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Abstract

Stein’s method is used to study discrete representations of multidimensional distribu-
tions that arise as approximations of states of quantum harmonic oscillators. These
representations model how quantum effects result from the interaction of finitely many
classical ‘worlds’, with the role of sample size played by the number of worlds.
Each approximation arises as the ground state of a Hamiltonian involving a particular
interworld potential function. Our approach, framed in terms of spherical coordinates,
provides the rate of convergence of the discrete approximation to the ground state in
terms of Wasserstein distance. Applying a novel Stein’s method technique to the radial
component of the ground state solution, the fastest rate of convergence to the ground
state is found to occur in three dimensions.
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1. Introduction

The many interacting worlds (MIW) approach to quantum mechanics [9] posits a
Hamiltonian for a one-dimensional harmonic oscillator of the form H1(x, p) = E(p) + V1(x) +
U1(x), where the locations of particles having identical mass m > 0 in N worlds are specified
in dimensionless coordinates as x = (x1, . . . , xN) with x1 > x2 > · · · > xN , and their momenta
by p = (p1, . . . , pN). Here, E(p) =∑N

n=1 p2
n/2m is the kinetic energy, V1(x) =∑N

n=1 x2
n is the

potential energy (for the parabolic trap), and

U1(x) =
N∑

n=1

(
1

xn+1 − xn
− 1

xn − xn−1

)2

is called the ‘interworld’ potential, where x0 = ∞ and xN+1 = −∞. The dimensionless coor-
dinate xn is related to the actual position x′

n of the particle by xn = √
2mω/�x′

n, where � is the
reduced Planck constant and ω is the angular frequency of the quantum harmonic oscillator.
We restrict our attention to dimensionless coordinates throughout the paper.
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In the MIW approach, the state of the system evolves deterministically according to
Hamilton’s equations of motion. The (stationary) ground state x is the (unique) particle
configuration that minimizes the above Hamiltonian, with no particle movement involved (i.e.
pn = 0 for n = 1, . . . , N). The resulting configuration xn derived in [9] is symmetric about the
origin and satisfies the nonlinear recursion equation

xn+1 = xn − 1

x1 + · · · + xn
. (1)

It was shown in [13] that the empirical distribution of this ground-state solution, putting
mass 1/N on each point in {xn, n = 1, . . . , N}, tends to the classical standard Gaussian quan-
tum ground state as N → ∞, and it was conjectured that the optimal rate of convergence in
Wasserstein distance is of order

√
log N/N; this conjecture was recently proved in [2].

An excited state of a quantum system is any state that has a higher energy than the ground
state. The first excited state of the one-dimensional quantum harmonic oscillator can be rep-
resented in the MIW setting via the extension of the interworld potential U1 introduced in
[14], and leads to the two-sided Maxwell distribution as the limit (agreeing with quantum the-
ory). Nonlocality was studied in [7] by introducing other extensions of the MIW interworld
potential for the first excited state using higher-order smoothing methods. There is a close con-
nection between classical Gibbs distributions and quantum energy states, as recently elucidated
in [3].

In this article we study the question of how the MIW approach can be extended to general d-
dimensional settings, for both ground states and excited states. The case d = 2 was examined in
[10], which proposed using Delaunay triangulations and Voronoi tesselations of point config-
urations to extend the notion of the interworld potential and developed a numerical algorithm
to estimate the resulting ground-state configuration, but the question of whether it is possible
to establish an asymptotically valid approximation of such a solution to the classical quantum
harmonic oscillator ground-state solution was not addressed.

Our contribution is twofold: (i) we introduce new interworld potentials that apply in gen-
eral d-dimensional settings and that lead to tractable ground-state solutions (as well as some
excited-state solutions) for the corresponding MIW Hamiltonian; and (ii) we provide a new
version of the discrete density approach to Stein’s method that furnishes upper bounds on the
convergence rate of the radial components of these ground-state solutions. Evaluating these
bounds numerically leads to optimal rates of convergence (in terms of Wasserstein distance)
of the full MIW configurations that apply to general multidimensional settings. In contrast to
[13, 14], which rely on the coupling version of Stein’s method, the present approach leads to
optimal rates. In the Supplementary Material we explore the types of upper bounds that can be
obtained using the coupling approach in the multidimensional case.

The paper is organized as follows. Section 2 develops the proposed interworld potentials,
first for the two- and three-dimensional cases, then for the general d-dimensional setting,
including some that apply to excited states. The resulting MIW ground-state solutions are
described in terms of their spherical coordinates, and plots of the solutions are provided for
d = 2 and 3. An upper bound on the Wasserstein distance between two probability measures
that have independent radial and directional components is provided at the end of Section 2.
Section 3 restricts attention to the radial component and develops the discrete density approach
to Stein’s method mentioned above. In Section 4 we wrap up by providing optimal rates for
full d-dimensional ground-state solutions. The Supplementary Material includes discussion of
the coupling approach mentioned above, along with computer code.
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2. Extending interworld potentials to higher dimensions

In this section we introduce interworld potentials that lead to satisfactory MIW approxima-
tions to the ground states and excited states of the d-dimensional isotropic quantum harmonic
oscillator. First we consider the two-dimensional case.

2.1. Two-dimensional case

When d = 2, the idea is to couch the problem in terms of polar coordinates, which allows the
interworld potential to adapt to the basic geometry of the problem, specifically via a separation
of its angular (directional) and radial components. To that end, a configuration x of points
in R

2 that excludes the origin and is not confined to a single line passing through the origin
is specified in terms of (signed) polar coordinates as {(rnj, θj) : n = 1, . . . , Nj, j = 1, . . . , M},
where there are M = M(x) ≥ 2 (distinct) angular coordinate values satisfying 0 ≤ θ1 < θ2 <

· · · < θM < π . The radial coordinates rnj in direction θj in this representation are signed (can
be negative as well as positive) and satisfy r1j > r2j > · · · > rNjj; a point (r, θ ) with r < 0 is
understood to correspond to the point with polar coordinates (|r|, θ + π ). The total number of
points is N = N1 + · · · + NM .

We propose the following ansatz for the interworld potential:

U2(x) = 4
M∑

j=1

Nj∑
n=1

[
1

R2(rn+1,j) − R2(rnj)
− 1

R2(rnj) − R2(rn−1,j)

]2

r2
nj

+ π
∑
j∼k

1

|θj − θk|π + N2

M2
L

(∑
j∼k

|Nj − Nk|
)

, (2)

where the functions Rd(r) = |r|d sign(r), r > 0 (for a given d ≥ 2), and L(u) = max(1, u/2),
u ≥ 0, will be used frequently in what follows. By convention, we set Rd(r0j) = ∞ and
Rd(rNj+1,j) = −∞. The summations over all j ∼ k in the second and third terms refer to the
M ≥ 2 neighboring pairs {j, k} ⊂ {1, . . . , M} with k − j = 1 (mod M). Also, | · |π denotes abso-
lute value mod π ; hereafter we use similar notation with π replaced by other positive real
numbers, depending on the context.

The intuition behind this ansatz comes from the well-known representation of the stan-
dard Gaussian density in two dimensions in terms of polar coordinates. That is, the angular
coordinate (in the sense we defined above) can be taken as uniformly distributed on [0, π ],
independent of the (signed) radial coordinate, which has the (two-sided) Rayleigh density
p(r) = b(r)ϕ(r), where ϕ is a standard normal density and b(r) = √

π/2|r|, r ∈R.
The first term in U2(x) is based on a derivation given in [14], in which an interworld poten-

tial is proposed for densities of the general form p(x) = b(x)ϕ(x), x ∈R. The focus in that paper
was on the case of the two-sided Maxwell distribution, for which b(x) = x2. The general ansatz
for the interworld potential of a one-dimensional N-point configuration x1 > x2 > · · · > xN was
proposed to be

Ub(x) =
N∑

n=1

[
1

B(xn+1) − B(xn)
− 1

B(xn) − B(xn−1)

]2

b(xn)2, (3)

where B(x) = ∫ x
0 b(t) dt, B(x0) = ∞, and B(xN+1) = −∞. When b(x) is proportional to |x|k for

some nonnegative integer k, as for the Rayleigh density (k = 1) or for the Gaussian density
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FIGURE 1. Histogram of the symmetric solution of the recursion (5) for N = 22 compared with the
two-sided Rayleigh density; the breaks in the histogram are x1, . . . , xN .

(k = 0), it can be shown that the minimizer of Ub(x) + V1(x) is a symmetric solution of the
recursion

B(xn+1) = B(xn) −
(

n∑
i=1

xi

b(xi)

)−1

. (4)

For the Rayleigh distribution, b(x) = √
π/2|x|, so the interworld potential (3) becomes

Ub(x) = 4
N∑

n=1

[
1

R2(xn+1) − R2(xn)
− 1

R2(xn) − R2(xn−1)

]2

x2
n.

From (4), the ground state is then a symmetric solution to the recursion equation

R2(xn+1) = R2(xn) − 2

(
n∑

i=1

sign(xi)

)−1

. (5)

Further, it follows from analogous arguments in [14, Section 2] that the ground-state value
of the Hamiltonian in this case is 4(N − 1). Figure 1 compares the empirical distribution of
the solution of the above recursion (for N = 22 points) with the two-sided Rayleigh density,
showing that the agreement is remarkably accurate.

Returning now to the two-dimensional setting, after setting the kinetic energy to zero, the
problem is to minimize

U2(x) +
M∑

j=1

Nj∑
n=1

r2
nj. (6)
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Note that the M components of the first term of the interworld potential U2(x) can be combined
with the corresponding potential energy terms and separately minimized (using the recursion
(5)), giving a combined contribution of

∑M
j=1 4(Nj − 1) = 4(N − M) to (6). It remains to min-

imize the sum of the second and third terms in U2(x) to furnish the complete ground-state
solution. The strategy is to fix the value of M ≥ 2 and then find the minimizing x (based on M
radial directions). Note that, by Cauchy–Schwarz,

M =
∑
j∼k

|θj − θk|1/2
π

|θj − θk|1/2
π

≤
(∑

j∼k

|θj − θk|π
)1/2(∑

j∼k

1

|θj − θk|π

)1/2

=
(

π
∑
j∼k

1

|θj − θk|π

)1/2

,

so the minimum of the second term is M2, attained by setting θj = (j − 1)π/M, j = 1, . . . , M,
because that produces equality throughout the above display. With M ≤ N/2 fixed, the third
term in U2(x) is minimized by distributing the N points as evenly as possible among the M
directions (with at least two in each direction) and then allotting the remaining (N mod M)
points to a sequence of neighboring directions. This results in Nj = Nk for all neighbors j and
k except possibly for two pairs of neighbors in which |Nj − Nk| = 1.

The sum of the last two terms of U2(x) therefore has the minimal value M2 + N2/M2, and
when combined with the contribution 4(N − M) arising from the first term in U2(x) along with
the potential energy, as discussed earlier, the ground state minimizes 4(N − M) + M2 + N2/M2

as a function of M. The value of M ≤ N/2 that attains this minimum (for a given value of N) is a
monotone increasing function of N, and M ∼ √

N as N → ∞. It also follows that the empirical
distribution of {Nj/N, j = 1, . . . , M} in the ground state converges weakly to uniform on (0, 1)
as N → ∞.

Combined with the fact that the empirical distribution (conditional on M) of any set of
minimizing angular coordinates {θj, j = 1, . . . , M} converges weakly to uniform on (0, π )
as M → ∞, we conclude that the empirical distribution of the angular coordinates of the N
points in the ground state has the same limit as N → ∞. Thus, provided we can show that the
empirical distribution of the radial coordinates of the ground state converges to the Rayleigh
distribution, it will follow that the full empirical distribution of the ground state (as illustrated
by the left panel of Fig. 2) converges to the standard two-dimensional Gaussian distribution.

2.2. Interworld potentials for d ≥ 3

In the three-dimensional case, a configuration x of points in R
3 is specified in terms of

(signed) spherical coordinates as

{(rnjk, θj, φjk) : n = 1, . . . , Njk, j = 1, . . . , M, k = 1, . . . , Kj}, (7)

where there are (distinct) directions corresponding to points with polar angles 0 ≤ θ1 < θ2 <

· · · < θM ≤ π/2 and azimuthal angles 0 ≤ φj1 < φj2 < · · · < φjKj < 2π , along with Njk ≥ 2
points in each direction (θj, φjk) determined by their (signed) radial distances r1jk < · · · < rNjkjk.

There are a total of Nj· =∑Kj
k=1 Njk points corresponding to the Kj longitudinal directions in

the jth parallel (or ‘line of latitude’) with polar angle θj. Over all M parallels, there are a total
of N =∑M

j=1 Nj· points arising from K =∑M
j=1 Kj different directions.

The spherical coordinates of a three-dimensional standard Gaussian random vector are
independent. The signed radial component has the two-sided Maxwell distribution with
density r2ϕ(r), r ∈R, and the azimuthal angle is uniformly distributed on [0, 2π ). The polar
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FIGURE 2. Ground states: d = 2 (left), N = 222 = 484 points, M = 22 directions, and Nj = 22 points
in each direction; d = 3 (right), N = 2744 points, M = 7 parallels (polar angles in [0, π/2]), Kj = 28

azimuthal angles in each parallel, and Njk = 14 points in each radial direction.

angle has cumulative distribution function (CDF) 1 − cos(θ ), θ ∈ [0, π/2]. Motivated by
similar considerations to the two-dimensional case, the proposed interworld potential is taken
to be

U3(x) = 9
M∑

j=1

Kj∑
k=1

Njk∑
n=1

(
1

r3
n+1,jk − r3

njk

− 1

r3
njk − r3

n−1,jk

)2

r4
njk

+
∑
i∼j

1

| cos(θi) − cos(θj)| + π

2

M∑
j=1

∑
k∼l

1

|φjk − φjl|2π

+
M∑

j=1

N2
j·

K2
j

L

(∑
k∼l

|Njk − Njl|
)

+ N

4M
L

(∑
i∼j

|Ni· − Nj·|
)

. (8)

The last term above has a distinctive form that is not present in U2(x). The denominator in this
term is designed to control the number of polar angles (M) in the second term, which in turn
needs to be balanced with the Kj, since the polar angles range over an interval only one fourth
the length of that for the azimuthal angles. Numerical experiments show that the resulting
directional component in the ground state is close to uniformly distributed over the sphere, as
illustrated in the right panel of Fig. 2.

We now seek to minimize the Hamiltonian H3(x) = U3(x) +∑M
j=1

∑Kj
k=1

∑Njk
n=1 r2

njk. The
components with distinct values of (j, k) in the first term of the interworld potential U3(x) can
be combined with the corresponding potential energy terms and separately minimized (in terms
of the recursion (4) with b(x) = x2 that was studied in [14]), giving a combined contribution of∑M

j=1
∑Kj

k=1 6(Njk − 1) = 6(N − K) to the Hamiltonian.
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The next step is to minimize each of the last three terms in (8) for fixed M, K1, . . . , KM .
Using a similar Cauchy–Schwarz argument to what we used to minimize the second term in
(2), the second term in (8) is minimized for

θj = cos−1 (1 − (j − 1)/(M − 1)), j = 1, . . . , M, (9)

and the minimum is (M − 1)2. Similarly, the minimum of the third term in (8) is attained
by setting φjk = 2π (k − 1)/Kj, k = 1, . . . , Kj, j = 1, . . . , M, and the minimum is

∑M
j=1 K2

j /4.
The minimum of the fourth term given fixed values of the Kj and Nj· is found using the same
argument as in the two-dimensional case for the third term in (2), resulting in the minimum∑M

j=1 N2
j·/K2

j being attained when Njk ∼ Nj·/Kj for k = 1, . . . , Kj. This reduces the minimal
value of the Hamiltonian to

6(N − K) + (M − 1)2 +
M∑

j=1

[K2
j /4 + N2

j·/K2
j ] + N

4M
L

(∑
i∼j

|Ni· − Nj·|
)

.

For fixed M, this expression is minimized when Kj ∼
√

2Nj· as Nj· → ∞, and it remains to
minimize

7N + (M − 1)2 + N

4M
L

(∑
i∼j

|Ni· − Nj·|
)

.

This expression is minimized by Nj· ∼ N/M and M ∼ N1/3/2 as N → ∞. This implies

Njk ∼ Nj·/Kj ∼
√

Nj·/2 ∼√
N/(2M) ∼ N1/3, Kj ∼ 2N1/3.

We conclude that, as N → ∞, the ground state consists of Kj = 2N1/3 directions in each of
M = N1/3/2 parallels, with Njk = N1/3 points falling in each direction. An example with N =
2744 points is provided in the right panel of Fig. 2.

The extension to general d ≥ 3 is straightforward. The radial component of the d-
dimensional standard Gaussian distribution has density p(r) = cd|r|d−1ϕ(r), r ∈R, where cd is
a normalizing constant, and is independent of the (signed) directional component, which is uni-
formly distributed (in the sense of Hausdorff measure) over the unit hemisphere {x ∈R

d : x1 ≥
0, |x| = 1}. The configuration x is now specified using signed hyperspherical coordinates, pre-
cisely as in (7), except each polar angle θj is now required to be a vector θj = (θjl) of d − 2 polar
angles, with each component satisfying 0 ≤ θ1l < θ2l < · · · < θMl ≤ π/2, l = 1, . . . , d − 2. The
notation for the azimuthal angles, the M parallels, and the K directions remains the same.

The d − 2 polar angles are independent and identically distributed under the d-dimensional
standard Gaussian, and their CDF can be expressed using a simple formula for the area of a
hyperspherical cap [12]:

Fd(θ ) = B

(
sin2 θ,

d − 1

2
,

1

2

)
, θ ∈ [0, π/2],

where B(x; a, b) = ∫ x
0 ta−1(1 − t)b−1 dt is the incomplete Beta function. In particular, F4(θ ) =

(2θ − sin (2θ ))/π and F5(θ ) = 1 − (3/2) cos θ + (1/2) cos3 θ . This leads to the interworld
potential
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Ud(x) = d2
M∑

j=1

Kj∑
k=1

Njk∑
n=1

(
1

Rd(rn+1,jk) − Rd(rnjk)
− 1

Rd(rnjk) − Rd(rn−1,jk)

)2

r2(d−1)
njk

+ 1

(d − 2)

d−2∑
l=1

∑
i∼j

1

|Fd(θil) − Fd(θjl)| + π

2

M∑
j=1

∑
k∼l

1

|φjk − φjl|2π

+
M∑

j=1

N2
j·

K2
j

L

(∑
k∼l

|Njk − Njl|
)

+ N

4(d − 2)Md−2
L

(∑
i∼j

|Ni· − Nj·|
)

. (10)

It follows by a routine extension of the argument we used in the d = 3 case that the ground
state asymptotically consists of Kj = 2N1/2−1/(2d) directions in each of M = N1/d/2 parallels,
with Njk = N1/2−1/(2d) points falling in each direction.

A possible alternative approach is to specify the directions in the unit hemisphere by a min-
imal Riesz energy point configuration, without reference to polar and azimuthal components.
As surveyed in [1], such configurations can provide asymptotically uniformly distributed point
sets with respect to surface area (Hausdorff measure), with important applications in quasi-
Monte Carlo, approximation theory, and material physics. However, there does not seem to be
a way of linking the numbers of radial points with the directions obtained from minimizing
Riesz energy that would lead to a Gaussian approximation. In contrast, the Hamiltonian based
on the interworld potential (10) is readily minimized by following the same argument we used
to minimize (8); the only difference in the solution is that cos−1 in (9) is replaced by F−1

d in
the expression for each polar angle θjl. Moreover, as explained in the following sections, our
proposed approach leads to explicit rates of convergence (in terms of Wasserstein distance) of
the empirical measure of the ground state to standard Gaussian.

2.3. Interworld potentials for excited states

The eigenstates of the classical d-dimensional isotropic quantum harmonic oscillator consist
of products of d one-dimensional eigenfunctions, with separate Euclidean coordinates in each
component. In this section we show how the approach in the previous sections extends naturally
to the case when some of these one-dimensional components are in excited (higher-energy)
states. The various eigenstates of the full system are described by vectors of quantum numbers
indicating the energy level of each component (with 0 indicating the ground state). When
expressed in spherical or polar coordinates, there is a separation of variables in the various
eigenfunctions, which implies that the corresponding densities have independent contributions
from the radial and angular components. This allows a separation of the radial and angular
components in the interworld potential, as we now make explicit in examples of excited states
for d = 2 and 3. The idea readily extends to any excited state of the MIW quantum harmonic
oscillator.

For d = 2, the lowest three excited states have quantum numbers (1, 0), (0, 1), and (1, 1).
The density of the (1, 0) state in signed polar coordinates is proportional to cos2 (θ )|r|3ϕ(r), θ ∈
[0, π ), r ∈R. The CDF of the angular component is G2(θ ) = (θ + sin (θ ) cos(θ ))/π , and the
density of the signed radial component is proportional to |r|3ϕ(r). This leads to the following
interworld potential similar to (2):
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FIGURE 3. Excited states (1, 0) (left) and (1, 1) (right) for d = 2, N = 222 = 484 points, M = 22, Nj = 22;

cf. the ground state in Fig. 2.

U2(x) = 16
M∑

j=1

Nj∑
n=1

[
1

R4(rn+1,j) − R4(rnj)
− 1

R4(rnj) − R4(rn−1,j)

]2

r6
nj

+
∑
j∼k

1

|G2(θj) − G2(θk)|1 + N2

M2
L

(∑
j∼k

|Nj − Nk|
)

.

Following similar arguments to those used earlier, the Hamiltonian (6) based on this potential
is minimized with the radial coordinates given by the symmetric solution to the recursion (4)
with b(x) = |x|3, and setting θj = G−1

2 ((j − 1)/M) with M ∼ √
N. Figure 3 shows the (1, 0) and

(1, 1) excited states resulting from N = 484 points. The (0, 1) state is the same as (1, 0) except
rotated by 90◦.

For d = 3, the density of the (1, 0, 0) excited state in signed spherical coordinates is pro-
portional to sin3 (θ ) cos2 (φ)r4ϕ(r), θ ∈ [0, π/2), φ ∈ [0, 2π ), r ∈R. The CDF of the polar
angle is G3(θ ) = ( cos(3θ ) − 9 cos(θ ))/8, and the CDF of the azimuthal angle is A(φ) =
(φ − sin (φ) cos(φ))/(2π ). The interworld potential is similar to (8):

U3(x) = 25
M∑

j=1

Kj∑
k=1

Njk∑
n=1

(
1

r5
n+1,jk − r5

njk

− 1

r5
njk − r5

n−1,jk

)2

r8
njk

+
∑
i∼j

1

|G3(θi) − G3(θj)| + π

2

M∑
j=1

∑
k∼l

1

|A(φjk) − A(φjl)|2π

+
M∑

j=1

N2
j·

K2
j

L

(∑
k∼l

|Njk − Njl|
)

+ N

4M
L

(∑
i∼j

|Ni· − Nj·|
)

.

The configurations of the (1, 0, 0), (1, 1, 0), and (1, 1, 1) excited states resulting from N = 2744
points are displayed in Fig. 4.
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FIGURE 4. Excited states (1, 0, 0) (left), (1, 1, 0) (middle), and (1, 1, 1) (right) for d = 3, N = 2744 points,
M = 7, Kj = 28, Njk = 14; cf. the ground state in the right panel of Fig. 2.

2.4. Wasserstein distance in spherical coordinates

The Wasserstein distance between probability measures μ and ν on a Polish metric space
(S, ρ) can be defined equivalently as

dW(μ, ν) = sup
h∈H

∣∣∣∣
∫

S
h d(μ − ν)

∣∣∣∣= inf Eρ(X, Y),

where H is the family of Lipschitz functions h : S →R with Lip(h) ≤ 1, and the (attained)
infimum is over all coupled S-valued random elements X ∼ μ and Y ∼ ν. A coupling that
attains the above infimum exists by the Monge–Kantorovich theorem. When S =R and
μ and ν have CDFs F and G, their Wasserstein distance coincides with the L1-distance∫ |F(x) − G(x)| dx. The following inequality bounds the Wasserstein distance between two
product measures μ =∏d

i=1 μi and ν =∏d
i=1 νi on R

d endowed with the Euclidean metric:
dW(μ, ν) ≤∑d

i=1 dW(μi, νi) (see [15, Lemma 3]).
We now present a variation of this result to enable the study of the convergence of the

Wasserstein distance between the empirical distribution of the energy-minimizing configu-
ration x and the distribution specified by quantum theory. Concentrating on the case d = 3
for simplicity, the following result provides a bound on the Wasserstein distance between
two probability measures μ and ν on R

3 (of the type that is relevant here) in terms of
the Wasserstein distance between the distributions of their respective (signed) spherical
coordinates (denoted μr, μθ , μφ , etc.).

Lemma 1. Let X ∼ μ and Y ∼ ν be random vectors in R
3. If the signed spherical coordinates

of X are independent, and the same holds for Y, then

dW(μ, ν) ≤ dW(μr, νr) + √
mμmν[dW(μθ, νθ ) + dW(μφ, νφ)],

where mμ = ∫ |x| dμr(x) is the mean absolute deviation of the radial coordinate of X, and
similarly for mν .

The result is the same in the case d = 2, except the azimuthal contribution dW(μφ, νφ)
is absent. The result naturally extends to general d ≥ 3, with additional terms of the form
dW(μθ , νθ ) representing each of the (d − 2) polar angles. The directional contributions of the
lowest-energy configuration will be shown to have a faster rate of convergence (as N → ∞)
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than the radial contribution, so it will suffice to restrict attention to the convergence of the
latter, as we do in the next section.

Proof. For points x1, x2 ∈R
3, the squared Euclidean distance between them in terms of their

signed spherical coordinates (ri, θi, φi), i = 1, 2, is

‖x1 − x2‖2 = r2
1 + r2

2 − 2r1r2[ cos(θ1 − θ2) + sin (θ1) sin (θ2)( cos(φ1 − φ2) − 1)]

= (r1 − r2)2 − 2r1r2[ cos(θ1 − θ2) − 1 + sin (θ1) sin (θ2)( cos(φ1 − φ2) − 1)]

≤ (r1 − r2)2 + r1r2[(θ1 − θ2)2 + (φ1 − φ2)2],

using the inequality |cos(x) − 1| ≤ x2/2 for all x ∈R. Then, using the inequality (|a| + |b| +
|c|)1/2 ≤ |a|1/2 + |b|1/2 + |c|1/2 for any a, b, c ∈R, we obtain

‖x1 − x2‖ ≤ |r1 − r2| +
√|r1||r2|[|θ1 − θ2| + |φ1 − φ2|]. (11)

By the Monge–Kantorovich theorem referred to above, we can choose coupled random vec-
tors X	 ∼ μ and Y	 ∼ ν such that dW(μr, νr) =E|X	

r − Y	
r |, dW(μθ, νθ ) =E|X	

θ − Y	
θ |, and

dW(μφ, νφ) =E|X	
φ − Y	

φ |, with the random vectors (X	
r , Y	

r ), (X	
θ , Y	

θ ), and (X	
φ, Y	

φ) being
independent. Substituting X	 and Y	 for x1 and x2 in (11) and taking expectations of both
sides leads to

dW(μ, ν) ≤E‖X	 − Y	‖ ≤E|X	
r − Y	

r | + [E
√|X	

r ||Y	
r |][E|X	

θ − Y	
θ | +E|X	

φ − Y	
φ |].

The proof is completed using Cauchy–Schwarz to obtain E
√|X	

r ||Y	
r | ≤ √

mμmν . �

3. Stein’s method for approximating radial distributions

We begin this section with some generalities concerning the version of Stein’s method
developed in [5, 6]. We only give a summary here and refer the reader unfamiliar with Stein’s
method to the Supplementary Material for more information and background.

Consider a standardized (i.e mean 0, variance 1) random variable F∞ with density p∞ (in
the following, p∞ will take the form of a radial distribution), CDF P∞ = ∫ ·

−∞ p∞(y) dy, and
survival function P̄∞ = 1 − P∞. With p∞ we associate the ‘density Stein operators’

T∞f (x) = (f (x)p∞(x))′

p∞(x)
= f ′(x) + p′∞(x)

p∞(x)
f (x),

L∞h(x) = −
∫ ∞

−∞
h′(y)

P∞(y ∧ x)P̄∞(y ∨ x)

p∞(x)
dy

acting on absolutely continuous functions f and h such that, moreover, f ′ and h are inte-
grable with respect to p∞. Readers familiar with Stein’s method will recognize the operator
L∞ once it is noticed that it is equivalent, for differentiable test functions h, to L∞h(x) =
p∞(x)−1

∫ x
−∞ (h(u) −Eh(F∞)) du; see the Supplementary Material. It can be shown that

T∞L∞h(x) = h(x) −Eh(F∞), where L∞T∞f (x) = f (x) for all appropriate h and f . The choice
h(x) = −x gives the Stein kernel,

τ∞(x) := L∞h(x) =
∫ ∞

−∞
P∞(y ∧ x)P̄∞(y ∨ x)

p∞(x)
dy.
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It is now well documented that Stein kernels, if available, provide valuable insight into the
properties of the underlying densities. Following [4, 11], we propose to apply Stein’s method
based on the following Stein operator:

A∞g(x) = T∞(τ∞(x)g(x)) = τ∞(x)g′(x) − xg(x).

Note that, by design, E[A∞g(F∞)] = 0 for all g for which the moments exist. The Stein
equation for p∞ associated with operator A∞ is then

τ∞(x)g′(x) − xg(x) = h(x) −Eh(F∞) (12)

for all appropriate h, and one can easily check that the function

gh(x) = L∞h(x)

τ∞(x)
(13)

solves (12) at all x such that τ∞(x) �= 0, so that, for all real random variables F such that
P(τ∞(F) = 0) = 0,

Eh(F) −Eh(F∞) =E[τ∞(F)g′
h(F) − Fgh(F)], (14)

with gh as given in (13). By the definition of the Wasserstein distance, we conclude that

dW(F, F∞) ≤ sup
h∈H

E[τ∞(F)g′
h(F) − Fgh(F)]|, (15)

where F is the probability distribution of F, F∞ is that of F∞, and H is the family of Lipschitz
functions with constant less than 1 (recall the first lines of Section 2.4).

Specializing to densities of the form p∞(x) = b(x)ϕ(x), with ϕ(x) the standard normal den-
sity, leads to the following nonuniform bounds for g; they are based on results from [6] and are
proved in the Supplementary Material (see Lemma 2 therein).

Proposition 1. Let p∞(x) = b(x)ϕ(x) be a standardized density on the real line, with b(x) a
positive function such that b(x) �= 0 for all x �= 0. Define

R∞(x) = 1

p∞(x)

∫ x

−∞
P∞(u) du

∫ ∞

x
P∞(u) du.

Let g( = gh) be as in (13), with h ∈H. Then

|g(x)| ≤ 1, (16)

|g′(x)| ≤ 2
R∞(x)

τ∞(x)2
=: �1(x), (17)

|g′′(x)| ≤ 2

τ∞(x)

(
1 +

∣∣∣∣ 2x

τ∞(x)
− x + b′(x)

b(x)

∣∣∣∣R∞(x)

τ∞(x)

)
=: 2�2(x). (18)

An important aspect of the inequalities (16), (17), and (18) is that they hold uniformly over
all h ∈H; our approach to Stein’s method consists in using this information in combination
with (15) in order to bound the Wasserstein distance.

We now further specialize to the choice b(x) ∝ |x|k, where k = d − 1 ≥ 0 in the case of a d-
dimensional radial distribution; throughout the remainder of this section we use the notation k
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FIGURE 5. Functions �1 (left) and �2 (right) defined in (17) and (18) for b(x) ∝ |x|k with k = 0 (blue),
k = 1 (orange), k = 2 (green), and k = 21 (red).

rather than d − 1, but then in the final section we recast our results in terms of the dimension d.
The following explicit expression for the Stein kernel in this case is obtained by straightforward
integration of the expressions involved.

Lemma 2. Let p∞(x) ∝ |x|kϕ(x) for given k ≥ 0 with ϕ(x) the standard Gaussian density. Then
the Stein kernel is

τ∞(x; k) = 2k/2ex2/2|x|−k�(1 + k/2, x2/2), (19)

where �(α, x) = ∫∞
x tα−1e−t dt is the (upper) incomplete gamma function.

Example 1. The following results are immediate from (19).

• If k = 0 (i.e. p∞ is standard Gaussian density) then τ∞(x) = 1.

• If k = 1 (i.e. p∞ is two-sided Rayleigh density) then

τ∞(x) = 1 +√
π/2|x|−1ex2/2Erfc(x/

√
2)

(which behaves like 1/|x| + 1).

• If k = 2 (i.e. p∞ is two-sided Maxwell density) then τ∞(x) = 2/x2 + 1.

It is not hard to obtain expressions for the Stein kernel at any level k ∈N; they are provided in
the Supplementary Material (see Lemma 5 therein).

The following properties of the functions defined in (17) and (18) (with τ∞ as given in
(19) and �1 and �2 positive) will be useful as well. (See Fig. 5 for an illustration. The
Supplementary Material contains more information on these functions.)

• If k = 0 then �1(x) is unimodal with maximum �1(0) = √
2/π at x = 0 and strictly

decreasing towards 0 for x ≥ 0; �2(x) is unimodal with minimum �2(0) = 1 at x = 0
and strictly increasing towards 2 for x ≥ 0.

• If k = 1 then �1(x) is bimodal with minimum �1(0) = 0 at x = 0, maximum value less
than 1, after which it is strictly decreasing towards 0 for x ≥ 0; �2(x) is unimodal with
minimum �2(0) = 1

2 at x = 0 and strictly increasing towards 2 for x ≥ 0.

• If k ≥ 2 then �1(x) is bimodal with minimum �1(0) = 0 at x = 0, maximum value less
than 1, after which it is strictly decreasing towards 0 for x ≥ 0; �2(x) is unimodal with
minimum �2(0) = 0 at x = 0 and strictly increasing towards 2 for x ≥ 0.
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Having presented the key elements of Stein’s method for radial distributions, we now give
some properties of the sequences of discrete distributions whose proximity to these radial dis-
tributions we wish to assess. The following lemma, ensuring a unique symmetric and monotone
solution to (4), is a routine extension of a result in [13, 14] to general k. In the following we
assume N is even and define the median of an ordered set {x1, . . . , xN} to be (xm + xm+1)/2,
where m = N/2.

Lemma 3. Every zero-median solution {x1, . . . , xN} of (4) when b(x) is proportional to |x|k for
a given integer k ≥ 0 satisfies the following properties.

(P1) Zero mean: x1 + · · · + xN = 0

(P2) Variance bound: x2
1 + · · · + x2

N = (k + 1)(N − 1)

(P3) Symmetry: xn = −xN+1−n for n = 1, . . . , N

Further, there exists a unique solution {x1, . . . , xN} such that (P1) and

(P4) Strictly decreasing: x1 > . . . > xN

hold. This solution has the zero median property, and thus also satisfies (P2) and (P3).

Let FN be the empirical distribution of the unique solution {x1, . . . , xN}. For the case k = 0,
the following result gives the optimal rate of convergence in Wasserstein distance of FN to
standard Gaussian. This result is not new, as the upper bound follows by adapting the coupling
argument in [14], and the lower bound, which follows from a very delicate analysis of the xi,
was recently proved in [2]. We provide a new proof for the upper bound in Example 2.

Proposition 2. The empirical distribution FN on the unique symmetric and monotone solu-
tion to (1) (or (4) with k = 0) satisfies dW(FN, F∞) � √

log N/N, where F∞ is the standard
Gaussian distribution.

Upper bounds on the rate of convergence for values of k ≥ 1 can also be obtained by
adapting the arguments in [14] using the coupling approach (as developed in detail in the
Supplementary Material). The following result for the case k = 1 is based on this approach
(and is detailed in Section 2.3 of the Supplementary Material), but it is not expected to yield
the optimal rate which, as argued below, we expect to be the same as the Gaussian case in the
above proposition.

Proposition 3. The empirical distribution FN on the unique symmetric and monotone solu-
tion to (5) (or (4) with k = 1) satisfies dW(FN, F∞) = O(log N/N), where F∞ is the two-sided
Rayleigh distribution.

The main result of this section is the following theorem based on a discrete density approach
to Stein’s method; cf. the approach of [8] in the case of points on an integer grid. This result is
entirely new and may be of independent interest as the upper bound it provides does not rely
on any specific structure of x1, . . . , xN apart from symmetry and monotonicity, and therefore
may be much more widely applicable. It leads to the new proof of the tight upper bound in
Proposition 2 for the case k = 0, as shown in Example 2. For k ≥ 1, it becomes more difficult
to analytically determine the order of the bound, but it nevertheless provides a tight bound
that can be evaluated numerically and that agrees with the asymptotic order of dW(FN, F∞) as
N → ∞, as discussed in Remark 3.
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FIGURE 6. Superimposition of τN (xi), 1 ≤ i ≤ N, (orange bars) and τ∞(xi), 1 ≤ i ≤ N, (blue bars) when
τ∞(x) = 1 + 2/x2 is the Stein kernel for the two-sided Maxwell distribution and (xi)1≤i≤N is as in

Lemma 3 with k = 2 and N = 20 (left), N = 110 (middle), and N = 300 (right).

FIGURE 7. Plot of |τN (xi) − τ∞(xi)|, 1 ≤ i ≤ N, when τ∞(x) = 1 + 2/x2 is the Stein kernel for the
two-sided Maxwell distribution and (xi)1≤i≤N is as in Lemma 3 with k = 2 and N = 20 (left),

N = 110 (middle), and N = 300 (right).

Theorem 1. Let N be an even integer, and x1, . . . , xN be any symmetric and strictly monotone
decreasing sequence. Set τN(xi) = (xi − xi+1)

∑i
j=1 xj for 1 ≤ i ≤ N − 1, and τN(xN) = 0. Let

FN be the empirical distribution of these points, and let F∞ be the probability measure with
density p∞ satisfying the assumptions of Proposition 1. Then

dW(FN, F∞) ≤ 1

N

N∑
i=1

|τ∞(xi) − τN(xi)|�1(xi) (20)

+ 1

N

N−1∑
i=1

|xi − xi+1|τN(xi) max{�2(xi), �2(xi+1)}, (21)

where �1 and �2 are given in (17) and (18), respectively.

Remark 1. Equation (20) encourages us to consider the quantity τN(xi) = (xi − xi+1)
∑i

j=1 xj

as a Stein kernel for the uniform distribution on the set {x1, . . . , xN}. This function is nonneg-
ative and, under the conditions that we are considering, we have τN(x) ≈ τ∞(x) throughout the
support of FN except close to the edges and the origin (see Figs. 6 and 7).
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Remark 2. Since both �1 and �2 are uniformly bounded by 2, we immediately obtain the
simpler upper bound

dW(FN, F∞) ≤ 2

N

N∑
i=1

|τ∞(xi) − τN(xi)| + 2

N

N−1∑
i=1

|xi − xi+1|τN(xi).

This simplicity comes at the cost of a loss of precision in the rate. For instance, in the case that
we consider here, the presence of the functions �1 and �2 in the bounds controls the problems
around the origin.

Example 2. (Case k = 0.) The sequence {xn} satisfies xn − xn+1 = (
∑n

i=1 xi)−1 so that τN(xi) =
1 for all i = 1, . . . , N − 1. Since τ∞(xi) = 1, (20) vanishes except for the term corresponding
to i = N, leading to �1(xN)/N ≤ 1/N. Also, (21) reads

1

N

N−1∑
i=1

|xi+1 − xi| max{�2(xi), �2(xi+1)}.

Using �2 ≤ 2 along with the symmetry of the sequence, we then have

dW(FN, F∞) ≤ 1

N
+ 2

N

N−1∑
i=1

|xi+1 − xi| = 1 + 4x1

N
= O(

√
log N/N),

where the last step follows by a version of the argument in [14, Lemma 4.8] showing that
x1 = O(

√
log N). This proves the upper bound part of Proposition 2.

Remark 3. (Cases k ≥ 1.) Evaluating the bound in Theorem 1 based on numerical solutions to
(4) and comparing the results with values of dW(FN, F∞) calculated using numerical integra-
tion, over a range of values of N, suggests that the bound is of the same order as dW(FN, F∞),
and moreover that

dW(FN, F∞) �√
log N/N for k = 1, 2,

dW(FN, F∞) � (log N)6/N2 for k ≥ 3.

To obtain these rates we used Mathematica to compute the bounds and R to compute the
Wasserstein distance using its representation as the L1 distance between the CDFs (the
programs are provided in the Supplementary Material).

Remark 4. We emphasize that the bound in Theorem 1 holds irrespective of the sequence that
is chosen; it may be of interest to optimize the approximation of p∞ by a sample x1 > · · · > xN

which minimizes the right-hand side. One simple way to do this is to require that the sequence
satisfies the recurrence

xi+1 = xi − τ∞(xi)∑i
j=1 xj

,

thereby canceling out (20) and only leaving (21); note that in the Gaussian case τ∞ = 1 so we
are back with the recurrence (1).

Proof of Theorem 1. The idea is to apply a version of Stein’s density method to FN ∼ FN .
Note that a discrete ‘derivative’ at xi, i = 1, . . . , N − 1, is given by DNf (xi) = f (xi) − f (xi+1).
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Writing σ (xi) =∑i
j=1 xj, straightforward summation, along with the identity xN = −∑N−1

j=1 xj,
shows that E[σ (FN)DNg(FN) − FNg(FN)] = 0 for all summable functions g. Subtracting this
from (14) applied to F = FN gives

Eh(FN) −Eh(F∞) =E[τ∞(FN)g′(FN) − FNg(FN)]

=E[τ∞(FN)g′(FN) − σ (FN)DNg(FN)].

From (15) it then follows that

dW(FN, F∞) ≤ sup
h∈H

|E[τ∞(FN)g′(FN) − σ (FN)DNg(FN)]|,

with g (= gh) satisfying the bounds in Proposition 1. By Taylor’s theorem,

DNf (xi) = (xi − xi+1)f ′(xi) − 1
2 (xi − xi+1)2f ′′(ci) for all 1 ≤ i ≤ N − 1,

where ci is between xi+1 and xi. Hence,

Eh(FN) −Eh(F∞) = 1

N

N−1∑
i=1

(τ∞(xi) − σ (xi)(xi − xi+1))g′(xi) − 1

2N

N−1∑
i=1

σ (xi)(xi − xi+1)2g′′(ci)

+ τ∞(xN)g′(xN)

= 1

N

N∑
i=1

(τ∞(xi) − τN(xi))g′(xi) − 1

2N

N−1∑
i=1

(xi+1 − xi)τN(xi)g′′(ci)

(recall that τN(xN) = 0). Taking absolute values, using (17) and (18), along with the symme-
try/unimodality of the function �2, we get the result. �

4. Convergence of multidimensional ground states

In this section we apply the results of the previous section to the N-point empirical
distributions PN of the d-dimensional ground states discussed in Sections 2.1 and 2.2.

These states have (signed) radial components given by the unique zero-median solution
x1 > · · · > xR to the recursion (4) with b(x) = |x|k, where k = d − 1 ≥ 1 and R = N1/2−1/(2d)

plays the role of N in (4), corresponding to R points in each of N1/2+1/(2d) radial directions. By
translating the observations in Remark 3 into the d-dimensional setting, the optimal conver-
gence rates of the radial part of PN to the radial part of the d-dimensional normal distribution
Nd are seen to be given by

d = 2, 3: dW
(
P

radial
N ,N radial

d

)�√
log R/R;

d ≥ 4: dW
(
P

radial
N ,N radial

d

)� (log R)6/R2.

The number of distinct polar angles in the directional part of the ground state (each with d − 2
components taking values in [0, π/2] when d ≥ 3, and a single component in [0, π ) when
d = 2) is of order N1/d. For d ≥ 3, a larger number (namely N1/2−1/(2d)) of azimuthal angles
corresponding to each polar angle are available, so the polar part has the slower convergence
rate. In general, the Wasserstein distance between the directional part of PN and that of Nd
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is thus of order N−1/d (this follows easily using the representation of Wasserstein distance
as the L1 distance between two CDFs). For d ≥ 4, in view of the upper bound in Lemma 1,
namely a sum involving separate contributions from the the radial part and the directional
parts, we conclude that the overall rate at which PN tends to Nd is of order N−1/d. For d = 3,
the radial component involving N1/3 points dominates, however, so the overall rate is of order√

log N/N1/3. Similarly, the radial component involving N1/4 points dominates in the case
d = 2, so the overall rate is of order

√
log N/N1/4.

In summary, we obtain

d = 2: dW(PN,Nd) �√
log N/N1/4;

d = 3: dW(PN,Nd) �√
log N/N1/3;

d ≥ 4: dW(PN,Nd) � N−1/d.

Interestingly, the fastest rate of convergence to the ground state occurs in three dimensions.
For the excited states discussed in Section 2.3, the rates of convergence are of order N−1/d;

in this case the directional components dominate because the radial component has the faster
rate (as seen from Remark 3 with k = d + 1 for d = 2, 3).
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