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A study of streamline geometries in subsonic and
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The geometrical properties of streamlines, such as the curvatures, directions and positions,
are studied in steady inviscid compressible flow fields via differential geometry theories
and conservation laws. The influences of the streamline geometries on the flow speeds
and pressures are also identified and discussed. By transforming the streamlines to fill
the domain and satisfy the boundary conditions, a unified geometry-based solver, the
streamline transformation method, is proposed for both subsonic and supersonic regions.
The governing equations and boundary conditions along streamlines and shock waves are
also derived. This method is verified by numerical results of three typical flow fields,
including the subsonic channel flow, the supersonic downstream of attached shock waves
and especially the subsonic/supersonic downstream of detached bow shock waves. Both
two-dimensional planar and axisymmetric flow fields are considered. Compared with the
results from computational fluid dynamics, good agreements are achieved by this method,
while fewer computational resources, by an order of magnitude, are consumed. Features of
these flow fields are also analysed from a geometrical perspective, such as flow speeds and
pressures deviated by the wall curvatures, and three-dimensional effects in the after-shock
flow fields. For a hyperbolic-shaped bow shock wave, the stand-off distances and the
transitions from subsonic to supersonic regions are also discussed. As indicated by the
accuracy, efficiency and applicability in a wide range of flow speeds, the streamline
transformation method would be a potential candidate for the theoretical analysis and
inverse design of high-speed flow fields, especially where the subsonic regions exist
downstream of strong shock waves.

Key words: high-speed flow, shock waves, computational methods

1. Introduction

Shock waves are distinctive features in high-speed compressible flow fields. Complicated
flow patterns with shock reflections and interferences, along with the separated supersonic
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Figure 1. Typical flow patterns of high-speed flow fields: (a) shock interference between a launch vehicle and
a booster, (b) Mach reflection in an inward-turning inlet: (—–, red), shock wave; (- - - - -, blue) dashed line,
slipline; (◦) supersonic region; (•) subsonic region.

and subsonic regions, see figure 1, usually result in extremely high aerothermal
loads or non-uniform pressure distributions. The geometries of these patterns are
important features for the precise analysis and have already aroused extensive research
interest.

Among these studies, the Mach reflection (Mach 1878) is one of the typical research
interests in recent years. Based on the classical shock relations and the three shock
theory (von Neumann 1943, 1945), analytical prediction models for the height of the
Mach stem have been established by Azevedo (1989), Azevedo & Liu (1993) and Li
& Ben-Dor (1997), following different assumptions for the position of the sonic throat.
Mouton (2006) suggested another model based on the geometrical relationship between
the straight segments of shock waves and expansion waves. Gao & Wu (2010) further
improved these models with additional details, such as transmitted expansion waves and
the Mach waves generated from the slipline. In these models, a quasi-one-dimensional
isentropic relation was applied in the subsonic pocket, where the mass-averaged pressure
is used to balance that above the slipline. The shape of the Mach stem was also studied
by a series of analytical models (Li, Ben-Dor & Han 1994; Li & Ben-Dor 1997; Tan, Ren
& Wu 2005). Based on these models, geometries of the flow patterns have been studied
in various conditions, such as the asymmetric Mach reflections (Tao et al. 2017; Lin, Bai
& Wu 2019) and the reflections on a non-flat plane (Yao, Li & Wu 2013). Bai & Wu
(2017) further considered the shapes of the slipline and the reflected shock wave, which
are disturbed by the secondary Mach waves and the expansion fan. They also studied the
effect of the trailing wedge height on the Mach stem (Bai & Wu 2021). For the internal
axisymmetric flow, Shoesmith & Timofeev (2021) provided a model that combined the
method of characteristics with the equations for the quasi-one-dimensional flow. For a
curved-shock wave reflecting on a flat plane, Zhang et al. (2023) provided the shock
geometries and transition criteria based on the method of curved-shock characteristics (Shi
et al. 2021), where the quasi-one-dimensional assumption was also applied for calculating
the height of the sonic throat.

Another typical research interest is the stand-off distance of a bow shock wave detached
from a blunt body, where the downstream consists of both subsonic and supersonic
regions. Due to the theoretical difficulties, various assumptions were proposed for the
applicable approximations in a wide range of the free-stream Mach numbers. Moeckel
(1921) simplified the shape of the shock wave as a hyperbola, for it is the simplest
analytical expression satisfying the geometrical features. Then the stand-off distance was
obtained by assuming the sonic line was straight. Other assumptions, e.g. rotational
incompressible flow (Hida 1953) and a constant density behind the shock (Lighthill
1957), were also proposed. Empirical regressions were obtained from various experimental
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sources (Ambrosio & Wortman 1962; Billig 1967), which are still applicable as the
fast prediction method to this day. Recently, Sinclair & Cui (2017) proposed another
theoretical approximation for a circular cylinder, based on the modified Newtonian
impact theory. Zelalem, Timofeev & Molder (2018) also provided analytical expressions
for a two-dimensional circular cylinder and a three-dimensional sphere, based on the
curved-shock theory. However, due to the absence of a purely theoretical method in the
subsonic region, various assumptions are still required to describe the distributions from
the shock wave to the wall.

Theoretical methods in the subsonic regions are regarded as one of the common
difficulties for the above-mentioned research interests. Approximations have to be
assumed, e.g. the mass-averaged properties for the Mach reflection or the predefined
downstream distributions for the bow shock wave. Subsonic regions are also considered
to be an important issue in other flow patterns, e.g. the type IV shock interference (Edney
1968a,b; Grasso et al. 2003; Guan, Bai & Wu 2020; Bai & Wu 2022). Another difficulty
might be associated with the curved streamlines, which are usually caused by the wall
shapes or the three-dimensional effects. Since the downstream flow properties are varied
from the immediate after-shock conditions, the complexities of the theoretical analysis are
significantly aggravated. As a result, a unified fast and accurate method is still necessary
for predicting the geometries of shock waves and streamlines, no matter whether in the
subsonic or supersonic regions.

To the best of the authors’ knowledge, two theoretical approaches are associated
with the geometries of shock waves or streamlines. The first is the geometrical shock
dynamics (GSD). Based on the Chester–Chisnell–Whitham relationship (Chester 1954,
1960; Chisnell 1955; Whitham 1958; Chisnell & Yousaf 1982), Whitham (1957, 1959)
proposed this simple and quick approach on an orthogonal mesh. It was used to solve the
position and shape of a propagating shock wave. Henshaw, Smyth & Schwendeman (1986)
improved the corresponding numerical method. A good review of GSD was provided
by Han & Yin (2001). According to this theory, a shock–shock disturbance is formed
on a shock wave moving past a sharp obstacle. The trajectory of this disturbance is
also comparable to a steady shock wave. By this means, Xiang et al. (2016) studied
the three-dimensional interaction of planar shock waves on two intersecting wedges.
However, on a shock wave moving past a blunt obstacle, the shock–shock disturbance
is not comparable to the detached shock wave in a steady flow field. Thus the subsonic
downstream is difficult to predict.

Another related theory is the curved-shock theory (CST). Based on the early studies
(Crocco 1937; Thomas 1949; Gerber & Bartos 1960; Emanuel & Liu 1988), Mölder
(2012, 2016) derived the curved-shock equations for the streamline curvature and
streamwise gradient of pressure immediately after the shock, in two-dimensional planar
or axisymmetric flow fields. Recently, the CST was extended to three-dimensional
non-symmetric shock waves by Emanuel & Mölder (2022). Although the derivation is
complicated, these equations can be applied to the subsonic after-shock properties. Based
on the curvatures solved from the curved-shock equations, coordinates of streamlines can
be approximated by a Taylor series function (Mölder 2017; Filippi & Skews 2018; Surujhlal
& Skews 2018). The second-order CST was proposed by Shi et al. (2020) and the accuracy
of predictions was improved. To further improve the accuracy, Shi et al. (2021) developed
a method of curved-shock characteristics (MOCC) for analysis and inverse design in
supersonic flow fields. In their method, the downstream of the shock wave was precisely
solved by a modified method of characteristics, where the boundary conditions were given
by the gradients from CST. Many flow patterns have been studied with MOCC, showing
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significant improvements in the accuracy, efficiency and adaptability (Cheng et al. 2022;
Shi et al. 2023; Zhang et al. 2023).

As of now, theoretical methods have already been widely applied in supersonic flow
fields, where the characteristic lines are the key prerequisite for establishing the coordinate
system (Lewis & Sirovich 1981). However, characteristic lines are no longer available
in steady subsonic flow fields, due to the complex eigenvalues of the elliptical Euler
equations. To provide a unified method also available in the subsonic regions, the curves
orthogonal to the streamlines are selected for the curvilinear coordinate system. Along
these curves, the streamline geometries, e.g. curvatures, directions and positions, could
be described by differential geometry theories (Chern, Chen & Lam 2000). Together with
the conservation laws, the flow properties, e.g. speeds and pressures, could also be solved.
Once the relationships of streamline geometries and flow properties are determined, the
solutions of the flow fields could be figuratively regarded as that the streamlines are
reshaped to fill the domains and satisfy the boundary conditions. Based on this idea,
the streamline transformation method for both subsonic and supersonic regions could be
provided.

The steady inviscid compressible flow fields are considered in this study. In § 2, the
relationships of streamline geometries are described based on the differential geometry
theories. Accordingly, the concept and principle of the streamline transformation method
are proposed. In § 3, the governing equations are derived in the regions where the
properties are continuously differentiable. Four types of boundary conditions along
streamlines are also introduced for the governing equations. In § 4, discontinuities in
supersonic flow fields, e.g. shock waves and Mach waves, are also discussed, resulting
in the shock boundary conditions and the weak discontinuity corrections. In § 5, the
streamline transformation method is numerically verified, by the purely subsonic and
supersonic flow fields, and also by the transitions from subsonic to supersonic regions.
In the test case of the two-dimensional channel flow, which is comparable to the subsonic
pocket in Mach reflections, the deviations from the quasi-one-dimensional relations are
calculated. In the test case of the hyperbolic-shaped bow shock wave, the stand-off
distances, sonic line shapes and three-dimensional effects are also discussed. Finally, the
major conclusion of this study is summarized in § 6.

2. Streamline geometries and streamline transformation methods

Geometrical properties of streamlines are first defined in § 2.1, where the relationships
between adjacent streamlines are also derived via the differential geometry theories.
Following these relationships, the concept and principle of the streamline transformation
method are proposed and illustrated in § 2.2.

2.1. Differential geometry for streamlines
In an arbitrary flow field, the stream surface Σ is defined as the surface formed by a
series of streamlines, see figure 2. Orthogonal curves of the streamlines could always
be generated in Σ , by Schmidt orthogonalization. They are named the orthogonal lines
hereinafter for brevity. An orthogonal curvilinear coordinate (ξ, η) is defined accordingly,
where the ξ - and η-axes are along the streamlines and orthogonal lines, respectively.
In general circumstances, Σ is a curved surface. It is degraded to a flat plane in a few
special cases, e.g. the two-dimensional planar or axisymmetric flow fields. Without loss
of generality, Σ is assumed to be curved while deriving the governing equations. It can be
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ϕ

κcnc

κnn

κgng

Π

ξ

ζ

ηΣ

A dξ

B dη P

N

Figure 2. Orthogonal curvilinear coordinates and geometries of a stream surface: (�, green) stream surface
Σ ; (�, cyan and �, grey) tangential and normal planes at an arbitrary point P; (—–�, black) streamlines;
(- - - -�, black) orthogonal lines; (······�, black) ζ -axis perpendicular to Σ ; (—–�, red) curvature vector κcnc
of streamline, as well as its components κgng and κnn.

expressed as a mapping function

Σ : (ξ, η) → r(ξ, η) = (x, y, z)T, (2.1)

where r and (x, y, z) are the position and Cartesian coordinates of an arbitrary point P.
The derivatives of r with respect to ξ and η are denoted as rξ and rη. According to

the orthogonal condition, rξ ·rη = 0 is obtained. Thus, the first fundamental form of the
stream surface Σ is

I = A2 dξ2 + B2 dη2, (2.2)

where A = |rξ | and B = |rη| are the metric coefficients. Along an arbitrary streamline, the
length of the segment between two adjacent orthogonal lines is A dξ , see figure 2. Thus
A is called the length of the streamline hereinafter. For a similar reason, B is called the
distance between streamlines. Based on Gauss’s theorema egregium, A and B are satisfied
by

K = − 1
AB

[
∂

∂ξ

(
1
A

∂B
∂ξ

)
+ ∂

∂η

(
1
B

∂A
∂η

)]
, (2.3)

where K is the Gaussian curvature of the stream surface Σ . In particular, K ≡ 0 is satisfied
for a flat stream surface. As the red lines with arrows in figure 2, the curvature vector of a
streamline is denoted as κcnc. It consists of two components: the geodesic curvature κg in
the tangential plane Π , and the normal curvature κn along the normal vector n. Denoting
the angle between nc and n as ϕ gives

κg = κc sin ϕ, κn = κc cos ϕ. (2.4a,b)

The geodesic curvature κg represents how the streamline is curved in the tangential plane
Π . Based on Liouville’s formula, κg is expressed with A and B as

κg = − 1
B

∂ ln A
∂η

. (2.5)

In this study, only the geodesic curvatures of streamlines would be used in the governing
equations, so the streamline curvature hereinafter refers to the geodesic curvature for
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(b)(a)

B1 dη

P1 P2

Q

κQ > κP = 0 κQ > κP > 0

0 < κR < κPκR < κP = 0

Q

P

R

P

R

η + dη
η + dη

η – dη

η
η

η – dη

BP dη

AP dξ AP dξ

BP dη

BP dηBP dη

BP dη BP dη

BP dη
BP dη B2 dη

B2 dη

B1 dη

ξ – dξ

ξ – dξ

ξ + dξ

ξ + dξ
ξ ξ

Figure 3. Streamline curvatures varied (a) by the non-uniform distribution of B and (b) alongside a curved
adjacent streamline: (—–�) streamlines; (- - - -�) orthogonal lines.

brevity, and the subscript g is also omitted. Substituting (2.5) into (2.3) gives

∂Aκ

∂η
= ∂B′

∂ξ
+ ABK or

∂κ

∂η
= B′′ + Bκ2 + BK, (2.6a,b)

where B′ and B′′ are the first- and second-order streamwise gradients of B, expressed as

B′ = 1
A

∂B
∂ξ

, B′′ = 1
A

∂

∂ξ

(
1
A

∂B
∂ξ

)
. (2.7a,b)

Equation (2.6) indicates the curvature κ is varied along an orthogonal line, for the
following three reasons:

• B′′ /= 0, representing the non-uniform distances along a streamline. As displayed in
figure 3(a), along a straight streamline η, a local minimum of B is located at the
point P, i.e. B′ = 0 and B′′ > 0. At the points ±AP dξ away from both sides of P,
the distances between streamlines, B1 and B2, are expressed by a Taylor series of
B1 = B2 = BP + B′′(A dξ)2/2. Since B1 = B2 > BP, the adjacent streamline η +
dη is curved, i.e. κQ > κP = 0. Similarly, the streamline η − dη is curved toward
the other side, i.e. κR < κP = 0.

• Bκ2 /= 0, representing the effect of streamline curvatures. Assume an arc-shaped
streamline η is curved upward, along which B is distributed uniformly, see
figure 3(b). Thus the adjacent streamline η + dη at the inward side is also a
concentric arc with a smaller radius or a larger curvature, i.e. κQ > κP > 0.
Similarly, the streamline η − dη on the other side is less curved, i.e. 0 < κR < κP.

• BK /= 0, which means the curvatures are varied following the curved stream surface.

The direction of the streamlines, denoted as θ , is defined as the angle from a specified
vector to the tangential vector rξ , where the specified vector is usually selected as the
direction of the incoming free stream. Based on the geometrical relationship between
directions and curvatures, it gives

κ = 1
A

∂θ

∂ξ
. (2.8)

Substituting (2.8) into (2.6), and integrating the result from the infinite free stream to a
certain ξ gives

∂θ

∂η
= B′ +

∫ ξ

−∞
ABK dξ. (2.9)
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Three-dimensional flow fields could be modelled by a series of parallel stream surfaces
Σk, where the third axis ζ is perpendicular to each Σk, see figure 2. In this study, the
dimensionless lateral distance between stream surfaces is defined by

c = C
C∞

= |rζ |
|rζ |∞ , (2.10)

where C = |rζ | is the metric coefficient along ζ -axis, and the subscript ∞ represents the
value at the infinite free stream. In a two-dimensional planar or axisymmetric flow field, c
is explicitly expressed as

c =
{

1, (planar),
y/y∞, (axisymmetric),

(2.11)

where y∞ represents the y-coordinate at the incoming free stream.

2.2. Streamline transformation methods
Based on (2.6) and (2.9) in the last subsection, the streamline geometries, r, θ and κ ,
could be obtained by integrations along orthogonal lines, as long as B is known in
advance. Streamline geometries are also associated with the flow properties, e.g. speeds
and pressures, for the following two reasons:

• the distances B are determined by the flow speed, based on the quasi-one-
dimensional flow between streamlines;

• the curvatures κ are proportional to the gradients of pressures along orthogonal
lines, based on the balance of centrifugal forces.

As a result, the relationship between streamlines is summarized as the following mapping
function:

T[ξ ]
η→η+dη

:
[

geometries
flow properties

]
︸ ︷︷ ︸

streamline η

→
[

geometries
flow properties

]
︸ ︷︷ ︸

streamline η+dη

, (2.12)

which indicates the geometries and flow properties of streamline η + dη could be
calculated from those of streamline η, along the orthogonal line ξ . The mapping function
(2.12) is also named the streamline transformation and denoted as T , for it could be
figuratively regarded as the streamline η is transformed into the streamline η + dη.

Based on T , the solution of flow fields in the stream surface Σ could also be obtained.
As illustrated in figure 4(a), assuming the geometries and flow properties on the boundary
streamline η = η0 are given, properties of all streamlines η1, η2, . . . are obtained by T
in a certain sequence. If the flow properties of the streamline η0 are unspecified, e.g. the
slip wall boundary condition, numerical iterations are applied by satisfying the other side
boundary conditions at the streamline ηb. Since the flow field is solved by the geometrical
transformation of streamlines, this method is named the streamline transformation method
(STM) hereinafter.

Continuously differentiable geometries and flow properties are the prerequisites of the
streamline transformation T . However, discontinuities are very common phenomena in the
supersonic flow fields, making T not available across them. As illustrated in figure 4(b), Σ
is divided into an upstream Σ− and a downstream Σ+ by a shock wave S. Since properties
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...
...

η = ηbη = ηb

η = η0

η2
η1

η = η0

η2
η1

ξ = ξ0ξ = ξ0

Σ+Σ

Σ –

(b)

ξ2ξ2

ξ

ηη

ξ1ξ1

S
(a)

Figure 4. Illustration of the streamline transformation method in (a) the continuously differentiable region
and (b) the region with discontinuities: (—–�, black) streamlines; (- - - -�, black) orthogonal lines; (—–, red)
shock waves; (—–�, blue), T .

are differentiable in Σ∓ separately, the flow field could still be solved by applying T in
Σ∓. The boundary conditions along S are set from the shock theories.

Equations in STM consist of various aspects, where a considerable number of
mathematical derivations are inevitable. Figure 5 displays a brief diagram of these
equations, where the dashed rectangle highlights the core contents, including the
governing equations of T , as well as the boundary conditions. The governing equations
are partially from the differential geometries of streamlines, which have already been
introduced by (2.6) and (2.9) in § 2.1. They are enclosed by the physical laws of
the airflow, e.g. the mass conservation and the equilibrium of the centrifugal forces,
which are derived in §§ 3.1 and 3.2, respectively. A vector-formed governing equation
is concisely summarized in § 3.3. The boundary conditions along streamlines are provided
and classified in § 3.4, where the algorithms are also discussed. The derivations in § 3
require the streamline geometries and flow properties to be continuously differentiable.
For brevity, it is named the continuously differentiable region.

For the strong discontinuities, e.g. the shock waves, STM is modified by providing the
boundary conditions along the shock wave, for its upstream or downstream regions. Based
on the shock relations and the curved-shock theories, properties immediately before or
after the shock wave, as well as their streamwise gradients, are derived in §§ 4.1.1–4.1.3.
Finally, the boundary conditions along the shock wave are introduced in § 4.1.4.

The weak discontinuities, e.g. the Mach waves, are regarded as the degradation from
shock waves. Thus equations in § 4.1 are still available, from which the compatibilities
of Mach waves are derived. They are similar to those from the classical theory of
characteristics. Accordingly, the weak discontinuity corrections are derived in § 4.2.

3. Governing equations in continuously differentiable regions

The expressions of the streamline transformation T are derived, based on the mass
conservation in § 3.1 and the balance of centrifugal forces in § 3.2. The governing
equations of STM are summarized in § 3.3 and streamline boundary conditions are
introduced in § 3.4. According to the governing equations, the influencing mechanisms
of the streamline geometries on the flow properties are also discussed in § 3.5.

The calorically perfect gas model is applied, where the flow properties are usually
described by the Mach number M and pressure p. However, the characteristic Mach
number λ is used in this study to simplify the governing equations. Here, λ is defined
as the ratio of the local speed to the critical acoustic speed. It can be calculated from M,
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Streamline geometries

§ 2.1: (2.6), (2.9)

Governing equations

of T : § 3.3

Boundary conditions &

solutions

Mass conservation

§ 3.1

Centrifugal equilibrium

§ 3.2

Streamline boundaries

§ 3.4

Weak discontinuity

corrections § 4.2

Shock properties &

gradients §§ 4.1.1–4.1.3

Shock boundaries

§ 4.1.4

STM

Figure 5. Diagram of equations in STM, as well as their mathematical derivations.

given by

λ =
√

(γ + 1)M2

2 + (γ − 1)M2 , (3.1)

where γ is the specific heat ratio. By defining the upper limit of λ as μ

μ =
√

γ + 1
γ − 1

, (3.2)

the isentropic relations are expressed with λ as

p
p0

=
(

1 − λ
2

μ2

)(μ2+1)/2

,
ρ

ρ0
=
(

1 − λ
2

μ2

)(μ2−1)/2

,
T
T0

= a2

a2
0

= 1 − λ
2

μ2 ,

(3.3a–c)

where p0, ρ0, T0 and a0 are the stagnation pressure, density, temperature and acoustic
speed, respectively. These stagnation properties remain constants along the streamlines in
the isentropic flow fields.

3.1. Mass conservation and distances between streamlines
As described in § 2.2, the distance between streamlines is determined following mass
conservation. In an arbitrary element along a streamline, see figure 6, mass conservation
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gives
(ρu)inBC dη dζ = (ρu)out(B + Bξ dξ)(C + Cξ dξ) dη dζ, (3.4)

where ρ and u are the density and speed, respectively. Based on the isentropic relations
(3.3), ρu is expressed with λ as

ρu =
√

2γ√
γ + 1

p0/a0

H(λ)
, (3.5)

where H is the function of λ, defined by

H(λ) ≡ 1
λ

(
1 − λ

2

μ2

)−(μ2−1)/2

. (3.6)

With the increase of λ, H(λ) is decreased for subsonic speeds (λ < 1) and increased for
supersonic speeds (λ > 1). A minimum value, H(1), is reached at the acoustic speed.
Since p0 and a0 remain constants along the streamline, by substituting (3.5) into (3.4) and
omitting higher-order infinitesimals, we obtain

1
BC

∂(BC)

∂ξ
= 1

H(λ)

dH(λ)

dλ
∂λ

∂ξ
. (3.7)

Integrating the above equation from the infinite free stream to a certain ξ , the mass
conservation (3.4) is simply expressed as

BC
H = (BC)∞

H∞
. (3.8)

By defining

h ≡ B∞
H∞

H
c

, (3.9)

(3.8) is further simplified as
B = h, (3.10)

which indicates h is just the distance between streamlines. In a two-dimensional planar
flow field where c ≡ 1, the distance is proportional to H(λ). The three-dimensional effect
with the varying c, makes the streamlines become close to or move away from each other.

Substituting (3.10) into (2.6) and (2.9), the η-derivatives of the curvature κ and direction
θ are given by

∂Aκ

∂η
= A(h′′ + hK) or

∂κ

∂η
= h′′ + hκ2 + hK, (3.11a,b)

and
∂θ

∂η
= h′ + F, (3.12)

respectively, where h′ and h′′ are the first- and second-order streamwise gradients of h, and
F represents the effects of the curved stream surface. They are expressed as

h′ = 1
A

∂h
∂ξ

, h′′ = 1
A

∂

∂ξ

(
1
A

∂h
∂ξ

)
, F =

∫ ξ

−∞
hAK dξ. (3.13a–c)
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ξ

ζ

η

ϕ

Fc

Fg = Fc sin ϕ

κcnc

κnn

κgng

dm

Out

In

Π

uout

uin

Figure 6. Element in a streamline: the flow speeds, centrifugal forces and curvatures.

3.2. Centrifugal forces and streamline curvatures
As described in § 2.2, the centrifugal force acting on an arbitrary element of the streamline
is balanced by the pressure gradient. As displayed in figure 6, the three-dimensional
centrifugal force in the reverse direction of nc is given by

Fc = −(ρABC dξ dη dζ )

(
M2 γ p

ρ

)
κc. (3.14)

Considering the geometrical relationship among curvatures (2.4), the component of Fc in
the tangential plane Π is expressed as

Fg = Fc sin ϕ = −(ρABC dξ dη dζ )

(
M2 γ p

ρ

)
κ. (3.15)

Since Fg is balanced by the pressure gradients along orthogonal lines, this gives

−(ρABC dξ dη dζ )

(
M2 γ p

ρ

)
κ =

(
∂p
∂η

dη

)
AC dξ dζ. (3.16)

Replacing p in (3.16) with the isentropic relations (3.3) gives

∂ ln λ
∂η

= P + Bκ, (3.17)

where

P ≡ 1
γ M2

∂ ln p0

∂η
, (3.18)

representing the difference of p0 between adjacent streamlines.
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Replacing κ in (3.17) with Liouville’s formula (2.5) gives

∂ ln Aλ
∂η

= P . (3.19)

In the case that p0 is uniform at the infinite free stream, i.e. P ≡ 0, (3.19) is further
simplified as

Aλ = const. (3.20)

It indicates the length of streamlines is inversely proportional to λ along an orthogonal
line.

By defining the equivalent curvature

k ≡ B∞
H∞

κ

c
, (3.21)

and the function

L(λ) ≡
∫

dλ
λH = 2F1

(
1
2
, −μ2 − 1

2
; 3

2
; λ

2

μ2

)
λ, (3.22)

where 2F1(a, b; c; z) is the Gaussian hypergeometric function, (3.17) is also simplified as

∂L
∂η

= P
H + k. (3.23)

Here, L(λ) is a monotonically increasing function of λ with L(0) = 0. As a result, (3.23)
represents how the flow speed is affected by the streamline curvatures. Especially in the
region where P ≡ 0, L(λ) is proportional to the equivalent curvature k. Besides, since k
is varied with c, the flow speed is also changed by the three-dimensional effects.

3.3. Governing equations
Four equations have already been derived, including that for the characteristic Mach
number (3.23), as well as those for the length (3.19), curvature (3.11) and direction (3.12) of
the streamlines. As it turns out, four variables, λ, A, κ and θ , are applied for the geometries
and flow properties of the streamlines. Besides, the following implied variables are also
included:

• p0 for calculating the derivatives P , which is always equal to the given p0,∞ in
isentropic flow fields;

• c, K and F for the three-dimensional effect, which could be calculated from the
coordinates of stream surfaces.

For two-dimensional planar flow with c ≡ 1, K ≡ 0 and F ≡ 0, (3.19), (3.23), (3.11)
and (3.12) have already formulated enclosed equations for λ, A, κ and θ . In other
circumstances, equations for coordinates of streamlines are also required and expressed
as

∂x
∂η

= −h sin θ,
∂y
∂η

= h cos θ, (3.24a,b)

which are applied to the flat stream surfaces parallel to the xy-plane. In the general
three-dimensional flow fields, the principal curvatures of the stream surfaces are used to
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calculate the curvatures, torsions and spatial coordinates of the orthogonal lines. Besides,
multiple stream surfaces should also be considered, which remains to be further studied.

As a result, the enclosed governing equations in one stream surface are summarized as
the following vector form:

,

(3.25)

where U is named the streamline variable. Once U is given, the streamline geometries and
flow properties are obtained in the following steps:

• λ is solved from the second element Ub according to (3.22), expressed as λ =
L−1(Ub);

• A is calculated from the first element Ua by A = λ−1 exp(Ua);
• κ is calculated from the third element Uc by κ = Uc/A;
• θ , x and y are directly the fourth–sixth elements of U ;
• h is directly calculated by (3.9);
• derivatives h′ and h′′ are obtained from the numerical finite-difference schemes.

Under general circumstances, the analytic expression is difficult to solve from (3.25), but
the numerical result is easily obtained. For brevity, the solution is expressed as

U(ξ, η + dη) = T[ξ ]
η→η+dη

[U(ξ, η)], (3.26)

which is regarded as the detailed expression of the streamline transformation (2.12).
The derivation of (3.26) is not restricted by the flow speed, no matter whether it is

subsonic or supersonic. As a result, the streamline transformation T is applicable to flow
fields with purely subsonic/supersonic regions and also transitions from subsonic and
supersonic regions. From a mathematical perspective, the major difference might be that
it is elliptic in subsonic regions and hyperbolic in supersonic regions, due to H(λ) being
monotonically decreasing and increasing, respectively.

3.4. Streamline boundary conditions
As described in § 2.2, boundary conditions should be set to the streamlines η0 and ηb. The
following four types are commonly applied as the streamline boundary conditions.

• Type I: the geometries and flow properties are all given. The boundary condition is
expressed as

η = η0 : r = r0(ξ), λ = λ0(ξ). (3.27a)

Here, A, θ and κ are calculated from r based on the geometrical relationships and h,
h′ and h′′ are also obtained from λ, A and r following their definitions. Thus U0(ξ)

is obtained.
• Type II: the geometries are given by

η = ηw : r = rw(ξ), (3.27b)

while the flow properties are unspecified. Type II boundary is also known as the slip
wall.
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(b)(a) (c)

η = η0 : r = r0 (ξ)

η = ηw : r = rw (ξ) η = η∞ : λ = λ∞

η = η0 : r = r0 (ξ) η = η0 : r = r0 (ξ)

η = ηp : λ = λp (ξ)

Figure 7. Boundary conditions of (a) wall/wall, (b) wall/far field and (c) wall/pressure: (—–�, black)
streamline boundaries; (- - - -�, black) orthogonal lines.

• Type III: λ is given by the infinite free stream

η = η∞ : λ = λ∞, (3.27c)

while the geometries are unspecified. It is also known as the far-field boundary.
• Type IV: λ along the streamline boundary is calculated from the specified pressure

pp(ξ), given by

η = ηp : λ = λp(ξ) = μ

√
1 −

[
pp(ξ)

p0

]2/(μ2+1)

, (3.27d)

while the geometries are unspecified. It is also known as the pressure boundary.

In the flow field with type I boundary conditions, streamline variables are directly
calculated by T in a certain sequence, expressed as

U(ξ, η) = T[ξ ]
η0→η

[U0(ξ)] = T[ξ ]
η−dη→η

. . . T[ξ ]
η1→η2

T[ξ ]
η0→η1

[U0(ξ)], (3.28)

where U0(ξ) is the given streamline variable at the boundary η0. For the other types of
boundary conditions, numerical iterations are usually required.

As an illustration, in figure 7, a slip wall boundary (type II) is set to the streamline η0,
and the type II–IV boundaries are set to the streamline ηb, respectively. The representative
flow fields are (a) the flow through channels, (b) the external flow of an airfoil and (c) the
subsonic pocket in the Mach reflection. The streamline variable U†

0(ξ) at the boundary η0
is the numeric solution satisfying the conditions of convergence

‖r[U†
b(ξ)] − rw2(ξ)‖ηb ≤ restol, (3.29a)

‖λ[U†
b(ξ)] − λ∞‖ηb ≤ restol, (3.29b)

‖λ[U†
b(ξ)] − λp(ξ)‖ηb ≤ restol, (3.29c)

where the functions r[U] and λ[U] represent the spatial coordinates and the characteristic
Mach number calculated from the streamline variable U . The streamline variable U†

b(ξ)

at the boundary ηb is supposed to be calculated by T sequentially, given by

U†
b(ξ) = T[ξ ]

η0→ηb

[U†
0(ξ)] = T[ξ ]

ηb−dη→ηb

. . . T[ξ ]
η1→η2

T[ξ ]
η0→η1

[U†
0(ξ)]. (3.30)

However, in actual practice, since the intermediate U (n)(ξ, η0) in the nth iteration
is different from U†

0(ξ), their errors are accumulated and amplified quickly by the
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Rules Conditions P ≡ 0 F ≡ 0 c ≡ 1

B = h η = const — — —
B ∝ H η = const —

√ √
A ∝ 1/λ ξ = const

√
— —

k = Lη ξ = const
√

— —
κ ∝ Lη ξ = const

√ √ √
θη ∝ λhξ ξ = const

√ √
—

Table 1. Relationships between geometries and flow properties of streamlines.

transformation sequence. Numerical divergences are always observed. To overcome the
divergence problem, an inverse prediction of λ is introduced. Before the transformation
from the streamlines η to η + dη, λ(ξ, η) is replaced by

λ∗(ξ, η) = (1 − ω)λ(ξ, η) + ωλ◦(ξ, η), (3.31)

where λ◦(ξ, η) is calculated with the intermediate value at the targeting streamline η + dη,
based on the governing equation (3.25b). It is expressed as

λ◦(ξ, η) = L−1

{
L[λ(ξ, η + dη)] −

(P
H + κ

σc

)
(ξ,η)

dη

}
. (3.32)

In (3.31), ω is the relaxation factor to improve the numerical stabilities, which is selected
to be around 0.1–0.2 in this study. Once λ∗ is calculated from (3.31), the corresponding
streamline variable U∗ is then applied by the streamline transformation T .

3.5. Influencing mechanisms of streamline geometries on flow properties
The governing equations (3.25) indicate the streamline geometries and flow properties are
strongly associated, as summarized in table 1. The condition ξ = const or η = const means
a certain rule holds along an orthogonal line ξ or a streamline η. Here, P ≡ 0, F ≡ 0 and
c ≡ 1 represent the uniform stagnation pressures, flat stream surfaces and two-dimensional
planar flow fields, respectively. The following two rules in table 1 are discussed in depth:

• B = h indicates the distance between streamlines is determined by h. In the
two-dimensional planar flow fields where c ≡ 1, B is proportional to H. With an
increase of λ, the streamlines become convergent in subsonic regions or divergent
in supersonic regions, e.g. the flow field in a nozzle. In the three-dimensional flow
fields, c is also an important influencing factor of B. As the increase of c, streamlines
are also getting close to each other, e.g. the downstream of a conical shock wave.

• k = Lη indicates the variation of L along an orthogonal line is proportional to the
equivalent curvature k. As a result, alongside a curved streamline, L is larger at the
inward-turning side, while it is smaller at the other side. It is reflected in various
situations, e.g. the external flow past an airfoil and the internal flow along a curved
wall.

Finally, the influencing mechanics of the streamline geometries on the flow properties
are summarized as:

(i) the flow speeds are varied by k, the equivalent curvatures, and also determined by h,
the distances between streamlines;
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	 = 1, β∓ > 0

χ = θ∓ + β∓ > 0

δ = θ+ – θ– > 0

	 = –1, β∓ < 0

χ = θ∓ + β∓ < 0

δ = θ+ – θ– < 0

(b)

θ–

θ–

θ+

θ+

χ

χ

δ

δ

β–

β–

β+

β+

λ–, p0
–

λ–, p0
–

λ+, p0
+

λ+, p0
+

S

P
P

s

s

S

(a)

Figure 8. Definitions of upstream and downstream properties of the (a) left-running shock wave and
(b) right-running shock wave: (—–�, black) streamlines; (—–, red) shock waves.

(ii) three-dimensional effects are regarded such that h and k are changed by c, which is
the dimensionless lateral distance between stream surfaces.

4. Discontinuities in supersonic regions

Discontinuities are very common phenomena in supersonic flow fields, categorized by
strong discontinuities and weak discontinuities. Across a strong discontinuity, the flow
speed and streamline direction are changed immediately, e.g. shock waves. For the strong
discontinuities, a shock boundary condition for the upstream or downstream regions is
derived in § 4.1. Across a weak discontinuity, properties remain unchanged, but their
gradients are changed immediately, e.g. the frontier Mach wave of an expansion fan. For
the weak discontinuities, a weak discontinuity correction for the streamline transformation
T is introduced in § 4.2.

4.1. Shock waves and shock boundary conditions
On each side of a shock boundary, values required for the governing equations (3.25)
consist of the zero-order properties, e.g. λ, h, θ , A, the first-order properties, e.g. κ and h′
and the second-order property h′′.

Before deriving the shock boundary conditions, notations are first illustrated in figure 8.
The coordinates of a shock wave S in the stream surface Σ are given by

S : s → r(s) = r[ξ(s), η(s)], (4.1)

where s is the arc length coordinate along S. According to (4.1), the tangential vector is
expressed as

ṙ(s) = dr(s)
ds

= dξ(s)
ds

rξ + dη(s)
ds

rη. (4.2)

The shock wave direction χ(s) is defined by the angle from a pre-specified axis to ṙ(s). The
shock wave curvature κS is defined by the derivative of χ with respect to s, i.e. κS(s) = χ̇ .
Properties immediately before and after the shock wave S are denoted by the superscripts
− and +. For instance, λ∓, p∓

0 and θ∓ are the characteristic Mach numbers, stagnation
pressures and streamline directions. The shock angle is defined by β− = χ − θ−. For
symmetry, a downstream shock angle is also defined by β+ = χ − θ+, representing the
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angle between the downstream streamline and the shock wave. An additional variable,
� = sgn β∓, is defined to distinguish the left-running (� = 1) and right-running (� = −1)
shock waves. The stream surface Σ is selected where the normal vectors are always
perpendicular to both the upstream and downstream streamlines, making Σ still smooth
along S and satisfying

c− = c+. (4.3)

For brevity, the superscript ∓ is omitted hereinafter, except when both the upstream and
downstream properties exist in the same equation.

The properties mentioned above could always be calculated based on the classical shock
relations and the CST, which are usually expressed with the upstream M− and β−. For
the streamline transformation T to be applied, M− should be replaced with λ−, which is
always feasible according to (3.1). However, the resulting expressions are too complicated.
For simplicity, it would be desirable to express all these properties by unified expressions
on each side. By introducing two shock invariants which remain unchanged across the
shock wave, expressions for the shock boundary conditions are expected to become more
concise.

Under this consideration, the shock invariants are first introduced in § 4.1.1. Then
the first- and second-order properties of streamlines are derived in § 4.1.2 and § 4.1.3,
respectively. Finally, the shock boundary conditions are summarized in § 4.1.4.

4.1.1. Shock invariants
On an arbitrary element along the shock wave, according to the conservation laws of mass,
momentum and energy,we have the following two shock invariants:

S ≡ [(μ2 + 1) sin2 β∓ − 1]λ∓ + μ2/λ∓

2μ2 sin β∓ , (4.4a)

D ≡ ± [(μ2 − 1) sin2 β∓ + 1]λ∓ − μ2/λ∓

2μ2 sin β∓ . (4.4b)

Mathematical derivations of (4.4) are described in Appendix A. Even though they are
complicated, the physical meanings of S and D are simply expressed as

S = �
λ−n + λ+n

2
, D = �

λ−n − λ+n
2

, S2 − D2 = λ−n λ+n = 1 − τ 2

μ2 , (4.5a–c)

where λ∓n and τ are the normal and tangential components of λ∓, respectively. Equation
(4.5) indicates:

• |S| is the algebraic average of λ∓n , reflecting the flow speeds across the shock wave.
• |D| is half of the difference between λ∓n , representing the strength of the shock

wave. In particular, the shock wave is degraded to a Mach wave when D = 0.
• The square root of S2 − D2 is the geometric average of λ∓n . The relationship

between λ∓n and τ also corresponds with the classical Prandtl expression.
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With S and D, properties on each side of the shock wave are expressed as

λ∓ =
√

μ2 − (μ2 − 1)S2 + (μ2 + 1)D2 ± 2SD, (4.6a)

λ∓n = �(S ± D), (4.6b)

τ = μ
√

1 − S2 + D2, (4.6c)

tan β∓ = S ± D
τ

= S ± D
μ

√
1 − S2 + D2

, (4.6d)

the deflection angle is expressed as

tan δ = 2Dτ

S2 − D2 + τ 2 = 2μD
√

1 − S2 + D2

μ2 − (μ2 − 1)(S2 − D2)
, (4.6e)

and the ratio of stagnation pressures is expressed as

ln
p+

0

p−
0

= μ2 + 1
2

ln
S + D
S − D + μ2 − 1

2
ln

S − γD
S + γD . (4.6f )

The relationships of streamline geometries on both sides of the shock wave are also
derived. By taking the directional derivative of r along the shock wave we have

dr
ds

= cos β∓

A∓ rξ + sin β∓

B∓ rη. (4.7)

Comparing the above expression with (4.2) gives

A−

B− tan β− = A+

B+ tan β+ = dη(s)/ds
dξ(s)/ds

, (4.8)

and

A+

A− = cos β+

cos β− ,
B+

B− = sin β+

sin β− . (4.9a,b)

Substituting (A2a) into (4.9) gives

A−λ− = A+λ+, (4.10)

which indicates that the length of the streamlines, A∓, is inversely proportional to λ∓. By
coincidence, a similar relation is also concluded from (3.20), for isentropic flow fields with
uniformly distributed stagnation pressures.
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Shock

ds

P′

P

Q

Q′

β+

B+ dη

δ = β– – β+

B– dη

β–

S′

S

Figure 9. Elements of the shock wave intersecting with streamlines: (—–, red) shock waves; (—–�, black)
streamlines; (- - - -�, black) orthogonal lines.

The decrease of the distance between streamlines across the shock wave is then
illustrated in figure 9. Substituting (A3) into (4.9) to eliminate sin β∓ gives

B−

H−/p−
0

= B+

H+/p+
0

. (4.11)

According to (3.8) on each side of the shock wave SS′, we have

BPcP

HP
= B−c−

H− ,
BQcQ

HQ
= B+c+

H+ . (4.12a,b)

Since c− = c+ from (4.3), the last two equations give

BQcQ

HQ/p0,Q
= BPcP

HP/p0,P
, (4.13)

which indicates that the distance B between streamlines is always proportional to H/( p0c),
no matter how many shock waves have been crossed. Compared with (3.8) from mass
conservation, only p0 is added in (4.13). It is obvious that the governing equations (3.25)
in § 3 still hold, by just replacing the definitions of h and k with

h ≡ B∞
H∞

H
σc

, k ≡ B∞
H∞

κ

σc
, (4.14a,b)

where σ = p0/p0,∞.

4.1.2. First-order properties of streamlines
Following the derivation of the first-order curved-shock equations (Mölder 2012, 2016),
by taking the directional derivatives of L and θ to s, where the η-derivatives in the results
are replaced with the governing equations (3.25b) and (3.25d), equations about κ and h′
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on each side of the shock wave are finally obtained as[
cos β sin β

sin β � cos β

] [
κ

h′/h

]
=
[

bκ

bh

]
, (4.15)

where � is a variable only concerned with λ, expressed as

� = 1 − λ2/μ2

λ2 − 1
= 1

M2 − 1
. (4.16)

Details of the derivation and verification of (4.15) are introduced in Appendix B. Elements
on the right-hand side of (4.15), bκ and bh, are expressed with S and D as

bκ = Eθ Ṡ + Fθ Ḋ + Θ̇ − F sin β/h, (4.17a)

bh = EhṠ + FhḊ − Q̇/γ M2 − R� cos β, (4.17b)

where

Ṡ = dS
ds

, Ḋ = dD
ds

, Θ̇ = dθ−

ds
, Q̇ = d ln p−

0
ds

, R = (ln c)′ = 1
A

∂ ln c
∂ξ

.

(4.18a–e)

Here, E and F with the subscripts in (4.17) are partial derivatives with respect to S and D,
defined by

Eq = ∂q
∂S , Fq = ∂q

∂D , (q = λ, β, p, θ, h). (4.19a,b)

They are expressed as (B15) and (B18) in the explicit forms. Items in (4.17) are various
sources making the streamlines curved, which are roughly categorized as follows:

• Items containing Ṡ and Ḋ. Based on (B22), Ṡ and Ḋ are calculated by[
Ṡ
Ḋ

]
= 1

(Eθ + Eβ)Fλ − Eλ(Fθ + Fβ)

[
Fλ −Fθ − Fβ

−Eλ Eθ + Eβ

] [
κS − Θ̇

λ̇

]
. (4.20)

As a result, the shock wave curvatures, κS, and the derivatives of the flow speeds, λ̇,
could both make the streamlines curved.

• Θ̇ and Q̇, representing the effects of the non-uniform upstream flow directions and
stagnation pressures, respectively.

• Items containing R and F, representing the three-dimensional effects. For a flat
stream surface, F ≡ 0. Furthermore, for the planar and axisymmetric flow fields we
have

R =
{

0, (planar),
sin θ/y, (axisymmetric).

(4.21)

The determinant of (4.15) is expressed as

Δ = � cos2 β − sin2 β. (4.22)

If the shock wave is not degraded to a Mach wave, Δ /= 0 is obtained, which means a
unique solution exists. For a given shock wave, obtaining κS from its shape, assigning λ̇−,
Θ̇ and Q̇ with the upstream conditions, and calculating Ṡ and Ḋ by (4.20), the first-order
properties, κ and h′, are finally solved from (4.15), expressed as[

κ

h′/h

]
= 1

Δ

[
� cos β − sin β

− sin β cos β

] [
bκ

bh

]
. (4.23)
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4.1.3. Second-order properties of streamlines
Following the idea of the second-order CST (Shi et al. 2020), equations about the
second-order properties of streamlines, κ ′ and h′′, could also be obtained by taking
the directional derivatives of (4.15) and replacing the η-derivatives with (3.25). The
mathematical derivations are a little tedious, see Appendix C. Only the major results are
outlined here.

On each side of the shock wave, κ ′ and h′′ satisfy the following equations:[
cos2 β + �−1 sin2 β 2 sin β cos β

2 sin β cos β � cos2 β + sin2 β

] [
κ ′

h′′/h

]
=
[

dκ

dh

]
, (4.24)

where dκ and dh on the right-hand side are expanded as (C16). Since the second-order
derivatives of the shock invariants, S̈ and D̈, are required by (C16), they are solved from
(C21) according to the κ̇S and λ̈ of a given shock wave.

Finally, κ ′ and h′′ are solved from (4.24) and expressed as[
κ ′

h′′/h

]
= �

Δ2

[
� cos2 β + sin2 β −2 sin β cos β

−2 sin β cos β cos2 β + �−1 sin2 β

] [
dκ

dh

]
, (4.25)

where Δ is the same determinant as that in the first-order equation, see (4.22).

4.1.4. Shock boundary conditions
Following the equations in §§ 4.1.1–4.1.3, the boundary conditions for each side of the
shock wave are finally expressed as

ξ = ξ(s)
η = η(s) :

{
r = r(s), θ = θ(s), κ = κ(s), A = A(s),
λ = λ(s), h = h(s), h′ = h′(s), h′′ = h′′(s), (4.26)

where the zero-order properties, θ(s), A(s), λ(s) and h(s), the first-order properties, h′(s)
and κ(s), as well as the second-order property, h′′(s), are all obtained. At the same time,
the stagnation pressures p0 along the streamlines are also set to p+

0 or p−
0 from (4.6f ).

Once the shock boundary condition is set, the flow fields at either side are both calculated
directly by the streamline transformation T . No iterations are required.

In actual practice, for the curved-shock wave with a given analytic expression, the
curvature κS and its derivative κ̇S are mathematically obtained by differentiations. If
the shock wave is expressed with discretized nodes, κS and κ̇S should be calculated
from a cubic spline interpolation with the not-a-knot boundary condition, to suspend the
numerical oscillations.

4.2. Mach waves and weak discontinuity corrections
Mach waves are another type of common phenomenon in supersonic flow fields, where
the high-order properties, e.g. κ , h′, h′′, are not necessarily continuous. In this study,
the Mach waves with discontinuous high-order properties are named discontinuous Mach
waves for brevity. The streamline transformation T is no longer valid across them, for the
properties are non-differentiable. Other Mach waves with continuous high-order properties
are named ordinary Mach waves. In the region filled with ordinary Mach waves, T is still
available. For instance, the analytic solution in the expansion fan of the Prandtl–Meyer
flow field still satisfies the governing equations (3.25).
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E EeEs

OO

λ > 1 λe > 1

λe > 1

λ∞ > 1

(b)(a)

Figure 10. Discontinuous Mach waves from (a) the connection with different curvatures and (b) the corner
with different directions: (—–, blue) walls; (—–, orange) discontinuous Mach waves; (—–, green) ordinary
Mach waves.

Two typical circumstances with discontinuous Mach waves are illustrated in figure 10.
If the wall curvatures are different at the two sides of the point O, while the directions
are the same, see figure 10(a), only one discontinuous Mach wave E is generated. If the
wall directions are directly changed at the corner O, see figure 10(b), two discontinuous
Mach waves, Es and Ee, are generated, where a series of ordinary Mach waves are filled
between them. Based on the assumption that only a limited number of discontinuous Mach
waves exist in the flow field, a weak discontinuity correction of T is required only where
a discontinuous Mach wave is intersected.

To provide the expressions for the weak discontinuity correction, compatibilities along
an arbitrary Mach wave are first derived in § 4.2.1. Then the correction of T is introduced
in § 4.2.2.

4.2.1. Compatibilities
Since the conservation laws of mass, momentum and energy still hold for an arbitrary
element along the Mach wave, proofs are obvious that the expressions for shock waves in
§ 4.1 are also suitable for Mach waves, by just simply assigning D = 0.

Based on (4.6a)–(4.6c), the characteristic Mach number λ, as well as its components λn
and τ , are expressed with S as

λ =
√

μ2 − (μ2 − 1)S2, λn = �S, τ = μ
√

1 − S2. (4.27a–c)

The Mach angle β is obtained from (4.6d), satisfying

tan β = S
τ

= �
√

�, sin β = �

√
�

� + 1
, cos β =

√
1

� + 1
. (4.28a–c)

By assigning D = 0, equations about the first-order properties are also degraded from
(4.15). Before the degrading, Ṡ is first calculated from (4.27), given by

Ṡ = − λλ̇

(μ2 − 1)S . (4.29)
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Here, E∓
q and F∓

q are calculated from (B15) and (B18), given by

E∓
λ = −(μ2 − 1)

S
λ

, E∓
β = μ2

λ2τ
, E∓

p = 0, E∓
θ = 0,

E∓
h = −(μ2 − 1)

S
λ2 , F∓

λ = ±S
λ

, F∓
β = ± τ

λ2 ,

F∓
p = 0, F−

θ = 0, F+
θ = 2τ

λ2 , F∓
h = ± S

λ2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.30)

Substituting (4.28)–(4.30) into (4.15) gives[
cos β sin β

sin β � cos β

] [
κ

h′/h

]
=
[

θ̇ − F sin β/h
λ̇/λ− Q̇/γ M2 − R� cos β

]
, (4.31)

where the determinant Δ = � cos2 β − sin2 β = 0 and no unique solution could be
obtained. This means the first-order properties of streamlines are not determined by the
shape of the Mach wave.

Equation (4.31) is physically meaningful only if the two elements are linearly dependent,
which gives

κ + �
√

�

(
h′

h
+ R

)
= 1

sin β

(
λ̇

λ
− Q̇

γ M2

)
= θ̇ sec β +

(
R − F

h

)
tan β. (4.32)

Substituting (B6) into the left-hand side of (4.32), it is simplified to

ε ≡ (θ + �ν)′︸ ︷︷ ︸
ε0

= 1
sin β

(
λ̇

λ
− Q̇

γ M2

)
︸ ︷︷ ︸

ε1

= θ̇ sec β +
(
R − F

h

)
tan β︸ ︷︷ ︸

ε2

, (4.33)

where ν is just the classical Prandtl–Meyer angle, satisfying

ν(λ) ≡
∫

�−1/2 d ln λ =
√

γ + 1
γ − 1

arctan

√
γ − 1
γ + 1

(M2 − 1) − arctan
√

M2 − 1. (4.34)

It is also easy to prove that (4.33) corresponds to the compatibility conditions in the
classical theory of characteristics.

4.2.2. Weak discontinuity corrections
As displayed in figure 11, from an arbitrary P on a streamline, two Mach waves with the
angles βP = ± arctan

√
�P are generated. A domain of dependence (DoD) and a range of

influence (RoI) are formed between them. The streamline transformation T from N to P
is located in neither DoD nor RoI. According to the theory of characteristics, properties
at P should be independent of those at N. However, if no discontinuous Mach wave is
intersected with 
NP, see figure 11(a), the streamline variable UP could still be calculated
by

UP = T[ξ ]
η→η+dη

(UN). (4.35)

Assuming a left-running discontinuous Mach wave is intersected with 
NP at S, see
figure 11(b), the governing equations (3.25b–d) are no longer valid, as the first- and
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η = η

η = η + dη η = η + dη

ξ = ξ

E (	 = –1)

P

P

S
Q

N

RoIRoI
βP βP

–βP

DoD
DoD

N
T[ξ]

η → η + dη
T C

[ξ]

η → η + dη

R

E (	 = 1) E (	 = 1)

ξ = ξ – dξ ξ = ξ

(b)(a)

Figure 11. Streamline transformation outside the DoD and RoI, where a discontinuous Mach wave is (a) not
intersected and (b) intersected: (—–, orange) discontinuous Mach waves; (—–, green) ordinary Mach waves;
(�, yellow) DoD and RoI; (—–�, black) streamlines; (- - - -�, black) orthogonal lines; (—–�, blue) T and
T C.

second-order properties are not available. Based on the compatibility conditions (4.33),
they are corrected with

(θ + �ν)′ = 1
sin β

(
λ̇

λ
− Q̇

γ M2

)
, (4.36a)

(θ + �ν)′ = θ̇ sec β +
(
R − F

h

)
tan β, (4.36b)

θ ′ = κ. (4.36c)

The derivatives along the left-running Mach wave E, e.g. λ̇ and θ̇ , are expressed as the
finite-difference schemes between Q and P, where the values at Q are interpolated from
the nodes R and N. With a Newton–Raphson algorithm, the streamline variable at P is
numerically solved from the corrected equations (4.36). The result is expressed in the
following mapping form:

U(ξ, η + dη) = T C
[ξ ]

η→η+dη

[U(ξ, η), U(ξ − dξ, η + dη)], (4.37)

where T C is named the weak discontinuity correction. Compared with the original
transformation T , the streamline variable U(ξ − dξ, η + dη) at the upstream of the
targeting node must also be available for T C. This is always feasible by applying the
streamline transformation in a reasonable sequence.

In actual practice, T is applied as the default transformation operator. Only when
T is found to be intersected with a discontinuous Mach wave is it replaced with T C

and the streamline variable at its targeting node is recalculated. In the region which is
confirmed to be continuously differentiable, the corrected T C is not applied, to reduce the
computational loads and improve the smoothness of the solution.

5. Verifications and applications

The streamline transformation method (STM) is numerically verified by the following
three test cases in the two-dimensional planar and axisymmetric flow fields:
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η = ηb

η = η0

Centreline, η = ηCL

Xb

Lb

L0

W

xin xout

xO
Q

Hb

H0P
y

Figure 12. Schematic diagram and dimensions of a two-dimensional channel.

• the subsonic flow through two-dimensional channels (§ 5.1), to show how the
properties are affected by the wall curvatures;

• the supersonic downstream of an attached shock wave (§ 5.2), to verify the
performance for the inverse design;

• the flow fields with detached bow shock waves (§ 5.3), to demonstrate the
applicability in a wide range from subsonic to supersonic speed.

As a comparison, results from computational fluid dynamics (CFD) with the same
flow conditions are also provided. In CFD algorithms, a calorically perfect gas
model is assumed. A density-based Euler solver is applied since the viscosity is
neglected. A second-order implicit scheme is used for the time marching, where the
Courant–Friedrichs–Lewy number is between 0.1 and 0.5. The inviscid flux is solved
using a second-order Van Leer flux differencing scheme. The min–mod limiter is added
to the spatial discretization for the suppression of numerical oscillations. Especially for
the subsonic flow, a low Mach preconditioned method (Turkel 1987) is also applied. The
grid in the computational domain is determined after the grid-independence verification,
where the resolution is also sufficient to acquire clear shock waves and smooth Mach
number contours. The solution is converged with two criteria: (a) each residual is reduced
by at least three orders of magnitude, and (b) fluctuations of the flow properties at specified
positions vanish.

5.1. Subsonic flow fields through channels
As illustrated in figure 12, a uniform incoming free stream with M∞ = 0.5 (λ∞ ≈ 0.5345)
is flowing through a two-dimensional channel with the width W. On each side of the
channel, a bump with the height Hj and the length Lj is located at x = 0 and x = Xb,
where the subscripts j = 0, b represent the lower and upper walls, respectively. The shape
functions of the bumps are expressed as

y0 = H0 cos2 πx
L0

, x ∈
[
−L0

2
,

L0

2

]
,

yb = W − Hb cos2 π(x − Xb)

Lb
, x ∈

[
Xb − Lb

2
, Xb + Lb

2

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.1)

The lower bump is started from the point Q and reaches its peak at the point P. To eliminate
the disturbance from the two endpoints of the streamlines, straight wall segments are
connected to both sides of the bumps. The inlet and outlet boundaries are simply set at
xin = −1.5L0 and xout = 1.5L0, which satisfies the boundary-independent conditions and
also provides a wider flow field for the comparison with CFD.
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Shape W H0 L0 Hb Lb Xb

1 1.0 0.1 2.0 0.1 2.0 0.0
2 1.0 0.123355 2.0 0.123355 2.0 0.0
3 1.0 0.2 2.0 0.1 2.0 1.0

Table 2. Geometrical parameters of the wall shapes.
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Figure 13. Results of shape 1: (a) contour of Mach number and (b) streamline geometries: (—–, black),
STM; (- - - - -, black) CFD.

In this study, three groups of wall shape parameters are considered, see table 2.
A symmetric subsonic convergent-divergent flow field is formed with shape 1. With shape
2, the heights of the bumps, H0 and Hb, are increased to reach the sonic condition at P.
An unsymmetric flow field is calculated with shape 3, where the upper bump is moved
downstream to the position Xb = 1.0 and the flow speed at P is also approaching the sonic
condition.

5.1.1. Results of shape 1
In the calculation with STM, the boundary streamline η0 is located along the lower wall,
with 91 nodes distributed uniformly. Starting from streamline η0, 50 more streamlines are
located towards the upper wall, following a bi-geometric distribution with an increasing
ratio of 1.05. Following the algorithm described in § 3.4, the streamline transformation
T with the inverse prediction (3.31) is applied, where T is discretized with an implicit
scheme for the marching along orthogonal lines and a central difference scheme for
calculating F (U). After the numerical iterations are converged, the contours of Mach
numbers are obtained, see the black solid lines in figure 13(a). The streamline geometries
are obtained accordingly, see figure 13(b), where the densities of the curves are reduced
for clarity.

As a comparison, the flow field is also simulated by CFD with the same flow conditions.
An inflow boundary condition is set to the inlet with the free-stream velocities. An outflow
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Figure 14. Mach numbers along (a) streamlines and (b) orthogonal lines, as well as their (c,d) numerical
errors, STM results: (—–, red) η0; (—–, green) ηCL; (—–, blue) ηb; (- - - - -, red) ξP; (- - - - -, green) ξQ;
(- - - - -, blue) ξI ; CFD results: (•, red) η0; (•, green) ηCL; (•, blue) ηb; (◦, red) ξP; (◦, green) ξQ;
(◦, blue) ξI .

boundary is set to the subsonic outlet with the back pressure. Slip boundary conditions are
set to the lower and upper walls. Based on the boundary-independent test, the inlet and
outlet are located at xin = −4L0 and xout = 4L0, respectively. As a result, a structured grid
with 18 000 cells is generated in the computational domain. The numerical algorithms of
the CFD solver have already been introduced at the beginning of this section. The resulting
contours of Mach numbers are also displayed in figure 13(a), see the black dashed lines.

Figure 13(a) indicates that good agreements are achieved in the region between two
bumps. However, the contours of M = 0.5 are mismatched in the straight segments. For a
quantitative analysis of the numerical errors, figure 13(b) displays three typical streamlines
along the centre line, as well as the lower and upper walls. They are denoted as ηCL, η0 and
ηb, respectively. Starting from the points P, Q and (−L0, 0), three orthogonal lines, ξP, ξQ
and ξI , are also selected. The Mach numbers along these streamlines and orthogonal lines
are displayed in figure 14(a,b), which indicates the results from STM are extremely similar
to those from CFD. The numerical errors of STM, defined by

error = MSTM − MCFD

MCFD
× 100 %, (5.2)

are displayed in figure 14(c,d). The results indicate the maximum errors are within ±1 %.
No evident difference between STM and CFD is observed in the straight segments, where
the Mach numbers are both approximately M = 0.5. Thus the mismatched contours in
figure 13(a) are associated with the uniform flow field. By definition, the differential
equation of a general contour line is written as

(∇M)·(d x, dy) = 0. (5.3)

Here, ∇M ≈ 0 makes the direction (d x, dy) undetermined and extremely sensitive. In
STM, the numerical errors are accumulated along the orthogonal lines from the lower
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Figure 15. Streamline directions along orthogonal lines, (a) values, (b) numerical errors STM results:
(—–, red) ξP; (—–, green) ξQ; (—–, blue) ξI ; CFD results: (◦, red) ξP; (◦, green) ξQ; (◦, blue) ξI .

wall to the upper wall, which makes the contours in these regions asymmetric and different
from the CFD results. Even though the contours are not fully matched, the distributions of
Mach numbers are still regarded as similar between STM and CFD.

The streamline directions θ are also compared in figure 15, which indicates the
maximum errors within 0.06◦. Moreover, the shapes of streamlines from STM also fully
coincide with those from CFD, as already displayed in figure 13(b), see the black solid
(STM) and dashed (CFD) lines.

5.1.2. Convergencies and stabilities
The STM algorithm is also a grid-based algorithm, where the results are affected by the
grid convergence. Figure 16(a,b) displays the Mach numbers varying with the number of
streamlines, J, where MQ and MP are the values at the points Q and P, representing the
minimum and maximum in the flow field. As J is increased from 21 to 201, MQ and MP
are gradually levelling off and finally remain unchanged. Since high-order properties are
computed in the streamline transformation, the maximum errors are still within 0.2 % and
0.53 %, respectively.

The hollow points in figure 16 represent J = 51, which is applied in the current case.
If J is further increased, the numerical errors are expected to be reduced by only 0.05 %
and 0.14 %. However, the iteration steps and CPU time are increased significantly, see
figure 16(c,d). As a result, J = 51 is regarded to be acceptable for both accuracy and
efficiency. The computational resources consumed by STM are also compared with CFD,
see table 3. The results show the node count is reduced by approximately 75 % and the
flow field is solved within only 4 seconds.

Numerical divergences are always observed if J < 20. The intermediate orthogonal
lines are crossed and λ is approaching its upper limit μ, until the solver is crushed. This
could be explained by the governing equation (3.25b). Applying c ≡ 1, σ ≡ 1 and P ≡ 0
for the two-dimensional planar flow field with a uniform stagnation pressure gives the
relation between the jth and ( j + 1)th streamlines

Li,j+1 = Li,j + B∞
H∞

κ�η, (5.4)

where Li,j = L(λi,j) is a monotonically increasing function within [0,L(μ)], see (3.22).
Assuming the streamline curvature is positive, i.e. κ > 0, a larger distance B∞ usually
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Figure 16. The STM results, (a) MQ, (b) MP, (c) iteration steps and (d) CPU time, varying with the numbers
of streamlines, J.

Method Nodes CPU time (s)

STM 51 × 91 = 4641 3.646
CFD 18 000 871

Table 3. Computational loads for the subsonic flow field in the symmetric channel (shape 1).

results in a more significant increase of λi,j+1. In case an over-estimated Li,j+1 is greater
than L(μ), λi,j+1 is impossible to solve and the iteration is divergent. Based on (5.4), a
condition of numerical stabilities is expressed as

B∞|κ∗|
H∞|L∗

η|
≤ 1 or B∞ ∝ 1

|κ∗| , (5.5a,b)

where κ∗ and L∗
η are the typical values of the streamline curvature and η-derivative of L,

respectively. Strict proof of the stability analysis, with all factors considered, is required in
further research. In actual practice, B∞ is roughly selected as inversely proportional to the
maximum curvature. Under the premise of convergence, B∞ is gradually increased and
the number of streamlines could be reduced. Besides, an inverse prediction algorithm with
a small relaxation factor ω, described in (3.31)–(3.32), would also benefit.

5.1.3. Relations between streamline geometries and flow properties
To provide a figurative understanding of the relationship between streamline geometries
and flow properties, the property surfaces are introduced. A property surface is defined by
extruding the stream surface along the z-axis, with the lengths given by the values of flow
properties on each node. The property surfaces of the Mach number M and the streamline
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Figure 17. Property surfaces of Mach numbers M and streamline curvatures κ: (�, red) M; (�, green) κ;
(—–�, black) streamlines; (- - - -�, black) orthogonal lines.

curvature κ are usually displayed in pairs, see figure 17, representing the influences of κ on
M. Following the green surface, the streamline curvature κ along the streamline η0 (lower
wall) reaches a negative maximum at P and a positive maximum at Q. It remains zero
along the centreline ηCL due to the symmetry. Based on the governing equation (3.25b),
the negative κ around P makes the Mach number larger than that at the centreline ηCL.
On the contrary, the Mach number around Q is decreased due to the positive curvature
κ . Thus the saddle-shaped property surface in red is formed for the Mach numbers. The
averaged value at the orthogonal line ξP is higher than that at the orthogonal line ξQ,
corresponding to the quasi-one-dimensional isentropic relations. Along each orthogonal
line, the deviations from the averaged value are caused by the curvatures of the walls.

Figure 18(a) displays the detailed quantities of these deviations. According to the
quasi-one-dimensional relations, where the cross-sectional areas are calculated from (5.1),
the mass-averaged Mach number is expressed as

M̄ =
√

2
γ + 1

λ̄√
1 − λ̄2/μ2

, where λ̄ = H−1
[(

1 − 2H0

W
cos2 πx

L0

)
H∞

]
. (5.6)

According to the numerical results, the Mach number at P is 9.4 % larger than the averaged
M̄P, while that at Q is 5.7 % smaller than M̄Q. By increasing the heights of the bumps until
the sonic speed is reached at P, i.e. shape 2, the Mach number at P is 11.1 % deviated. An
interesting phenomenon is caused by these deviations. As the increase of the bump heights,
the flow reaches the sonic speed first at P, while the average flow speed is still subsonic.
Based on the isentropic relations (3.3), the mass-averaged pressures p̄ are calculated from
M̄. The results show similar quantities of the deviations, see figure 18(b).

5.1.4. Results of shapes 2 and 3
Following the same algorithm as shape 1, the solutions for shape 2 and shape 3 are also
obtained by STM, see figure 19, where the sonic speeds are reached at the peak of the
lower bumps. They are also compared with the CFD results with the same conditions. The
results indicate that most contours from STM (black solid curves) are in good agreement
with those from CFD (black dashed curves), except the M = 0.5 contours in the straight
segments. The reason for this mismatch is similar to that with shape 1, which has already
been discussed. Figure 20 displays the Mach numbers and their numerical errors along
streamlines η0, ηb and ηC = (η0 + ηb)/2. The results indicate that the numerical errors
are less than ±3 %. As a result, despite the mismatch of the M = 0.5 contours, good
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Figure 18. Distributions of (a) M and (b) p/p0 along orthogonal lines: (- - - - -) values along ξP and ξQ; (—–)
averaged values at cross-sections P and Q.
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Figure 19. Contours of Mach numbers in the flow fields with (a) shape 2 and (b) shape 3: (—–, black), STM;
(- - - - -, black) CFD.

agreements between STM and CFD are still considered to be reached. This also indicates
that STM is applicable, no matter whether the wall shapes are symmetric or asymmetric.

It is also noteworthy that the flow fields in the channels are similar to the subsonic
pockets in the Mach reflections or Mach interferences. The curved sliplines are regarded
as the pressure boundaries. Pressures are also deviated from the mass-averaged values, due
to the curvatures of the sliplines. However, solutions for the whole of the flow fields are
a little beyond the scope of the current study. Further research would be required for such
applications, by considering multiple shock waves in STM.

987 A26-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.394


Z.W. Tian and K. Cui

0.4

0.6

0.8

1.0

0 1 2

–3

0

3

0.4

0.6

0.8

1.0

–3

0

3

E
rr

o
r

(%
)

–2 –1 0 1 2–2 –1

0 1 2–2 –1 0 1 2–2 –1

2x/L0 2x/L0

M

(b)(a)

ηC

ηCηC

ηC

η0

η0

η0

η0

ηb

ηb
ηb

ηb

(d)(c)

Figure 20. Mach numbers along streamlines with (a) shape 2 and (b) shape 3, as well as (c,d) numerical errors
between STM and CFD, STM results: (—–, red) η0; (—–, green) ηC; (—–, blue) ηb; CFD results: (•, red) η0;
(•, green) ηC; (•, blue) ηb.

5.2. Downstream of attached shock waves
For a given shock wave, the shock boundary condition is set and the downstream flow
field is directly calculated by the streamline transformation T in a certain sequence. The
geometries of the wall, from where the shock wave is generated, are obtained consequently.
This is also known as the inverse design of supersonic flow fields from shock waves. In
this section, the supersonic downstream of the planer/axisymmetric attached shock waves
is calculated and verified, where the shapes and upstream conditions are the same as those
from Shi et al. (2021). The results in the external and internal flow fields are introduced in
§§ 5.2.1 and 5.2.2, respectively.

5.2.1. Shock waves in external flow fields
The shape function of the shock wave S is given by

y = 1
2 (ex − 1), x ∈ [0, 1]. (5.7)

According to the geometrical relationships, the direction χ , curvature κS and its derivative
κ̇S are obtained from (5.7), expressed as

χ = tan−1( y + 1
2), κS = cos3 χ tan χ, κ̇S = (3 cos2 χ − 2) cos4 χ tan χ. (5.8a–c)

Thirty-five nodes are distributed geometrically along S, with an increasing ratio of 1.05
and the first height of 0.01. A uniform free stream with M∞ = 5 (λ∞ ≈ 2.2351) is set to
the upstream.

Based on the equations in § 4.1, the streamline properties immediately after the shock,
such as λ+, θ+, p+

0 and A+, as well as the high-order properties, κ+, h′+ and h′′+, are
all obtained for each node. With these values, S is set to the shock boundary condition
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Figure 21. Results of the external shock in (a) planar and (b) axisymmetric flow fields, STM results:
(—–, blue) wall; (—–, black) M-contours; MOCC results: (- - - - -, blue) wall; (- - - - -, black) M-contours.

by (4.26). The stagnation pressures along the downstream streamlines are also set to
p+

0 . The streamline transformation is discretized by an implicit marching scheme along
orthogonal lines and a forward Euler scheme for F (U). The downstream flow field is
finally obtained by the streamline transformation sequentially.

The solutions from STM are displayed in figure 21 for both two-dimensional planar and
axisymmetric flow fields. Contours of Mach numbers and the wall shapes are displayed in
black solid lines and blue solid lines, respectively. The left-running Mach waves E from
the end of the shock waves are also displayed as green solid lines. According to the theory
of characteristics, the upstream of E is the real solution, while the downstream of E is only
valid if no discontinuous Mach wave exists there. It is recommended the real solution is
extracted from the resulting stream surface by the Mach wave E, e.g. the extracted walls
displayed in blue solid lines.

The results from STM are compared with those from MOCC in Shi et al. (2021),
including the Mach number contours (black dashed lines) and the wall shapes (blue
dashed lines). In the regions before the Mach waves E, agreements are also reached, which
indicates the accuracy of STM is sufficient for the inverse design of supersonic flow fields.

From the results in figure 21, three-dimensional effects are also reflected. Compared
with the planar flow field, the wall in the axisymmetric flow field is closer to the shock
wave, even though the shock waves are the same. This is regarded to be caused by the
varying c. Based on (2.11), c is increased with y along the downstream streamlines.
Together with (4.13), the distance h between streamlines is decreased by c, representing
the fact that the streamlines are getting closer. As a result, the influencing mechanisms
described in § 3.5 are also verified by this test case.

5.2.2. Shock waves in internal flow fields
Following the same conditions from Shi et al. (2021), a shock wave S in the internal flow
fields is set with the free stream of M∞ = 6. The spatial coordinates are

y = −0.1x2 − 0.3x + 1, y ∈ [0.25, 1]. (5.9)

From the last equation, the direction χ , curvature κS and its derivative κ̇S are expressed as

χ = − tan−1(0.2x + 0.3), κS = −0.2 cos3 χ, κ̇S = −0.12 cos6 χ tan χ. (5.10a–c)
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Figure 22. Results of the internal shock in (a) planar and (b) axisymmetric flow fields, STM results:
(—–, blue) wall; (—–, black) M-contours; MOCC results: (- - - - -, blue) wall; (- - - - -, black) M-contours.

Seventy-one nodes are distributed uniformly along S. Following the calculation procedures
similar to the external flow fields, the contours of Mach numbers and the wall shapes
are obtained by STM, see the black and blue solid lines in figure 22. The real solutions
have already been extracted from the resulting stream surfaces, by the right-running Mach
waves from the end of the shock wave S. Compared with the results from MOCC in Shi
et al. (2021), see the dashed lines, good agreements indicate STM is also suitable in the
internal flow fields.

5.3. Downstream of detached bow shock waves
Bow shock waves are typical phenomena where the speeds in the downstream flow fields
are increased from subsonic to supersonic. For the verification in such flow fields, a
bow shock wave ahead of a symmetric blunt body is considered, including both the
two-dimensional planar and axisymmetric flow fields.

As displayed in figure 23, a Cartesian coordinate system Oxy is located at the root of the
bow shock wave S, where S is degraded to a normal shock wave with a negative curvature
radius R0. As y increases, the shock angle is gradually decreased until it reaches β∞ =
sin−1(1/M∞) at infinity, where M∞ = 5 is the Mach number from the incoming free
stream. A hyperbolic equation is applied to describe the shape of the bow shock wave, for
it is the simplest explicit expression satisfying the above features and is widely used in
theoretical analysis. As a result, the coordinates of S are given by

x = R0

tan2 β∞
(cosh t − 1), y = R0

tan β∞
sinh t, t ∈ [0, +∞). (5.11a,b)

From (5.11), the direction χ and curvature κS are given by

tan χ = coth t tan β∞, κS = − 1
R0

(sin2 χ − cos2 χ tan2 β∞)3/2, (5.12a,b)
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Figure 23. Flow patterns downstream of a bow shock wave: (—–, red) shock wave S; (—–, orange)
discontinuous Mach wave E; (—–, magenta) sonic line.

and the derivative of κS is given by

κ̇S = 3
R2

0 cos2 β∞
(sin2 χ − cos2 χ tan2 β∞)2 sin χ cos χ. (5.13)

After the bow shock wave, the blunt body consists of a forehead GP and a horizontal
afterbody, which are connected at the point P. The profile of the forehead is smoothly
curved with a gradually decreasing slope angle. At the stagnation point G, the slope
angle is always larger than the maximum deflection of an oblique shock wave, for the
detachment conditions. At the connection point P, the slope is reduced to horizontal. A
discontinuous Mach wave E is generated from P since the curvatures are suddenly changed
on its two sides. The flow field between S and E consists of a subsonic region (λ < 1) and
a supersonic region (λ > 1). They are separated by the sonic line starting from the point ss
on S and ending somewhere at the forehead. Since the profile after the hyperbolic-shaped
S is not necessarily a circle, the length L, the height H and the nose slope angle θG are
defined in figure 23.

Once the shock boundary condition is obtained according to the geometrical properties
(5.11)–(5.13), numeric schemes of STM are similar to the cases in § 5.2. However, the
following two issues should be pointed out before the calculation:

• The first part of the flow field is adequate for analysis. Once the streamline
transformation T reaches the point P, characterized by the streamline η0 becoming
horizontal, the geometries of the blunt forehead and the sonic line have already been
obtained. The calculation could be stopped, for further transformation operations
are not necessary. The resulting downstream flow field is regarded as a continuously
differentiable region, where the weak discontinuity correction T C is not required.
Based on this consideration, the shock wave S is discretized by 42 or 72 nodes in
the planar or axisymmetric flow fields, following a geometrical distribution with the
first distance of 0.01 and the increasing ratio of 1.02.

• An extrapolation is required to obtain the real wall geometries. Near the stagnation
point G, the resulting curvatures of the streamline η0 are always observed to be
finite, since they are obtained numerically. As a result, the streamline η0 is also
curved smoothly alongside G, see the black solid line in figure 24(a). To provide
CFD with a reasonable boundary, the lower part of the forehead GQ (blue solid
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Figure 24. Geometrical properties of streamline η0 behind a planar bow shock wave, including (a) spatial
coordinates and (b) curvatures: (—–, black) streamline obtained from STM; (—–, blue) profile extrapolated for
CFD.

line) is obtained by extrapolating from the upper part QP. The separation point
Q is roughly selected from where a constant negative curvature is retained, see
figure 24(b). The result suggests the extrapolated profile GQ only deviates from
the streamline η0 near the stagnation G, where the curvatures are extremely large.
Based on the governing equation (3.25b), λ grows rapidly in a certain distance. As a
result, the influence of different boundary shapes is believed to be limited to within a
small area near G. Solutions in most areas are still comparable. This is also verified
by the CFD results later. According to the results in actual practice, the CFD results
are also insensitive to the position of the separation point Q.

After the profile of the forehead is extrapolated, the computational domain and boundary
conditions of CFD are displayed in figure 25(a). An inflow boundary is located along
the quarter of a circle, whose radius is 0.7 for the planar flow field and 2.0 for the
axisymmetric flow field. It is set to a far-field boundary condition with the values of
the infinite free stream. An outflow is set to a supersonic outlet boundary condition
where values are extrapolated from the internal nodes. Following the grid-independence
test, a two-dimensional structured grid is generated in the computational domain, see
figure 25(b), where the actual mesh density has been reduced for clarity. A total of
201 nodes are distributed uniformly along the slip wall boundary. Along the symmetric
boundary, 181 nodes are distributed geometrically, where the first cell’s length is 0.001
and the increasing ratio is 1.02. The algorithms of the CFD solver are introduced at the
beginning of this section.

The computational resources consumed by STM are compared with those by CFD, see
table 4. Despite the further optimization for CFD algorithms, the CPU time consumed is
decreased by at least an order of magnitude, since no iterations are required and the nodes
are reduced by more than 85 %.

Solutions of the flow fields are also compared in figure 26. From CFD results, the
shapes of the shock wave are represented as the concentration of Mach number contours.
They are extremely similar to the given function (5.10) displayed in red solid lines, which
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Figure 25. The CFD settings including (a) the computational domain, boundary conditions and (b) the
structured grid.

Method Nodes CPU time (s)

Planar STM 42 × 42 0.0592
CFD 201 × 181 1450

Axisymmetric STM 70 × 70 0.1935
CFD 201 × 181 1492

Table 4. Computation loads for the flow fields with bow shock waves.

indicates the wall shapes obtained by STM are reasonable for the shock wave S, even
though the lower parts are extrapolated. In the planar flow field, see figure 26(a), the
contours of Mach numbers from STM are also similar to those from CFD, except that of
M = 0.2. As just described, the boundary streamline η0 from STM is smoothly curved
alongside the stagnation G. Thus the mismatch of the contour with M = 0.2 is still
considered acceptable. Particularly, the contour of M = 1 is also known as the sonic line,
which separates the subsonic and supersonic regions. In the axisymmetric flow field, see
figure 26(b), extremely good agreements are also achieved on the geometries of the shock
wave, the sonic line, as well as the contours of Mach numbers.

The Mach numbers along the wall are displayed in figure 27(a,b), where the STM results
(solid lines) are extremely similar to those from CFD (solid points). The numerical errors
are also calculated by (5.2), where the denominator is set to 1 for the points with MCFD <

1. The results in figure 27(c,d) indicate the numerical errors are within ±5 % and ±3 %,
respectively. As a result, despite the singularity, STM is still regarded as a precise solver
for the inverse design of detached shock waves.

5.3.1. Three-dimensional effects
Streamline geometries in the axisymmetric flow field are directly compared with those in
the planar flow field, see figure 28(a). The immediate after-shock flow directions are the
same in these two flow fields, while their deviations are continuously increased along the
streamlines. These deviations originate from the three-dimensional effect, represented by
c. The reasons are explained in the following four aspects:
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Figure 26. Results in the (a) two-dimensional planar and (b) axisymmetric flow fields: (—–, black)
M-contours from STM; (—–, black) M-contours from CFD; (—–, magenta) sonic line from STM; (—–, blue)
profile of the forehead.
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Figure 27. Mach numbers along the wall in the (a) two-dimensional planar and (b) axisymmetric flow fields,
as well as (c,d) their numerical errors: (—–, blue) STM; (•, blue) CFD.

• The streamlines are more concentrated. In the flow field around a blunt body, the
y-coordinate along a streamline is larger than y∞, equivalent to c = y/y∞ > 1.
Thus h is reduced based on (4.14), which makes the streamlines closer to each other.
The closer the streamline is to the x-axis, the larger c grows in the downstream flow
field. As a result, the effect of concentrations is also aggravated near the wall.

• The streamlines are less curved. Since the streamlines are more concentrated, a
narrower area remains for the streamlines. Thus the streamlines are less curved.

• The forehead is larger and the stand-off distance is shorter. Since the streamlines
are less curved, the profile of the forehead is also slowly curved, resulting in a larger
radius of curvature. Since the streamlines are more concentrated, the profile of the
forehead is also closer to the shock wave, resulting in a shorter stand-off distance.
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Figure 28. Comparisons between the planar and axisymmetric flow fields for the (a) flow patterns and
(b) Mach number distributed along the orthogonal line ξss, in the planar flow field: (- - - - -, magenta) sonic
line; (- - - - -, grey) streamlines; (- - - - -, cyan) M along ξ = ξss; in the axisymmetric flow field: (—–, magenta)
sonic line; (—–, grey) streamlines; (—–, cyan) M along ξ = ξss; (axisymmetric).

• The sonic line is higher and straighter. Based on the definition in (4.14), the
magnitude of the negative equivalent curvature, |k|, is reduced near the forehead,
by the less curved streamline, and also by the feature of c > 1. Together with
the governing equation (3.25b), the flow speed is increased more slowly along an
orthogonal line toward the forehead, resulting in a smaller Mach number at the
wall, see figure 28(b) for an instance of the orthogonal line ξss. As a result, along
the forehead, a longer distance is required for the subsonic speed to be accelerated
to sonic, making the sonic line higher and straighter, see the magenta solid lines in
figure 28(a).

The three-dimensional effects are also illustrated by the property surfaces of the Mach
numbers, see figure 29, where M is displayed in a logarithmic scale for clarity. The surface
for the planar flow field (in grey) is curled up because M is more accelerated toward
the wall. On the contrary, the surface for the axisymmetric (in blue) is much straighter.
Different shapes of the sonic lines are also obtained, by intersecting these two surfaces
with the horizontal plane of M = 1.

Due to the three-dimensional effect, the shape of the forehead is also different from
that in the planar flow field. The stand-off distance D, length L, height H, fineness ratio
L/H and nose slope angle θG are listed and compared in table 5. The values indicate the
forehead in the axisymmetric flow field is larger and closer to the shock wave, which was
already explained above. They also indicate the forehead is taller than a circle in the planar
flow field, i.e. L/H < 1, while it is longer than a sphere in the axisymmetric flow field, i.e.
L/H > 1. The most obvious difference is the shape of the nose, which is round (θG = 90◦)
in the axisymmetric flow field and sharp (θG = 62◦) in the planar flow field.

5.3.2. Stand-off distances
Similar to those with M∞ = 5, results with M∞ increased from 1.4 to 8 are also provided
by STM, where only the axisymmetric flow fields are provided. The profiles of the
foreheads are displayed in figure 30. Their geometrical parameters are listed in table 6.
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Figure 29. Property surfaces of Mach numbers in the planar and axisymmetric flow fields: (�, red)
upstream; (�, grey) downstream (planar); (�, blue) downstream (axisymmetric).

D L H L/H θG Nose

Planar 0.1713 0.2243 0.3511 0.64 62◦ Sharp
Axisymmetric 0.1158 1.2779 1.0691 1.20 90◦ Round

Table 5. Geometries of the forehead in the planar and axisymmetric flow fields with M∞ = 5.

Two groups are categorized according to the nose shape. Sharp noses are observed in the
first group with M∞ < 4, see figure 30(a,b), while the noses are round in the second group
with M∞ ≥ 4, see figure 30(c). Besides, the fineness ratios L/H indicate the forehead for
M∞ = 4 is almost a sphere (L/H = 1) and becomes longer as M∞ is increased.

The stand-off distances D are also displayed as the red solid line in figure 30. For
reference, those of a sphere are also displayed, including the experimental correlation from
Billig (1967) and the numerical results from Zelalem et al. (2018). Following the notations
in figure 23, Billig’s correlation is rewritten as(

D
R0

)
sphere

= 0.143
1.143

exp
[

3.24
M2∞

− 0.54
(M∞ − 1)1.2

]
. (5.14)

For the hyperbolic-shaped shock wave with M∞ ≥ 4, where the round-nose foreheads are
formed, the stand-off distances follow the trends of (5.14) and are surprisingly similar
to the numerical results from Zelalem et al. (2018), even though the shapes of shock
waves and foreheads are different. However, for the sharp-nose foreheads with M∞ ≤ 3.5,
evident differences are observed. The stand-off distances are shorter than those of spheres,
which might be caused by the sharp noses, making the stagnation points move forward.
The comparison also indicates that the shock wave detached from a sphere is similar to a
hyperbola with M∞ ≥ 4, while it deviates from a hyperbola at low Mach numbers.
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Figure 30. Stand-off distances and wall shapes for an axisymmetric hyperbolic shock wave, varying with M∞
in the ranges (a) 1.4–2.0, (b) 2.5–3.5 and (c) 4–8. The results for a sphere are also displayed as a reference.

M∞ D L H L/H θG Nose

1.4 0.1366 0.1496 0.2008 0.75 49◦ Sharp
1.6 0.1304 0.2113 0.2832 0.75 53◦ Sharp
1.8 0.1256 0.2558 0.3574 0.72 57◦ Sharp
2 0.1245 0.3087 0.4254 0.73 63◦ Sharp
2.5 0.1279 0.4307 0.5743 0.75 75◦ Sharp
3 0.1279 0.5908 0.6938 0.85 82◦ Sharp
3.5 0.1261 0.7318 0.8029 0.91 85◦ Sharp
4 0.1244 0.8988 0.9014 1.00 90◦ Round
5 0.1158 1.2779 1.0691 1.20 90◦ Round
6 0.1111 1.6328 1.2228 1.34 90◦ Round
7 0.1108 2.0643 1.3642 1.51 90◦ Round
8 0.1114 2.4852 1.5013 1.66 90◦ Round

Table 6. Geometries of the forehead downstream an axisymmetric hyperbolic shock wave with R0 = 1 in an
axisymmetric flow field.

An additional remark for the bow shock wave cases is the singularity from the inverse
design approach, where the boundary streamline is smoothly curved alongside the actual
stagnation point. The singularity problem is supposed to be resolved by the direct design
approach, where the shock wave geometries are determined by a given wall. Numerical
algorithms of STM are also expected to be applicable, by iterating the shock wave
geometries to make the boundary streamline coincide with the given wall. However, this
is also beyond the current scope and remains to be further studied.

6. Conclusion

According to the relationships between streamline geometries and flow properties, a
unified geometry-based solver, named the streamline transformation method (STM), is
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provided for the flow fields no matter whether they are subsonic or supersonic. The major
idea is that the shapes of the streamlines are transformed to fill the domain, satisfying
the boundary conditions. The governing equations are derived in the continuously
differentiable regions. The shock boundary conditions and weak discontinuity corrections
are also introduced for the discontinuities in the supersonic flow fields.

Influencing mechanisms of streamline geometries on flow properties are also discussed.
Two key parameters, the distance h between the streamlines and the effective curvature k,
are identified. Flow speeds are varied by k and also determined by h. Three-dimensional
effects are regarded as that h and k are varied with the dimensionless lateral distance c
between stream surfaces.

The STM algorithm is numerically verified by test cases in subsonic/supersonic and
planer/axisymmetric flow fields. Good agreements are reached from the comparison
with CFD or published results. Due to the application of high-order properties, fewer
nodes are required and the computational time is reduced by at least an order of
magnitude. Features of these flow fields are also analysed from a geometrical perspective.
In the subsonic channels, due to the wall curvatures, the flow speeds and pressures
are varied by approximately 10 %, compared with the mass-averaged values from the
quasi-one-dimensional isentropic relations. Geometrical properties downstream of a
hyperbolic-shaped bow shock wave are also studied following an inverse design approach.
In the axisymmetric flow field, the three-dimensional effects result in a larger forehead and
a shorter stand-off distance. Round noses are formed when M∞ ≥ 4, with the stand-off
distances similar to that of a sphere. At lower incoming Mach numbers, the noses become
sharp, resulting in shorter stand-off distances.

The accuracy, efficiency and applicability to a wide speed range from subsonic to
supersonic, make STM a potential candidate for theoretical analysis and inverse design
in high-speed compressible flow fields, especially for the subsonic regions downstream of
the strong shock waves.

Furthermore, effective, accurate and numerically stable algorithms for direct design
problems and arbitrary three-dimensional flow fields are also worth developing. In
direct design problems with a given forehead profile, the geometries of the shock wave
are numerically solved, by making the wall geometries from STM fully coincide with
the specified forehead, including their coordinates, directions and curvatures. In the
three-dimensional problems, the domain is discretized with a series of parallel stream
surfaces. Their shapes could also be numerically solved, by satisfying the STM governing
equations and also the spatial constraints from differential geometries. The prerequisites
are the existence of these parallel stream surfaces. This requires the streamlines to be
continuously differentiable and not highly twisted.

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2024.394.
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Streamline geometries in subsonic and supersonic regions

Appendix A. Shock invariants

Following the notations in figure 8, the unit quantities of mass, momentum and energy on
any side of a shock wave are expressed as

ρMa sin β =
√

(μ2 + 1)ρ0p0
sin β

μH , (A1a)

p + ρM2a2 sin2 β = p0

μ2H [((μ2 + 1) sin2 β − 1)λ+ μ2/λ], (A1b)

γ

γ − 1
p
ρ

+ 1
2

M2a2 sin2 β = μ2 + 1
2

p0

ρ0
(1 − λ2 cos2 β/μ2), (A1c)

and the tangential component of the speed is given by

Ma cos β =
√

μ2 + 1
μ2

p0

ρ0
λ cos β. (A1d)

Combining (A1c) and (A1d) gives

τ = λ− cos β− = λ+ cos β+, (A2a)

a0 = γ ( p0/ρ0)
− = ( p0/ρ0)

+, (A2b)

where τ in (A2a) is the tangential component of the characteristic Mach number and the
equation (A2b) corresponds to the adiabatic condition.

Substituting (A2b) into (A1a) gives

H+/p+
0

H−/p−
0

= sin β+

sin β− . (A3)

Another relationship about H∓ and p∓
0 is obtained from (A1b), and expressed as

H+/p+
0

H−/p−
0

= [(μ2 + 1) sin2 β+−1]λ+ + μ2/λ+

[(μ2 + 1) sin2 β− − 1]λ− + μ2/λ−
. (A4)

Comparing (A3) with (A4) gives the first shock invariant

S ≡ [(μ2 + 1) sin2 β∓ − 1]λ∓ + μ2/λ∓

2μ2 sin β∓ . (A5)

According to the relations of speed components, sin β∓ and λ2∓ in (A5) are replaced with
�λ∓n /λ∓ and λ∓n λ∓n + τ 2. Thus a quadratic equation about λ∓n is expressed as

λ∓n λ
∓
n − 2�Sλ∓n + 1 − τ 2/μ2 = 0. (A6)

Based on Vieta’s formulas

�
λ−n + λ+n

2
= S, λ−n λ

+
n = 1 − τ 2

μ2 , (A7a,b)

which indicate S is the algebraic average of λ∓n .
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The second shock invariant D is expected to represent the strength of the shock waves
and is defined by

D = �
λ−n − λ+n

2
= �

√
(λ−n + λ+n )2

4
− λ−n λ+n = �

√
S2 + τ 2

μ2 − 1. (A8)

Substituting (A5) and (A2a) into (A8) gives

D ≡ ± [(μ2 − 1) sin2 β∓ + 1]λ∓ − μ2/λ∓

2μ2 sin β∓ . (A9)

Proofs are obvious that (A9) vanishes to D = 0 if and only if

λ2
∓ = μ2

(μ2 − 1) sin2 β∓ + 1
and M2

∓ = 1

sin2 β∓ . (A10a,b)

This indicates the shock wave is regarded as a Mach wave.
Based on (A7) and (A8), the components of characteristic Mach numbers are expressed

with S and D as

λ∓n = �(S ± D), τ = μ
√

1 − S2 + D2, (A11a,b)

which also gives

λ∓ =
√

μ2 − (μ2 − 1)S2 + (μ2 + 1)D2 ± 2SD. (A12)

According to the relations of the speed components, the shock angles are expressed as

tan β∓ = �
λ∓n
τ

= S ± D
τ

= S ± D
μ

√
1 − S2 + D2

. (A13)

Then, the deflection angle δ = β− − β+ is obtained from (A13) and expressed as

tan δ = 2Dτ

S2 − D2 + τ 2 . (A14)

The ratio of stagnation pressures, p+
0 /p−

0 , is obtained from (A3), where H∓ is replaced by
its definition (3.6) and β+ is replaced by (A13). It is finally expressed as

ln
p+

0

p−
0

= μ2 + 1
2

ln
S + D
S − D + μ2 − 1

2
ln

S − γD
S + γD . (A15)

Finally, all properties at both sides are expressed with the shock invariants S and D.
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Appendix B. The first-order curved-shock equations

On each side of a shock wave, taking the directional derivative of the streamline direction
θ gives

dθ

ds
= cos β

A
∂θ

∂ξ
+ sin β

h
∂θ

∂η
. (B1)

Substituting (2.8) and (3.12) into (B1) directly gives the first equation about the first-order
properties κ and h′

κ cos β + h′

h
sin β = dθ

ds
− F sin β

h
. (B2)

Similarly, the directional derivative of L is expressed as
dL
ds

= cos β

A
∂L
∂ξ

+ sin β

h
∂L
∂η

. (B3)

Substituting (3.23) into (B3), then considering H dL = d ln λ gives

d ln λ
ds

= κ sin β + cos β

A
∂ ln λ
∂ξ

+ sin β

h
P . (B4)

Since p0 remains constant along a streamline either upstream or downstream of a shock
wave, P in (B4) is replaced by

1
γ M2

d ln p0

ds
= sin β

h
P . (B5)

At the same time, the streamwise gradient of ln λ in (B4) is also replaced by

1
A

∂ ln λ
∂ξ

= �

(
h′

h
+ R

)
, (B6)

where

� = 1 − λ2/μ2

λ2 − 1
= 1

M2 − 1
, R = 1

A
∂ ln c
∂ξ

. (B7a,b)

Substituting (B5) and (B6) into (B4), the second equation about the first-order properties
κ and h′ is obtained

κ sin β + h′

h
� cos β = d ln λ

ds
− 1

γ M2
d ln p0

ds
− R� cos β. (B7)

The directional derivatives of θ , ln λ and ln p0 in (B2) and (B7) are expected to be
replaced by the independent shock invariants S and D. Based on (4.6a) and (4.6d), the
total derivatives of λ and β to the arc length s are given by

dλ
ds

= EλṠ + FλḊ, (B8)

dβ

ds
= Eβ Ṡ + FβḊ, (B9)

where Ṡ and Ḋ are the derivatives of S and D to s

Ṡ = dS
ds

, Ḋ = dD
ds

, (B11a,b)

where Eλ and Fλ are the partial derivatives of λ to S and D, while Eβ and Fβ are the partial
derivatives of β to S and D. Since p0 and θ are not direct functions of S and D, with the
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aid of their deviations across the shock wave, the following expressions are defined:

d ln p0

ds
= EpṠ + FpḊ + Q̇, (B12)

dθ

ds
= Eθ Ṡ + Fθ Ḋ + Θ̇, (B13)

where

Q̇ = d ln p−
0

ds
, Θ̇ = dθ−

ds
. (B14a,b)

Here, Ep and Fp are the partial derivatives of ln( p+
0 /p−

0 ), while Eθ and Fθ are the partial
derivatives of δ = θ+ − θ−. Based on (4.6a)–(4.6f ), Eq and Fq where q = λ, β, p, θ are
obtained on both sides of the shock wave, expressed as

(B15)

Replacing the directional derivatives in the right-hand side of (B2) and (B7) with (B13),
(B8) and (B12), the equations about the first-order properties of streamlines κ and h′ are
expressed as [

cos β sin β

sin β � cos β

] [
κ

h′/h

]
=
[

bκ

bh

]
. (B16)

On its right-hand side, bκ and bh are expanded as

bκ = Eθ Ṡ + Fθ Ḋ + Θ̇ − F sin β/h, (B17a)

bh = EhṠ + FhḊ − Q̇/γ M2 − R� cos β, (B17b)

where Eh and Fh are the combinations of partial derivatives, given by

Eh = Eλ
λ

− Ep

γ M2 , Fh = Fλ
λ

− Fp

γ M2 . (B18a,b)

Based on (4.16) and (4.6d), the determinant of (B16), Δ = � cos2 β − sin2 β, is also
expressed with shock invariants as

Δ∓ = −2D(D ± S)

μ2 − 1 − (μ2 − 1)S2 + (μ2 + 1)D2 ± 2SD
. (B19)
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Streamline geometries in subsonic and supersonic regions

That indicates the unique solution exists only if D /= 0, which gives[
κ

h′/h

]
= 1

Δ

[
� cos β − sin β

− sin β cos β

] [
bκ

bh

]
. (B20)

According to (B16), the derivatives of the shock invariants, Ṡ and Ḋ, are necessary to
solve the equation. Thus another relationship about Ṡ , Ḋ and the curvature of the shock
wave κS is required. Since χ = θ + β, combining (B13) and (B9) gives

κS = dχ

ds
= dθ

ds
+ dβ

ds
= (Eθ + Eβ)Ṡ + (Fθ + Fβ)Ḋ + Θ̇. (B21)

By solving (B21) and (B8), Ṡ and Ḋ are finally obtained and expressed as[
Ṡ
Ḋ

]
= 1

(Eθ + Eβ)Fλ − Eλ(Fθ + Fβ)

[
Fλ −Fθ − Fβ

−Eλ Eθ + Eβ

] [
κS − Θ̇

λ̇

]
. (B22)

In summary, for a given shock wave, the first-order properties of streamlines are
determined by solving (B16). They are verified by numerical results with the same
conditions from Mölder (2012), including a curved planar shock wave in § B.1 and a
straight conical shock wave in § B.2.

B.1. Curved planar shock waves
Under the condition of the planar flow, this gives F ≡ 0, c ≡ 1 and R∓ ≡ 0. The condition
of a uniform incoming free stream also provides λ̇− ≡ Θ̇ ≡ Q̇ ≡ 0. After Ṡ and Ḋ are
calculated by (B22), the first-order properties κ and h′ are finally obtained from (B20),
expressed as

κ− = (h′/h)− = 0, κ+ = J+
a κ+

S , (h′/h)+ = K+
a κ+

S , (B23a–c)

where J+
a and K+

a are the influence factors determined by S and D and expressed as

[
J+

a
K+

a

]
=

[
�+ cos β+ − sin β+
− sin β+ cos β+

] [
E+

θ F−
λ − F+

θ E−
λ

E+
h F−
λ − F+

h E−
λ

]
(�+ cos2 β+− sin2 β+)(E−

β F−
λ − E−

λ F−
β )

. (B24)

Equation (B23) indicates the after-shock properties are proportional to the shock wave’s
curvature κS.

Figure 31 displays the after-shock κ+ and (h′/h)+ calculated by (B23), where the
upstream speed is M− = 3 and the curvature of the shock wave is κS = −1. To be
compared with the results from the CST, the dimensionless streamwise gradient of the
pressure is also calculated by

PCST = 1
ρu2

(
1
A

∂p
∂ξ

)
= −�

(
h′

h
+ R

)
. (B25)

As displayed in figure 31, κ+ and P+
CST coincide with the corresponding results from

Mölder (2012), where D2 is for the streamline curvatures and P2 for the dimensionless
streamwise gradients of the pressure.

Since J+
a is independent of κS according to (B24), if J+

a = 0, the streamlines
downstream are always straight no matter how the shock wave is curved. It is also known
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Figure 31. The first-order properties of streamlines behind a curved planar shock wave with M− = 3 and
κS = −1: (—–, red) κ+; (—–, blue) (h′/h)+; (- - - - -, blue) P+

CST ; (◦, red and ◦, blue) D2 and P2 from Mölder
(2012); (•, red) Crocco’s point; (•, blue) Thomas’s point.
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Figure 32. Crocco and Thomas criteria for curved planar shock wave with M− = 3: (—–, grey) contours of
M−; (—–, red) Crocco’s criterion; (—–, blue) Thomas’s criterion; (◦, red and ◦, blue) Crocco’s and Thomas’s
criteria from Mölder (2012).

as Crocco’s point (Crocco 1937) and is displayed in figure 31. Similarly, if K+
a = 0, zero

gradients of flow properties are retained independent of κS, also known as Thomas’s point
(Thomas 1949). By setting the two factors in (B24) to zero, the criteria of Crocco’s and
Thomas’s points are solved from

tan β+ = �+ E+
θ F−
λ − F+

θ E−
λ

E+
h F−
λ − F+

h E−
λ

and tan β+ = E+
h F−
λ − F+

h E−
λ

E+
θ F−
λ − F+

θ E−
λ

. (B26a,b)

Figure 32 also displays these two criteria from (B26), where M− varies from 1.05 to 1000.
Compared with those from Mölder (2012), fully coincided results are also obtained.

B.2. Straight conical shock waves
The conical shock waves in the axisymmetric flow field are interesting for the streamlines
are always curved due to the non-zero R, even though the shock waves themselves are
straight.
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Figure 33. The first-order properties of a conical shock wave with M− = 3 and y = 1: (—–, red) κ; (—–,
blue) h′/h; (- - - - -, blue) PCST ; (◦, red and ◦, blue) D2 and P2 from Mölder (2012).

Since Ṡ ≡ Ḋ ≡ 0 for the straight shock wave, and Θ̇ ≡ Q̇ ≡ 0 for the uniform
upstream, substituting (B28) into (B20) gives

κ+ = �+ sin β+ cos β+

�+ cos2 β+− sin2 β+R+,
h′+
h+

= −�+ cos2 β+

�+ cos2 β+− sin2 β+R+, (B27a,b)

where R+ is obtained by taking the streamwise gradient of (2.11) and expressed as

R+ = sin θ+

y
. (B28)

Figure 33 displays the κ+ and (h′/h)+ from (B27) for M− = 3 and y = 1, compared
with the results from Mölder (2012). Excellent agreements are also reached. Here, κ+ is
always positive, which indicates the streamlines are always curved towards the conical
shock, and (h′/h)+ is always negative, which indicates the streamlines are getting close
to each other while flowing downstream. However, neither Crocco’s nor Thomas’s point
exists downstream of a conical shock wave.

Appendix C. The second-order curved-shock equations

Taking the directional derivatives of (B16) along the shock wave gives

cos β
dκ

ds
+ sin β

d
ds

h′

h
= Ėθ Ṡ + Eθ S̈ + Ḟθ Ḋ + Fθ D̈ + Θ̈

+
(

κ sin β − h′ + F
h

cos β

)
dβ

ds
− sin β

d
ds

F
h

, (C1a)

sin β
dκ

ds
+ � cos β

d
ds

h′

h
= ĖhṠ + EhS̈ + ḞhḊ + FhD̈ − Q̈

γ M2

− Q̇ d
ds

1
γ M2 −

(
R + h′

h

)
cos β

d�

ds

+
[(

R + h′

h

)
� sin β − κ cos β

]
dβ

ds
− � cos β

dR
ds

. (C1b)
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The total derivatives of � and 1/γ M2 to s are mathematically derived following their
definitions, given by

d
1

γ M2 = −2μ2/λ2

μ2 + 1
d ln λ = −Λ d ln λ, (C2a)

d� = −2(μ2 − 1)λ2

μ2(λ2 − 1)2 d ln λ = −γ� 2M4Λ d ln λ, (C2b)

where Λ is denoted by

Λ = 2μ2/λ2

μ2 + 1
. (C3)

Substituting (C2a) and (C2b) into (C1) gives

cos β
dκ

ds
+ sin β

d
ds

h′

h
= Ėθ Ṡ + Eθ S̈ + Ḟθ Ḋ + Fθ D̈ + Θ̈

+
(

κ sin β − h′ + F
h

cos β

)
dβ

ds
− sin β

d
ds

F
h

, (C4a)

sin β
dκ

ds
+ � cos β

d
ds

h′

h
= ĖhṠ + EhS̈ + ḞhḊ + FhD̈ − Q̈

γ M2

+
[
Q̇ + γ� 2M4

(
R + h′

h

)
cos β

]
Λ

d ln λ
ds

+
[(

R + h′

h

)
� sin β − κ cos β

]
dβ

ds
− � cos β

dR
ds

. (C4b)

In (C4), the directional derivative of κ to s is expanded into partial derivatives along
streamlines and orthogonal lines, where the η-derivative is replaced by the governing
equations (3.11), which gives

dκ

ds
= κ ′ cos β + h′′

h
sin β + k̃ sin β, (C5)

where
k̃ = κ2 + K. (C6)

The directional derivative of h′/h is expanded as

d
ds

h′

h
= 1

h
dh′

ds
− h′

h2
dh
ds

=
[

h′′

h
−
(

h′

h

)2
]

cos β +
[

1
h2

∂h′

∂η
− h′

h3
∂h
∂η

]
sin β. (C7)

Based on the geometrical relations, the η-derivative of h′ are expressed as

1
h2

∂h′

∂η
= 1

h2
∂

∂η

(
h
A

∂ ln h
∂ξ

)
= 1

Ah
∂2 ln h
∂ξ∂η

+ h′

h3
∂h
∂η

+ h′

h
κ. (C8)

Substituting the last equation into (C7) gives

d
ds

h′

h
=
[

h′′

h
−
(

h′

h

)2
]

cos β + h′

h
κ sin β + sin β

Ah
∂2 ln h
∂ξ∂η

. (C9)
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Streamline geometries in subsonic and supersonic regions

By applying the definitions of h (4.14) and R (4.18), as well as the relation between λ and
κ (3.17), the second-order derivative of ln h in the last equation is expanded as

1
Ah

∂2 ln h
∂ξ∂η

= κ ′ + κh′/h
�

− κ + P/h
A� 2

∂�

∂ξ
+ 1

Ah�

∂P
∂ξ

− 1
h

∂R
∂η

+ Rκ. (C10)

Replacing the derivatives in (C10) with

∂�

∂ξ
= −γ� 2M4Λ

∂ ln λ
∂ξ

= −γ� 3M4ΛA
(

h′

h
+ R

)
, (C11a)

∂P
∂ξ

= −Λ
∂ ln p0

∂η

∂ ln λ
∂ξ

= −ΛA�

(
h′

h
+ R

)
∂ ln p0

∂η
, (C11b)

∂R
∂η

= h
sin β

(
dR
ds

− R′ cos β

)
, (C11c)

and substituting the result into (C7), the directional derivative of h′/h is finally expanded
as

d
ds

h′

h
= κ ′ sin β

�
+ h′′

h
cos β + h̃1Λ�

d ln p0

ds
− h̃2 cos β + h̃3κ�−1 sin β − dR

ds
, (C12)

where

h̃1 = h′

h
+ R, h̃2 =

(
h′

h

)2

− R′, h̃3 = h′

h
+ h̃1(γ� 2M4Λ + �). (C13a–c)

Substituting (C5) and (C12) into (C4), equations about κ ′ and h′′/h are obtained

κ ′(cos2 β + �−1 sin2 β) + 2h′′

h
sin β cos β = Ėθ Ṡ + Eθ S̈ + Ḟθ Ḋ + Fθ D̈ + Θ̈

+
(

κ sin β − h′ + F
h

cos β

)
dβ

ds

− h̃1Λ� sin β
d ln p0

ds

+ sin β
d
ds

(
R − F

h

)
+ (h̃2 − k̃) sin β cos β

− h̃3κ�−1 sin2 β, (C14a)
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2κ ′ sin β cos β + h′′

h
(� cos2 β + sin2 β) = ĖhṠ + EhS̈ + ḞhḊ + FhD̈ − Q̈/γ M2

+ (Q̇ + h̃1γ� 2M4 cos β)Λ
d ln λ

ds

+ (h̃1� sin β − κ cos β)
dβ

ds

− h̃1Λ� 2 cos β
d ln p0

ds

− k̃ sin2 β + h̃2� cos2 β

− h̃3κ sin β cos β. (C14b)

On the right-hand side of (C14), replacing the derivatives of λ, β and ln p0 to s with
(B8), (B9) and (B12), finally gives the equations about the second-order properties[

cos2 β + �−1 sin2 β 2 sin β cos β

2 sin β cos β � cos2 β + sin2 β

] [
κ ′

h′′/h

]
=
[

dκ

dh

]
. (C15)

On the right-hand side of (C15), dκ and dh are expanded as

dκ = Eθ S̈ + Fθ D̈ + Eθ,S Ṡ2 + (Eθ,D + Fθ,S)ṠḊ + Fθ,DḊ2 + É1Ṡ + F́1Ḋ
+ (h̃2 − k̃) sin β cos β − h̃3κ�−1 sin2 β

+ Θ̈ − Q̇h̃1Λ� sin β + Ω̇ sin β, (C16a)

dh = EhS̈ + FhD̈ + Eh,S Ṡ2 + (Eh,D + Fh,S)ṠḊ + Fh,DḊ2 + É2Ṡ + F́2Ḋ
+ h̃2� cos2 β − h̃3κ sin β cos β − k̃ sin2 β

− Q̈/γ M2 − Q̇h̃1Λ� 2 cos β, (C16b)

where

É1 ≡ Eβ [κ sin β − (h̃1 − Ω) cos β] − Eph̃1Λ� sin β, (C17a)

F́1 ≡ Fβ [κ sin β − (h̃1 − Ω) cos β] − Fph̃1Λ� sin β, (C17b)

É2 ≡ Eλ(Q̇ + h̃1γ� 2M4 cos β)
Λ

λ
+ Eβ(h̃1� sin β − κ cos β)

− Eph̃1Λ� 2 cos β, (C17c)

F́2 ≡ Fλ(Q̇ + h̃1γ� 2M4 cos β)
Λ

λ
+ Fβ(h̃1� sin β − κ cos β)

− Fph̃1Λ� 2 cos β, (C17d)

Ω ≡ R − F/h. (C17e)

Equation (C16) is an extremely complicated expression with various items. They are
described briefly as follows:

• Items containing S̈ and D̈, the second-order derivatives of the shock invariants. The
coefficients, Eθ , Fθ and Eh, Fh, are the same as those in the first-order curved-shock
equations. They are also obtained from (B15) and (B18), respectively.
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• Items containing Ṡ2, Ḋ2 and ṠḊ, the products of the first-order derivatives of
shock invariants. The coefficients, Eq,S and Fq,S , (q = λ, β, p, θ), are the partial
derivatives of Eq and Fq with respect to S . Similarly, Eq,D and Fq,D are the partial
derivatives with respect to D. Based on (B15), they are expressed as

E∓
λ,S = −μ2

λ3∓
(μ2D2 + μ2 − 1), (C18a)

E∓
λ,D = F∓

λ,S = μ2

λ3∓
(μ2SD ± 1), (C18b)

F∓
λ,D = −μ2

λ3∓
(μ2S2 − μ2 − 1), (C18c)

E∓
β,S =

(
S

τ 2/μ2 − 2E∓
λ

λ∓

)
E∓

β ± μ2

λ2∓τ
D, (C18d)

E∓
β,D = F∓

β,S = −
(

D
τ 2/μ2 + 2F∓

λ

λ∓

)
E∓

β ± μ2

λ2∓τ
(S ± 2D), (C18e)

F∓
β,D = −

(
D

τ 2/μ2 + 2F∓
λ

λ∓

)
F∓

β − μ2

λ2∓τ
S, (C18f )

E∓
p,S = − 2S(2S2 − (γ 2 + 1)D2)

(S2 − D2)(S2 − γ 2D2)
E∓

p , (C18g)

E∓
p,D = F∓

p,S = −γ 2D4 + (γ 2 + 1)S2D2 − 3S4

(S2 − D2)(S2 − γ 2D2)D E∓
p , (C18h)

F∓
p,D = 2(S4 − γ 2D4)

(S2 − D2)(S2 − γ 2D2)DF∓
p , (C18i)

E+
θ,S =

[
S

τ 2/μ2 + 1
S − 2

(
E−
λ

λ−
+ E+

λ

λ+

)]
E∓

θ − 4μ2(μ2 − 1)S2D
λ2−λ2+τ

, (C18j)

E+
θ,D = F+

θ,S = −
[

D
τ 2/μ2 − 1

D + 2

(
F−
λ

λ−
+ F+

λ

λ+

)]
E∓

θ + 4μ2(μ2 − 1)SD2

λ2−λ2+τ
,

(C18k)

F+
θ,D = −

[
D

τ 2/μ2 + 2

(
F−
λ

λ−
+ F+

λ

λ+

)]
F∓

θ − 4μ2(μ2 − 1)

λ2−λ2+τ
(S2 − γ )D, (C18l)

E−
θ,S =

[
S

τ 2/μ2 + 1
S − 2

(
E−
λ

λ−
+ E+

λ

λ+

)]
E∓

θ , (C18m)

E−
θ,D = F−

θ,S = −
[

D
τ 2/μ2 − 1

D + 2

(
F−
λ

λ−
+ F+

λ

λ+

)]
E∓

θ , (C18n)
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F−
θ,D = −

[
D

τ 2/μ2 + 2

(
F−
λ

λ−
+ F+

λ

λ+

)]
F∓

θ . (C18o)

Similarly, by taking the partial derivatives of (B18), the coefficients, Eh,S , Eh,D,
Fh,S and Fh,D, are expressed as

Eh,S = Eλ,S − E2
λ/λ+ EpEλΛ
λ

− Ep,S
γ M2 , (C19a)

Eh,D = Eλ,D − EλFλ/λ+ EpFλΛ
λ

− Ep,D
γ M2 , (C19b)

Fh,S = Fλ,S − EλFλ/λ+ FpEλΛ
λ

− Fp,S
γ M2 , (C19c)

Fh,D = Fλ,D − F2
λ/λ+ FpFλΛ
λ

− Fp,D
γ M2 . (C19d)

• Items containing Ṡ and Ḋ, where the coefficients consist of the first-order
properties, e.g. κ , h′, as well as the zero-order properties, e.g. λ, β.

• Items containing first-order and zero-order properties.
• Items containing Θ̇ , Q̇, as well as their first-order derivatives, representing the

distribution of the incoming free stream.
• Items containing R and F, representing the three-dimensional effects.

The solution of (C15) is expressed as[
κ ′

h′′/h

]
= �

Δ2

[
� cos2 β + sin2 β −2 sin β cos β

−2 sin β cos β cos2 β + �−1 sin2 β

] [
dκ

dh

]
. (C20)

The values of S̈ and D̈ are obtained by taking the total derivatives of (B21) and (B9),
satisfying the following equations:[

Eθ + Eβ Fθ + Fβ

Eλ Fλ

] [
S̈
D̈

]
=
[

fκ
fλ

]
, (C21)

where

fκ = κ̇S − Θ̈ − (Eθ,S + Eβ,S)Ṡ2 − 2(Eθ,D + Eβ,D)ṠḊ − (Fθ,D + Fβ,D)Ḋ2, (C22)

fλ = λ̈− Eλ,S Ṡ2 − 2Eλ,DṠḊ − Fλ,DḊ2. (C23)

As a result, S̈ and D̈ are expressed as[
S̈
D̈

]
= 1

(Eθ + Eβ)Fλ − Eλ(Fθ + Fβ)

[
Fλ −Fθ − Fβ

−Eλ Eθ + Eβ

] [
fκ
fλ

]
. (C24)
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