ∈ Y . Then, the groups X and Y satisfy Statements (a)–(d) of Theorem A,
and therefore, there exists a brace whose additive group is K and whose
multiplicative group is isomorphic to a subdirect product of X and Y .
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Corollary 4 also allows to give a considerably shorter proof of the main
results of [11, 12] about the almost simple groups K that can appear as
additive groups of braces with soluble multiplicative group. By Corollary 4,
it is enough to find two subgroups X and Y of Aut(K) such that X ∩ Y = 1
and XY = XInn(K) = Y Inn(K). Therefore, Codes 2, 3, and 4 in the proof
of [11, Theorem 1.3] can be avoided, as well as checking in every case that
the subgroup X splits over X ∩ Inn(K).

In Section 3 we present a worked example of a construction of a brace with
additive group K = PSL2(25) by means of subgroups X and Y of Aut(K)
satisfying all conditions of Theorem A but X ∩ Y ̸= 1.

2 Proof of Theorem A
Proof of Theorem A. Suppose that B is a brace with additive group K and
lambda map λ. Let H = {(b, λb) | b ∈ B} be the regular subgroup of Hol(K)
appearing in the small trifactorised group S(B) = (S,K,H,E) associated
with B. Recall that H is isomorphic to the multiplicative group (C, ·) of B,
E = {(0, λb) | b ∈ B} ≤ Hol(K), and S = KH = KE = HE with K ∩ E =
H ∩ E = 1.

Observe that S acts on K by means of the homomorphism π : (b, ω) ∈
S 7→ ω ∈ Aut(K). On the other hand, S also acts on K by conjugation.
In fact, this action naturally induces a homomorphism α : S → Aut(K).
In particular, for every b ∈ B and every k ∈ K, (0, λb)(k, 1)(0, λb)

−1 =
(λb(k), 1), that is, α(0, λb) = λb = π(0, λb). Thus, α(E) = π(E) = π(H).

H

(X) (H ∩K)CH(K) (Y )

CH(K) H ∩K

1

Figure 1: Structure of the multiplicative group in Theorem A

The restrictions of π and α to H induce two actions of H on K, with
respective kernels Ker π|H = K ∩ H ⊴ H and Kerα|H = CH(K) ⊴ H.
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Moreover, it holds that

Ker π|H ∩Kerα|H = K ∩H ∩ CH(K) = K ∩H ∩ CS(K)

= H ∩ CK(K) = H ∩ Z(K) = 1 (see Figure 1).

Let X := α(H) and Y := π(H) = α(E) = {λb | b ∈ B} such that
X ∼= H/CH(K) and Y ∼= H/(K ∩H). Since α(K) = Inn(K), we have that

α(S) = α(HE) = α(KH) = α(KE)

= α(H)α(E) = α(K)α(H) = α(K)α(E)

= XY = (Inn(K))X = (Inn(K))Y.

Take R := (H ∩ K)CH(K) ⊴ H. Then, N := α(R) ⊴ α(H) = X and
M := π(R) ⊴ π(H) = Y . It follows that N = α(H ∩K) ≤ α(K) = Inn(K).
On the other hand, M = π(CH(K)) and if (b, λb) ∈ CH(K), then for every
k ∈ K,

(b, λb)(k, 1)(b, λb)
−1 = (b+ λb(k)− b, 1) = (k, 1),

that is, λb coincides with the inner automorphism of K induced by −b. Thus,
M ≤ Inn(K). Moreover, we see that

Y/M ∼= (H/Ker π|H)/(R/Ker π|H) ∼= H/R
∼= (H/Kerα|H)/(R/Kerα|H) ∼= X/N ;

here the isomorphism γ : Y/M −→ X/N is given by γ(λbM) = αbλbN , where
αb is the inner automorphism of K induced by b. Given a ∈ γ(λbM), we have
that aλ−1

b ∈ αbN ⊆ Inn(K). Furthermore, given x ∈ Inn(K), we have that
x = αb for some b ∈ B and so γ(λbM) = αbλbN = xλbN with (αbλb)λ

−1
b = x.

Since Ker π|H ∩ Kerα|H = (H ∩ K) ∩ CH(K) = 1, we have that |R| =
|H ∩K||CH(K)| and |M | = |R/(H ∩K)| = |CH(K)|, |N | = |R/CH(K)| =
|H ∩ K|. As |X| = |K|/|CH(K)| and |Y | = |K|/|H ∩ K|, the claim about
the order follows.

Item (e) follows by the fact that H is isomorphic to the multiplicative
group (C, ·) of B, so that T and V are respectively isomorphic to Kerα|H
and Ker π|H .

Now, suppose that Aut(K) possesses subgroups X and Y satisfying con-
ditions (a)–(d). Let

W = {(x, y) | x ∈ X, y ∈ Y, γ(yM) = xN}

be a subdirect product of X and Y with amalgamated factor group Y/M ∼=
X/N (see [7, Chapter A, Definition 19.2]). By [7, Chapter A, Proposi-
tion 19.1], and the hypothesis, we have that |W | = |K|. Since Z(K) is trivial,
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the map ζ : K −→ Inn(K), where ζ(k) is the inner automorphism of K in-
duced by k, is an isomorphism. By hypothesis, the map W −→ Inn(K) given
by (x, y) 7−→ xy−1 is surjective. Since |W | = |Inn(K)| = |K|, it is a bijection.
We can consider H = {(b, y) | (x, y) ∈ W, ζ(b) = xy−1} ⊆ Hol(K). Given
(b, y), (b1, y1) ∈ H, we have that (b, y)(b1, y1) = (b+ y(b1), yy1), ζ(b) = xy−1,
and ζ(b1) = x1y

−1
1 with (x, y), (x1, y1) ∈ B. Then

ζ(b+y(b1)) = ζ(b)ζ(y(b1)) = ζ(b)yζ(b1)y
−1 = xy−1yx1y

−1
1 y−1 = (xx1)(yy1)

−1

with (xx1, yy1) = (x, y)(x1, y1) ∈ W . Furthermore, if (b, y) ∈ H, with ζ(b) =
xy−1, we have that (b, y)−1 = (y−1(−b), y−1) and

ζ(y−1(−b)) = y−1ζ(−b)y = y−1ζ(b)−1y = y−1yx−1y = x−1(y−1)
−1

with (x−1, y−1) = (x, y)−1 ∈ W . We conclude that H is a subgroup of
Hol(K). As the projection onto its first component is surjective, it turns out
that it H is a regular subgroup of Hol(K) by [2, Proposition 2.5] and so it
is isomorphic to the multiplicative group of a brace with additive group K
(see [9, Theorem 4.2]).

We finish the proof by showing that the map ϕ : H → W given by
(b, y) 7−→ (ζ(b)y, y), where ζ(b) = xy−1 and (x, y) ∈ W , is an isomorph-
ism. Indeed, if ζ(b) = xy−1, ζ(b1) = x1y

−1
1 , where (x, y), (x1, y1) ∈ W , we

have that

ϕ(b, y)ϕ(b1, y1) = (ζ(b)y, y)(ζ(b1)y1, y1) = (x, y)(x1, y1) = (xx1, yy1),

ϕ((b, y)(b1, y1)) = ϕ(b+ y(b1), yy1) = (ζ(b+ y(b1))yy1, yy1)

= (ζ(b)yζ(b1)y
−1yy1, yy1) = (xy−1yx1y

−1
1 y1, yy1)

= (xx1, yy1).

We conclude that ϕ is a group homomorphism. Assume that ϕ(b, y) =
(ζ(b)y, y) = (1, 1), with ζ(b) = xy−1 and (x, y) ∈ W , then y = 1 and so
ζ(b) = x = 1, which implies that b = 0. Consequently, ϕ is injective. As
W and H are finite and have the same order, we obtain that ϕ is an iso-
morphism. Since C is isomorphic to H we have just proved that (e) holds
for C.

3 A worked example
In general, we do not have that X ∩ Y = 1. Let us consider K = PSL2(25).
Its automorphism group A = Aut(K) is generated by Inn(K), the diagonal
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automorphism d induced by the conjugation by the matrix

D =

[
ζ 0
0 1

]
∈ GL2(25),

where ζ is a primitive 24th-root of unity of GF(25), and the field auto-
morphism f . The group A possesses a subgroup X generated by the inner
automorphisms c1, c2, and c3 induced by the matrices

C1 =

[
ζ4 0
0 ζ20

]
, C2 =

[
1 0
ζ 1

]
, C3 =

[
1 0
1 1

]
,

respectively, and df . We have that c1 has order 3, ⟨c2, c3⟩ is an element-
ary abelian group of order 25, c1 normalises ⟨c2, c3⟩, (df)c1(df)−1 = c−1

1 , df
has order 8, and df normalises ⟨c2, c3⟩. Then the group ⟨df, c1, c2, c3⟩ has
order 600.

Let u1 and u2 be the inner automorphisms induced by the conjugation by

U1 =

[
ζ3 ζ16

ζ13 ζ11

]
, U2 =

[
ζ5 ζ5

ζ9 ζ22

]
.

Let Y = ⟨u1, dfu2⟩. We have that u1 has order 13. Let

R =

[
ζ 0
0 ζ

]
∈ Z(GL2(25)), T =

[
3 0
4 2

]
and let t be the automorphism induced by conjugation by T. Then (dfu2)

2 =
dfu2dfu2 = d u2

f d5u2 is the automorphism induced by conjugation by

DU
(5)
2 D5U2 = R15T, (1)

where U
(5)
2 denotes the matrix whose entries are obtained from the entries of

U2 by applying the Frobenius field automorphism, that is, (dfu2)
2 = t. As

(R15T)2 = R3, we conclude that dfu2 has order 4. We can also check that
(dfu2)u1(dfu2)

−1 = u8
1. It follows that Y has order 52.

By [6], X and Y are maximal subgroups of the almost simple group
Inn(K)⟨df⟩. Observe that (df)4c23 = (dfdf)2c23 = (dd5)2c23 = d12c23 is induced
by D12C2

3 = R18T, consequently, (df)4c23 = t. This, together with Equa-
tion (1), shows that t ∈ X ∩ Y . We note that Inn(K)X = Inn(K)Y =
Inn(K)⟨df⟩. Moreover, |X ∩ Y | divides gcd(|X|, |Y |) = 4. If |X ∩ Y | = 4,
then X∩Y is contained in X∩Inn(K), but it is not contained in Y ∩Inn(K).
This shows that |X ∩ Y | ≤ 2. Hence |X ∩ Y | = 2. As XY ⊆ Inn(K)⟨df⟩,

15 600 = |Inn(K)⟨df⟩| ≥ |XY | = |X||Y |
|X ∩ Y |

= 15 600 · 2

|X ∩ Y |
= 15 600,
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and so XY = Inn(K)⟨df⟩.
Let N = ⟨c1, c2, c3, (df)2⟩ ⊴ X, M = ⟨u1⟩ ⊴ Y . Then |N | = 150,

|M | = 13, N ≤ X ∩ Inn(K), M ≤ Y ∩ Inn(K), Y/M ∼= X/N ∼= C4, and
|K| = |X||M | = |Y ||N |. The isomorphism between Y/M and X/N is given
by γ((dfu2)

rM) = (df)rN for 0 ≤ r < 4, and, since d6 ∈ Inn(K), it is clear
that

(df)(dfu2)
−1 = c0u

−1
0 ∈ Inn(K),

(df)2(dfu2)
−2 = d6t−1 ∈ Inn(K),

(df)3(dfu2)
−3 = (df)(d6t−1u−1

2 )(df)−1 ∈ Inn(K).

Let z ∈ XY ∩ Inn(K). Recall that X ∩Y = ⟨t⟩. Then there exist x ∈ X,
y ∈ Y with z = xy−1 = (xt)(yt)−1. We observe that t = (df)4c23 ∈ N ,
but t /∈ M by order considerations. Given x ∈ X, y ∈ Y , there exist
r, s ∈ {0, 1, 2, 3} such that xN = (df)rN and yM = (dfc3)

sM . We also
observe that x ∈ Inn(K) if, and only if, y ∈ Inn(K). To prove that we can
choose x ∈ X, y ∈ Y such that z = xy−1 and γ(yM) = xN , it is enough to
prove that for such a choice we have that z = xy−1 and r = s. Note that if
x ∈ N , then r = 0; if x ∈ Inn(K) \ N , then r = 2; and if x /∈ Inn(K), then
r ∈ {1, 3}. Analogously, if y ∈ M , then s = 0; if y ∈ Inn(K)\M , then s = 2;
and if y /∈ Inn(K), then s ∈ {1, 3}. We also have that tM = (dfu2)

2M and
that tN = N , as t ∈ Inn(K), t ∈ N , but t /∈ M . If x ∈ N and y ∈ M , we
can choose r = s = 0 and γ(yM) = xN . Suppose that x ∈ N and y /∈ M .
Then y ∈ Inn(K) and so, xN = N and yM = (dfu2)

2M . Consequently,
xtN = N , ytN = N , and γ(ytN) = xtN . Suppose that x /∈ N and y ∈ M .
We have that x ∈ Inn(K) and so, xN = (df)2N and yM = M . It follows that
xtN = (df)2N and ytM = (dfu2)

2M , that is, γ(ytM) = xtN . Suppose that
x, y ∈ Inn(K), x /∈ N , and y /∈ M . Then xN = (df)2N , yM = (dfu2)

2M ,
and γ(yM) = xN . Finally, suppose that x and y /∈ M . Then xN = (df)rN
and yM = (dfu2)

sM , with r, s ∈ {1, 3}. If r = s, then γ(yM) = xN . If
r ̸= s, then xtN = (df)rN and ytM = (dfu2)

s+2M , with r ≡ s+ 2 (mod 4).
Thus γ(ytM) = xtN .

It follows that X, Y satisfy all conditions of Theorem A. We can also
check with GAP [8] all this information about these subgroups.
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