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Abstract

A complete description of all possible multiplicative groups of finite
skew left braces whose additive group has trivial centre is given. As
a consequence, some earlier results of Tsang can be improved and an
answer to an open question set by Tsang at Ischia Group Theory 2024
Conference is provided.
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1 Introduction

Skew brace structure plays a key role in the combinatorial theory of Yang-
Baxter equation. Skew left braces, introduced in [9], can be regarded as
extensions of Jacobson radical rings and show connections with several areas
of mathematics such as triply factorised groups and Hopf-Galois structures
(see [1,4,5])

Skew left braces classify solutions of the Yang-Baxter equation (see [9]).
This connection to the Yang-Baxter equation motivates the search for con-
structions of skew braces and classification results.

Recall that a skew left brace is a set endowed with two group struc-
tures (B,+), not necessarily abelian, and (B,-) which are linked by the
distributive-like law a(b + ¢) = ab — a + ac for a, b, c € B.
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In the sequel, the word brace refers to a skew left brace.
Given a brace B, there is an action of the multiplicative group on the
additive group by means of the so-called lambda map:

Ara€ (B,:) — A\, € Aut(B,+), A(b) =—a+ab, forall a,b € B.

Braces can be described in terms of regular subgroups of the holomorph of
the additive group. Recall that the holomorph of a group G is the semidirect
product Hol(G) = [G] Aut(G). Let B be a brace and set K = (B, +). Then
H = {(a,\,) | a € B} is a regular subgroup of the holomorph Hol(K)
isomorphic to (B,-) (see [9, Theorem 4.2]). If we consider the subgroup
S = KH < Hol(K), then

S=KH=KE=HE,

where £ = {(0,X\;) | b € B} and Cp(K) = KNE =HNE =1. We call
S(B) = (S, K, H, E) the small trifactorised group associated with B.

In [11], Tsang showed it is possible to construct finite braces by just
looking at the automorphism group of the additive group instead of looking
at the whole holomorph. This is a significant improvement both from an
algebraic and computational approach.

Theorem 1 (see |11}, Corollary 2.2|). If the finite group G is the multiplicative
group of a brace with additive group K, then there exist two subgroups X and
Y of Aut(K) that are quotients of G satisfying

XY = XInn(K) = YInn(K).

She looks for a sort of converse of the above theorem in the case of finite
braces with an additive group of trivial centre, and proved the following:

Theorem 2 (see |11, Proposition 2.7|). Suppose that the centre of a finite
group (K, +) is trivial and let P be a subgroup of Aut(K) containing Inn(K).
If P = XY s a factorisation by two subgroups X and Y such that X NY =
1, XInn(K) = YInn(K) = P and X splits over X N Inn(K), then there
exists a brace B whose additive group is isomorphic to (K,+) and whose
multiplicative group is isomorphic to a semidirect product [ X NInn(K)]Y" for
a suitable choice of the action av:' Y — Aut(X N Inn(K)).

The above two theorems are the key to prove the main results of [11,/12].
In |13], Tsang posed the following question:

Question 3. Is it possible to extend Theorem [2| by dropping the assumption
that X splits over X N Inn(K)?
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The aim of this paper is to give a complete characterisation of the mul-
tiplicative groups of a brace with additive group of trivial centre. As a
consequence, we present an improved version of Theorem [2| (on which the
main result of |11] heavily depends), and we give an affirmative answer to

Question [3

Theorem A. Let K be a finite group with trivial centre. For every brace B
with additive group K = (B,+) and multiplicative group C' = (B,-), there
exist subgroups X and Y of Aut(K) satisfying the following properties:

(a) XY = XInn(K) = YInn(K),

(b) there are two subgroups N and M of Inn(K) such that N<X and MY,

(c) there exists an isomorphism v: Y /M — X/N such that
Inn(K)={zy ' |z € X,y€Y, y(yM) = zN},

(d) |K| = |X||M] = [Y]|N].
In this case,

(e) C has two normal subgroups T and V with TNV =1, X = C/T and
Y =2 C/V, that is, C is a subdirect product of X and Y .

Conversely, for every pair X, Y of subgroups of Aut(K) satisfying con-
ditions (a)—(d), there exists a brace B with K = (B,+) and C = (B,")
satisfying (e).

Corollary 4. Let K be a finite group with trivial centre. Suppose that there
exist subgroups X, Y of Aut(K) such that XNY =1 and XY = XInn(K) =

YInn(K). Then there exists a brace with additive group K and a multiplic-
ative group that is isomorphic to a subdirect product of X and 'Y .

Proof. Assume that XNY = 1. Consider N = XNInn(K), M = Y NInn(K).
Then |X||M| = |K| as | X||Y] = |Inn(K)||Y|/|Y N Inn(K)|. Analogously,
Y||N| = |K|. Moreover, since

Y/M = YInn(K)/Inn(K) = XInn(K)/Inn(K) = X/N,

we have an isomorphism ~: Y/M — X/N given by v(bM) = aN, where
b €Y, ae X such that ab™! € Inn(K). Since X NY = 1, for each
k € K, conjugation by k can be expressed as ab~!, for a unique @ € X and
b €Y. Then, the groups X and Y satisfy Statements (a)—(d) of Theorem
and therefore, there exists a brace whose additive group is K and whose
multiplicative group is isomorphic to a subdirect product of X and Y. [
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Corollary [ also allows to give a considerably shorter proof of the main
results of [11,/12] about the almost simple groups K that can appear as
additive groups of braces with soluble multiplicative group. By Corollary [4]
it is enough to find two subgroups X and Y of Aut(/K) such that XNY =1
and XY = XInn(K) = YInn(K). Therefore, Codes 2, 3, and 4 in the proof
of |11, Theorem 1.3] can be avoided, as well as checking in every case that
the subgroup X splits over X N Inn(K).

In Section [3|we present a worked example of a construction of a brace with
additive group K = PSLy(25) by means of subgroups X and Y of Aut(K)
satisfying all conditions of Theorem [A]but X NY # 1.

2 Proof of Theorem [A]

Proof of Theorem[A] Suppose that B is a brace with additive group K and
lambda map A. Let H = {(b, \y)| b € B} be the regular subgroup of Hol(K)
appearing in the small trifactorised group S(B) = (S, K, H, E) associated
with B. Recall that H is isomorphic to the multiplicative group (C,-) of B,
E=1{(0,\)|be B} <Hol(K), and S = KH = KE = HE with K N E =
HNE=1.

Observe that S acts on K by means of the homomorphism 7: (b,w) €
S — w € Aut(K). On the other hand, S also acts on K by conjugation.
In fact, this action naturally induces a homomorphism «a: S — Aut(K).
In particular, for every b € B and every k € K, (0,\)(k,1)(0,\)" " =
(Ap(k), 1), that is, a(0, \y) = Ay = w(0, Ap). Thus, a(F) = 7(F) = n(H).

Figure 1: Structure of the multiplicative group in Theorem [A]

The restrictions of 7 and o to H induce two actions of H on K, with
respective kernels Kern|p = KN H < H and Kera|g = Cy(K) 9 H.
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Moreover, it holds that

KermlgNKeralpg =KNHNCyx(K)=KNHNCg(K)
=HNCg(K)=HNZ(K)=1 (see Figure [1)).
Let X := a(H) and YV = 7(H) = a(E) = {\ | b € B} such that
X=H/Cy(K)andY = H/(KNH). Since a(K) = Inn(K), we have that
a(S)=a(HE) = o(KH) = a(KE)
— a(H)a(E) = a(K)a(H) = a(K)a(E)

K
= XY = (Inn(K))X = (Inn

>
=

Take R := (H N K)Cyx(K) < H. Then, N := a(R) < a(H) = X and
M :=n(R) In(H)=Y. It follows that N = a(H N K) < a(K) = Inn(K).
On the other hand, M = 7(Cy(K)) and if (b, \y) € Cy(K), then for every
ke K,

(0, A0) (R, 1)(b, Ap) ™ = (b + Ny(k) = b, 1) = (K, 1),

that is, A\, coincides with the inner automorphism of K induced by —b. Thus,
M < Inn(K). Moreover, we see that

Y/M = (H/Kern|g)/(R/Kern|y) = H/R
~ (H/Keraly)/(R/Kera|g) = X/N;

here the isomorphism v: Y/M — X/N is given by v(A\yM) = ap Ay N, where
ay, is the inner automorphism of K induced by b. Given a € (A, M), we have
that a\, ' € oy N C Inn(K). Furthermore, given z € Inn(K), we have that
x = q for some b € B and so y(A\yM) = ap\y N = 2\, N with (ap\p) N, ' = 2.

Since Kerr|, NKera|yg = (HN K) N Cyx(K) = 1, we have that |R| =
[ 0 K||Ca(K)| and |M] = [R/(H 0 K)| = ICa ()|, IN| = [R/Cua(E)| —
|HNK|. As |X| = |K|/|Cg(K)| and |Y| = |K|/|H N K|, the claim about
the order follows.

Item (e) follows by the fact that H is isomorphic to the multiplicative
group (C,-) of B, so that T and V are respectively isomorphic to Ker oy
and Ker 7|g.

Now, suppose that Aut(K) possesses subgroups X and Y satisfying con-
ditions (a)—(d). Let

W={(z,y) |z e X,yeY,y(yM) = 2N}

be a subdirect product of X and Y with amalgamated factor group Y /M =
X/N (see |7, Chapter A, Definition 19.2]). By |7, Chapter A, Proposi-
tion 19.1], and the hypothesis, we have that |W| = |K|. Since Z(K) is trivial,
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the map ¢: K — Inn(K), where ((k) is the inner automorphism of K in-
duced by k, is an isomorphism. By hypothesis, the map W — Inn(K) given
by (x,y) — xy~ ! is surjective. Since |IW| = |Inn(K)| = |K]|, it is a bijection.
We can consider H = {(b,y) | (z,y) € W, {(b) = zy~'} C Hol(K). Given
(b,y), (b1,71) € H, we have that (b,y)(by,y1) = (b+y(b1),yy1), C(b) = xy™1,
and ((by) = x1y; " with (z,y), (z1,11) € B. Then

C(b+y(b1)) = CB)C(y(br)) = CO)C(b)y ' = 2y yzy; 'yt = (za1) (yyr)

with (zz1,yy1) = (z, )(xl,yl) € W. Furthermore, if (b,y) € H, with {(b) =
zy~ !, we have that (b,y)~! = (y~}(—b),y!) and
Cy™ (=) =y =y =y ) Ty =y ey =2 ()

with (z71y™') = (z,y)”! € W. We conclude that H is a subgroup of
Hol(K'). As the projection onto its first component is surjective, it turns out
that it H is a regular subgroup of Hol(K) by |2, Proposition 2.5] and so it
is isomorphic to the multiplicative group of a brace with additive group K
(see |9, Theorem 4.2]).

We finish the proof by showing that the map ¢: H — W given by
(b,y) — (C(b)y,y), where ¢(b) = xy~! and (x,y) € W, is an isomorph-
ism. Indeed, if ¢(b) = xy~', ((by) = z1y; "', where (z,y), (z1,11) € W, we
have that

o0, y)p(b1,y1) = (C(B)y, y)(C(b1)y1, y1) = (2, y)(w1,91) = (w21, y91),
¢((0,y) (b1, 1)) = (b + y(b1), yyl) (C(b+ y(b1)yyr, yyr)

= (CO)¢(b)y  yyr, yyr) = (xy ™~ yayy 'y, yun)

= (zx1, Y1)

We conclude that ¢ is a group homomorphism. Assume that ¢(b,y) =
(C(b)y,y) = (1,1), with ¢(b) = xy~! and (x,y) € W, then y = 1 and so
¢(b) = x = 1, which implies that b = 0. Consequently, ¢ is injective. As
W and H are finite and have the same order, we obtain that ¢ is an iso-
morphism. Since C' is isomorphic to H we have just proved that (e) holds
for C. [

3 A worked example

In general, we do not have that X NY = 1. Let us consider K = PSLy(25).
Its automorphism group A = Aut(K) is generated by Inn(K), the diagonal
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automorphism d induced by the conjugation by the matrix

_ ¢ 0
D= {0 1} € GLy(25),

where ( is a primitive 24th-root of unity of GF(25), and the field auto-
morphism f. The group A possesses a subgroup X generated by the inner
automorphisms ¢y, cs, and c3 induced by the matrices

4
N A

respectively, and df. We have that ¢; has order 3, {co,c3) is an element-
ary abelian group of order 25, ¢; normalises (co, c3), (df)ci(df)™ = ¢;t, df
has order 8, and df normalises (cq,c3). Then the group (df,ci,cs,c3) has
order 600.

Let uy and ug be the inner automorphisms induced by the conjugation by

3 16 5 5
Uy = {513 gn} ) Up = [gg 522} .

Let Y = (uy, dfus). We have that u; has order 13. Let

¢ 0 130

R= {0 ¢l € Z(GLy(25)),  T=|,

and let ¢ be the automorphism induced by conjugation by T. Then (dfus)? =
dfuadfus = dfuyd®usy is the automorphism induced by conjugation by

DUYDU, = R¥T, (1)

where U§5) denotes the matrix whose entries are obtained from the entries of
U, by applying the Frobenius field automorphism, that is, (dfus)? = t. As
(R™T)? = R?, we conclude that dfu, has order 4. We can also check that
(dfug)uy (dfug)™' = uf. Tt follows that Y has order 52.

By [6], X and Y are maximal subgroups of the almost simple group
Inn(K){df). Observe that (df)'c? = (dfdf)*c? = (dd°)*c: = d**c2 is induced
by D'2C2 = R™T, consequently, (df)*c3 = t. This, together with Equa-
tion (1), shows that ¢ € X NY. We note that Inn(K)X = Inn(K)Y =
Inn(K)(df). Moreover, | X NY| divides ged(|X|, |Y|) = 4. If [ X NY| = 4,
then X NY is contained in X NInn(K), but it is not contained in ¥ NInn(K).
This shows that [ X NY| < 2. Hence |[ X NY|=2. As XY C Inn(K)(df),

XTI _ 15600 -

15600 = |Inn(K)(df)| > |XY| = XNy Yo7

= 15600,

7
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and so XY = Inn(K)(df).

Let N = (c1,¢c0,¢3,(df)?) < X, M = (u;) < Y. Then |N| = 150,
M| =13, N < XNInn(K), M <Y Nhn(K), Y/M = X/N = Cy4, and
|K| = |X||M]| = |Y]||V|. The isomorphism between Y/M and X/N is given
by v((dfug)"M) = (df)"N for 0 < r < 4, and, since d® € Inn(K), it is clear
that

(df)(dfug) ™' = couyg* € Inn(K),
(df)*(dfug) ™2 = d°t ' € Inn(K),
(df ) (dfug)™ = (df)(d°t " uy ')(df) ™ € Inn(K).

Let z € XY NInn(K). Recall that X NY = (t). Then there exist z € X,
y € Y with 2 = zy™! = (xt)(yt)"'. We observe that ¢t = (df)c3 € N,
but t ¢ M by order considerations. Given x € X, y € Y, there exist
r, s € {0,1,2,3} such that a N = (df)"N and yM = (dfcz)*M. We also
observe that = € Inn(K) if, and only if, y € Inn(K). To prove that we can
choose ¥ € X, y € Y such that 2 = zy~! and v(yM) = xN, it is enough to
prove that for such a choice we have that z = zy~! and r = s. Note that if
x € N, then r = 0; if x € Inn(K) \ N, then r = 2; and if x ¢ Inn(K), then
r € {1,3}. Analogously, if y € M, then s = 0; if y € Inn(K)\ M, then s = 2;
and if y ¢ Inn(K), then s € {1,3}. We also have that tM = (dfus)*M and
that tN = N, ast € Inn(K),t € N,butt ¢ M. If x € N and y € M, we
can choose r = s = 0 and y(yM) = xN. Suppose that x € N and y ¢ M.
Then y € Inn(K) and so, xtN = N and yM = (dfus)*M. Consequently,
xtN = N, ytN = N, and v(ytN) = xtN. Suppose that z ¢ N and y € M.
We have that x € Inn(K) and so, zN = (df)?N and yM = M. Tt follows that
2tN = (df)?N and ytM = (dfuy)*M, that is, v(ytM) = ztN. Suppose that
r,y € n(K), z ¢ N, and y ¢ M. Then =N = (df)*N, yM = (dfus)*M,
and y(yM) = zN. Finally, suppose that x and y ¢ M. Then xN = (df)"N
and yM = (dfuy)*M, with r, s € {1,3}. If r = s, then y(yM) = aN. If
r # s, then ©tN = (df)"N and ytM = (dfus)***M, with r = s +2 (mod 4).
Thus v(ytM) = ztN.

It follows that X, Y satisfy all conditions of Theorem [A] We can also
check with GAP [8] all this information about these subgroups.
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