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Abstract. Thispaper is concerned with the arithmetic of curves of the form v” = u*(1 — u), where
pis aprime with p > 5 and s is an integer such that 1 < s < p — 2. The Jacobians of these curves
admit complex multiplication by a primitive p-th root of unity { We find explicit rational functions
on these curves whose divisors are p-multiples of divisors representing (1 —{)>- and
(1 = {)*-division points on the corresponding Jacobians. This also gives an effective version
of a theorem of Greenberg.
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1 Introduction

Let O be the field of rational numbers and let Q be a fixed algebraic closure of Q. Let
p be a fixed prime, such that p > 5, and let ¢ be a fixed primitive 2pth root of unity in
Q. Also define { by { = %. Let K be the field Q({). Fors = 1,2,...,p — 2,let F, s be a
smooth projective model of the affine curve (defined over Q)

v =u'(1 —u).

Each F, ; is a curve of genus (p — 1)/2 and its Jacobian J, ; admits complex multi-
plication induced by the automorphism { of F}, ; defined by (u, v) i— (u, {v). We define
the endomorphism n of J,, ; by m = 1 — (. It is a well-known theorem of Greenberg [6]
that the kernel of the endomorphism n* of J, is K-rational. In fact, combining
Greenberg’s result with the work of Coleman [1], Gross and Rohrlich [7] and
Kurihara [8], one has the following theorem:

THEOREM 1. Let p be a prime such that p=>5. For s=1, 2,...,p—2, we
have J, [p™1(K) = Jp,s[n3]. Moreover, if | is a prime such that |+ p, then
Jp s[[C1(K) = {0}, unless | =2 and (p, s) € {(7,2), (7, 4)}.

It should be noted that Theorem 1 is not effective, i.e. there is no systematic way
known to produce explicit generators for the groups J, s[r%] or J, (K)o, in general.
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Such generators are only known for the ‘isomorphic’ cases (p,s) =(7,2) and
(»,s) =(7,4) (see [10]) and for the case p =5 (see [2], [4] and [12]). Finding a
non-trivial K-rational point on the curve which induces a torsion point on the
Jacobian was crucial for settling the specific cases mentioned above. On the other
hand, in view of the results of [3], such a point cannot exist for p > 11. It would
be useful to have explicit information on the generators of Jp,s[nz] or Jp «(K)ors
in the general case. For example, in a recent paper [5], Grant used the 5-torsion
on Js to construct a set of Abelian units which can be used to verify Rubin’s
conjecture in a case when the L-series has a second order zero at s = 0. Also, in
[9], McCallum gave a general formula for the Cassels—Tate pairing on the n-torsion
part of the Shafarevich-Tate group of J, ; over K. He noted that, for the formula
to be applied directly, one needs to find an explicit rational function on F, ; whose
divisor equals p times a divisor representing a n*-torsion point on J, ;. In the absence
of such a function, McCallum used a p-adic approximation technique instead.

In this Letter, we construct such an explicit rational function on F,,. We also
obtain a similar result for the case of n’-torsion points on J, . It should be noted
that McCallum has a method (unpublished) that, given p and s, will construct such
rational functions. Our approach is different and produces an explicit formula
for all p and s. This also gives an effective version of Theorem 1, i.e. we get an
algorithm that, given p and s, will, in principle, explicitly compute the associated
divisors. We have used MAPLE to run this algorithm for the case of m*-torsion
points; this is discussed in more detail in the last section.

Our method is based on the fact that F, ; admits the Fermat curve F, given by
X? 4+ YP + 7P =0 as an unramified cover, whose Galois group is generated by
the automorphism ¢ of F,, where o(X,Y,Z)=({X,("Y,Z). We will use the
Jacobian J, of F, to perform our calculations, by means of results of [11] and [13].
Denote by f,, : F,, = F),, the associated covering map. Depending on the context,
we will use the same symbol f,; to denote the induced maps Div(F,) — Div(F, )
and J, —> J,,. Also, f  will be wused to denote the dual maps
Div(F, ;) — Div(F),) or J,; — J, or the induced embedding of the function field
of F,, in the function field of F,.

Consider the rational functions x = X/Z and y = Y/Z on F,. Define

k+1

—1 Pt =l ; p=2
czeﬁwﬁlYﬂA%f@»=c@“+ZGﬁMH@%M».
j=1 k=0 =1

Now consider the following functions on F):

— s(1=p) s=1 .
mmw=%%, (e y) == [/ ),
Jj=0
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p—2

k
[T mn@'x ),

gm(x,y) =1+
k=0 [=0

for m =1, 2. The rational functions g,,(x, y) are not identically 0 on F), (it can be
shown that g>(—{,0) = g1(¢{,0) = 1). Let Norm denote the norm map from the
function field of F, to that of F, ;. Our main result is the following:

THEOREM 2. Let p and s be as in Theorem 1. For m = 1, 2, there exists a divisor E,,
on F, s such that pE, = div(Norm(gm(x,y))) and the divisor class of E,, generates
the Z[n]-module J, [r"+1].

Remark. Making use of the universal covering space of C — {0, 1}, Rohrlich
showed in [11] that the function ]_[f _11 (e — x)(eZ/ — y)Y has a pth root in the func-

tion field of F,. The next proposition shows that f(x, y) is such a pth root.

2. Auxiliary Results
PROPOSITION 1.

p—1

S ) =[]l =l -y
j=1
Proof. First we show that the polynomial f(x, y) is symmetric in x, y. Since

p—l1 ) p-1l )
SO =c [Je=Cy=c D ey =10,
i=1 i=0

the monomials )" and x" appear with the same coefficient in f(x, y), for each
ref{l,---,p—1}. Also, for 1<s<r<p-—2, the coefficient of x~'"y* in
f(x,y) equals

(=1 cé™ Z gL,

1<i<..<ig<r

We claim that we have the following identities:

Yoo t= [ @-n[[@-n
j=1

1<i<..<iz<r j=r+l—s

for 1 < s <r < p—2.Theclaimis clearly true when s = 1 or r = s. Suppose it is true
for s </ or s=/+1 and r = m. Using the recursive formula

Z Cil o Cim — é’m+1 Z Cil o Cil + Z Cil o Ci1+1

1 <ij<..<ijpp) < m+l 1<ij<..<ij<m 1<i<..<ippp <m
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and induction one sees that the claim is true for s=/+1 and r=m + 1. The
symmetry of f(x, y) in x, y now follows from the equality

" r ) p—rts=1
STl @=-n=Ep et [T @ -
J=rH=s j=p=r

Now we can prove the equality in Proposition 1. First note that the two sides agree
on (0, ¢). This follows from the definition of the constant ¢ and the relations

p—1 1

c=(-17 ¢ cc=p, (D)

where ¢ is the complex conjugate of c.
Now consider the points at infinity on F):
4= (0, 1),  b=(,0,1), ¢=(L 10,

for 0 <j < p— 1. By Rohrlich’s results in [11], it remains to show that

p—1 p—1
div(f ) =) J@+b)—p -1 ¢
j=0 j=0

Looking at each summand in the definition of f(x, y) and using [11], it follows that
the order of f(x,y) at a; equals j, for all j. By the symmetry of f(x,y) in x, y,
we get that the order of f(x, y) at b; also equals j, for all j. Also by [11], the only
possible poles of f(x, y) are the points ¢;, each of order at most p — 1. So the polar
part of div(f(x, y)) has degree at most p(p — 1). On the other hand, by what has
been said above, the degree of the zero part of div(f(x, y)) is at least p(p — 1). This
completes the proof of Proposition 1.

LEMMA 1.
p—l1 p—1
[[m@x Py =1=]]m~ " .
1=0 =0

Proof. The first assertion is trivial. For the second assertion, note that, by
Proposition 1,

p—l plp-l . . . rl . Prp=1
[Tr@x by = [TTT0e - dxed — by = [y’ = )5
=0 j=11=0 j=1

Therefore, there exists an integer A such that

)

¢
= ()T
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Now let ¢(x, y) = (xy)(lfl’)/ 2f (x, y). Writing ¢(x, y) in terms of the rational functions
X/Y and Z/Y, it is easy to show that, for 0 </ <p—1,

_ 2
¢(Cl)2 _ C_IUH) 2 <IJXI: Cﬂ) _ C_IUH)»
Jj=0

where the last equality follows from the classical theory of Gauss sums together with
the relations (D) displayed in the proof of Proposition 1. Therefore,

p—1
= [T’ =1,
=0

so / is divisible by p, and this implies the second assertion of Lemma 1.

3. Proof of Theorem 2

Consider the following divisors of degree 0 on Fj:

p—1 p—1%
Nty
j=0 =0

C_ZJ<1+1> Zm+1> p - I)Zb— ZM

j=0

-1
a»_s(p—l)(p—S) Zb

Observe that f, (C;) = 0, for i = 1, 2. By parts (ii) and (iv) of Theorem 2 in [13], we
get that

sl = (Cr, o), Sy (UplmD) = (). (E)
Note that, although the latter theorem was stated only for p > 11 in [13], its proof

shows that it is still valid for p =35; moreover, by substituting J, (K),,., by
Jp,s[n*%] in the same proof, one sees that the equalities (£) also hold for p = 7.

LEMMA 2. For m = 1, 2, the divisors D,, = C,, + div(g,,(x, )) satisfy the relation
o(Dy) =D
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Proof. Note that 6(a;) = aj—; and a(b;) = b;41. A tedious calculation (using results
of [11]) shows that

a(C) — G =div(h(x, ), o(C) — G =div(ha(x, p)).
Now, as in the proof of Hilbert’s Theorem 90, Lemma 1 gives

gm(xv y)
(X, )

for m =1, 2. Since div(g.({'x, y)) = a(div(gn(x, y))), Lemma 2 follows.

hrﬂ(xv y) =

Therefore, D1 and D, are invariant under the group of automorphisms of F,
generated by . Since F, ; is the quotient of F, by the latter group, there exist divisors
E, of degree 0 on F,, such that D, =];ffs(Em), for m=1, 2. Therefore,
o s((Em]) = [Dn] = [Cin]. By the proof of Theorem 2 in [I3], we have that
Ker(f;,) = Jps[n]. Therefore, by the displayed equalities (E), we see that [E,]
generates the Z[n]-module Jpqs[n’”“], for m = 1, 2. Moreover, by standard properties
of coverings,

pE, :fp,s(f;:y(Em)) :fp,s(Dm) :];J,S(Cm) +];7,s(div(gm(xs )

= fp.s(div(gn(x, »))) = div(Norm(g,,(x, »))),

where the last equality follows from the fact that for a rational function g on F,, the
relation f, ((div(a(g))) = f, s(div(g)) implies that f, ((div(g)) = div(Norm(g)). This
completes the proof of Theorem 2.

4. The Divisor E;

In this Section, we discuss the problem of explicitly writing down the divisor E; of
Theorem 2. By the previous Section, we only need to compute div(g;(x, y)). This
will explicitly determine D; and hence also E; by the formula Dy =/ (E), where
JpaC6. 7)) = (u, v) = (=2, (= 1) ).

Clearly, any pole of gi(x, y) has to be a pole of /;({'x, (*y), for some / such that
0 </ < p—2. Therefore, by [11], the only possible poles of g;(x, y) are the points
b, for 0 <j<p—1and

P k p—1
div(]_[hl(c"x, C"Yy)) =(p—k=1Y b — (k+1) > b,
=0 j=0 Jj=k+1

for 0 < k < p — 2. Hence, the polar part of div(g;(x, y)) equals Zj.’;llj b;. Therefore,
we only need to compute the zeros of gi(x,y). Using the change of variables
a=¢/y and b = —x/y, we need to solve the following system of two polynomial
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equations in two unknowns a and b:

k
& + » = 1’ 1+ l_[ (Cfls a+ Cfl(erl) b) =0.

We have used the Grobner basis package in MAPLE to solve the above system for
specific values of p and s. We list the output of the calculations in terms of the
coordinates (u,v) of points in the support of E;. The formulas u = —5"/a’,
v=—ctb/a*t! send (a, b) to (u, v).

p=>5 s=1
G+ +) =0, u=C-1)v—(C+0),

Er =) (uv) —2(1,0).
Since the hyperelliptic involution (u, v)i— (1 — u, v) of Fs; acts as multiplication by
—1 on Js; , we get that the divisor class (==, =) —(1,0)] generates
Js.1[n’] as a Z[n]-module. This is the same divisor as in [2], [4] and [12].
p=7 s=1

POV O+ O+ + O v (=0,

u=(+20 4280 20V +(CHC =D v+ 40,

E = (u.v) —3(1,0).

p=7 s=2

V(1= -20-C+D) V- -C)yv+1=0,
u=C -0+ C-0v+C+C+0),

Ey =) (u,v) —3(1,0).

Prapavessi [10] showed that every point in J7;(K) can be represented by a divisor of
degree 0 supported on the Weierstrass points on 7, (see also [1] where the
Weierstrass points on F7, are computed). The points (u, v) that we found above
are not Weierstrass points.
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11, s=1

Vo420 + 4+ -V (20 20 38 428 4204+ D)V

u =

+O+E+20 20+ 20 420 + 20 420+ {+ DV =+ D) v = =0,
@20+ -0 =30 30 a0 -3 - v

HCE 30 + 506+ 70 + 80 + 80 + 67 +40+2) v +

HO 20437+ 50 At 130+ - D

HE+T+E+C-C-C - -D)v=-C++C+ P+,

Ey =) (u,v)—5(1,0).

It would be interesting to recognize a precise pattern in the output of our calcu-
lations for the above cases; we have not been able to do so.
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