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Abstract. The Quantified argument calculus (Quarc) has received a lot of attention recently
as an interesting system of quantified logic which eschews the use of variables and unrestricted
quantification, but nonetheless achieves results similar to the Predicate calculus (PC) by
employing quantifiers applied directly to predicates instead. Despite this noted similarity, the
issue of the relationship between Quarc and PC has so far not been definitively resolved. We
address this question in the present paper, and then expand upon that result.

Utilizing recent developments in structural proof theory, we develop a G3-style sequent
calculus for Quarc and briefly demonstrate its structural properties. We put these properties to
use immediately to construct direct proofs of the meta-theoretical properties of the system. We
then incorporate an abstract (and, as we shall see, logical) predicate into the system in a way
that preserves all the structural properties. This allows us to identify a system of Quarc which is
deductively equivalent to PC, and also yields a constructive method of demonstrating the Craig
interpolation theorem (which speaks in favor of the aforementioned predicate being logical).
We further generalize this extension to develop a bivalent system of Quarc with defining clauses
that still maintains all the desirable properties of a good proof system.

§1. Introduction. Main philosophical goals and ideas of the Quantified argument
calculus (which avoids the alphabet-soup approach to logical nomenclature by
conveniently abbreviating to “Quarc”) were laid out by Hanoch Ben-Yami in [1] and
it received the first formal treatment in [12], with a seminal formal presentation in [2].
Since then Quarc has attracted a fair amount of philosophical and logical interest.
It was used to investigate assertoric syllogistic [22], natural logic [4] and necessary
existence and the Barcan formulas [4]. On a more formal side a sequent calculus
was developed [19], which in turn led to establishing a close connection Quarc shares
with free logic [18]. Finally (but slightly earlier), a three-valued system of Quarc
was developed in [11]. The present paper will mostly extend the results from the last
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two papers, primarily by utilizing recent developments in proof theory of free logic
from [20].

It has been argued, in [1] and most recently in [3], that compared to the Predicate
calculus, Quarc approximates the syntax of natural languages more accurately, at
least when it comes to the features it incorporates, such as (obviously, in addition to
quantification) copular structure, converse relations and anaphora. We will take the
claim of the relationship of Quarc and natural languages as prima facie plausible, if not
yet definitively established, and will rather focus primarily (though not exclusively) on
its relationship with the Predicate calculus.

It has so far been established in [11] that Quarc extended by defining clauses and
by a predicate T (which can be intuitively read as “thing,” and function similarly to
a domain, since it is meant to approximate the quantification of Predicate calculus)
contains a semantically isomorphic image of the Predicate calculus (for brevity, from
now on ‘PC’). Therefore, such an extension of Quarc is at least as strong as PC.
On the other hand, PC extended with the schema ∃xSx for every unary predicate S
(corresponding to the rule of instantiation in Quarc [19]) is at least as strong as Quarc
[21]. These two results do not, however, suffice to establish the exact relationship
between the two systems. This open problem is the main question we address in this
paper.

Our task here is complicated by the aforementioned implementation of the features
of natural language, and a method of dealing with those will be crucial. To this end we
develop a method of translating every formula of Quarc into what we label a shallow
normal form (for reasons explained in [19], converse relations and copular structure
can be considered “deep” operations on predicates and connectives, respectively)
which, combined with the appropriate treatment of the predicate T , allows us to
develop a system of Quarc which is deductively equivalent to PC. This, should we give
some credence to the claim that Quarc more accurately represents natural language
quantification, also serves to shine some light onto the relationship between PC and
natural language quantification. Moreover, the fact that the addition of T allows for
the demonstration (shown in this paper) of the Craig interpolation property is likewise
informative of what is special about that predicate.

We then note that all the additions we have thus far discussed had been of a simple
kind, namely of quantifiers binding only unary predicates. This, of course, need not be
the case, as it is common in natural language to quantify over more complex phrases
(this was a central goal in [11]). The proof-theoretic approach we have adopted in this
paper will give an elegant formulation of this while also guaranteeing schematic proofs
of all the required structural properties.

1.1. Plan of the paper. Utilizing recent developments in structural proof theory, in
Section 2 we develop a G3-style sequent calculus for Quarc and briefly demonstrate its
structural properties. We put these properties to use immediately to construct direct
proofs of the meta-theoretical properties of the system. In Section 3 we then incorporate
the predicate T into the system in a way that preserves all the structural properties.
This allows us to identify a system of Quarc which is deductively equivalent to PC, and
also yields a constructive method of demonstrating the Craig interpolation theorem. In
Section 4 we generalize the extension from the previous section and allow for quantified
arguments to include more complex formulas of the language, and finally in Section 5
we lay out avenues of future research.
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§2. The formal system. Quarc gets its name from allowing (like natural languages)
for quantified arguments (QAs) of the form ∀S and ∃S, where S is a unary predicate, to
occupy the same argument position as names, or singular arguments (SAs). So while

Example 2.1. (a)P

is a sentence of Quarc, so is

Example 2.2. (∀S)P

where 2.1 is read as “a is P” and 2.2 as “all S are P.” A detailed explanation of the
motivation for these can be found in [2]. Since this will be relevant later in the paper,
let us point out that quantified arguments (just like singular ones) are not themselves
sentences. Note also that when we simply mention “arguments,” we encompass both
the singular and the quantified variety.

We define (in BNF) the formula of Quarc as follows, where t indicates a singular
argument,A[a] indicates the formula A which contains an occurrence of the argument
a, the list t1 ... tn indicates n occurrences of the singular argument t,A[b/c] indicates the
result of the substitution of an instance of an argument c by an argument or anaphor
b in formula A, and A[b//c] of all instances of c.

Definition 2.3 (Formula of Quarc).

A ::= (t1 ... tn)Pn| (t1...tn)P�n |(t1 ... tn)¬P| ¬(A)∗ | (A) × (A)∗|
A[tα/t1, α/ti , ... , α/tj ]∗∗ | A[∀S/t]∗∗∗ | A[∃S/t]∗∗∗

where formulas of the form (t1 ... tn)Pn are called basic (parentheses omitted whenever
possible), × ∈ {∧,∨,→} and

∗ the parentheses in (A) are called sentential, and omitted if no ambiguity arises
∗∗ A contains k occurrences of a singular argument t none of which are a source

of any anaphors, and 1 < i ≤ j ≤ k
∗ ∗ ∗ A[∀S/t] and A[∃S/t] are governed (definition below) by the displayed

occurrence of the quantified argument (QA) ∀S and ∃S, respectively.

Definition 2.4 (Governance). An occurrence qP of a QA governs a formula A just in
case qP is the leftmost QA in A and A does not contain any other string of symbols
(B) in which the parentheses are a pair of sentential parentheses, such that B contains
qP and all the anaphors of all the QAs in B.

Remark 2.5. We will from now on as a matter of convention assume that whenever
several rules can be applied in different order and yield the same formula, the anaphora
rule, if used, is applied last.

2.1. The system G3Q. In [19], an LK-style sequent calculus [9, 10] was developed
for Quarc, and shown that it (as well as its subsystems) possesses the prerequisite
structural properties, chief of which is the cut-elimination property. The subsystems
are labeled ‘Quarc3’ for the system without identity rules, ‘Quarc2’ for the one without
instantiation rule, and ‘QuarcB ’ for the one without either. When these need to be
distinguished from the original system the latter is referred to as full Quarc. After we
have added a few more systems we will offer (Figure 5) a schematic representation of
all the systems and their relations. Throughout the paper we adopt the convention of
using symbols in subscript to indicate systems with certain elements removed (like the
ones we just introduced), and in superscript to indicate systems with elements added.
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In [19] the authors suggest, and it has since been shown in [18], that Quarc bears
a structural similarity to free logic. This is fortunate, since recent developments in
the proof theory of free logics in [20] (the same approach was used for intuitionistic
logic of existence in [14]), allow us to simplify the quantifier rules, and thereby also
the proofs of structural and meta-theoretic properties, as well as proof search. To
this end we here switch to a G3-style sequent calculus we call G3Q (Figure 1). Given
that the cut elimination for a related system was already demonstrated we only give
a brief and schematic proof focusing on the new cases, but we also present other
structural properties required in that proof since some of those, like height-preserving
admissibility of contraction, are in any case not present in the LK-style calculus.

The basic unit of a sequent calculus is a sequent Γ ⇒ Δ, where Γ and Δ are finite
multisets of formulas. All the formulas except Γ and Δ are called active formulas of the
rule if they occur only in the upper sequent(s), or premises, and principal if they occur
in the lower sequent, or the conclusion, of the rule.

2.2. Structural properties. The standard range of structural properties holds for
G3Q, a fact shown here briefly and schematically. We begin by defining the weight of
a formula, following [19].

Definition 2.6 (Weight of a formula). The weight w of a formula is defined as follows:

w((t1 ... tn)Pn) = 0 w(A× B) = w(A) + w(B) + 1
w((t1 ... tn)P�n) = 1 w(A[tα/t1, α/ti , ... , α/tj ]) = w(A[t]) + 1
w((t1 ... tn)¬P) = w((t1...tn)P) + 1 w(A[∀S/t]) = w(A[t]) + 1
w(¬A) = w(A) + 1 w(A[∃S/t]) = w(A[t]) + 1

Lemma 2.7 (Substitution). If 
n Γ ⇒ Δ in G3Q (where 
n denotes derivability with
height bounded by n), then 
n Γ[s/t] ⇒ Δ[s/t] is derivable in G3Q.

Proof. By induction on the height of the derivation.
Basic case. If Γ ⇒ Δ is an initial sequent, so is Γ[s/t] ⇒ Δ[s/t].
Inductive case. If the last step used was one of the propositional rules the step is

straightforward, as they do not alter the singular arguments between the premise(s) and
the conclusion. The rules LNP and RNP likewise do not alter the singular arguments
between their premise(s) and conclusion, and =Repl , LA, RA, LRd and RRd only
alter the order or number of appearances of the singular arguments. In all those cases
the application of the inductive hypothesis to the upper sequents, followed by an
application of the rule, is routine.

If the last step used was Ins, the premise is cM,Γ ⇒ Δ, where c does not occur in Γ,Δ.
If c is precisely s, we first use the inductive hypothesis to obtain some dM,Γ ⇒ Δ, and
then again for dM,Γ[s/t] ⇒ Δ[s/t], and applying the rule Ins we get Γ[s/t] ⇒ Δ[s/t]. If
c is not s, we skip the first application of the inductive hypothesis. From cM,Γ ⇒ Δ we
get by the inductive hypothesis cM,Γ[s/t] ⇒ Δ[s/t] and then by Ins Γ[s/t] ⇒ Δ[s/t].

If the last step used was R∀, and the eigenvariable (defined in Figure 1 below) of the
rule was s (otherwise we skip the first application of the inductive hypothesis), then
its premise is sM,Γ ⇒ Δ, A[s/∀M ]. Using the inductive hypothesis we first obtain the
sequent cM,Γ ⇒ Δ, A[c/∀M ] (s does not occur in Γ or Δ), then using the inductive
hypothesis again we obtain cM,Γ[s/t] ⇒ Δ[s/t], A[c/∀M ][s/t], and then applying the
rule R∀ we get Γ[s/t] ⇒ Δ[s/t], A[∀M ][s/t]. Symmetrical for L∃ and routine for L∀
and R∃. Likewise routine for identity rules, noting that in the case of =Repl the replacing
constant can’t be the same s as used in the rule.
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Initial sequents:
p, Γ Δ, p

Propositional rules:
Γ Δ, A

L
A, Γ Δ

A, Γ Δ
R

Γ Δ, A

A, B, Γ Δ
L

A B, Γ Δ
Γ Δ, A Γ Δ, B

R
Γ Δ, A B

A, Γ Δ B, Γ Δ
L

A B, Γ Δ
Γ Δ, A, B

R
Γ Δ, A B

Γ Δ , A B, Γ Δ
L

A B, Γ Δ
A, Γ Δ, B

R
Γ Δ , A B

Identity rules:

t = t, Γ Δ =Ref
Γ Δ

s = t, p[t], p[s/t ], Γ Δ =Repl
s = t, p[s/t ], Γ Δ

Quantifier rules:
tM, A [t/ M ], A[ M ], Γ Δ

L
tM, A [ M ], Γ Δ

tM, Γ Δ, A [t/ M ]
R *

Γ Δ, A [ M ]

tM, A [t/ M ], Γ Δ
L *

A[ M ], Γ Δ

tM, Γ Δ, A[ M ], A[t/ M ]
R

tM, Γ Δ, A[ M ]

Special rules:
A[...t1 ...tn ...], Γ Δ

LA
A[...t /t1 n ...], Γ Δ

Γ Δ , A[...t1 ...tn ...]
RA

Γ Δ , A[...t /t1 n ...]

(t1 , ..., t n )R, Γ Δ
LRd

(t 1 , ..., t )R , Γ Δ

Γ Δ , (t1 , ..., t n )R
RRd

Γ Δ , (t 1 , ..., t )R

(t1, ..., tn )P, Γ Δ
LNP

(t1 , ..., tn ) P, Γ Δ

Γ Δ , (t1 , ..., t n )P
RNP

Γ Δ , (t1 , ..., t n ) P

tM, Γ Δ
Ins*Γ Δ

Where p is basic, and t is fresh (the eigenvariable) in rules marked with *

Fig. 1. G3Q.

Lemma 2.8 (Axiom generalization). For any A, the sequent A,Γ ⇒ Δ, A is derivable in
G3Q.

Proof. By induction on the weight of A.
Basic step. Follows immediately from initial sequents.

https://doi.org/10.1017/S175502032100006X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032100006X
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Inductive step. Straightforward for special symbols and routine for connectives and
identity rules. The interesting cases are the quantifiers. In the case of the universal
quantifier:

i.h.
tM,A[t/∀M ], tM,A[∀M ],Γ ⇒ Δ, A[t/∀M ]

L∀
tM,A[∀M ],Γ ⇒ Δ, A[t/∀M ]

R∀
A[∀M ],Γ ⇒ Δ, A[∀M ]

Symmetrical in the case of ∃.

Lemma 2.9 (Weakening). Height-preserving weakening is admissible in G3Q:

1. If 
n Γ ⇒ Δ then 
n C,Γ ⇒ Δ.
2. If 
n Γ ⇒ Δ then 
n Γ ⇒ Δ, C .

Proof. Routine by induction on the height of the derivation, using Lemma 2.7 when
necessary.

Lemma 2.10 (Invertibility). All the rules of G3Q are height-preserving invertible. For
each rule R, if 
n A,Γ ⇒ Δ, B , then 
n A′,Γ ⇒ Δ, B ′ (and 
n A′′,Γ ⇒ Δ, B ′′), where
A or B are the principal (sometimes two) formulas of the rule R, while A′ and B ′ (and
A′′, B ′′) are the active formulas of the rule (some of these will be empty).

Proof. Straightforward for propositional rules, follows immediately from Lemma
2.9 for identity rules, L∀ and R∃. We check for the remaining rules by induction on
the height of the derivation.

Basic step. For all the remaining rules, if a sequent of the same form as the lower
sequent of the rule is an initial sequent, then so is Γ ⇒ Δ. Therefore by adding the
formulas from the upper sequent of the rule other than Γ, Δ to it, we likewise obtain
an initial sequent.

Inductive step. For each of the rules, if the last step in the derivation of the sequent
did not use that rule with A or B principal, we apply the inductive hypothesis (and
maybe Lemma 2.7) to the premises, and then apply the last rule used to produce the
desired sequents. Otherwise the premises of the last rule used are already the desired
sequents.

As an illustration we show the case of L∃. We want to show that if
n A[∃M ],Γ ⇒ Δ,
then 
n tM,A[t/∃M ],Γ ⇒ Δ. If the formula A[∃M ] was not principal in the last rule
used, then it has the form

A[∃M ],Γ′ ⇒ Δ′ (A[∃M ],Γ′′ ⇒ Δ′′)
R

A[∃M ],Γ ⇒ Δ

If t is the eigenvariable of R we apply the Lemma 2.7, and then we apply
the inductive hypothesis to the upper sequents to obtain tM,A[t/∃M ],Γ′ ⇒ Δ′

(and tM,A[t/∃M ],Γ′′ ⇒ Δ′′). Finally, applying R to these sequents, we obtain
tM,A[t/∃M ],Γ ⇒ Δ.

If A[∃M ] is principal in the last rule used, the upper sequent of the rule is already
tM,A[t/∃M ],Γ ⇒ Δ, derived with the height of n – 1.

Lemma 2.11 (Contraction). Height-preserving contraction is admissible in G3Q:

1. If 
n C,C,Γ ⇒ Δ then 
n C,Γ ⇒ Δ.
2. If 
n Γ ⇒ Δ, C, C then 
n Γ ⇒ Δ, C .
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Proof. Simultaneous for (1) and (2) by induction on the height of the derivation.
Most of the proof is routine, with the interesting part when the formula C is principal
in R∀ or L∃.

So, assume that C is A[∀M ] and principal in R∀ in the last step. Then the
last step of the derivation is Γ ⇒ Δ, A[∀M ], A[∀M ], derived by R∀ from tM,Γ ⇒
Δ, A[∀M ], A[t/∀M ]. Applying the Lemma 2.10 to that sequent we get tM, tM,Γ ⇒
Δ, A[t/∀M ], A[t/∀M ] with the same height of ≤ n – 1. We then apply the inductive
hypotheses (1) and (2) to obtain tM,Γ ⇒ Δ, A[t/∀M ] and then R∀ to finally obtain
Γ ⇒ Δ, A[∀M ]. Similar for L∃.

Theorem 2.12 (Cut). Cut is admissible in G3Q.

Proof. By induction on the weight of a formula and subinduction on the sum of
heights of the two upper sequents of a cut. The proof is standard, so we just illustrate
the procedure for the example of a cut formula quantified by ∀ and principal in both
upper sequents of the cut. The instance of the cut then has the following form:

sM,Γ ⇒ Δ, A[s/∀M ]
R∀

Γ ⇒ Δ, A[∀M ]
tM,A[t/∀M ], A[∀M ],Γ′ ⇒ Δ′

L∀
tM,A[∀M ],Γ′ ⇒ Δ′

Cut
tM,Γ,Γ′ ⇒ Δ′,Δ

This is then transformed in the following way (Lemma 2.7 is applied to the sequent
sM,Γ ⇒ Δ, A[s/∀M ]).

Lemma 2.7
tM,Γ ⇒ Δ, A[t/∀M ]

Γ ⇒ Δ, A[∀M ] tM,A[t/∀M ], A[∀M ],Γ′ ⇒ Δ′
Cut

tM,A[t/∀M ],Γ,Γ′ ⇒ Δ′,Δ
Cut

tM, tM,Γ,Γ,Γ′ ⇒ Δ′,Δ,Δ
Lemma 2.11

tM,Γ,Γ′ ⇒ Δ′,Δ,

The upper cut has the same weight, but lower height, while the lower cut has lower
weight. Similar for ∃.

It immediately follows that

Corollary 2.13 (Weak subformula property). Every formula occurring in a derivation
of Γ ⇒ Δ is either a subformula (under the usual definition) of some formula occurring
in Γ, Δ, or basic.

and from there

Corollary 2.14 (Consistency). The calculus G3Q is consistent.

2.3. Deductive equivalence. In order to prove that the system G3Q is deductively
equivalent to LK-Quarc, given that the special rules of the two systems, as well as the
rules R∀ and L∃ are identical, and that the propositional rules display the standard
relationship between LK and G3 systems, we need only to prove the admissibility of
L∀ and R∃ (Figure 2).

Lemma 2.15. The rules L∀ and R∃ of LK-Quarc are admissible in G3Q.
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Γ Δ , tM A [t/ M ], Γ Δ
L

A[ M ], Γ Δ

Γ Δ, tM Γ Δ, A [t/ M ]
R

Γ Δ, A [ M ]

Fig. 2. L∀ and R∃ in LK-Quarc.

Proof.

Γ ⇒ Δ, tM

A[t/∀M ],Γ ⇒ Δ
Lemma 2.9

tM,A[t/∀M ], A[∀M ],Γ ⇒ Δ
L∀

tM,A[∀M ],Γ ⇒ Δ
Theorem 2.12

A[∀M ],Γ,Γ ⇒ Δ,Δ
Lemma 2.11

A[∀M ],Γ ⇒ Δ

Parallel for R∃.

Lemma 2.16. The rules L∀ and R∃ of G3Q are admissible in LK-Quarc.

Proof.

tM,Γ ⇒ Δ, tM tM,A[t/∀M ], A[∀M ],Γ ⇒ Δ
L∀

tM,A[∀M ],Γ ⇒ Δ

Parallel for R∃.

Combined, these two lemmas suffice to show that

Theorem 2.17. The systems G3Q and LK-Quarc, as well as their subsystems B, 2 and 3,
are deductively equivalent.

All the subsequent structural and meta-theoretical properties will likewise, mutatis
mutandis, hold for any of the subsystems. Since this is straightforward (requires simply
removing several inductive steps), explicit reference to them will be omitted in the rest
of this section.

2.4. Meta-theoretical properties. To prove the meta-theoretical properties, we
adopt the semantics presented in [19], which is for the most part the same as [2].
The only difference is that in [19], valuation of the quantifiers is clearly defined in the
absence of the semantic rule of instantiation, while in [2] this is not explicitly the case.
This opens up the possibility of either approaching Quarc without the semantic rule
as a free logic [18], or as three-valued [11]. In [4] both are discussed, but since here we
are interested only in the bivalent approach, we have adopted the semantics from the
first paper.

Definition 2.18 (Truth-value assignment V).

1. V(t = t) = 1,
2. V(s = t) ∈ {0, 1},
3. V(p) ∈ {0, 1}, such that if V(s = t) = 1 then V(p[t]) = V(p[s/t]),
4. V(t�1, ... , t�nP

�n) = V(t1, ... , tnPn),
5. V(¬A) = 1 iff V(A) = 0, V(A ∧ B) = 1 iff V(A) = 1 and V(B) = 1, etc,
6. V(t1, ... , tn¬P) = V(¬t1, ... , tnP),
7. V(A[tα/t1, α/t2, ... , α/tn]) = V(A),
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8. V(A[∀P]) = 1 iff for every SA t for which V(tP) = 1, V(A[t/∀P]) = 1,
9. V(A[∃P]) = 1 iff for some SA t for which V(tP) = 1, V(A[t/∃P]) = 1.

In addition to these, the rule needed for full Quarc is that for instantiation:

10. (Instantiation) For any unary predicate P there is an SA t such that V(tP) = 1.

2.4.1. Soundness. Soundness of the system follows from the same result for Quarc
[2], deductive equivalence of it to the system in [19], and Theorem 2.17. We therefore
only sketch out the proof here, but we present it nonetheless since it is considerably
less roundabout. To begin, we define the notion of validity of a sequent.

Definition 2.19 (Validity). A formula is valid under V if V(A) = 1. A sequent Γ ⇒ Δ
is valid under an assignment V iff in case all formulas in Γ are valid under V , some
formula in Δ also is. A sequent is simply valid iff it is valid under any assignment.

We prove that

Theorem 2.20 (Soundness). If a sequent Γ ⇒ Δ is derivable in G3Q, it is valid under
any assignment V .

Proof. By induction on the height of the derivation of Γ ⇒ Δ. Straightforward for
the basic case, and simple for connectives, identity, special rules and Ins . We illustrate
on the example of the latter.

If the last step of the derivation is obtained by Ins , then it has the form

tM,Γ ⇒ Δ
Ins

Γ ⇒ Δ

Assume all the formulas in Γ are valid. By Definition 2.18 there is some t for which
tM is true. Let that be t (otherwise use Lemma 2.7). Then by the inductive hypothesis,
some formula in Δ is valid.

If the last step of the derivation is obtained by L∀, then it has the form

tM,A[t/∀M ], A[∀M ],Γ ⇒ Δ
L∀

tM,A[∀M ],Γ ⇒ Δ

Assume tM,A[∀M ] and all the formulas in Γ are valid. Then, since tM and A[∀M ]
are valid, by Definition 2.18 so is A[t/∀M ], therefore all of tM , A[t/∀M ], A[∀M ], Γ
are valid, and by the inductive hypothesis so is some formula in Δ.

If the last step of the derivation is obtained by R∀, then it has the form

tM,Γ ⇒ Δ, A[t/∀M ]
R∀

Γ ⇒ Δ, A[∀M ]

Assume all the formulas in Γ are valid. By Definition 2.18 there is some t such that
tM is valid (simple otherwise). Let t be any such SA (using Lemma 2.7 as necessary).
By the inductive hypothesis, if for any such t the formula A[t/∀M ] is not valid, then
some formula in Δ is, and otherwise A[∀M ] is valid.

Parallel, respectively, for R∃ and L∃.

2.4.2. Completeness. Completeness proofs for systems related to Quarc were
provided in [11, 12], but no proof of that property for Quarc proper has been
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published so far.1 In any case the completeness proof here is worth presenting since
it is exceedingly simple and follows the method typical of sequent calculi [7, 23]. This
particular version is adapted from [20], which itself follows the presentation of [15].
We start by the definition of a reduction tree (which intuitively represents a bottom-up
proof search).

Definition 2.21 (Reduction tree). A reduction tree for a sequent Γ ⇒ Δ is built in
steps. At step 0, the tree is just Γ ⇒ Δ. Any sequent that does not contain the same
basic formula in both the antecedent and the consequent is called active.

Each subsequent step consists of stages. At each stage and for each sequent Γi ⇒ Δi
active at the beginning of it, we apply to any eligible (pair of) formulas in the sequent
the rule of the stage once (thereby extending the height of the tree by n, for n such
formulas in Γi ⇒ Δi , and creating at most 2n branches, before proceeding to the next
stage). We call an application of a rule to formulas their reduction.

The order of stages is:
(1) Ins , for every unary predicate occurring in Γi ⇒ Δi , and taking from the

denumerable list of singular arguments the first that does not occur in Γi ⇒ Δi and
had not yet been used in any reductions.

(2) L∧ (3) R∧ (4) L∨ (5) R∨ (6) L¬ (7) R¬ (8) L→ (9) R→
(10) L∀, for every pair of formulas A[∀M ] and tM in Γi .
(11) R∀, taking for the reduction of each formulaA[∀M ] in Δi from the denumerable

list of singular arguments the first such argument t not yet used in the reduction tree.
(12) L∃, treated symmetrically to R∀ (13) R∃, treated symmetrically to L∀
(13) =Repl (14) =Ref , for any singular argument t such that it occurs in Γi ⇒ Δi but

t = t does not occur in Γi
(15) LA (16) RA (17) LRd (18) RRd (19) LNP (20) RNP.
For each active sequent to which no rule can be applied, we just copy it.

We now show that

Lemma 2.22. For any sequent Γ ⇒ Δ its reduction tree either produces a proof or it
produces a valuation that validates all the formulas in Γ and none of the formulas in Δ.

Proof. It is clear that a reduction tree with no active sequents will produce, read
top down (and thus beginning with initial sequents and ending with Γ ⇒ Δ), a finite
derivation of that sequent. The second part is more involved and goes through several
lemmas below.

We build an invalidating valuation from an (infinite) reduction tree to prove the
second part. The existence of an infinite branch is guaranteed by Kőnig’s lemma in the
usual way ([15], p. 82).

Definition 2.23 (Refutation valuation C). Take an infinite branch

Π ≡ Γ0 ⇒ Δ0, ... ,Γi ⇒ Δi , ...

of a reduction tree for a sequent Γ ⇒ Δ (where Γ0 ⇒ Δ0 is Γ ⇒ Δ) and consider sets
Γ∗ ≡

⋃
Γi and Δ∗ ≡

⋃
Δi for 0 ≤ i . A refutation valuation C for a sequent Γ ⇒ Δ is

built by assigning 1 to all basic formulas in Γ∗ and 0 to all other basic formulas (thus
including those in Δ∗), and otherwise the same as in Definition 2.18.

1 Though such proofs, and using semantics from [2], appear in [5, 17].
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It is easy too see C is an appropriate Quarc truth-value assignment. Namely, it
satisfies Instantiation. We can now show that

Lemma 2.24. Any formula A occurring in Γ∗ is assigned 1 by the refutation valuation C
and any formula B occurring in Δ∗ is assigned 0 by it.

Proof. By induction on the weight of A and B.
Basic step. Immediate from Definition 2.23 and noting that Γ∗ and Δ∗ share no basic

formulas (by Definition 2.21 and Corollary 2.13).
Inductive step. We illustrate for one example of a connective, as all are straightfor-

ward.
(∧) If A is a formula C ∧D, then by stage (2) of Definition 2.21, C and D are also

in Γ∗, and by inductive hypothesis assigned 1, and so C ∧D is 1.
If B is a formula C ∧D, then by stage (3) of Definition 2.21, either C or D are also

in Δ∗, and by inductive hypothesis assigned 0, and so C ∧D is 0.
Similar for other connectives.
(∀) If A is a formulaC [∀M ], then by stage (10) of Definition 2.21, for every singular

argument t, if tM is in Γ∗ (and by inductive hypothesis 1) then C [t/∀M ] is in Γ∗ (and
by inductive hypothesis 1), and so C [∀M ] is assigned 1.

If B is a formula D[∀M ], then by stage (11) of Definition 2.21, for some singular
argument t, tM is in Γ∗ (and by inductive hypothesis 1) andD[t/∀M ] is in Δ∗ (and by
inductive hypothesis 0), and so D[∀M ] is 0.

Similar for ∃.

Finally, we have that

Theorem 2.25 (Completeness). If Γ ⇒ Δ is valid, then Γ ⇒ Δ is derivable in G3Q.

Proof. By contraposition we prove that if a sequent is not derivable, the entailment
doesn’t hold. Immediate from Lemmas 2.22 and 2.24. Specifically, by the latter we
know that there is a valuation such that all the formulas of Γ are true, but none
of Δ are.

§3. Abstracting quantification. We now move on to add to the language the
predicate T , meant (in Quarc) to approximate the conception of quantification and
the role of the domain in the Predicate calculus [4], to produce the resulting language
QuarcA. However, since the standard approach of simply adding that predicate
produces a system that is (as we will demonstrate shortly) too strong for that purpose,
we instead add to our language the quantified arguments ∀T and ∃T , and to G3Q
the corresponding rules for quantification over T listed below, to produce the system
G3QA (Figure 3). We do not add T to the list of predicates.

In a nutshell, instead of treating quantification over T as regular, but T as a special
predicate, we treat quantification over T as special. Note that the QAs we add are not
themselves sentences, so nothing is said of T outside of its use in quantification, which
we feel better captures the intention cited in the paragraph above.

Since under the standard approach T would be considered an abstraction (entirely
devoid of content) of a unary predicate—even though it is conveniently read as “thing,”
it is more general than that [4]—we claim that here we are dealing with an abstract
form of quantification. By the end of this section we will be able to say a few more
things about the exact status of this predicate.
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Quantifier rules:
A[t/ ], A[ ], Γ Δ

L
A[ ], Γ Δ

Γ Δ, A[t/ ]
R *

Γ Δ, A[ ]

A[t/ ], Γ Δ
L *

A[ ], Γ Δ

Γ Δ, A[ ], A[t/ ]
R

Γ Δ, A[ ]

Where t is fresh in rules marked with *

Fig. 3. G3QA.

3.1. Sequent calculus G3QA. G3QA is obtained by adding to G3Q the quantifier
rules in Figure 3.

It is important to note that the cut elimination theorem would fail were we to here
treat T as any other predicate. For instance, consider the following application of Cut:

tT ,Γ ⇒ Δ, A[t/∀T ]
R∀

Γ ⇒ Δ, A[∀T ]
A[t/∀T ], A[∀T ],Γ′ ⇒ Δ′

L∀T
A[∀T ],Γ′ ⇒ Δ′

Cut
Γ,Γ′ ⇒ Δ′,Δ

Here, no way of transforming the cut that will get rid of tT is available. The problem
is avoided by disallowing such a formula in our language in the first place (so formula
of the form A[∀T ] can be principal in both upper sequents of the cut only if the rule
used in the left sequent is R∀T ).

But with the rules formulated as they are, it is easy to see that

Theorem 3.26 (Structural properties G3QA). Axiom generalization holds for G3QA,
substitution, weakening, invertibility and contraction hold height-preserving for G3QA,
and cut is admissible. The same likewise holds for its subsystems.

Proof. The proofs exactly mirror the ones for G3Q, with the new rules a simpler
case of quantification of G3Q.

It follows from this that

Corollary 3.27 (Conservativity G3QA). G3QA is a conservative extension of G3Q.
That is to say, if Γ ⇒ Δ is derivable in G3QA and Γ, Δ do not contain T , then Γ ⇒ Δ is
derivable in G3Q. This likewise holds for the corresponding subsystems of the two.

Proof. It follows from the Corollary 2.13 that the derivation of an endsequent not
containing T does not involve the use of rules specific to G3QA. Note that every
derivation in G3Q is also a derivation in G3QA. Parallel for the subsystems.

3.1.1. Meta-theoretical properties. To establish the meta-theoretical properties of
G3QA, we extend Definition 2.18 for new cases of quantification as follows:
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t , Γ Δ
T

Γ Δ

Fig. 4. G3QT .

Definition 3.28 (Truth-value assignment V for QuarcA).

11. V(A[∀T ]) = 1 iff for every t, V(A[t/∀T ]) = 1.
12. V(A[∃T ]) = 1 iff for some t, V(A[t/∃T ]) = 1.

It is easy to show that

Theorem 3.29 (Meta-theoretical properties G3QA). G3QA is sound and complete with
respect to its semantics.

Proof. The proof extends the proofs of Theorems 2.20 and 2.25 with the new cases
which are exactly alike the standard quantification of [15].

3.2. Sequent calculus G3QT . G3QT (Figure 4) is a system obtained by adding to
G3Q the rule for the predicate T and extending our language with a unary predicate T
to produce QuarcT . So, unlike the previous system, here we are treating quantification
over T as standard, but T as special predicate. This is the approach to the predicate
opted for in [4, 11], where it is treated as a syntactically regular, albeit semantically
special and maximally general, predicate.

It is again easy to see that all the structural rules hold for this system as well (all the
inductive steps for the new rule are parallel to those for =Ref).

To establish the meta-theoretic properties of G3QT , we extend Definition 2.18 for
new cases of quantification as follows:

Definition 3.30 (Truth-value assignment V for QuarcT ).

11. For every t, V(tT ) = 1.

It is easy to show that

Theorem 3.31 (Meta-theoretical properties G3QT ). G3QT is sound and complete with
respect to its semantics.

Proof. The proof extends the proofs of Theorem 3.29 with the case of the new
rule T .

For soundness, assume the last step of the derivation was T and all the formulas in
Γ are valid. Then, by Definition 3.30, aT ,Γ are all valid, and so some formula in Δ is
as well.

For completeness, we add the stage
(21) T , for any SA t occurring in Γi ⇒ Δi such that tT does not occur in Γi .
It is then easy to see the refutation valuation is an appropriate truth-value

assignment, namely for all SAs t, tT holds. Completeness follows like in the proof
of Theorem 2.25 (∀T and ∃T are just cases of regular quantification).

3.3. Relation between G3QA and G3QT . After presenting a range of systems in
the previous section, we now explore the relation they hold to one another. We have
already seen that G3QA is a conservative extension of G3Q. We now investigate the
relation between G3QA and G3QT . Several lemmas are straightforward.
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Lemma 3.32. ⇒ tT is derivable in G3QT

Proof.
tT ⇒ tT T⇒ tT

Lemma 3.33. The quantification rules of G3QA are all admissible in G3QT .

Proof. The proof is very simple and similar in all cases, so we just provide the case
of L∀T as an example.

A[t/∀T ], A[∀T ],Γ ⇒ Δ
Lemma 2.9

tT , A[t/∀T ], A[∀T ],Γ ⇒ Δ
L∀

tT , A[∀T ],Γ ⇒ Δ
T

A[∀T ],Γ ⇒ Δ

Lemma 3.34. ⇒ aT is not derivable in G3QA.

Proof. Follows from Subformula property (a corollary to Theorem 3.26) for
G3QA.

Finally, we get that

Theorem 3.35. G3QA is an intermediate system between G3Q and G3QT .

Proof. That G3QA is stronger than G3Q follows from Corollary 3.27. That G3QT

is stronger than it follows from Lemmas 3.32–3.34.

We interpret this theorem the following way—the difference between G3QA and
G3QT is that the former has an implicit use of the abstract predicate (it is rather a
pseudo-predicate there, only implemented into the quantified arguments, but not added
to the list of predicates), while in the latter it is explicit (a separate rule). Consequently,
in the latter we are able to show something more about the predicate itself, while in
the former we can only address quantification. Therefore, while G3QT addresses the
abstract predicate, G3QA deals with abstract predication only.

What this theorem moreover demonstrates is that our analysis of the predicate T
differs from previous approaches to it [4, 11], which in the next section will allow us to
paint a more fine-grained picture of the relationship of Quarc and PC. More specifically,
the system involved will be G3QA2 , which is G3QA without the instantiation rule (since
PC allows for empty extensions of unary predicates). As a first step, we prove a corollary

Corollary 3.36. The system G3QA2 , which is the system G3QA without the rule Ins , is
an intermediate system between G3Q2 and G3QT .

Proof. From Corollary 3.27 and (since G3QA2 is straightforwardly weaker than
G3QA) Theorem 3.35.

We have so far in this section introduced a multitude of systems of Quarc. Moreover
the subsystems 2, 3 and B are now taking center stage. So let us, before proceeding,
sketch out the relationships of all the versions of Quarc (Figure 5) to make keeping
track of them easier.

Here subscripts represent removal of rules (2 removal of instantiation, 3 of identity
and B of both), while superscripts represent additions (A of abstract quantification, T
of that predicate). Therefore, Q represents full Quarc, as introduced in [19], and which
also appears in [4], while the system in [2] corresponds to Q3.
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Q

Q3

Q2

QB

QA

QA
3

QA
2

QA
B

Q

Q3

Q2

QB

Fig. 5. Systems of Quarc.

Of the systems introduced in this paper QA stands for QuarcA while its subsystems
are laid out in the same way as for full Quarc, and QT stands for QuarcT , with its
subsystems again represented the same way (for systematicity, but they will be of no
importance going forward). QT is the system with the predicate T discussed in [4].

3.4. Relation between Quarc and the Predicate calculus. In order to proceed with the
comparison of Quarc and PC, we first need to define a translation procedure between
the two systems. This will proceed in several steps, with the initial ones concerned
with transforming the sentences of Quarc into a shallow normal form. The issue with
coming up with a translation procedure for Quarc is that some formula formation rules
operate within a sentence, and this form will avoid such a situation.

Definition 3.37 (Shallow normal form, SNF). A formula of Quarc is in a shallow
normal form iff it contains no reordered predicates nor negative predications.

We now demonstrate how to reduce all of Quarc to just its SNF fragment.

Lemma 3.38 (Reorder reduction). Let A be a formula (a�1, ... , a�n)R�n which does not
contain anaphoric expressions αi , ... , αj , whereR�n is an n-ary reordered predicate (with
Rn its null-permutation) and a�1, ... , a�n arguments, of which qiPi , ... , qjPj , 0 ≤ i ≤
j ≤ n are all the quantified arguments (with q ∈ {∀,∃}) appearing in that order from left
to right. Then A is equivalent to

(qiPiαi )Pi ∧ ··· ∧ (qjPjαj )Pj ∧ ((a1, ... , an)Rn[αi/qiPi , ... , αj/qjPj ])
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Proof. By induction on the number of quantified arguments in A for each direction
of the equivalence. In the basic case, this is simply an application of the Reorder rules.

In the inductive case, we distinguish two options—when the governing quantifier qi
is ∀ and when it is ∃. We tackle these in turn.

(∀) In the L-R case the derivation is:

tPi , (... , t, ...)R�n, ...⇒ tPi
i.h.

tPi , (... , t, ...)R�n, ...⇒ (... , αi , ...)Rn[t/αi ]
R∧

tPi , (... , t, ...)R�n, ...⇒ tPi ∧ (... , αi , ...)Rn[t/αi ]
RA

tPi , (... , t, ...)R�n, ...⇒ (tαi)Pi ∧ (... , αi , ...)Rn
L∀

tPi , (... ,∀iPi , ...)R�n ⇒ (tαi)Pi ∧ (... , αi , ...)Rn
R∀

(... ,∀iPi , ...)R�n ⇒ (∀iPiαi )Pi ∧ (... , αi , ...)Rn

In the R-L case the derivation is:

i.h.
tPi , (t)Pi , (... , αi , ...)Rn[t/αi ], ...⇒ (... , t, ...)R�n

L∧
tPi , (t)Pi ∧ (... , αi , ...)Rn[t/αi ], ...⇒ (... , t, ...)R�n

LA
tPi , (tα)Pi ∧ (... , αi , ...)Rn, ...⇒ (... , t, ...)R�n

L∀
tPi , (∀iPiαi )Pi ∧ (... , αi , ...)Rn ⇒ (... , t, ...)R�n

R∀
(∀iPiαi )Pi ∧ (... , αi , ...)Rn ⇒ (... ,∀iPi , ...)R�n

(∃) Parallel to the corresponding cases above.

Lemma 3.39 (Negative predication reduction). Let A be a formula (a1, ... , an)¬Rn
which does not contain anaphoric expressions αi , ... , αj , where Rn is an n-ary predicate
or reordered predicate and a1, ... , an arguments, of which qiPi , ... , qjPj , 0 ≤ i ≤ j ≤ n
are all the quantified arguments appearing in that order from left to right. Then A is
equivalent to

(qiPiαi )Pi ∧ ··· ∧ (qjPjαj )Pj ∧ (¬(a1, ... , an)Rn[αi/qiPi , ... , αj/qjPj ]).

Proof. Parallel to the proof of Lemma 3.38.

We can now show that

Theorem 3.40. Every formula A of Quarc is equivalent to some Quarc formula A′ which
is in SNF.

Proof. By induction, simultaneous for both directions, on the weight of A. For
trivial cases, which also includes the basic case, this is an instance of Lemma 2.8. For
(t�1 ... t�n)P�n and (t1 ... tn)¬Pn this is a simple application of reorder and negative
predication rules. The cases containing no ∧, ∨, → nor sentential negation are covered
by Lemmas 3.38 and 3.39. We examine the remaining cases.

If the last formation rule applied was the one for anaphora, then A is equivalent
to some A[t/tα, t/α1, ... , t/αn], to which we can apply the inductive hypothesis and
obtain the requisite A′[t/tα, t/α1, ... , t/αn].
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If the last formation rule applied was the one for ∧, we have the following derivation.

i.h., Lemma 2.9
A,B ⇒ A′

i.h., Lemma 2.9
A,B ⇒ B ′

R∧
A,B ⇒ A′ ∧ B ′

L∧
A ∧ B ⇒ A′ ∧ B ′

Note that if A′ and B ′ are in SNF, then A′ ∧ B ′ is in SNF. Similar for the other
connectives and in the other direction.

If the last formation rule applied was the one for ∀, we have the following derivation.

i.h., Lemma 2.9
tM,A[∀M ], A[t/∀M ] ⇒ A′[t/∀M ]

L∀
tM,A[∀M ] ⇒ A′[t/∀M ]

R∀
A[∀M ] ⇒ A′[∀M ]

Similar for the ∃ and in the other direction.

In the discussion of the relationship of Quarc and PC in [4], the reordered predicates
are omitted. We are not forced to take this route thanks to this theorem. Keeping it in
mind, in the proceeding we can focus simply on the SNF fragment of Quarc. We can
now offer a definition (greatly simplified from [11]) of the translation procedure from
Quarc to PC and vice versa.

Definition 3.41 (Translation procedureϕqpc). The translation procedure from the SNF
fragment of Quarc into the Predicate calculus is a function ϕqpc : LSNF

Quarc → LPC. The
languages are assumed to share the list of individual constants and predicates.

∀T〈α〉 marks that the quantified argument is the source of anaphora α, if at all,
α1, ... , αn mark all n occurrences of the anaphora α and t marks either a variable
x, y, ... or a constant a, b, ... The function ϕqpc (written just as ϕ for legibility) is then
defined as:
ϕ(t1, ... , tnPn) = Pnt1, ... , tn
ϕ(A[tα]) = ϕ(A[t/tα, t/α1, ... , t/αn])
ϕ(¬A) = ¬ϕ(A)
ϕ(A× B) = ϕ(A) × ϕ(B)
ϕ(A[∀T ]) = ∀xϕ(A[x/∀T〈α〉, x/α1, ... , x/αn])
ϕ(A[∃T ]) = ∃xϕ(A[x/∃T〈α〉, x/α1, ... , x/α1])
ϕ(A[∀M ]) = ∀x(Mx → ϕ(A[x/∀M〈α〉, x/α1, ... , x/αn]))
ϕ(A[∃M ]) = ∃x(Mx ∧ ϕ(A[x/∃M〈α〉, x/α1, ... , x/α1])).

The translation of a formula A is complete when there are no more strings of symbols
containing ϕ.

Definition 3.42 (Translation procedure ϕpcq ). The translation procedure from the
Predicate calculus into Quarc is a function ϕpcq : LPC → LQuarc (that this will be the
SNF fragment of it is trivial). The languages are again assumed to share the list of
individual constants and predicates, and t marks either a variable x, y, ... or a constant
a, b, .... The function ϕpcq (written just as ϕ for legibility) is then defined as:
ϕ(Pnt1, ... , tn) = t1, ... , tnPn

ϕ(¬A) = ¬ϕ(A)
ϕ(A× B) = ϕ(A) × ϕ(B)
ϕ(∀xA) = ∀Tα = α ∧ ϕ(A[α//x])
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ϕ(∃xA) = ∃Tα = α ∧ ϕ(A[α//x]).

The translation of a formula is complete when there are no more strings of symbols
containing ϕ. For simplicity, in the quantified cases A is assumed to contain x.

Having established the means of correlating the languages, we can now show what
the relationship between the systems is:

Lemma 3.43. If Γ ⇒ Δ is derivable in G3QA2 , then ϕqpc(Γ) ⇒ ϕqpc(Δ) is derivable in G3c,
where ϕqpc(Γ) is a multiset of ϕqpc(A), A ∈ Γ, and likewise for Δ.

Proof. By induction on the height of the derivation. The basic case is straightforward.
In the inductive case we inspect the last rule of the derivation. Since the propositional
rules are identical, we can omit those cases here and focus on the quantifiers, using the
universal quantifier as an illustration. We will mark ϕqpc(Γ) as Γ′, and likewise for Δ.

(L∀) If this is the last rule used, the derivation ends as:

tM,A[t/∀M ], A[∀M ],Γ ⇒ Δ
L∀

tM,A[∀M ],Γ ⇒ Δ

Then, by inductive hypothesis, the following sequent is derivable in G3c:
(i)Mt,ϕ(A[t/∀M ]),∀x(Mx → ϕ(A[x/∀M ])),Γ′ ⇒ Δ′.
We can then continue the derivation as follows (with (i) the top right sequent):

Mt,∀x(Mx → ϕ(A[x/∀M ])),Γ′ ⇒ Δ′,Mt (i)
L→

Mt,Mt → ϕ(A[t/∀M ]),∀x(Mx → ϕ(A[x/∀M ])),Γ′ ⇒ Δ′
L∀

Mt,∀x(Mx → ϕ(A[x/∀M ])),Γ′ ⇒ Δ′

Here ∀x(Mx → ϕ(A[x/∀M ])) is precisely ϕqpc(A[∀M ]) (and Mt is ϕqpc(tM )), as
required.

(R∀) If this is the last rule used, the derivation ends as:

tM,Γ ⇒ Δ, A[t/∀M ]
R∀

Γ ⇒ Δ, A[∀M ]

Then, by inductive hypothesis, the following sequent is derivable in G3c:
(i)Mt,Γ′ ⇒ Δ′, ϕ(A[t/∀M ])
We can then continue the derivation as follows:

Mt,Γ′ ⇒ Δ′, ϕ(A[t/∀M ])
R→

Γ′ ⇒ Δ′,Mt → ϕ(A[t/∀M ])
R∀

Γ′ ⇒ Δ′,∀x(Mx → ϕ(A[x/∀M ]))

Here ∀x(Mx → ϕ(A[x/∀M ])) is precisely ϕqpc(A[∀M ]), as required.
The cases for ∃ are parallel, and applying the translation to the rules L∀T , L∃T ,

R∀T and R∃T simply produces the quantifier rules of G3c. Given that we are dealing
with the SNF fragment of Quarc we know by Corollary 2.13 extended to G3QA the
rules for the reordered predicates and negative predication will not occur. Finally, the
rules for anaphora are simple, since ϕqpc(A[tα]) = ϕqpc(A[t/tα, t/α1, ... , t/αn]).

Lemma 3.44. If Γ ⇒ Δ is derivable in G3c, then ϕpcq (Γ) ⇒ ϕpcq (Δ) is derivable in G3QA2 .

Proof. As above by induction on the height of a derivation. This is simple for
propositional rules since they are again the same and similar to above for the quantifier
rules, so we just illustrate for L∀T .
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(L∀) If this is the last rule used, the derivation ends as:

A[t//x],∀xA,Γ ⇒ Δ
L∀∀xA,Γ ⇒ Δ

Then, we apply the inductive hypothesis and continue the derivation as follows:

ϕ(A[t//x]),∀Tα = α ∧ ϕ(A[t//x]),Γ′ ⇒ Δ′
Theorem 3.26

t = t, ϕ(A[t//x]),∀Tα = α ∧ ϕ(A[α//x]),Γ′ ⇒ Δ′
L∧

t = t ∧ ϕ(A[t//x]),∀Tα = α ∧ ϕ(A[α//x]),Γ′ ⇒ Δ′
LA

tα = α ∧ ϕ(A[α//x]),∀Tα = α ∧ ϕ(A[α//x]),Γ′ ⇒ Δ′
L∀T∀Tα = α ∧ ϕ(A[α//x]),Γ′ ⇒ Δ′

Moreover, to account for non-derivability we need to prove the following lemma:

Lemma 3.45 (Back-translation). For any formula A of QuarcA, A ≡ ϕpcq ◦ ϕqpc(A) and
for any formula B of the Predicate calculus, B ≡ ϕqpc ◦ ϕpcq (B).

Proof. By induction on the weight of A and B respectively (the latter is defined in
the usual way). Most cases are trivial, so we just illustrate for the case of the universal
quantifier. For legibility we write ϕpcq ◦ ϕqpc as ϕ′ and ϕqpc ◦ ϕpcq as ϕ′′.

If A isC [∀M ], thenϕ′(A) is∀Tα = α ∧ (αM → ϕ′(C [α/∀M<α>, α/α1, ... , α/αn])).
We then have the following derivations:

Left to right:

Right to left:

If B is ∀xD then ϕ′′(B) is ∀x(x = x ∧ ϕ′′(D)) and the proof is simple. Similar for
∃, ∀T and ∃T .

These three lemmas combined show that

Theorem 3.46 (Deductive equivalence G3QA2 and PC). G3QA2 and the Predicate
calculus are deductively equivalent.
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468 EDI PAVLOVIĆ AND NORBERT GRATZL
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Fig. 6. Relationship of Quarc and PC.

3.4.1. Philosophical import. This theorem explains the existing results, namely that
Quarc without instantiation is weaker than the Predicate Calculus, with its strength
along the lines of negative free logic [18], and that there is an image of the Predicate
Calculus within Quarc expanded with an abstract predicate [11].

The theorem systematizes and refines those results—recalling the schematic
representation of the relationships between different systems of Quarc in Figure 5,
we can now disregard the B and 3 elements to obtain a clearer picture in Figure 6
(which will still contain some redundancies, but these can be left for completeness).

This shows us that extending PC (i.e., G3QA2 , given Theorem 3.46) with the rule
for instantiation (which corresponds to the schema ∃xSx for any unary predicate S)
results in a system at least as strong as Quarc. Likewise, extending Quarc with abstract
quantification creates a system at least as strong as PC. In fact, while PC and Quarc are
not directly comparable, we are now able to find the least upper bound of the two (as
both of these extensions yield the same system), namely the system QuarcA, introduced
in this paper and corresponding to the sequent calculus G3QA. Therefore, we are now
provided with a uniform picture of the relationship between the two which accounts
for, and further expands, all the results on the topic present in the literature on Quarc
so far. Moreover, we can also see (by Theorem 3.35) that the expansion of Quarc by
the predicate T that has been considered so far (corresponding to QuarcT and sequent
calculus G3QT of this paper) potentially obfuscated the issue by being stronger than
what is required.

We now turn to investigating some further (philosophically fruitful, it will turn out)
properties of the systems we have here formulated.

3.5. Craig interpolation property for G3QA and G3QT . Given Theorem 3.46, it
comes as no surprise that G3QA2 has the Craig interpolation property [8], but this
would require an indirect (twice) route via the SNF and then the Predicate calculus.

Here we instead provide a constructive method of finding the interpolant for both
G3QA and G3QT , as well as (if one observes the steps for the appropriate rules) their
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subsystems. Moreover, in this way we are able to construct the interpolant for the full
G3QA and not just the SNF fragment.

The proof uses some elements of the proof in [6], but is primarily an adaptation
of [13] method, as found in [16]. After proving that the Craig interpolation property
holds for G3QA we also extend the result to G3QT . This helps shed some light on the
status of the predicate T (remember that in G3QT it is a predicate).

Definition 3.47 (Craig interpolation property). A system has the interpolation
property when, if Γ ⇒ Δ is derivable, then there is a formula C, called the interpolant,
such that Γ ⇒ C and C ⇒ Δ are derivable and V (C ) ⊆ V (Γ) ∩ V (Δ), (where V (A)
is a set of all the non-logical predicates in A), or either Γ ⇒ or ⇒ Δ are derivable.

To prove that G3QA has the Interpolation property, we will prove the following
lemma:

Lemma 3.48. If Γ ⇒ Δ is derivable in G3QA and 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 is any partition
of Γ,Δ, then there is a formula C such that Γ1 ⇒ Δ1, C and C,Γ2 ⇒ Δ2, as well as
V (C ) ⊆ V (Γ1,Δ1) ∩ V (Γ2,Δ2).

Proof. By induction on the height of the derivation. Since this involved proof requires
meticulous case checking, it has been deferred to Appendix A.

We now eliminate the constants � and ⊥:

Lemma 3.49. Every interpolant can be reduced to either �, ⊥ or one that contains no
occurrence of either.

Proof. This proof can likewise be found in Appendix A.

These lemmas immediately show that

Theorem 3.50 (Craig interpolation property G3QA). G3QA possesses the Craig
interpolation property.

Proof. Applying Lemma 3.48 to the partition (〈Γ:〉; 〈:Δ〉) of Γ ⇒ Δ (i.e., taking
Γ1 = Γ, Δ1 = ∅, Γ2 = ∅ and Δ2 = Δ) we obtain the interpolant C such that Γ ⇒ C
and C ⇒ Δ as well as V (C ) = V (Γ) ∩ V (Δ).

If C contains � or ⊥ we apply Lemma 3.49. If the interpolant is now � then ⇒ Δ
holds, and if it is ⊥ then Γ ⇒ holds.

To prove that G3QT has the interpolation property, we prove the following lemma:

Lemma 3.51. If Γ ⇒ Δ is derivable in G3QT and 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 is any partition
of Γ,Δ, then there is a formula C such that Γ1 ⇒ Δ1, C and C,Γ2 ⇒ Δ2, as well as
V (C ) ⊆ V (Γ1,Δ1) ∩ V (Γ2,Δ2).

Proof. Required for the proof is the assumption that T is a logical predicate. This is
plausible since it is easy to demonstrate that in G3QT it holds for any t that t = t ⇔ tT .
With this in place, the proof is the same as that of Lemma 3.48, with the new case of
the rule T exactly like that for =Ref .

The lemma corresponding to Lemma 3.49 is simplified:

Lemma 3.52. Every interpolant can be reduced to one that contains no occurrences of �
or ⊥.

https://doi.org/10.1017/S175502032100006X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032100006X
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Proof. Every occurrence of � is replaced by (∃T )T and every occurrence of ⊥ by
¬(∃T )T .

From these it follows that

Theorem 3.53 (Craig interpolation property G3QT ). G3QT possess the Craig
interpolation property.

3.5.1. Philosophical import. The addition of the predicate T , either as a proper
predicate or as merely a part of a quantified argument, allows the direct demonstration
of the Craig interpolation property (otherwise we are unable to proceed when the
partitions share no unary predicates, see Appendix A, e.g., case of R∀). As already
mentioned, given Theorem 3.46 this is to be expected, but in addition to providing a
constructive method of finding the interpolant (an open logical question in its own
right) Theorems 3.50 and 3.53 are also philosophically indicative of the status of that
predicate, namely that in addition to being abstract, it should be considered a logical
predicate.

In this way, the theorems further reveal the distinction in approach between Quarc
and PC—Quarc is interested in actual (i.e., natural language) predicates and/or
quantification, whereas to match the strength of PC it needs to introduce abstractions
of either of those (which is also why the addition of T to Quarc is not entirely natural,
and not part of its regular vocabulary).

§4. Complex quantification. So far, every extension to the quantification in Quarc
we have done had been of the simple kind, namely binding only a unary predicate.
However, in this section, we show that it is possible to elegantly extend this to more
complex forms of quantification.

One of the important contributions of Lanzet [11] to the research on Quarc is the
introduction of defining clauses, which allows it to capture more involved instances of
natural language quantification. But the system there is cumbersome in several respects.
Given that it quantifies over predicates with defining clauses, which themselves cannot
always be expected to be instantiated, it needs to abandon instantiation, and it opts
for a three-valued system as a result. Consequently, it contains a multitude of rules to
account for different scopes of negation. Moreover, it also contains rules for compound
predicates.

However, as Pavlovic and Gratzl [18] shows, it is possible to treat Quarc without
instantiation as a bivalent system, in which case it displays a structural similarity to
free logic and therefore meshes easily with the approach of this paper. This makes
for a significantly more streamlined sequent calculus, and one which allows a simpler
structural analysis (the calculus in [11] is not shown to be cut-free) and demonstration
of meta-theoretical properties.

The system can be further simplified by omitting the requirement that the quantifiers
bind just predicates (which then need to have their own compounding rules). Instead,
we allow for quantifiers to bind sentences of a certain kind (note, however, that none
of the quantified expressions are sentences in their own right). This allows for a greater
variety of clauses one can quantify over, which at the same time require no new rules
of their own. In addition, this provides greater modularity, since it does not necessitate
abandoning instantiation.
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For example, while it is a straightforward matter to translate into Quarc the natural
language sentence

Example 4.54. Every person is rich.

One might want to likewise account for the more complicated (though quite common
in natural language) sentences of the form [11]:

Example 4.55. Every person who owns a private jet is rich.

4.1. Formal language of QuarcC . To obtain this system of quantification we call
complex, we first extend the language as follows:

Definition 4.56 (Formula of QuarcC ).

A ::= (t1 ... tn)Pn| (t1 ... tn)P�n| (t1 ... tn)¬P| ¬(A) | (A) × (A)|
A[tα/t1, α/ti , ... , α/tj ] | A[∀S/t] | A[∃S/t] | A[∀s(A)∗/t] | A[∃s(A)∗/t].

where all the previous stipulations hold, and in addition, the formula (A)∗ is not a
basic formula containing a unary predicate, and it contains precisely one occurrence
of the singular argument s.

Moreover, A[∀s(A)∗/t] and A[∃s(A)∗/t] are governed by the quantified clauses
(QC) ∀s(A) and ∃s(A), respectively (the parentheses around A can be dropped in the
quantified clauses if no ambiguity arises).

Finally, the definition of governance is extended from QAs to quantified expressions,
which include both QAs and QCs.

Using this definition, the sentence from Example 4.55 would be formalized as:

Example 4.57. (∀s(sαPerson ∧ (α,∃PrivateJet)Owns))Rich.

Notice here that, per the requirements of Definition 4.56, ‘∃PrivateJet’ is a
quantified argument, while ‘∀s(sαPerson ∧ (α,∃PrivateJet)Owns)’ is a quantified
clause, and ‘sαPerson ∧ (α,∃PrivateJet)Owns ’ is a formula which contains only a
single occurrence of the singular argument ‘s’.

By comparison, in Lanzet [11] the same sentence would be formalized as

Example 4.58. (∀Personx : [(x,∃PrivateJet)Owns])Rich.

While our notation minimally increases the length of the notation, the cost of
introducing a new type of quantification is offset by not having to use two types
of anaphora (e.g., x in Example 4.58 attaches only to the predicate Person, not to the
argument, and is thus an anaphora of a separate type), and there is the considerable
upside of now being able to also formalize sentences such as:

Example 4.59. All those who own private jets are rich.

This would require the predicate T to be formalized in the previous system, but here
comes out as:

Example 4.60. (∀s(s,∃PrivateJet)Owns)Rich.

Moreover, instead of introducing rules for compound predicates, we can straight-
forwardly use regular rules of the system for the same purpose. And finally, since
quantified clauses do not use unary predicates, the question of whether the latter have
instances is separated, resulting in a more modular system.
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Complex quantifier rules:
A[∀sB ], Γ ⇒ Δ , B [t/s ] A[t/∀sB ], A[∀sB ], Γ ⇒ Δ

L∀c
A[∀sB ], Γ ⇒ Δ

B [t/s ], Γ ⇒ Δ , A[t/∀sB ]
R∀c∗

Γ ⇒ Δ , A[∀sB ]

B [t/s ], A[t/∃sB ], Γ ⇒ Δ
L∃c∗

A[∃sB ], Γ ⇒ Δ

Γ ⇒ Δ , A[∃sB ], B [t/s ] Γ ⇒ Δ , A[∃sB ], A[t/∃sB ]
R∃c

Γ ⇒ Δ , A[∃sB ]

Where t is fresh in rules marked with *

Fig. 7. G3QC.

We now continue the formal presentation of the system by extending the definition
of truth for quantification as follows:

Definition 4.61 (Truth-value assignment V for QuarcC ).

9. V(A[∀sB]) = 1 iff for every t for which V(B[t/s]) = 1, V(A[t/∀sB]) = 1.
10. V(A[∃sB]) = 1 iff for some t for which V(B[t/s]) = 1, V(A[t/∃sB]) = 1.

We reflect these definitions in the sequent calculus by adding the complex
quantification rules to G3Q (Figure 7).

4.2. Structural properties. Demonstration of the structural properties of G3QC is
a straightforward extension of those results for G3Q. We just need to define the weight
of a formula in the appropriate way, namely

Definition 4.62 (Complex formula weight).

w(A[∀sB]) = w(A[t/∀sB]) + w(B) + 1

w(A[∃sB]) = w(A[t/∃sB]) + w(B) + 1.

With this addition, proofs of all the structural properties follow immediately:

Theorem 4.63 (Structural properties G3QC). Axiom generalization holds for G3QC,
substitution, weakening, invertibility of rules, and contraction hold height-preserving for
G3QC, and cut is admissible.

Proof. The proofs for all of these extend those for G3Q. The only new case in each
proof is the one for complex quantification. Axiom generalization, substitution and
weakening are exactly alike the case for G3Q while invertibility and contraction are
guaranteed by the form of the new rules in the usual way [15]. For cut the new case
to check is when the cut formula is a complex quantification and principal in both
premises of cut:

B[r/s],Γ ⇒ Δ, A[r/∀sB]
R∀c

Γ ⇒ Δ, A[∀sB]
A[∀sB],Γ′ ⇒ Δ′, B[t/s] A[t/∀sB], A[∀sB],Γ′ ⇒ Δ′

L∀c
A[∀sB],Γ′ ⇒ Δ′

Γ,Γ′ ⇒ Δ,Δ′

This is transformed into:
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(1)

Γ ⇒ Δ, A[∀sB] A[∀sB],Γ′ ⇒ Δ′, B[t/s]
Cut1

Γ,Γ′ ⇒ Δ,Δ′, B[t/s]

B[r/s],Γ ⇒ Δ, A[r/∀sB]
Sub

B[t/s],Γ ⇒ Δ, A[t/∀sB]
Cut3

Γ,Γ,Γ′ ⇒ Δ,Δ,Δ′, A[t/∀sB]

(1)
Γ ⇒ Δ, A[∀sB] A[t/∀sB], A[∀sB],Γ′ ⇒ Δ′

Cut2
A[t/∀sB],Γ,Γ′ ⇒ Δ,Δ′

Cut4Γ,Γ,Γ,Γ′Γ′ ⇒ Δ,Δ,Δ,Δ′,Δ′
Contr.

Γ,Γ′ ⇒ Δ,Δ′

where Cut1 and Cut2 are of lower height, while Cut3 and Cut4 are of lower weight.
Similar for ∃c.

4.3. Meta-theoretical properties. As with the structural properties, the proofs of
meta-theoretical properties of G3QC easily extend the corresponding ones for G3Q.

Theorem 4.64 (Soundness G3QC). If Γ ⇒ Δ is derivable in G3QC, then Γ ⇒ Δ is valid
under Definition 4.61.

Proof. The proof extends the proof of Theorem 2.20 with the new cases.
If last step of the derivation is obtained by L∀c then it has the form

A[∀sB],Γ ⇒ Δ, B[t/s] A[t/∀sB], A[∀sB],Γ ⇒ Δ
L∀c

A[∀sB],Γ ⇒ Δ

AssumeA[∀sB] and all the formulas in Γ are valid. Then by the inductive hypothesis
either (i) some formula in Δ is valid, or (ii) B[t/s] is. In the first case we are done
and otherwise since B[t/s] and A[∀sB] are valid, by Definition 4.61 so is A[t/∀sB],
therefore all of A[t/∀sB], A[∀sB], Γ are valid, and by the inductive hypothesis so is
some formula in Δ.

If the last step of the derivation is obtained by R∀c, then it has the form

B[t/s],Γ ⇒ Δ, A[t/∀sB]
R∀c

Γ ⇒ Δ, A[∀sB]

Assume all of the formulas in Γ are valid, but neither A[∀sB] nor any formula in Δ
are. Then by Definition 4.61 there is some t (let it just be t) such that B[t/s] is valid
but A[t/∀sB] is not. Since B[t/s] and all of Γ are valid, by the inductive hypothesis so
is either some formula in Δ, or A[t/∀sB]. Contradiction either way.

Parallel, respectively, for R∃c and L∃c.
Theorem 4.65 (Completeness G3QC). If Γ ⇒ Δ is valid under Definition 4.61 then it is
derivable in G3QC.

Proof. We first extend the definition of the reduction tree with the clauses for the
new rules:

(21) L∀c, for every singular argument t in Γi ∪ Δi .
(22) R∀c, taking for the reduction of each formula A[∀sB] in Δi from the

denumerable list of singular arguments the first such argument t not yet used in the
reduction tree.

(23) L∃c, treated symmetrically to R∀c
(24) R∃c, treated symmetrically to L∀c.
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We then show that the refutation valuation C assigns the correct values to the new
formulas.

(∀s) If A is a formula C [∀sD], then by stage (21), for every singular argument
t, either D[t/s] is in Δ∗ (and by inductive hypothesis 0) or C [t/∀sD] is in Γ∗ (and
by inductive hypothesis 1). So for every t it holds that if D[t/s], then C [t/∀sD] and
therefore C [∀sD] is assigned 1.

If B is a formula C [∀sD], then by stage (22), for some singular argument t, D[t/s]
is in Γ∗ (and by inductive hypothesis 1) and C [t/∀sD] is in Δ∗ (and by inductive
hypothesis 0), and so C [∀sD] is 0.

Similar for ∃s .

§5. Concluding remarks. The primary goal of this paper was to definitively answer
the question of mutual relation of the Quantified argument calculus and the Predicate
calculus. To achieve this, we have noted that previous additions of the predicate T to
simulate the role of the domain have been too strong, and that all that is required is
for that predicate to appear in the titular quantified arguments of Quarc. Finding a
form of sentences that allows us to put some special linguistic features of Quarc aside
has enabled us to show that the result of such a weaker addition to a subsystem of
Quarc is deductively equivalent to PC. Given that T is an abstract predicate entirely
devoid of meaning, and also (since this assumption enables the demonstration of Craig
interpolation property, which by the equivalence is expected to hold) a logical one,
we can better understand the distinction between Quarc and PC in their respective
approaches to quantification. Namely, the quantification of PC can be seen as an
abstraction of that of Quarc.

Moreover, it has been argued to some extent [2, 3] that Quarc better captures the
quantification of natural language. While we do not consider this matter settled, we
find it prima facie plausible enough to conclude that the results here also shine some
light on the relation of quantification of PC to that of natural language—namely, that
the former is an abstraction of the latter.

Following the thread of thought of the main result has also enabled us to elegantly
incorporate defining clauses into the proof-theoretic framework of Quarc while keeping
it bivalent. Of course, there is significant literature [4, 11] that suggests it should be
trivalent, and in any case it seems that the original intention in the formulation in [2]
was to have it trivalent when the predicate in the quantified argument has no instances.
It remains a task for the future to adapt the proof-theoretic framework developed here
to that approach while maintaining all the desirable properties of a good proof system.

§A. Craig interpolation property.

Lemma 3.48. If Γ ⇒ Δ is derivable in G3QA and 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 is any partition
of Γ,Δ, then there is a formula C such that Γ1 ⇒ Δ1, C and C,Γ2 ⇒ Δ2, as well as
V (C ) ⊆ V (Γ1,Δ1) ∩ V (Γ2,Δ2) (where V (A) is a set of all the non-logical predicate
variables in A).

Proof. By induction on the height of the derivation.

1.1. Basic step. If Γ ⇒ Δ is an initial sequent, the partitions to be considered are
〈(Γ1, p : Δ1, p); (Γ2 : Δ2)〉, with the interpolant ⊥,
〈(Γ1 : Δ1); (Γ2, p : Δ2, p)〉 with the interpolant �,
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〈(Γ1, p : Δ1); (Γ2 : Δ2, p)〉 with the interpolant p, and
〈(Γ1 : Δ1, p); (Γ2, p : Δ2)〉 with the interpolant ¬p.

1.2. Inductive step. In proceeding to the inductive step we consider the last step of
the derivation.

(L∀) The partitions to be considered are

1. 〈(tM,A[∀M ],Γ1 : Δ1); (Γ2 : Δ2)〉
By the inductive hypothesis, there is a C such that

(i) tM,A[∀M ], A[t/∀M ],Γ1 ⇒ Δ1, C ,
(ii) C,Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (tM,A[∀M ], A[t/∀M ],Γ1,Δ1) ∩ V (Γ2,Δ2)
Applying L∀ to (i), we get C as the interpolant, since

V (tM,A[∀M ], A[t/∀M ],Γ1,Δ1) = V (tM,A[∀M ],Γ1,Δ1)
2. 〈(Γ1 : Δ1); (tM,A[∀M ],Γ2 : Δ2)〉

Parallel to the previous case.
3. 〈(tM,Γ1 : Δ1); (A[∀M ],Γ2 : Δ2)〉

By the inductive hypothesis, there is a C such that
(i) tM,Γ1 ⇒ Δ1, C ,
(ii) C,A[∀M ], A[t/∀M ],Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (tM,Γ1,Δ1) ∩ V (A[∀M ], A[t/∀M ],Γ2,Δ2)
The interpolant is tM ∧ C , since

tM,Γ1 ⇒ Δ1, tM tM,Γ1 ⇒ Δ1, C R∧
tM,Γ1 ⇒ Δ1, tM ∧ C

and

C,A[∀M ], A[t/∀M ],Γ2 ⇒ Δ2
Lemma 2.9

tM,C,A[∀M ], A[t/∀M ],Γ2 ⇒ Δ2
L∀

tM,C,A[∀M ],Γ2 ⇒ Δ2
L∧

tM ∧ C,A[∀M ],Γ2 ⇒ Δ2

Moreover, V (A[∀M ],Γ2,Δ2) = V (A[∀M ], A[t/∀M ],Γ2,Δ2) and M ∈
V (tM,Γ1,Δ1) ∩ V (A[∀M ],Γ2,Δ2).

4. 〈(A[∀M ],Γ1 : Δ1); (tM,Γ2 : Δ2)〉
Parallel to the previous case, with the interpolant tM → C .

(R∀) The partitions to be considered are

1. 〈(Γ1 : Δ1, A[∀M ]); (Γ2 : Δ2)〉
By the inductive hypothesis, there is a C such that

(i) tM,Γ1 ⇒ Δ1, A[t/∀M ], C ,
(ii) C,Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (Γ1,Δ1) ∩ V (tM,Γ2,Δ2, A[t/∀M ])
If C does not contain t, applying R∀ to (i) we get C as the interpolant, since

V (tM,Γ2,Δ2, A[t/∀M ]) = V (Γ2,Δ2, A[∀M ]).
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If C contains t, then it must contain some n-ary predicateRn. The interpolant
is then ((∃T� , ... , �n)Rn ∨ ¬(�1, ... , �n)Rn) ∧ C [�/t], since

and

C,Γ2 ⇒ Δ2 Lemma 2.9
(t1, ... , tn)Rn ∨ ¬(t1, ... , tn)Rn,C,Γ2 ⇒ Δ2

L∧
((t1, ... , tn)Rn ∨ ¬(t1, ... , tn)Rn) ∧ C,Γ2 ⇒ Δ2

L∃
((∃T� , ... , �n)Rn ∨ ¬(�1, ... , �n)Rn) ∧ C [�/t],Γ2 ⇒ Δ2

MoreoverV (Γ2,Δ2, A[∀M ]) = V (tM,Γ2,Δ2, A[t/∀M ]) andV (((∃T� , ... , �n)
Rn ∨ ¬(�1, ... , �n)Rn) ∧ C [�/t]) = V (C ), since T is not considered a predicate
in G3QA.

2. 〈(Γ1 : Δ1); (Γ2 : Δ2, A[∀M ])〉
Parallel to the previous case, with the interpolant ((∃T� , ... , �n)Rn ∧
¬(�1, ... , �n)Rn) ∨ C [�/t].

(R∃) Parallels L∀. The partitions to be considered are

1. 〈(tM,Γ1 : Δ1, A[∃M ]); (Γ2 : Δ2)〉, with the interpolant C,
2. 〈(Γ1 : Δ1); (tM,Γ2 : Δ2, A[∃M ])〉, with the interpolant C,
3. 〈(tM,Γ1 : Δ1); (Γ2 : Δ2, A[∃M ])〉, with the interpolant tM ∧ C ,
4. 〈(Γ1 : Δ1, A[∃M ]); (tM,Γ2 : Δ2)〉, with the interpolant tM → C .

(L∃) Parallels R∀. The partitions to be considered are

1. 〈(A[∃M ]),Γ1 : Δ1; (Γ2 : Δ2)〉, with the interpolant ((∃T� , ... , �n)Rn ∨ ¬(�1, ... ,
�n)Rn) ∧ C [�/t] (or C if it contains no t),

2. 〈(Γ1 : Δ1); (A[∃M ],Γ2 : Δ2)〉, with the interpolant ((∃T� , ... , �n)Rn ∧ ¬(�1, ... ,
�n)Rn) ∨ C [�/t] (or C if it contains no t).

(L∀T ,R∀T ,L∃T ,R∃T ) Parallel exactly the rules L∀, R∀, L∃ and R∃.

(Special rules) With the rules RA, LA, LNP, RNP, LRd and RRd the procedure
is straightforward, and the interpolant always C, noting that the reordered predicates
are treated as operations on predicates, and therefore Rn ∈ V (A) iff R ∈ V (A).

(Ins) Only one type of partition needs to be considered here. By the inductive
hypothesis, there is a C such that

(i) tM,Γ1 ⇒ Δ1, C ,
(ii) C,Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (tM,Γ1,Δ1) ∩ V (Γ2,Δ2).

IfM /∈ V (C ), we distinguish two cases. If C does not contain t, applying Ins
to (i) we get C as the interpolant. Otherwise, if C contains t, it contains some
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predicate Rn, and the interpolant is ((∃T� , ... , �n)Rn ∨ ¬(�1, ... , �n)Rn) ∧
C [�/t].
If M ∈ V (C ), the interpolant is the same as in the two cases above if
M ∈ V (Γ1,Δ1). Otherwise, by the inductive hypothesis, there is a D such that

(iv) Γ1 ⇒ Δ1, D,
(v) D, tM,Γ2 ⇒ Δ2, and
(vi) V (D) ⊆ V (Γ1,Δ1) ∩ V (tM,Γ2,Δ2).

SinceM /∈ V (Γ1,Δ1), we know thatM /∈ V (D). If D doesn’t contain t we get that
D is the interpolant by applying Ins to (v), and otherwise D contains some predicate
Rn, and the interpolant is ((∃T� , ... , �n)Rn ∨ ¬(�1, ... , �n)Rn) ∧D[�/t].

(=Ref ) Only one type of partition needs to be considered here. By the inductive
hypothesis, there is a C such that

(i) t = t,Γ1 ⇒ Δ1, C ,
(ii) C,Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (t = t,Γ1,Δ1) ∩ V (Γ2,Δ2)

Applying =Ref to (i), we get C as the interpolant, since = is a logical predicate, so
V (t = t,Γ1,Δ1) = V (Γ1,Δ1), and therefore V (C ) ⊆ V (Γ1,Δ1) ∩ V (Γ2,Δ2).

(=Repl) The partitions to be considered here are

1. 〈(t = s, A[t/s],Γ1 : Δ1); (Γ2 : Δ2)〉, with the interpolant C,
2. 〈(Γ1 : Δ1); (t = s, A[t/s],Γ2 : Δ2)〉, with the interpolant C,
3. 〈(A[t/s],Γ1 : Δ1); (t = s,Γ2 : Δ2)〉

By the inductive hypothesis, there is a C such that
(i) A[s], A[t/s],Γ1 ⇒ Δ1, C ,
(ii) C, t = s,Γ2 ⇒ Δ2, and
(iii) V (C ) ⊆ V (A[s], A[t/s],Γ1,Δ1) ∩ V (t = s,Γ2,Δ2)
The interpolant is C ∨ ¬t = s , since

A[s], A[t/s],Γ1 ⇒ Δ1, C
Theorem 3.26

A[s], t = s, A[t/s],Γ1 ⇒ Δ1, C =Repl
t = s, A[t/s],Γ1 ⇒ Δ1, C

R¬
A[t/s],Γ1 ⇒ Δ1, C,¬t = s

R∨
A[t/s],Γ1 ⇒ Δ1, C ∨ ¬t = s

and

C, t = s,Γ2 ⇒ Δ2

t = s,Γ2 ⇒ Δ2, t = s
L¬¬t = s, t = s,Γ2 ⇒ Δ2 L∨

C ∨ ¬t = s, t = s,Γ2 ⇒ Δ2

Moreover, V (A[s]) = V (A[t/s]), so V (A[s], A[t/s],Γ1,Δ1) = V (A[t/s],
Γ1,Δ1). Since identity is a logical predicate, it follows that V (t = s,Γ2,Δ2) =
V (Γ2,Δ2). Therefore, V (C ) ⊆ V (A[t/s],Γ1,Δ1) ∩ V (Γ2,Δ2)

4. 〈(t = s,Γ1 : Δ1); (A[t/s],Γ2 : Δ2)〉, with the interpolant C ∧ t = s (similar to
the previous case).

Lemma 3.49. Every interpolant can be reduced to either �, ⊥ or one that contains no
occurrence of either.
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Proof. If V (C ) �= ∅ (for any interpolant C), then it contains some n-ary predicate
Rn, and each occurrence of � and ⊥ can be replaced by (∃Tα, ... , αn)Rn ∨
¬(α1, ... , αn)Rn and (∃Tα, ... , αn)Rn ∧ ¬(α1, ... , αn)Rn, respectively.

Otherwise C contains no quantification. We then remove all anaphoric expressions
by replacing any anaphora with its source and then apply the following transforma-
tions:

1. � → A ≡ A; ⊥ → A ≡ �; A→ � ≡ �; A→ ⊥ ≡ ¬A
2. � ∧ A ≡ A; ⊥ ∧ A ≡ ⊥
3. � ∨ A ≡ �; ⊥ ∨ A ≡ A
4. ¬� ≡ ⊥; ¬⊥ ≡ �

It is clear by induction on the weight of the formula C that the result will be either
�, ⊥, or contain no occurrences of either.
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E-mail: N.Gratzl@lmu.de

https://doi.org/10.1017/S175502032100006X Published online by Cambridge University Press

mailto:Edi.Pavlovic@helsinki.fi
mailto:N.Gratzl@lmu.de
https://doi.org/10.1017/S175502032100006X

	1 Introduction
	1.1 Plan of the paper

	2 The formal system
	2.1 The system G3Q
	2.2 Structural properties
	2.3 Deductive equivalence
	2.4 Meta-theoretical properties
	2.4.1 Soundness
	2.4.2 Completeness


	3 Abstracting quantification
	3.1 Sequent calculus G3QA
	3.1.1 Meta-theoretical properties

	3.2 Sequent calculus G3QT
	3.3 Relation between G3QA and G3QT
	3.4 Relation between Quarc and the Predicate calculus
	3.4.1 Philosophical import

	3.5 Craig interpolation property for G3QA and G3QT
	3.5.1 Philosophical import


	4 Complex quantification
	4.1 Formal language of QuarcC
	4.2 Structural properties
	4.3 Meta-theoretical properties

	5 Concluding remarks
	A Craig interpolation property
	1.1 Basic step
	1.2 Inductive step


