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Background
Recent paradigm shifts suggest that psychopathology manifests
through dynamic interactions between individual symptoms.

Aims
To investigate the longitudinal relationships between symptoms
in a transdiagnostic sample of patients with psychiatric
disorders.

Method
A two-wave, cross-lagged panel network model of 15 nodes
representing symptoms of depression, (social) anxiety and atte-
nuated psychotic symptoms was estimated, using baseline and
1-year follow-up data of 222 individuals with psychiatric disor-
ders. Centrality indices were calculated to determine important
predictors and outcomes.

Results
Our results demonstrated that the strongest relationships in the
network were between (a) more suicidal ideation predicting
more negative self-view, and (b) autoregressive relationships of
social anxiety symptoms positively reinforcing themselves.
Negative self-viewwas themost predictable node in the network
as it had the highest ‘in-expected influence’ centrality, and may
be an important transdiagnostic outcome symptom.

Conclusions
The results give insight into longitudinal interactions between
symptoms, which interact in ways that do not adhere to broader
diagnostic categories. Our results suggest that self-view can also
be a transdiagnostic outcome of psychopathology rather than
just a predictor, as is normally posited, and may especially have
an important relationship with suicidal ideation. Overall, our
study demonstrates the dynamic complexity of psychopath-
ology, and further supports the importance of investigating
symptom interactions of different psychopathological dimen-
sions over time and across disorders.
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The conceptualisation of psychopathology has shifted over the past
decade to a dynamic systems perspective, in which a disorder is the
result of the dynamic interactions between various mechanisms.1,2

This dynamic systems perspective is embodied in the network
approach, which posits that psychopathology arises from a
network of symptoms that interact over time.3 Although the
dynamic systems perspective and network approach have gained
more traction, there is still little research investigating psychopath-
ology as a transdiagnostic dynamic system, which acknowledges
that symptoms can cut across diagnoses. A study assessing the
network structure of symptoms from 12 DSM-IV diagnoses in a
community sample found that some symptoms of one disorder
were also connected to symptoms of different disorders.4

Networks with a variety of symptom across various disorders
should therefore be further investigated. Additionally, to investigate
the dynamic nature of psychopathology, it is important to move
from cross-sectional to longitudinal network designs, such as
temporal, contemporaneous or cross-lagged panel networks
(CLPNs).5,6 This could give insight into the interplay of psycho-
pathological dimensions over time at the symptom level by elucidat-
ing how observations at one time point predict observations at the
next time point, and into transdiagnostic mechanisms by identify-
ing symptoms that play a predictive or influential role in the
network.7 This could also elucidate important symptom

interactions, which could indicate potential causal relationships
and points of intervention to disrupt negative processes.6

Relationships between psychopathological symptoms

Some core symptom dimensions of psychopathology include
depression, anxiety and psychotic-like symptoms, which may be
considered transdiagnostic. Depressive and anxiety symptoms are
often reported in patients with various disorders,8,9 and psych-
otic-like experiences can also occur in patients with non-psychotic
disorders.10 Previous cross-sectional networks demonstrated rela-
tionships between (social) anxiety and depression symptoms,11,12

and between psychotic and depression symptoms.13 In a cross-sec-
tional network analysis with a transdiagnostic sample, we found that
sum scores of depression, (social) anxiety and subclinical psychotic
symptom dimensions were all interrelated.14 It remains necessary,
however, to investigate these relationships over time.

Study aims

The present study therefore investigated two-wave longitudinal
relationships over an average of 12 months, between individual
depression, (social) anxiety and attenuated psychotic symptoms in
a transdiagnostic sample of patients with various psychiatric disor-
ders. The aim was to investigate how symptoms affect each other
over time, and to identify important predictor and outcome symp-
toms. We modelled the longitudinal relationships between* Joint last authors.
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symptoms with a CLPN, and investigated the predictability and
influence of each item in the network. It was hypothesised that indi-
vidual symptoms will interact in ways that do not adhere to broader
diagnostic categories.

Method

Sample

The sample comprised 222 patients with psychiatric disorders
recruited during intakes at the out-patient clinic of the
Department of Psychiatry at the Amsterdam University Medical
Center (UMC), location Academic Medical Center (AMC), which
is an expert centre for misophonia, early psychosis, anxiety and
depressive disorders. A total of 1134 patients participated in the
first measurement, of which 304 completed the follow-up measure-
ment; 82 were excluded because the follow-up measure was not
completed within the appropriate time frame.

Inclusion criteria were age 14–75 years, ability to give informed
consent, having a DSM-IV-TR or DSM-V diagnosis, fluent in Dutch
and completion of the follow-upmeasurement within 6–18 months.
Exclusion criteria were acute high risk of suicide (i.e. suicidal behav-
iour requiring immediate and urgent attention), unstable medical
disorder, premorbid IQ < 70, history of seizure or clinically signifi-
cant abnormality of the neurological system.

Procedure

The Across study is an ongoing, longitudinal research project that
collects data on cognitive functioning, psychopathology symptoms
and biological parameters (https://osf.io/yhvtb/). The full study pro-
cedure is described in Nieman et al.15 After an intake at the
Department of Psychiatry of the Amsterdam UMC, location
AMC, patients were invited to participate in the study after being
briefed. The authors assert that all procedures contributing to this
work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and with
the Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human patients were approved by the Medical Ethical
Review Committee and the Biobank Review Committee of the
Amsterdam UMC (General Assessment and Registration number
NL55751.018.15). All participants and all parents or guardians of
minors provided written informed consent to participate in this
study. Participants were able to participate at any point of their clin-
ical trajectory (e.g. before, during or after treatment), and could dis-
continue participation from the study or parts of the study at any
time. For the 1-year follow-up, additional consent was obtained.

Participants filled in questionnaires on psychopathological
symptoms on a computer, which took 30 min to 1 h to complete.
The current study had a two-wave longitudinal design and used
baseline (time point 1) and 1-year follow-up (time point 2) ques-
tionnaire data.

Measures

Psychopathological symptoms included in this study were assessed
with the Hamilton Rating Scale for Anxiety (HRSA), the Social
Interaction Anxiety Scale (SIAS), the Inventory of Depressive
Symptomatology Self-Report (IDS-SR), which are validated and
psychometrically-sound questionnaires. Moreover, we adminis-
tered the Psychiatric Dimensions Questionnaire, which was devel-
oped at the Amsterdam UMC.16 The HRSA measures the severity
of somatic, cognitive and affective symptoms of anxiety.17 It consists
of 13 items that are rated on a scale of 0 (not present) to 4 (severe).
The SIAS assesses anxiety in social interactions and fear of scrutiny
by others.18 It consists of 20 items and each item is rated on a scale of

0 (not at all characteristic of me) to 4 (extremely characteristic of
me). The IDS-SRmeasures the severity of depressive symptoms per-
taining to mood, cognition, arousal, suicidality and sleep.19 It con-
sists of 30 items that are rated on a scale from 0 (symptom is not
present) to 3 (strongest impairment). The Psychiatric Dimensions
Questionnaire consists of 26 items and assesses a variety of trans-
diagnostic concepts that are commonly affected in patients with a
psychiatric disorder: affect, volition, identity, cognition, reality
and vitality.15,16 Only items from the reality subscale, in which
participants rate questions pertaining to attenuated psychotic symp-
toms (i.e. exceptional experiences and anomalous self-experiences)
on a scale of 0 (never) to 8 (continuously), are included in the
network. Exceptional experiences and anomalous self-experiences
refer to experiential deviations, such as déjà vu, inexplicable audi-
tory or visual perceptions, or difficulty in grasping taken-for-
granted meanings.20,21 Other subscales items were not included
because they are covered by the other questionnaires or were not
part of the aforementioned core dimensions. Only the psychological
items from the questionnaires were included, meaning any somatic
or physical symptoms were excluded.

Age, gender, diagnostic category and presence of treatment were
included as covariates in the network. Age and gender were
obtained from a demographic questionnaire. Diagnostic category
and treatment were obtained from the participants’ medical
records. The diagnosis is determined by a psychiatrist and cate-
gorised into seven categories: schizophrenia spectrum and other
psychotic disorders, depressive disorders, anxiety disorders, obses-
sive–compulsive and related disorders, impulse-control disorder
not otherwise specified (misophonia), bipolar disorder and other
disorders. Specific diagnoses under each category can be viewed
in Supplementary Table 1 available at https://doi.org/10.1192/bjo.
2022.516. Presence of treatment was measured with two variables:
treatment at time point 1, with 0 indicating no treatment before
or during the research phase and 1 indicating treatment was
started before time point 1; and treatment between time points 1
and 2, with 0 indicating no treatment before or during the research
phase and 1 indicating treatment was started between time points 1
and 2. Treatment included both psychotropic medication use (e.g.
antidepressants) and psychological treatment or support (e.g. cogni-
tive–behavioural therapy).

Individual items that were used in the analyses can be viewed
in Table 1. Each node represents a single item from a question-
naire, except for three items that were combined, which is indi-
cated in the rightmost column. A two-step item selection
procedure was performed before the analyses, using content-
based selection as recommended by Rhemtulla et al22 and
weighted topological overlap approach, which is detailed in
Supplementary Appendix 1. This reduced the total number of
items from 79 to 15.

Statistical analyses

Analyses were performed in R version 3.6.1 for Windows
(R Foundation for Statistical Computing, Vienna, Austria; see
https://www.R-project.org/) .23 We modelled the longitudinal rela-
tionships between variables with a CLPN, a model designed by
Rhemtulla et al,22 which combines network modelling with cross-
lagged panel modelling. This allows individual items to affect
other items over time, using two-wave panel data by measuring
cross-lagged (i.e. the effect of a symptom at time point 1 on
another symptom at time point 2) and autoregressive (i.e. the
effect of a symptom at time point 1 on itself at time point 2)
effects. Age at time point 1, gender, diagnostic category and treat-
ment were included as covariates. Twenty-two participants had
missing data, which was missing at random according to Little’s
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Missing Completely at Random test (χ2 = 130.55, d.f. = 155, P =
0.92). CLPN modelling requires complete-case analysis, so
missing data was imputed with the random forest imputation algo-
rithm, implemented with the R package missForest.24

To estimate the CLPN, we computed autoregressive and cross-
lagged coefficients with a series of regularised regressions, using the
penalised maximum likelihood with a LASSO penalty.25 This results
in a sparse network, which reduces overfitting and false positive
edges by shrinking all edge weights and setting the smallest to
zero. The network was estimated with the R package glmnet.26

After estimation, the network was visualised as a directed network
with the R package qgraph.27 Arrows demonstrate the direction of
temporal relationships: solid bluearrows represent positive relation-
ships, dashed red arrows represent negative relationships and
thicker lines represents stronger relationships between nodes.
Placement of the nodes is determined by the Fruchterman–
Reingold algorithm,28 in which nodes that are more connected are
placed closer together.

Two measures of centrality were computed with the R package
bootnet:29 cross-lagged out-expected influence (out-EI) and cross-
lagged in-expected influence (in-EI). Out-EI is calculated as the
sum of all outgoing edge strengths connected to a node, measuring
how much a node influences other nodes. In-EI is calculated as the
sum of all incoming edge strengths connected to a node, measuring
how much a node is influenced by other others. Clinically, out-EI
could be considered a treatment target, whereas in-EI could be con-
sidered an important treatment outcome.

Stability checks were conducted to assess the accuracy of edge
weights, differences between edges and centralities, and the stability
of centralities, using bootnet as detailed in Epskamp et al29 and with
a custom function developed by Funkhouser et al.5

For sensitivity analyses, a control network without misophonia
was estimated, given that it was the largest group (39.6% of the
sample) and may affect the whole-sample estimates. Centralities

were computed and stability checks were conducted for this
control network. Similarities between the main and control
network were evaluated, using the correlation between edge lists
as a global measure of network similarity, the percentage of individ-
ual edges that are replicated, correlations of centralities between net-
works and replication of the most central symptoms.

Results

Sample characteristics

Data from 222 participants collected between 2012 and 2022 were
included in the analyses. The distribution of the primary diagnosis
reflects the naturalistic patient population of the Amsterdam UMC.
Sample characteristics can be seen in Table 2. Symptom variables
scores are shown in Supplementary Table 2. Furthermore, partici-
pants who completed both measurements were compared with par-
ticipants who completed only the first measurement as a sensitivity
analysis. Results can be viewed in Supplementary Table 4. There was
a significant difference in age and in the distribution of diagnosis
and medication. Except for feeling threatened or paranoid, there
were no significant differences in symptom severity.

CLPN analysis

The CLPN of psychopathological symptoms is visualised in Fig. 1,
which presents cross-lagged and autoregressive relationships.

All nodes had at least one connection to another node, whether
as predictor or outcome, resulting in 79 non-zero cross-lagged
edges, of which 92.4% were positive. The strongest cross-lagged
edge was between more baseline suicidal ideation predicting
higher follow-up negative self-view (B = 0.36). The strongest autore-
gressive relationships pertained to social anxiety items: difficulty
making eye contact (B = 0.57), difficulty disagreeing with others

Table 1 Symptom nodes and labels

Node Label Items
Measure (item
number)

Sad Sad Feeling sad IDS-SR (5)
Self Self-view (Negative) View of myselfa IDS-SR (16)
Sui Suicidal ideation Thoughts of death or suicideb IDS-SR (18)
Int Interest (Lack of) General interest IDS-SR (19)
EyCon Difficulty making eye

contact
I have difficulty making eye contact with others SIAS (2)

DifCo Difficulty mixing with co-
workers

I find it difficult to mix comfortably with the people I work with SIAS (4)

SocT Social tension I tense up if I meet an acquaintance in the street; I feel tense if I am alone with just one other
person

SIAS (6 + 8)

Talk Difficulty talking with
others

I have difficulty talking with other people SIAS (10)

Dis Difficulty disagreeing I find it difficult to disagree with another’s point of view SIAS (13)
AnxT Anxious tension Anxious mood: worries, anticipation of the worst, fearful anticipation, irritability; Tension: feelings

of tension, fatigability, startle response, moved to tears easily, trembling, feelings of
restlessness, inability to relax

HRSA (1 + 2)

Fear Fears Fears: of dark, of strangers, of being left alone, of animals, of traffic, of crowds HRSA (3)
PerAn Perceptual anomalies To what extent can you perceive things that others cannot perceive? Dimensions (10)
Perplx Perplexity, lack of natural

self-evidence
Do you feel that the natural self-evidence of the world around you has been lost? Do you have the

profound experience that you have to think about the most obvious things, such as about
everyday actions or objects?

Dimensions
(11 + 12)

AbSal Aberrant salience Has your perception changed, making everything more meaningful? Dimensions (13)
Threat Feeling threatened or

paranoid
Do you feel that others want to harm you? Dimensions (14)

In the ‘Measure (item number)’ column, the questionnaire and the item number that each node represents is noted. Variables are coded so that a higher score on an item implies greater
severity. IDS-SR, Inventory of Depressive Symptomatology Self-Report; SIAS, Social Interaction Anxiety Scale; HRSA, Hamilton Rating Scale for Anxiety; Dimensions, Psychiatric Dimensions
Questionnaire.
a. View of myself is measured negatively, with higher scores depicting amore negative self-view based on self-blaming and criticism, and ruminating on personal shortcomings and defects.
b. Suicidal ideation is a broad concept measured as suicidal thoughts and intent. It ranges from mild infrequency of thoughts of death and suicide to more severe suicidal intent. Frequent
thoughts of suicide and death are combined with making plans or attempting suicide.
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(B = 0.54) and social tension (B = 0.53). These were observed as the
strongest edges in the matrix of the edge weights (i.e. regression
coefficients), which can be seen in Supplementary Table 3. There
are some other notable connections representing potential feedback
loops between sadness and suicidal ideation, between difficulty dis-
agreeing with others and difficulty mixing with co-workers, between
feeling threatened (paranoia) and difficulty disagreeing with others,
and between feeling threatened and difficulty making eye contact.
These are expanded upon and discussed in Supplementary
Appendix 2.

The effects of the covariates can be seen in Supplementary
Table 3. Treatment had the most effect on symptoms in the
network, whereas age, gender and diagnosis had few relationships
with symptoms. Presence of treatment before time point 1 was
related to increased severity of a few symptoms, mostly related to
anxiety, whereas presence of treatment between time points 1 and
2 was related to decreased severity of a few symptoms, mostly
related to depression. Neither treatment covariate had an effect on
attenuated psychotic symptoms.

The centrality plots can be seen in Fig. 2. Stability was low for
out-EI, but strong for in-EI (correlation-stability coefficient of
0.21 and 0.52, respectively). A correlation-stability coefficient

should not be below 0.25, and should preferably be above 0.5.29

Therefore, out-EI is not interpreted. Negative self-view had the
highest predictability and had significantly higher in-EI than ten
out of 15 other symptoms (Supplementary Figure 3), suggesting
that self-view tends to be influenced by other symptoms.

The control network without misophonia (n = 134) replicated
the relationship between baseline suicidal ideation and follow-up
self-view as the strongest edge (B = 0.33). The strongest autoregres-
sive relationships of social tension (B = 0.64), difficulty making eye
contact (B = 0.54) and difficulty disagreeing with others (B = 0.51)
were also replicated. The edges of the main and control network
were strongly correlated (r = 0.81): 90% of the edges in the control
network were replicated in the main network and 64% of the
edges in the main network were replicated in the control network.
Negative self-view also had the highest predictability (in-EI), and
correlation of overall out-EI was r = 0.77 and overall in-EI was
r = 0.98 between the main and control networks. However, the cor-
relation-stability coefficients for the control network are low, so
results on centralities should not be interpreted (out-EI = 0.13, in-
EI = 0.21). This is most likely because of the small sample size.
The control network, centrality plots, and stability and difference
tests can be viewed in Supplementary Figures 5–10.

Discussion

This study aimed to investigate two-wave longitudinal relationships
over an average of 12 months between individual symptoms, using a
CLPNmodel in a transdiagnostic sample of individuals with psychi-
atric disorders. Interactions between symptoms from the different

Table 2 Demographic and clinical characteristics of participants

Characteristics Baseline

Age (years), mean (s.d.)
Baseline 38.8 (15.4)
Follow-up 39.9 (15.4)

Months between measures, mean (s.d) 12.1 (2.4)
Gender, women, n (%) 121 (54.4)
Completed educationa, n (%)

Low 19 (8.6)
Middle 50 (22.5)
High 144 (64.9)
Unknown 9 (4.1)

DSM diagnostic category, n (%)
Schizophrenia spectrum and other psychotic disorders 21 (9.5)
Depressive disorder 37 (16.8)
Anxiety disorder 9 (4.04)
Obsessive–compulsive and related disorders 41 (18.5)
Misophonia (impulse-control disorder not otherwise
specified)

88 (39.6)

Bipolar disorder 14 (6.31)
Other disorders 12 (5.4)
Comorbidity, n (%) 54 (24.3)

Presence of treatment, n (%)
None 12 (5.4)
Before time point 1 158 (71.2)
Between time points 1 and 2 52 (23.4)

Medication, n (%)
Antidepressants 61 (27.8)
Antipsychotics 24 (10.8)
Benzodiazepines 3 (1.4)
Psychostimulants 4 (1.8)
Mood stabilisers 4 (1.8)
Other (non-psychotropic)b 44 (19.8)
None 82 (36.9)

Psychotherapy and treatments, n (%)c

Evidence-based treatments 178 (80.2)
Supplementary or alternative interventions 161 (72.5)

a. Based on the Verhage coding of educational levels : low (1–4: less than or equal to
primary education or low-level secondary education), middle (5: average-level second-
ary education) and high (6–7: high-level secondary education or university degree).
b. Other medication includes anti-inflammatory, antihistamine, anti-epilepsy, contra-
ceptives, cholesterol medication, corticosteroids, dopamine agonists and various sup-
plements.
c. Participants often followed multiple types of treatment. Evidence-based treatments
include cognitive and behavioural therapies, trauma therapies, system therapy, schema
therapy and psychotherapies. Supplementary or alternative interventions include talk
therapy, counselling, coaching, expressive or creative therapies, skills trainings, psy-
chodynamic therapy, reintegration support, peer support, ambulant care and lifestyle
interventions.

Self

Perplx

Threat

Fear

Talk

AbSal

DifCo

SocT

AnxT

Dis

EyCon

Sui

PerAn

Sad

Int

Fig. 1 Transdiagnostic cross-lagged panel network of symptoms
with autoregressive effects. Nodes represent the variables included
in the network and edges with arrows indicate a directed
association between nodes. Solid edges represent positive
associations and dashed edges represent negative associations.
AbSal, aberrant salience; AnxT, anxious tension; DifCo, difficulty
mixing with co-workers; Talk, difficulty talking with others; Dis,
difficulty disagreeing; EyCon, difficulty making eye contact; Int,
interest; PerAn, perceptual anomalies; Perplx, perplexity, lack of
natural evidence; Self, self-view; Sui, suicidal ideation; SocT, social
tension; Threat, feeling threatened or paranoid.
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dimensions were also observed in the network, further supporting
the co-occurrence of depression, (social) anxiety and attenuated
psychotic symptoms. The strongest cross-lagged and autoregressive
edges (suicidal ideation predicting negative self-view and self-
reinforcing social anxiety symptoms) will be the focus of the discus-
sion. Centrality analyses also detected self-view as a highly predict-
able node. These results were obtained by accounting for diagnosis
as a control variable and were replicated in the control network
without misophonia, which may potentially suggest that they are
transdiagnostic. This supports the expectation that symptoms inter-
act in ways that do not adhere to diagnostic categories.

An interesting relationship in the network was between more
baseline suicidal ideation predicting higher follow-up negative
self-view. As a note, suicidal ideation is measured in this study as
a broad concept that ranges from thoughts of death to suicide
attempts, and should be interpreted with caution as it does not
clearly differentiate between ideation and actual attempts (see
Table 1). Although research supports an association between sui-
cidal ideation and self-esteem, longitudinal studies find that self-
esteem predicts suicidal ideation,30,31 which is the opposite of
what we found. A potential explanation for our findings is that indi-
viduals may feel shame or embarrassment for contemplating or
attempting suicide,32,33 also known as self-stigma, which is asso-
ciated with lower self-esteem.34 Additionally, suicidal ideation is
often associated with feelings of burdensomeness,35 which are
related to low self-esteem and self-hate.36 Negative self-view may
possibly be a reflection of self-stigma and perceived burdensome-
ness as a result of suicidal ideation. Focusing on self-compassion
as an intervention for dealing with suicidality may be worthwhile
because it can potentially influence self-esteem and other related
factors, such as self-stigma and perceived burdensomeness.37,38

Because of the conflation of within- and between-participant
effects prevalent in CLPN models, cross-lagged edges should be
interpreted with caution.

Other strong edges pertained to social anxiety symptoms, espe-
cially difficulty making eye contact, difficulty disagreeing with
others and social tension, which had the strongest autoregressive
effects. This suggests they are the most self-reinforcing symptoms
in the network. Models of social anxiety point to a self-perpetuating
cycle in interpersonal situations, such that an individual might
behave in anticipation of or according to their expectations of
how another individual might react or behave.39,40 Cognitive
biases and using safety behaviours, such as avoiding eye contact
or seeking approval, reinforce and maintain social anxiety.41

Furthermore, the strength of these symptoms could indicate their
relevance in a transdiagnostic manner. For instance, social anxiety
is prevalent in individuals with other disorders, such as psychosis,42

bipolar disorder43 and depression.44 These could reflect more
general difficulties with social interaction.45

Self-view was a main transdiagnostic outcome in this network,
as suggested by its high predictability. This means that transdiag-
nostically, many other symptoms influenced self-view, and partici-
pants had a lower self-view when they experienced these other
symptoms. Although more attention is given to self-esteem as a
risk factor or development mechanism for psychopathology, self-
esteem may also be an outcome of psychopathology.46,47 The
current finding is in line with the scar model, which posits that psy-
chopathology tends to deplete psychological resources, leaving scars
that distort an individual’s self-concept. Having a psychiatric dis-
order could potentially lower self-esteem.48 The vulnerability
model, in which self-esteem predicts psychopathology, has more
support,49 but our results do not align with this. However, the
scar and vulnerability models are not mutually exclusive, and a
bidirectional relationship is possible.47

In our network, self-view was mostly predicted by nodes related
to depression and social anxiety symptoms. Considering that
depression and social anxiety symptoms can affect many areas of
life, such as psychosocial functioning,50,51 a negative self-view

In-expected influence

Self

Self

Perplx

Perplx

Threat

Threat

Fear

Fear

Talk

Talk

Sad

Sad

AbSal

AbSal

DifCo

DifCo

SocT

SocT

AnxT

AnxT

Dis

Dis

EyCon

EyCon

Sui

Sui

Int

Int

PerAn

–2 –1 1 20 –1 1 20

PerAn

Out-expected influence

Fig. 2 Cross-lagged centrality plots of out-expected influence and in-expected influence. The nodes are denoted on the y-axis and the
standardised centrality coefficients are denoted on the x-axis. Higher z-scores indicate higher centrality. Because of the low stability, out-
expected influence should not be interpreted. AbSal, aberrant salience; AnxT, anxious tension; DifCo, difficulty mixing with co-workers; Talk,
difficulty talking with others; Dis, difficulty disagreeing; EyCon, difficulty making eye contact; Int, interest; PerAn, perceptual anomalies; Perplx,
perplexity, lack of natural evidence; Self, self-view; Sui, suicidal ideation; SocT, social tension; Threat, feeling threatened or paranoid.
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might not be a direct outcome of these factors. Instead, it might be a
reflection of the negative consequences of living with a psychiatric
disorder. Individuals with psychiatric disorders often have limited
access to work, education and social activities; activities which
often are considered meaningful. For instance, employment is asso-
ciated with higher self-esteem.52 Not being able to participate in
society could, therefore, lead to loss of self-esteem. Living with psy-
chiatric disorders can also lead to demoralisation, as accepting the
realities of mental illness and its consequences can affect self-
esteem.53 This is especially so if one internalises that mental
illness means inadequacy, incompetence and that there is something
inherently wrong with oneself.54 Emphasising psychosocial
rehabilitation and recovery-oriented care concepts such as
empowerment, hope and inclusion in recovery may lead to better
long-term outcomes, including improvements in self-esteem.55

Of the covariates, treatment was mostly strongly related with
symptoms. Treatment before the baseline measurement was
related to higher sadness and (social) anxiety symptoms. A potential
reason for this may be increased self-reflection and insight, which
can have a paradoxical effect of increasing symptoms, perhaps
through self-stigma.56 The AMC is also a tertiary care institution,
and tends to treat individuals with more severe cases who typically
have a previous history of treatment. Treatment between the base-
line and follow-up measurements was related to lower symptom
severity, especially negative self-view, lack of interest and suicidal
ideation. Considering the transdiagnostic nature, this may be
related to general improvements in well-being and quality of life.
Factors such as duration and type of treatment were not included
in the treatment covariates, so these findings must be interpreted
cautiously.

Strengths and limitations

A main strength of this study is that it employs a transdiagnostic
approach that cuts across multiple diagnostic spectra and focuses
on individual symptoms rather than on sum scores or diagnoses.
Broad categories, whether sum scores or diagnoses, can lead to a
loss of information on how specific symptoms or mental states, irre-
spective of diagnosis, interact with each other. Furthermore, the
analyses were controlled for diagnoses and were repeated in a diag-
nostic subsample without misophonia to check for the potential
influence of misophonia, which is the largest group. However,
future research should conduct analyses of individual diagnostic
categories to determine a true transdiagnostic nature. Finally, con-
ducting a CLPNmodel is a step forward from cross-sectional partial
correlation networks, as it allows for directed relationships.
Longitudinal investigations are necessary to investigate the
dynamic nature of psychopathology, and determining temporal
order is one step toward determining causality.

The results of this paper should be interpreted with the follow-
ing limitations in mind. First, CLPNs can be influenced by limita-
tions pertaining to traditional cross-lagged panel models and
network models, as explained by Rhemtulla et al.22 A main limita-
tion is that CLPN models conflate within- and between-participant
effects, which can bias results if variables contain stable individual
differences. This means that cross-lagged effects may be produced
among correlated variables that have no causal relationships.
Methods that can separate these effects require at least three
waves of data and require more research, but include mean-centring
data across time points or fitting a latent factor to repeated observa-
tions in a random-intercept, cross-lagged panel model.
Furthermore, estimates can be affected by sampling frequency, so
relationships in this network should be interpreted in light of the
1-year time lag represented in this study. Moreover, two time
points do not allow for analysing dynamic bidirectional

relationships. Future research therefore could include intensive
time-series designs measuring hourly or daily fluctuations, and
multi-wave longitudinal studies to measure longer-term changes to
account for differences in frequency of change. Furthermore, the
small sample size is a limitation, which did not allow us to compare
individual networks per diagnostic category. However, diagnosis
was included as a covariate in the network to account for potential dif-
ferences. The small sample size may have also affected the stability
estimates and should therefore be interpreted cautiously.

Another potential limitation is selection bias. Participants who
completed both measurements may differ from participants who
completed only the first measurement, especially as completing
the follow-up measurement was not necessary for participation in
the study. For instance, we found a different in age, diagnosis, medi-
cation and feeling threatened or paranoid. This further contributed
to the small sample size. Furthermore, misophonia comprised a
large percentage of the sample, which may also be a selection bias.
However, the control network without the misophonia subsample
demonstrated a moderate correlation with the main network and
substantially replicated the main findings. Participants could also
participate at any point of their treatment trajectory, which could
affect stationarity, but we controlled for this in the network. This
reflects the naturalistic nature of the study, which can more
closely reflect clinical reality, but also introduce more variability
in variables, such as age, treatment and diagnostic category.
Finally, most of the nodes contained only one item, which might
not be sufficient to capture some of the more complex concepts,
including suicidal ideation.

To conclude, this study gives insight into two-wave longitudinal
interactions between individual symptoms, which cut across diag-
nostic categories. Overall, all nodes in the network both predicted
and were influenced by at least one other node, which resulted in
numerous unique associations. This demonstrates the dynamic com-
plexity of psychopathology, and further supports the importance of
investigating symptom interactions of different psychopathological
dimensions over time and across disorders. Potential mechanisms
of these relationships need to be elucidated, and models should be
extended to include measures of psychosocial functioning and daily
life, to investigate how these are affected by symptoms.
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