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ON WEAK VITALI COVERING PROPERTIES

BY
B. S. THOMSON

There are now a number of Vitali covering properties which have been
defined to handle problems arising in differentiation theory. Although some of
these have received a unified treatment, as for example in the setting of Orlicz
spaces in [1, p. 168], the underlying simplicity can be lost and the intimate
connection with the original weak Vitali covering property of de Possel
obscured. In this note we present an exposition of a family of covering
properties and show how the original methods of de Possel in [4] can be
pushed to provide an exact solution of the problem of determining necessary
and sufficient covering properties for a basis which is known to differentiate a
given class of integrals.

Throughout (R, M, n) will denote a fixed measure space and M, and M, the
classes of sets {(M eI : u(M)< +o} and {M eI :0< u(M)< +x} respectively.
We assume that p is complete in the sense that whenever u(A)=0 for every
A c B with A eIk, then necessarily Bet and w(B)=0. B is a derivation
basis on (R, I, u) so that for each xe R, B(x) is a filterbase of families of
subsets from My,. A class ¥ < Py, is said to be a B-fine cover of a set A = R if
for every x€ A and every B € B(x), BN V# J. We use both the expressions
Xa and x(A) to denote the usual characteristic function of the set A and
whenever & is a sequence of sets {V;, V,,- -+, V,.} we use ¢g to denote the
function

t— @g(t)= i x(V, 1)

and o€ to denote the union of the sets in the sequence &; always € will denote
such a finite sequence of sets and our covering properties will be expressed in
terms of approximation properties of such functions ¢ rather than directly in
terms of covering/overlapping properties of the sets in the sequence itself.

A function which is integrable (finitely) on each set in the class 3¢, is said to
be locally integrable, and such expressions as L,(loc) are meant merely in this
sense. For a locally integrable function f, the statement ® = | f du indicates that
® is a set function defined on I, by writing, for each M e IN,, ®(M) = [y, fdu.
The upper derivates, the lower derivates, and the derivates D*®, D,®, and
D® are defined at each point x of R in the obvious manner using the filterbase
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B(x). B is said to derive a class F of locally integrable functions if almost
everywhere in R

Do=f() (®=|fdu)

for each function fe %.

We now define a family of weak Vitali covering properties: let X denote the
linear space of all finite linear combinations of the functions x,, for M eI,
and let T represent any vector space topology on X.

DerintTioN 1. 9B is said to have the 7-Vitali property if for every B-fine
covering ¥ of a set A €N, the function x, is in the 7-closure of the set

{og: €=V}
where as usual & denotes an arbitrary finite sequence of sets from V.

In most cases of interest X is embedded in a larger topological vector space
of integrable functions and 7 is the appropriate subspace topology. For later
reference and to clarify the ideas we present several examples:

(i) For any number p, 1=p <+, let L, denote the usual space of all pth
power integrable functions topologized by the seminorm

I = ([ 1) "

Then X is a subspace of L, and we shall write 7, as the induced topology on X.
Note that the 7,-Vitali property can be re-expressed as: for every B-fine
covering ¥ of a set A eI,

inf{|leg — xall, : €< ¥} =0.

(This property is related to the notion of an S,-basis of Hayes and Pauc [1, p.
24])

(ii) The particular case p =1 of the preceding is exactly the classical weak
Vitali property of de Possel [4] and a basis with this property is called a weak
derivation basis [1, p. 21].

(iii) Let & be any collection of locally integrable functions and let o(X, %)
denote the topology on X generated by the family of seminorms (cf. [6, p. 48])
{N;:fe %} where

Nf(g) =

[ na

The standard problem arising in connection with such a family of covering
properties is that of determining which properties guarantee that the basis
derive a given class of locally integrable functions, and conversely, knowing
that the basis does derive some such class of functions, to obtain covering
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properties which must then hold. The solution of the latter problem rests in
general on the original work of de Possel [4]; although his methods were
intended only for a basis known to derive the class {x,;: M eI} they in fact
provide a complete formal solution to the problem. We summarize the essence
of his contribution in a lemma.

Lemma (de Possel). Suppose that ¢ is a w-continuous measure on IR, so that
0< (M) <+ for every MeMy, and so that

vl;;n YMN W) Y(W)=1

for at least one point x of any set M in My,. Then for every positive number & and
every B-fine covering V' of a set A €My, there exists a sequence € <V with

J log — xal dr<e.
R

Proof. The proof uses the original inductive construction of [4] (cf. [1, pp.
30-31]) with a few modifications. Choose firstly a number §, 0< 8 <1, so that
26(1-8)"'y(A)< e and write ¥ (Y, ) for the collection of sets Ve ¥ with

l¥(V)=¢(YN V)| <8y(V)

or equivalently with

j xv(1=xy) dir< 86(V)

whenever Y is some set in R,. By our assumptions on ¢ and on ¥ we may
conclude that ¥(Y, €) # & for any set Y belonging to Iy, and contained in A;
accordingly if we define

v(Y)=sup{¢(V): Ve ¥ (Y, &)}

then v(Y) is necessarily positive for any such Y, which is the key to the proof
of assertion (ii) below.

We construct now a finite or infinite sequence of sets {V,, V,, V;,...} from
the class ¥ by setting X; = A and choosing V, € ¥'(X,, £) with 2¢(V,) > v(X));
and continuing inductively setting X,.,=A\U?V, and choosing V,, €
V(X, .1, €) with 2¢(V,,,,)>v(X,,,). Note that the process continues as long as
v(X,,) is non-zero, terminating otherwise. We claim that the sequence
{V,, V5, Vs, ...} so constructed has the properties (i) Y. ¢(V;)<¢(A)(1-8)7*
and (i) ¢(A\U [V,n X)) =0.

To prove (i) note that each set V; belongs to V(X,, €) so that (1-8)¢(V;)<
¢(V, N X;) and so, since the sets {X; N V;} are by construction disjoint measura-
ble subsets of A, we must have

Y A=8Y(V)<Y ¢(X,NV)<¢(A)
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which proves (i). For (ii) suppose on the contrary that ¢(Z)>0 where Z=
A\U[X,NV,]. Then ZeIy,, and Z< A so that, as remarked above,
v(Z)#0 and from this we will derive a contradiction. For each n we have
Zc X, so that ¥(Z, &)< V(X,, €) and hence v(Z)=uv(X,). However either
v(X,)=0 for some m (in which case the sequence {V;} is finite) or else
lim v(X,)=0 for we have by construction that 0=v(X,)<2¢(V,) and we
know by (i) that the series ). ¢(V,) converges. In either case v(Z) =0 which is
the desired contradiction and so (ii) follows.

Now define the finite sequence & ={V,, V., ..., Vy} where the integer N is
chosen so that

L [XA —g x(Vi)x(Xi)] dy = ¢<A\Cj v, ﬂXi]>< €2

which is possible because of (ii). By (i) and the choice of § we have for any such
choice of N that

N

5 f (Vo= x(Vox(X)] dur <5 Y. ¢(V}) < 8(1—8) " y(A) < /2

1

so that combining these two inequalities yields

J I%—xAlddeJ Y x(VOx(X)—xa| d¥<e

R

Pe —i x(Vi)x(X,-)l dy+ L

as required completing the proof.

We can now state the general covering/differentiation results. We depart
only slightly from the usual conventions and separate the problem into two
phases corresponding to the inequalities D*®=<fa.e. (®=fdu, f=0 and f in
a given class ) and Dy®=fa.e. (d=ffdu, f=0 and f an arbitrary locally
integrable function).

THeOREM 1. For every non-negative locally integrable function f, D, ®=f a.e.
(®={fdu) if and only if the basis B has the 7,— Vitali property.

Proof. Suppose that B8 has the 7,—Vitali property and that f and ® are as
stated in the theorem. Let A_; for 0 <a <3 denote the set of points x in R for
which Dy®<a<B<f(x), let A be any measurable subset of A, with
A ey, and set V'={M e My,: P(M) < apn(M)}. Clearly ¥ is a B-fine covering
of A and so by our assumptions on B there is for any £ >0 a sequence €< ¥
with ||@g — xall; so small that

max{®(A\ o), Hﬁoz - XA”l}< €

(since @ is an integral and w(A\o¥)=|lez — xall)-
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For such a sequence & a direct computation gives
a Y (®(A)—¢e)<a '®(c¥)

=a™?! Z (V)

Ve¥

=) w(Vv)

Ve@

=J g dp

'R

=J (‘PS—XA)d“'""[ Xa du
'R 'R

<loe=xali 67" | fu
<e+B'®(A)

so that a '®(A)=< B '®(A) which is only possible if ®(A)=0; since we have
0=u(A)=B'®(A) we must also have w(A)=0 for any such Aed,. It
follows then from our assumptions on w that u(A,g) =0, and so finally by the
standard argument of forming a union over all rational numbers a and B we
obtain

p{xeR:D,P<f(x)})=0

as required.
The converse follows directly from the lemma by setting ¢ = .

CoroLLARY. B derives every function in L. (loc) if and only if B has the
7,— Vitali property.

Proof. The condition that D,® = f a.e. for non-negative functions in L, (loc)
is in fact equivalent to the statement that 8 derives L., (loc).

It is well-known that the property of the theorem is not sufficient to
guarantee that B derives any particular unbounded function in L, (loc); in fact
for the interval basis in the Euclidean plane, which does have the 7,—Vitali
property with respect to Lebesgue measure, the celebrated theorem of S. Saks
[5] shows that for “most” such functions (most in the category sense) D*® =
+ everywhere. We obtain the result D*® =< f a.e. for all f in some given class
% of functions under some natural restrictions.

THEOREM 2. Let B be a weak derivation basis and suppose that ¥ is a class of
locally integrable functions with 1€ ¥ and fxp € F for every fe F and every
M eMy,. Then B derives F if and only if B has the o(X, F)— Vitali property.
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Proof. Under the hypotheses of the theorem to establish sufficiency we need
only show that D*®=<fa.e. for every non-negative f in %. As in Theorem 1
for such an f let A,z denote the set of x in R for which f(x)<a << D*®, let
A be any subset of A,; belonging to 9, and let 9" be the collection
{MeMoo: (M) > Bu(M)}. Then ¥ is a B-fine covering of A and for every
£ >0 we may select (by the o(X, F)—Vitali property) a sequence & < ¥ with
Ni(pz —xa) <& and Ni(@g — xa)<e. A routine computation as before gives

B(n(A)—e)=B Y w(V)

Veg

=Y &W)

Veg

- L Gef dit

- L (%—XA)fde Xaf i

= Ni(¢g —xa)+apn(A)

so that Bu(A)=au(A) which is only possible if w(A)=0 so that as before
1(A,e) =0 and finally

w{xeR:D*®>f(x)}=0

as required.
For the converse suppose that 7" is a $B-fine covering of a set A € I,; we
must show that every o(X, %)-neighbourhood of y, meets the set

{pg: €<V}

For this take any finite collection {f, f5, . . ., f..} of non-negative functions from
#: we establish the existence of a sequence &€ < ¥ such that

j (0e—xa)f du|<e

simultaneously for each i=1,2,..., m. This is provided by the lemma with
y=f(fi+fo+---+f,.+1) dp and the theorem follows.

The hypotheses of the theorem are more natural than might be supposed at
first glance: the requirement that B derive all functions x,, for M e, is
equivalent to the statement that B is a weak derivation basis, and for such a
basis whenever 8 derives a non-negative f it necessarily derives fxa, (cf. [1, p.
23]). It should be emphasized however that these theorems present only a
formal solution to the covering/differentiation problem, a solution which is
indeed implicit in the original de Possel equivalence theorem. There still
remains the deeper problem of establishing interrelations between the various
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r-vitali covering properties: for example C. A. Hayes [2] has shown that the
(X, L, (loc))—Vitali and the 7,—Vitali properties (where of course p~'+
q ' =1) are equivalent under very general conditions. A more delicate problem
has been that of establishing the connection between the o (X, Ly)—Vitali and
the Lg—Vitali properties where Lg, and Ly is an appropriate dual pair of
Orlicz spaces; Hayes [3] has solved this problem too but has had to impose
restrictions on the Orlicz functions ® and ¥ so that his results do not yet
include every possible case of interest. It is hoped that our presentation, which
places the problem directly in a geometrical and topological context, may lead
to different techniques and further results.
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