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Abstract

We study the large-volume asymptotics of the sum of power-weighted edge lengths∑
e∈E |e|α in Poisson-based spatial random networks. In the regime α > d, we pro-

vide a set of sufficient conditions under which the upper-large-deviation asymptotics
are characterized by a condensation phenomenon, meaning that the excess is caused
by a negligible portion of Poisson points. Moreover, the rate function can be expressed
through a concrete optimization problem. This framework encompasses in particular
directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as
suitable β-skeletons.
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1. Introduction

Many real-world networks are not merely a collection of nodes and edges but live in an
ambient Euclidean space. Thanks to seminal research efforts on laws of large numbers and
central limit theorems, we now have good understanding of how characteristics computed from
stochastic models for geometric networks behave on average in large sampling windows, and
how they fluctuate around the mean [16, 17]. However, when envisioning such models to be
used in security-critical applications, it is essential to understand also the behavior during rare
events. The theory of large deviations is designed to deal with such questions. Its achieve-
ment is to reduce the understanding of rare events to the solution of deterministic optimization
problems.

On a very general level, one can think of two radically different causes for a rare event that
we refer to as homogenization and condensation, respectively. In the case of homogenization,
small but consistent deviations throughout the sampling window add up to yield a macroscopic
deviation of the considered quantity. On the other hand, in the case of condensation, there is
a small isolated structure with the property that its configuration is so extraordinary that it is
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Large deviations for graph functionals 35

alone responsible for a deviation that is visible on the macroscopic level. We stress that con-
densation effects are not by any means restricted to spatial random networks but also play an
important role in Erdös–Rényi graphs, branching processes, mathematical biology, and statis-
tical physics [1, 2, 4, 9, 10]. In the classical setting of sums of random variables, this effect is
typical for heavy-tailed models.

For network functionals with finite exponential moments, which includes the power-
weighted edge lengths for a wide range of graphs in the case that the power is strictly
smaller than the dimension, the homogenization can be made rigorous under very general
near-additivity and stabilization conditions [19, 20]. However, on the side of condensation, the
research is far less well-developed. Recently, a breakthrough has been achieved by describing
the large deviations of seeing too many edges in the Gilbert graph [7] based on a Poisson point
process in R

d. Loosely speaking, these additional edges are induced by a clique obtained from
putting a large number of points in a small spatial domain.

In this work, we illustrate that condensation phenomena in upper large deviations are not
restricted to the Gilbert graph but occur for a broad class of spatial random networks, includ-
ing most prominently the k-nearest-neighbor graph (kNN). To that end, we study the upper
large deviations of the sum of power-weighted edge lengths, i.e.,

∑
e |e|α , where the sum is

taken over all network edges in a growing sampling window and α denotes the power consid-
ered. This is a fundamental characteristic for spatial random networks, which has already been
studied in detail for the Gilbert graph and the directed spanning forest [5, 18].

Speaking of the kNN, for k = 1 and very large α, the excess weight is induced by a single
large edge. Although this is no longer the case for general k ≥ 1 and α > d, we show that the
condensate can still be described in terms of a specific spatial optimization problem. Besides
k -nearest-neighbor graphs, our framework also encompasses circle-based β-skeletons in two
dimensions.

The idea of the proof is to adapt and refine a three-step strategy that has already been suc-
cessfully implemented to understand the onset of condensation phenomena in other contexts
[6, 7]. First, the proportion of nodes making a very large contribution to the power-weighted
edge lengths is negligible. We identify these nodes as the condensate. Second, the contribution
from nodes outside of the condensate sharply concentrates around the mean. Finally, analyz-
ing the most likely way that the condensate can cause the excess weight leads to the spatial
optimization problem mentioned earlier.

The rest of the article is organized as follows. Section 2 contains precise statements of
and conditions for our main results on the upper large deviations of the power-weighted edge
lengths. Here, we also describe in detail the spatial optimization problem that determines
the shape of the condensate. In Sections 3 and 4, the theorems connecting the upper large
deviations to the optimization problem are applied to the directed, bidirected, and undirected
versions of the kNN, as well as to two-dimensional circle-based β-skeletons for β > 1. Lastly,
Sections 5 and 6 deal with the proofs of our results.

2. Model and main results

To assist the reader, we start by loosely collecting some of the most important nota-
tion here. Let d ≥ 1 be the dimension. By |x| we denote the Euclidean norm of x ∈R

d. For
e = (x, y) ∈ (Rd)2, we set |e| := |x − y|, which is interpreted as the length of an edge between
x and y. Given three points x, y, z ∈R

d, we denote the absolute value of the angle of the triangle
spanned by x, y, and z at the point y by ∠xyz. Further, Br(x) := {y ∈R

d : |y − x| ≤ r} denotes
the Euclidean ball with radius r> 0 centered at x ∈R

d, and for a Borel set C ⊆R
d we will use
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36 C. HIRSCH AND D. WILLHALM

|C| to denote the d-dimensional Lebesgue measure of C. The symbol ∂ refers to the bound-
ary operator that can be applied to a subset of Rd. The ceiling function �·� and floor function
	·
 will appear and are given by �t� := min{m ∈Z : m ≥ t} and 	t
 := max{m ∈Z : m ≤ t} for
t ∈R. By N and N0, we denote the space of all locally finite subsets of Rd, where elements
of the latter must additionally contain the origin 0 ∈R

d. For a configuration ϕ ∈ N and a set
C ⊆R

d, by ϕ(C) we mean #(ϕ ∩ C), the number of points in ϕ that are within C. Throughout
the paper, Qn := [−n/2, n/2]d, n ≥ 1, represents a cubical observation window.

In the following we describe the general graphs that we study. For ϕ ∈ N, the pair G(ϕ) :=
(ϕ, E) represents a directed graph, along with a set of edges E := E(ϕ) ⊆ {(x, y) : x �= y ∈ ϕ}
on the vertex set ϕ. In particular, we stress that the edges are drawn according to some general
construction rule that does not depend on the specific point configuration, and the edge set is
determined once we fix ϕ and does not require any randomness. For ϕ ∈ N0, we let

E(ϕ) := {z ∈ ϕ : (0, z) ∈ E(ϕ)} (1)

denote the set of out-neighbors of the origin and

E0(ϕ) := E(ϕ) ∪ {x ∈ ϕ : 0 ∈ E(ϕ − x) + x} (2)

all out- and in-neighbors of 0. Whenever convenient, we use Ex(ψ) := E(ψ − x) + x for the
out-neighbors of x ∈ψ ∈ N instead.

In this work, we study the upper large deviations of the sum of α-power-weighted edge
lengths in the box Qn for α > d. For ϕ ∈ N, that is the quantity

H(α)
n,dir(G(ϕ)) := 1

nd

∑
e=(x,y)∈E
x∈ϕ∩Qn

|e|α = 1

nd

∑
z∈E(ϕ−x)
x∈ϕ∩Qn

|z|α .

Hence, by defining the score function ξ (α)
dir (ψ) := ∑

z∈E(ψ) |z|α forψ ∈ N0, we can also express

H(α)
n,dir(G(ϕ)) as

H(α)
n,dir(G(ϕ)) = 1

nd

∑
x∈ϕ∩Qn

ξ
(α)
dir (ϕ − x). (3)

If we represent the nodes of a directed graph by a Poisson point process X ⊆R
d with inten-

sity 1, then G(X) plugged into the representation in (3) embeds our problem in the setting of
general limit results in stochastic geometry, where a score is assigned to each x ∈ X encoding
the contribution to the total power-weighted edge lengths.

Moreover, we note that a directed graph naturally gives rise to two further spatial networks,
namely an undirected network, where an edge is put between two nodes x, y if there is a directed
edge from x to y or a directed edge from y to x, and a bidirected network, where an edge is put
between x, y if there is a directed edge from x to y and a directed edge from y to x; see [16,
Section 2.3]. To extend our results to these networks as well, we henceforth work with a score
function ξ (α) that, for ϕ ∈ N0, may take one of the following three forms:

ξ (α)(ϕ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ

(α)
dir (ϕ) := ∑

x∈E(ϕ) |x|α;

ξ
(α)
undir(ϕ) := ∑

x∈E(ϕ)
1
2 |x|α + 1

2 |x|α1{0 �∈ E(ϕ − x)};
ξ

(α)
bidir(ϕ) := ∑

x∈E(ϕ)
1
2 |x|α1{0 ∈ E(ϕ − x)}.
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In words, the definition of ξ (α)
undir means that if x is an out-neighbor of 0 but not an in-neighbor,

then the edge length |x| contributes fully to the score at 0, whereas it is not considered for the
score at x.

We proceed by denoting the corresponding functional for ϕ ∈ N by

H(α)
n (ϕ) := 1

nd

∑
x∈ϕ∩Qn

ξ (α)(ϕ − x), (4)

and if we plug in the Poisson point process X for the random point configuration in (4), we
abbreviate the result as

Hn := H(α)
n (X). (5)

In order to describe the large-deviation asymptotics for the upper tails of Hn, we require that the
graph and the score function satisfy some additional properties. Our conditions are designed
with the (un-/bidirected) kNN and a version of the β-skeleton in mind as prototypical exam-
ples; see Section 3. It will become apparent that some of the conditions are substantially more
delicate than the ones appearing for weak laws of large numbers or central limit theorems on
Poisson functionals [15, 16]. This is because for many of the spatial random networks satis-
fying weak laws of large numbers or central limit theorems, such as Delaunay tessellations
(DTs), Gabriel graphs (GGs), and relative neighborhood graphs (RNGs), the upper large devi-
ations will be markedly different from those of the kNN. In all of these graphs, the excess
in the large deviation tail may be determined by configurations with a growing number of
nodes. For instance, the DT, GG, and RNG can, with significantly high probability, exhibit a
large total sum of power-weighted edge lengths by having more than a negligible proportion
of edges almost parallel to each other. Nevertheless, we have decided to present our results in
a general framework for two reasons. First, we can pinpoint precisely the requirements that
are not satisfied by the standard examples mentioned earlier. Second, if one aims to establish
upper-large-deviation asymptotics for a specific class of networks, the conditions give a clear
view of the points at which additional arguments will be needed to prove the desired result.

We next state the conditions rigorously, then provide a detailed discussion to explain more
precisely their meaning and impact. We have not attempted to aggressively minimize the num-
ber of conditions, because in doing so we would risk making our statements less accessible.
The conditions are the following:

1. E is scale-invariant: τE(ϕ) = E(τϕ) for all ϕ ∈ N0 and τ > 0.

2. Adding a new point affects only a bounded number of nodes: there exists cFIN > 0 such
that for every y ∈R

d and ϕ ∈ N,

#
{
x ∈ ϕ : E(ϕ − x) �= E((ϕ − x) ∪ {y − x})}≤ cFIN. (FIN)

3. E has bounded large-edge density: there exists cFIN2 ≥ 1 such that for all M> 0 and
ϕ ∈ N,

#
{
x ∈ ϕ ∩ BM(0) : max

y∈E(ϕ−x)
|y|>M

}≤ cFIN2. (FIN2)

4. Proceeding in the vein of [16], we introduce a stabilization condition for G. This con-
dition is based on a collection of cones Si, i ≤ Id, with apex 0 whose union covers
the whole space and which do not have parts of their lateral boundary parallel to any
coordinate axis of Rd. Then, for a constant cSTA > 0 and ϕ ∈ N0, we put

Si(ϕ) := cSTA inf{r> 0 : ϕ(Si ∩ Br(0)) ≥ cSTA}.
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We say that G is stabilizing if there exists cSTA ≥ 1 such that for every η ∈ N0
there exists N0 � θ ⊆ η such that (i) θ ⊆ ∪i≤Id

(
Si ∩ BSi(η)(0)

)=: B, (ii) #θ ≤ IdcSTA,
and (iii)

E0(η) = E0(ψ ∪A) for all ψ ⊆ η ∩B with ψ ⊇ θ and all finite A⊆R
d \B, (STA)

where E0(·), the set of in- and out-neighbors of the origin, was defined in (2).

5. For every m ≥ 1, there exists a subset Nm ⊆ N of finite configurations consisting of pre-
cisely m elements which is a zero-set with respect to the dm -dimensional Lebesgue
measure, and which has the property that for ϕ ∈ N \ Nm consisting of m elements,
the set of out-neighbors E is continuous. Setting N := ∪m≥1Nm, this means that for
a finite ϕ ∈ N \N , there exists δ > 0 such that for every x, y ∈ ϕ and every sequence
(zw)w∈ϕ ⊆ Bδ(0),

y + zy ∈ Ex+zx ({w + zw : w ∈ ϕ}) if and only if y ∈ Ex(ϕ). (CON)

This assumption excludes finite configurations for which the graph is sensitive to small
shifts of single or multiple nodes.

6. There exists cINF > 0 with the following property: letψ ∈ N0 with #ψ ≥ cINF and θ ∈ N.
We demand that

E(ψ) ⊆ E(ψ ∪ θ ) if and only if E(ψ) ⊆ E(ψ ∪ {y}) for all y ∈ θ . (INF)

In words, if the configuration θ is such that no edges are removed by adding an element
from θ to ϕ, then adding the entire set θ also does not remove any edges (and vice versa).

Each of these properties stays true if we increase cFIN, cFIN2, or cSTA. Thus, we can set

cmax := max{cDEG, cFIN, cFIN2, cSTA, cINF}
and use it instead, where cDEG represents a bound on the maximal node degree that is deduced
in Item 4 below.

We now provide more detailed explanations for the conditions and their necessity:

1. The scale-invariance is a fundamental ingredient for controlling the asymptotic behavior
of long edges. This condition is satisfied by a variety of spatial networks, such as the
DT, the GG, and the RNG.

2-3 The condition (FIN) is violated by the DT, the GG, and the RNG. Moreover, if a graph
does not fulfill the condition (FIN2), then configurations may be possible with many
points having very large edge lengths. The RNG does not satisfy (FIN2) (and, therefore,
neither do the DT and the GG). In this case, it is possible to have many nearby points
with large combined edge lengths, by having two layers of points almost parallel to each
other, as we elaborated in the paragraph after Equation (5).

4 In contrast to the stabilization conditions in [11, 16], we use a very specific class of
stabilization regions B based on cones. Nevertheless, it is still encompassed by more
examples of spatial networks (such as RNG). Our variant of the stabilization condition
allows not only for arbitrary modifications of the configuration outside the stabilization
region B, but also for the addition of points from the original configuration η within B.
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Our stabilization condition (STA) implies an alternative weaker version that is encom-
passed by even more examples of spatial networks (such as DT and GG), which is closer
to the notion of stabilizing appearing in [11, 16]. Namely, keeping the notation Si from
(STA) and all assumptions made there, we can define a stabilization radius

R : N0 → [0,∞], ϕ �→ max
i≤Id

Si(ϕ), (6)

so that for all finite A⊆R
d \ BR(X∗)(0), setting X∗ = X ∪ {0}, we have

E0(X∗) = E0

((
X∗ ∩ BR(X∗)(0)

)
∪A

)
. (7)

Defining stabilization by demanding the existence of an almost surely finite random
variable, the stabilization radius R(X∗), such that (7) is fulfilled is very similar to
stabilization as it occurs in [11, 16].
Additionally, (STA) yields a bound on the maximal node degree. In particular, when
choosing cDEG = IdcSTA, we see that #E0(ϕ) ≤ cDEG for all ϕ ∈ N0. The implied uni-
formly bounded node degree helps to limit the number of edges that can contribute
substantially to the power-weighted sum of edge lengths.
The requirement that the lateral boundaries of the cones must not be parallel to any of
the axes is of a technical nature and necessary in the proof of Lemma 10. There we
use a weak law of large numbers for Poisson functionals from [16, Theorem 2.1] which
does not allow for points to be considered in the functional without their own scores
contributing to the total sum. This can cause issues if we desire to compute probabilities
which involve cones containing only a limited number of nodes up until a certain radius,
if the respective apex of the cone is close to the boundary of the observation window, as
happens in the proof of Lemma 10. Here, we imagine that there might be some room to
improve (STA) and drop the requirement about the lateral boundaries of the cones. For
instance, one could try to be more lenient in a weak law of large numbers and also allow
the consideration of points whose scores do not contribute. Another option would be to
try to make use of the fact that [16, Theorem 2.1] allows for inhomogeneity of the points
in some finer arguments. However, it is not clear whether there are interesting examples
of graphs that fulfill all the other conditions but do not allow for lateral boundaries of
the cones that are not parallel to any of the axes in (STA).

5. In the theory of large deviations, it is common to make continuity assumptions in order
to obtain asymptotically matching upper and lower bounds for the probability of rare
events. For instance, for the kNNs we want to avoid configurations where two distinct
pairs of points have the same distance.

6. The bound cINF is necessary to ensure that the optimization problem introduced later that
determines the rate of the large deviations is indeed meaningful. In the simplest case, we
would like to avoid situations in which there is a region such that adding a single point
anywhere in it does not interfere with any existing edges, but adding a second point to
the region suddenly deletes one of the original edges. This could happen, for example,
in the directed kNN with k = 2 if the initial configuration consists of fewer than three
points.

Before introducing the deterministic optimization problem connected with the upper tails,
we illustrate in Figure 1 how the upper large deviations of Hn feature a condensate for the
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FIGURE 1. Two configurations that result in a typical sum (left) and an exceptionally large sum (right)
of α-power-weighted edge lengths with α = 15. In each configuration, the three vertices inside an
observation window with the most distant nearest neighbor are highlighted.

nearest-neighbor graph. There appears to be one large edge that carries the entire excess
weight.

The rate function in the large-volume asymptotics will be given as a solution of an
optimization problem. To make this precise, we define the influence zone

A(ϕ, ψ) := {
y ∈R

d : Ex(ψ) �⊆ Ex((ψ ∪ {y})) for some x ∈ ϕ ∪ ∪z∈ϕEz(ψ)
}

(8)

for configurations ϕ ⊆ψ ∈ N. Loosely speaking, the cost of observing a certain configuration
ψ in the large-volume limit comes from the requirement that the influence zone may not con-
tain any additional Poisson points. For instance, in the case of the kNN, the influence zone
describes the region of points such that adding another Poisson point would change one of the
k nearest neighbors either of an element of ϕ, or of a point that is itself one of the k nearest
neighbors of some element of ϕ.

To be able to apply (CON) in Section 5.2, we set D(ϕ) := {y ∈R
d : ϕ ∪ {y} ∈ N#ϕ+1} for

a finite ϕ ∈ N \N as well as D′
m := {ψ ∈ N : #ψ = m, |D(ψ)|> 0} for m ∈N. Letting N′

m :=
Nm ∪ D′

m and N ′ := ∪m≥1N′
m ⊇N , we then define the set of admissible configurations over

which we optimize. These are configurations whose total contributed power-weighted edge
lengths exceed 1, i.e.,

B :=
{

(ϕ, ψ) : ϕ ⊆ψ ∈ N \N ′, cINF ≤ #ψ <∞,
∑
x∈ϕ

ξ (α)(ψ − x) ≥ 1

}
. (9)

The most likely realizations in the large-deviation asymptotics are then the result of a delicate
trade-off. We search for configurations that lead to a small influence zone A but simultaneously
exhibit edges that are long enough to be in the admissible set B.

Now we can state the main theorem, where μα := E[ξ (α)(X ∪ {0})] denotes the expected
edge length contribution of one vertex.
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Theorem 1. (Upper large deviations.) Let α > d and r> 0. Let the directed edge set E be
scale-invariant and satisfy (FIN), (FIN2), (STA), (CON), and (INF). Then

lim
n↑∞

1

nd2/α
log P(Hn >μα + r) = − inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|rd/α . (10)

The statement of Theorem 1 indicates the necessity of a power larger than the dimension.
The usual speed for large deviations caused by homogenization in the situation of functionals
of this type of spatial random network is nd. If, for α < d, the equality in (10) were still sat-
isfied, then we would have a faster speed than in a homogenization regime, which is not very
reasonable and already gives a hint as to why our arguments require α > d.

Next, we are going to assert that if the optimization problem has a strictly positive solution,
then with high probability, only a negligible proportion of nodes is responsible for the entire
excess when conditioned on the unlikely event. In some cases, we can prove a sharper state-
ment in the sense that only finitely many points carry the excess weight. To make this precise,
we introduce additional notation. For configurations ϕ ⊆ψ ∈ N, we will consider the order
statistics of ξ (α)(ψ − x), x ∈ ϕ. That is, we let Z(i)(ϕ, ψ) denote the i th-largest element among
{ξ (α)(ψ − x)}x∈ϕ . In the case ϕ = X ∩ Qn and ψ = X, we abbreviate Z(i)

n := Z(i)(X ∩ Qn, X)
for i ≥ 1. Besides that, recall the definition of the floor function 	t
 := max{m ∈Z : m ≤ t} for
t ∈R. In Theorem 2 we add a further condition, demanding that the volume of the influence
zone does not become arbitrarily small even if we are using many nodes.

Theorem 2. (Condensation conditioned on rare event.) Under the same conditions as in
Theorem 1 and the additional assumption that inf(ϕ,ψ)∈B |A(ϕ, ψ)|> 0, the following hold:

(a) Let ε ∈ (0, (1 − d/α)/(2α)) and δ > 0. Then

P

⎛⎜⎝∣∣∣(rnd)−1
∑

i≤	nd2/α−ε

Z(i)

n − 1
∣∣∣> δ ∣∣∣∣ Hn >μα + r

⎞⎟⎠ n↑∞−→ 0.

(b) Additionally, assume there exists m0 ≥ 1 such that for every δ ∈ (0, 1),

inf
(ϕ,ψ)∈B

|A(ϕ, ψ)|< inf
(ϕ,ψ)∈B,

∑
i≤m0

Z(i)(ϕ,ψ)<1−δ
|A(ϕ, ψ)|. (11)

Then, for every δ > 0,

P

(∣∣∣(rnd)−1
∑
i≤m0

Z(i)
n − 1

∣∣∣> δ ∣∣∣∣ Hn >μα + r

)
n↑∞−→ 0.

The condition (11) implies that any optimal configuration consists of at most m0 nodes. As
will be shown in Section 4.1, the nearest-neighbor graph (NNG) for large α is an example of a
graph satisfying (11).

Remark 1. Theorem 1 can also be applied if, instead of X, we consider a Poisson process Y
with intensity n−βd for some β < 1. Scaling Y by n−β yields a Poisson process with intensity 1,
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and the window becomes Qn1−β . The mean is given as E
[
ξ (α)

(
(n−βY) ∪ {0})]= n−αβμα,

finally yielding upper tails of the form

lim
n↑∞

1

n(1−β)d2/α
log P

(
1

nd+β(α−d)

∑
x∈Y∩Qn

ξ (α)(Y − x)>μα + r

)

= lim
n↑∞

1

n(1−β)d2/α
log P

(
1

nd−βd

∑
x∈X∩Qn1−β

ξ (α)(X − x)>μα + r

)
= − inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|rd/α,

where in the last line we applied Theorem 1 with n′ = n1−β .

Remark 2. Another interesting graph to examine in terms of a condensation phenomenon is
the directed spanning forest (DSF). Very loosely speaking, this graph draws an edge from a
node to the closest other node that has a higher value in the dth coordinate; see [8]. This graph
does not satisfy the condition (FIN) required for the upper large deviations and condensation.
Furthermore, in the given form of the DSF, this would be one of the few common examples
where (STA) is violated because of the lateral boundary part. Nevertheless, we suspect the
total power-weighted edge lengths for α > d for the DSF to admit upper large deviations with
a condensate that might even involve the same optimization problem as appears in Theorem 1.
One would need a more generous concentration bound that does not rely on (FIN) to prove
Lemma 7, and as pointed out in the explanation of (STA), we are also confident that it is
possible, with finer arguments, to drop the lateral boundary condition from (STA). Here, this
issue could even be avoided if the search process of the DSF for the closest point were not
parallel to one of the axes.

Remark 3. We limit ourselves to the study of the functional representing power-weighted edge
lengths of spatial random networks in terms of its upper large deviations. Even the consider-
ation of this functional for a power larger than the dimension restricts the class of admissible
graphs heavily. Nevertheless, we believe that there may be room to improve this and, on top of
the graph, to generalize the functional as well. An idea would be to consider functional–graph
combinations that, for a node to have a large score, would require a relatively large region
to contain no points or only a limited number of points. This would include the total sum of
power-weighted edge lengths for the kNN and β-skeleton. Apart from the functional we have
studied, an example that would fit this description could be the sum of power-weighted circum-
radii of the simplices in the DT. However, if, as in this specific example, we study condensation
phenomena for functionals that we apply to the DT, we would run into other issues that were
described in the explanations of our conditions.

3. Applications of Theorem 1

We verify that the (un-/bidirected) kNN and suitable β-skeletons satisfy the conditions in
Theorem 1.

3.1. k-nearest-neighbor graphs

In the kNN, a directed edge is drawn from each node to the k ≥ 1 points that are closest
in Euclidean distance. As explained in Section 2, this definition gives rise to undirected and
bidirected kNNs. For j ≤ k, we define the distance from the origin to the jth closest point in a
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configuration by

Dj : N0 → [0,∞), ϕ �→ inf{r> 0 : ϕ(Br(0)) ≥ j + 1}.
This leads to the set of the k nearest neighbors of the origin,

E : N0 → N, ϕ �→ {x ∈ ϕ ∩ BDk(ϕ)(0)} \ {0}. (12)

We will use the lexicographical order to determine the k nearest neighbors of a node in
case more than k neighbors are potential candidates. In the following, we quickly verify the
conditions in Theorem 1:

1. E defined as in (12) is scale-invariant.

2. The bounded node degree [22, Lemma 8.4] entails (FIN) with cFIN = cDEG, since all
nodes that are affected by adding a new vertex to the configuration must be part of an
edge with the new vertex.

3. Let ϕ ∈ N and M > 0 be arbitrary. For ease of presentation, we consider k = 1 first. Each
vertex x ∈ ϕ ∩ BM(0) incident to an edge longer than M defines a ball of radius at least
M, centered at x, that does not contain any other vertices in its interior. Hence, scaling
the radii by 1/2 gives rise to a family of balls that are pairwise disjoint, each having
radius at least M/2. Thus, the number of nodes within BM(0) that are incident to an edge
larger than M is at most |B2M(0)|/|BM/2(0)| = 4d.
Now, let k ≥ 2 be general and set ϕ′ = ϕ. Starting with a node

x ∈ arg max
z∈ϕ′∩BM(0)

{|y| : y ∈ E(ϕ − z) and |y|>M},

we delete all points in ϕ′ that are within the interior of BDk(ϕ−x)(x) \ {x}, which are
at most k − 1, and mark x as already dealt with. We repeat this procedure recursively,
ignoring nodes in the index of the arg max that are already marked, until all nodes
in ϕ′ ∩ BM(0) are either marked or not associated with an edge of length exceeding M.
Then, by the same arguments as in the case k = 1, the interiors of the balls BD1(ϕ′−x)/2(x)
are pairwise disjoint for x ∈ {z ∈ ϕ′ ∩ BM(0) : |y|>M for some y ∈ E(ϕ − z)}, and

#{z ∈ ϕ′ ∩ BM(0) : |y|>M for some y ∈ E(ϕ − z)}
is bounded by 4d. Moreover, for every marked node left in the thinned configuration
ϕ′ ∩ BM(0), we have deleted at most k − 1 nodes from ϕ, and thus we deduce that the
total number of nodes in ϕ ∩ BM(0) incident to an edge of length exceeding M is at most
cFIN2 := k4d, which yields (FIN2).

4. Considering only the undirected kNN, from [15, Lemma 6.1] it follows that we can find
a collection of cones such that R can be used as stabilization radius in the weaker sense
of (STA) with cSTA := k + 1. Now, for ϕ ∈ N0, let Pi denote the set of the cSTA closest
points to the origin in ϕ ∩ (Si \ {0}). If the intersection does not contain cSTA points,
then let Pi = ϕ ∩ Si \ {0}; if there are more than cSTA candidates, let the lexicographical
order decide which of the farthest-away candidates to include in Pi, and put θ := {x ∈
Pi : i ∈ {1, . . . , Id}}. Then [22, Lemma 8.4], which asserts that the undirected kNN has
bounded node degree, and its proof imply that we can choose the cones in such a way
that for this choice of θ , the condition (STA) is satisfied. Further, because (STA) only
incorporates E , the condition (STA) follows for the undirected, bidirected, and directed
kNN.
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FIGURE 2. Illustration of an edge in the β-skeleton and a random simulation of the β-skeleton with
β = 1.2.

5. The continuity condition (CON) is satisfied with

Nm := {ϕ ∈ N : #ϕ = m and |w − x| = |y − z|> 0 for some w, x, y, z ∈ ϕ with {w, x}
�= {y, z}}

as the set of configurations containing m nodes, where there are pairs of nodes with
equal distances.

6. We choose cINF := k + 1 to ensure that each node has k neighbors. Then (INF) is satis-
fied, since for ϕ ∈ N0 with #ϕ ≥ cINF, a node in the set E(ϕ) only vanishes when a vertex
is added within the interior of the ball BDk(ϕ)(0). Adding more vertices can only cause
more differences.

3.2. β-skeletons

β-skeletons are geometric graphs that are popular in applications in pattern recognition [12]
and machine learning [21]. The two-dimensional β-skeleton, β > 1, has an edge between two
nodes x and y if there is no vertex that has an angle, generated by the two lines to x and y,
that is larger than γ := arcsin (β−1). In other words, there is an edge if the union C(x,y) of the
two disks with radius β|x − y|/2 and having x and y on their boundary does not contain any
other vertices; see Figure 2. This construction rule determines the set of neighbors E . Note that
this definition also makes sense for β = 1, leading to a spatial network known as the Gabriel
graph.

Although the β-skeleton can also be defined in higher dimensions, we henceforth restrict our
attention to the two-dimensional β-skeleton, for two reasons. First, the two-dimensional case
already covers the vast majority of applications of β-skeletons. Second, as we will see below,
even in the two-dimensional case, the verification of the condition (FIN) requires delicate
geometric arguments. Although we believe an extension to higher dimension is possible, this
would entail an even more tedious geometric analysis. Since the focus of our article is on
presenting novel probabilistic aspects of large deviations in a geometric context, it would not
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be appropriate to devote several pages of trigonometry arguments to the verification of the
conditions in three and higher dimensions.

We now verify that the β-skeletons satisfy the conditions of Theorem 1. To that end, we state
an auxiliary result capturing the stabilization properties of β-skeletons needed for the condition
(STA). Since the β-skeleton is intrinsically an undirected graph, we henceforth consider all
appearing edges as undirected in order to make the presentation more accessible.

Lemma 1. (Stabilization for β-skeletons.) For β > 1, there is a collection of cones (Si)1≤i≤I2

satisfying the requirements of (STA) with cSTA = 2.

Proof. We choose the cones Si, i ≤ I2, sufficiently thin and not axes-parallel so that for any
r> 0, the angle generated by starting from the origin, proceeding to any point in Si ∩ Br(0), and
ending at any point in Si ∩ ∂Br(0) exceeds γ . Now, if x ∈ ϕ is the closest point to 0 contained
in Si, then ∠0xy> γ for every y ∈ Si with |y| ≥ |x| and x �= y. Thus, there cannot be an edge
between the origin and y.

To construct θ , we first let Pi denote the point closest to the origin in ϕ ∩ (Si \ {0}), if the
intersection is non-empty (resolving potential ties by choosing the lexicographic minimum).
Then we put θ := {Pi : ϕ ∩ Si �= ∅} ∪ {0}.

Leveraging Lemma 1, we now verify the conditions 1 and 4–6. The application of
Theorem 2 for the β-skeleton is verified in Section 4 below.

1. E for the β-skeleton, where β > 1, is scale-invariant.

4. This is the content of Lemma 1.

5. The continuity condition (CON) is satisfied with

Nm := {ϕ ∈ N : #ϕ = m and ϕ ∩ ∂C(x, y) �= {x, y} for some x, y ∈ ϕ}
as the set of configurations containing m nodes, where there are two nodes that have a
vertex on the boundary of the union of disks illustrated in Figure 2.

6. To remove a β-skeleton edge e, only one node in C(e) is sufficient. Hence, cINF = 1.

In the rest of this section, we verify conditions (FIN) and (FIN2).
For e1, e2 ∈R

2 and the edge e := (e1, e2) with |e1 − e2| ≥ a> 0, we define the point
between e1 and e2 that has distance a from e1 by ha(e) := e1 + (e2 − e1)a/|e|. Further, let
M(e) be a point at distance β|e|/2 to both e1 and e2. In other words, M(e) represents the center
of one of the two disks whose union comprises C(e); see Figure 2. In some cases, we will need
to make a specific choice between one of the two options, and then we will state this clearly.
Finally, let �M(e)(e) be the triangle formed by M(e) and e.

Lemma 2. (Disjoint regions for β-skeletons.) Let e1, e2, f1, f2 ∈R
2 be pairwise distinct, and

assume that e = {e1, e2}, f = {f1, f2} ∈ E({e1, e2, f1, f2}). Then the following hold:

(i) f does not intersect �M(e)(e);

(ii) there exists a constant cdisj = cdisj(β) ∈ (0, 1/2) such that if |e| ∧ |f | ≥ a for some a> 0,
then

Bcdisja(hm(e)) ∩ Bcdisja(hm′ (f )) = ∅
for all m ∈ [a/2, |e| − a/2] and m′ ∈ [a/2, |f | − a/2].
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FIGURE 3. Illustration of the statement of Lemma 3, including the inserted node relevant for (FIN). The
extended line between f1 and M(f ) is tangent to the disk segment.

We postpone the proof of Lemma 2 to the end of this section, and elucidate how to verify the
condition (FIN2). First, instead of bounding the number of nodes in BM(0) incident to a long
edge, we may bound the number of disjoint long edges with one endpoint in BM(0). Then, we
apply Lemma 2 for every pair of such disjoint edges e and f with a := M, m ∈ {a/2, |e| − a/2},
and m′ ∈ {a/2, |f | − a/2}, depending on which choice of m and m’ makes the points hm(e) and
hm′ (f ) closer to BM(0). Hence, having k ≥ 1 disjoint long edges with an endpoint in BM(0)
leads to k disjoint disks with radius cdisjM that are contained entirely within B2M(0). Thus, the
number of such edges is at most |B2M(0)|/|BcdisjM(0)| = |B2(0)|/|Bcdisj(0)|.

Finally, we verify the condition (FIN). To achieve this goal, note that the number of edges
that can arise from y ∈R

2 is limited by the bound on the node degree. Hence, it remains to
consider the number of edges removed by adding the point y. In particular, the number of
disjoint edges removed is sufficient. Here, a key observation is that if e, f are disjoint edges
with y ∈ C(e) ∩ C(f ), then this implies a very particular relative configuration for e and f . More
precisely, the edges e and f do not intersect, and the triangle�y(e) does not contain an endpoint
of f and vice versa. Hence, if we consider the cones Sy(e) and Sy(f ) with apex y obtained by
extending these triangles, then there are only three options: (i) Sy(e) ∩ Sy(f ) = {y}, (ii) Sy(e) ⊆
Sy(f ), or (iii) Sy(f ) ⊆ Sy(e). In the latter cases, we say that e and f are related. Since the angle
at the apex of each of these cones is at least γ , the number of equivalence classes of related
edges is at most 2π/γ .

Hence, to complete the proof of the condition (FIN) it suffices to bound the number of
elements in each equivalence class. For this step, we need two further results. To state them,
we set τ := arccos (β−1).

Lemma 3. (Exclusion of short edges.) Let e1, e2, f1, f2 ∈R
2 be pairwise distinct, and assume

that e := {e1, e2}, f := {f1, f2} ∈ E({e1, e2, f1, f2}) and that |f | ≤ tan (τ )|e|. Furthermore, let
y ∈ C(e) be such that f crosses �y(e) between e and y. Then y ∈�M(f )(f ).

The configuration in Lemma 3 is sketched in Figure 3. Next, for ϕ ∈ N, y ∈R
2, and e ∈ E(ϕ)

with y ∈ C(e), we define

EREC(ϕ, y, e) := {f ∈ E(ϕ) : Sy(e) ⊆ Sy(f ) and y ∈ C(f )} (13)

as the set of recorded edges.
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Lemma 4. (Size bound for recorded set.) There exists cedges = cedges(β)> 0 such that for any
ϕ ∈ N, e ∈ E(ϕ), and y ∈R

2 with y ∈ C(e), we have #EREC(ϕ, y, e) ≤ cedges.

Note that once Lemma 4 is established, the condition (FIN) is verified, since then the total
number of deleted edges is at most cedges2π/γ . Hence, it remains to prove the auxiliary results
Lemmas 2, 3, and 4.

Proof of Lemma 2.
Part (i). In the setting of Lemma 2, assume that f intersects�M(e)(e) and note that the nodes

f1 and f2 have to be outside C(e) for e to exist. But since f intersects �M(e)(e), at least one of
e1 and e2 is in B|f |/2(h|f |/2(f )). Therefore, f would not exist in the GG, and thus also not in the
β-skeleton. Hence, �M(e)(e) cannot intersect f .

Part (ii). Repeating the above argument for the second choice of M(e) yields a rhombus with
centroid h|e|/2(e) that cannot be intersected by other edges. However, since the side lengths of
this rhombus are of order |e|> a, there exists a constant cdisj = cdisj(β) ∈ (0, 1/2) such that any
disk with center between ha/2(e) and h|e|−a/2(e) and radius cdisja also has distance of more than
cdisja to the boundary of the rhombus (and similarly for e replaced by f ). Since the rhombus
linked to any edge cannot be intersected by another edge, it follows that the disk associated
with e and the disk associated with f are disjoint. �

Proof of Lemma 3. Since e is an edge in the β-skeleton, the nodes f1, f2 lie outside the
interior of C(e). We first consider the case where f1, f2 are contained in the boundary of C(e),
and the segments [M(f ), f1], [M(f ), f2] are tangent to C(e). Then �M(f )(f ) ∩ C(e) yields a full
circular segment of Bβ|e|/2(M(e)) so that y ∈�M(f )(f ). We assert that if [M(f ), f1] and [M(f ), f2]
are tangent to C(e), then |f | = tan (τ )|e|. Since y ∈�M(f )(f ) will remain true if we shorten |f |,
this will conclude the proof of the lemma.

To prove that |f | = tan (τ )|e|, note that the tangency implies that M(e)f1M(f ) is a right
triangle. Thus,

|f1 − M(f )|
|f1 − M(e)| = |f1 − M(f )|

β|e|/2 = tan (τ ).

Next, f1M(f )h|f |/2(f ) also defines a right triangle so that |f |/(2|f1 − M(f )|) = cos (τ ) = β−1.
Finally, combining these two relations yields the asserted |f | = tan (τ )|e|.

Proof of Lemma 4. First, we note that EREC(ϕ, y, e) contains at most one edge that is shorter
than tan (τ )|e|. Indeed, suppose that f �= f ′ are two such edges with Sy(f ) ⊆ Sy(f ′). Now, from
Lemma 2(i), we know that f ′ cannot intersect �M(f )(f ) and therefore also not �y(e) ∩�y(f ).

This contradicts Lemma 3.
Hence, it suffices to bound the number of f ∈ EREC(ϕ, y, e) with |f | ≥ tan (τ )|e|. To achieve

this goal, let f (1), . . . , f (c) ∈ EREC(ϕ, y, e) be disjoint edges, each of length at least tan (τ )|e|.
Note that none of these edges can intersect. Furthermore, for the edge e to exist, the edges
f (1), . . . , f (c) must also fully cross the disk segment C(e), as drawn in Figure 3.

Then, for all i ≤ c, the edge f (i) crosses the cone Sy(e) somewhere since Sy(e) ⊆ Sy(f (i)). In
particular, f (i) has to cross the triangle �y(e). If that were not the case and f (i) were to cross
Sy(e) \�y(e), then e1, e2 ∈�y(f (i)) ⊆ C(f ), which would contradict the existence of the edge
f (i). It is impossible for f (i) to cross both Sy(e) \�y(e) and �y(e), because then it would have
to intersect e.
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Then, by Lemma 2, each f (i) generates a disk with radius cdisj tan (τ )|e| whose center has to
be within distance tan (τ )|e| of C(e), disjoint from the disks created by other edges longer than
tan (τ )|e|. Thus, the total number of long edges that can cross �y(e) is bounded by

2|B2 tan (τ )|e|+β|e|/2(M(e))|
π (cdisj tan (τ )|e|)2

= 2|B2 tan (τ )+β/2(0)|
πc2

disj tan (τ )2
=: cedges(β) − 1,

thereby concluding the proof. �

4. Applications of Theorem 2(a)–(b)

In this section, we verify the conditions of Theorem 2(a) for the graphs from Section 3. We
also apply Theorem 2(b) to the NNG. To ease the overall presentation, we start with the latter.

4.1. Theorem 2(b) for the NNG

We start with an auxiliary result simplifying the definition of the influence zone for the
NNG. Loosely speaking, we can ignore the constraints on the out-neighbors of ϕ and can
concentrate on the areas influencing the nearest neighbors of points in ϕ itself.

Lemma 5. (Influence zone for the NNG.) It holds that

inf
(ϕ,ψ)∈B

|A(ϕ, ψ)| = inf
(ϕ,ψ)∈B

| ∪x∈ϕ BD1(ψ−x)(x)|.

Remark 4. An adaptation of the proof of Lemma 5 shows that it remains true if on both sides
we replace B by {(ϕ, ψ) ∈ B :

∑
i≤m0

Z(i)(ϕ, ψ)< 1 − δ}. The proof can be replicated without
significant alterations.

Next, we further examine the geometric interpretation of the optimization problem.

Lemma 6. (One single large ball is the unique optimal solution for the NNG and α� d.)
There exists α0 > d such that the configuration ({0}, {0, (1, 0 . . . , 0)}) solves the optimization
problem for all α ≥ α0. In particular,

inf
(ϕ,ψ)∈B

|A(ϕ, ψ)| = |B1(0)| = κd. (14)

Moreover, for every δ > 0 there exists ε > 0 such that | ∪x∈ϕ BD1(ψ−x)(x)| ≥ (1 + ε)κd holds

for all (ϕ, ψ) ∈ B with maxx∈ϕ D(α)
1 (ψ − x)< 1 − δ.

Hence, to verify the application of Theorem 2(b) for the NNG, only the proofs of Lemmas 5
and 6 are necessary.

Proof of Lemma 5. First, by the definition of A in the case of the NNG, we have that

|A(ϕ, ψ)| = | ∪x∈ϕ
(
BD1(ψ−x)(x) ∪ ∪z∈Ex(ψ)BD1(ψ−z)(z)

)︸ ︷︷ ︸
=:K(ϕ,ψ)

|

for all (ϕ, ψ) ∈ B, since in the NNG an edge can only be deleted if an additional node is
put within the open ball with radius given by D1(·), centered at a vertex in ψ . This implies
inf(ϕ,ψ)∈B |A(ϕ, ψ)| ≥ inf(ϕ,ψ)∈B | ∪x∈ϕ BD1(ψ−x)(x)|.
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For the other direction, let ε > 0 and (ϕ, ψ) ∈ B be arbitrary. Now, for δ > 0, we intro-
duce an extended configuration θδ ⊇ψ by adding a further point to Bδ(x) \ {x} for all
x ∈ ∪z∈ϕ(Ez(X)) \ ϕ. Hence,

| ∪x∈ϕ BD1(ψ−x)−δ(x)|︸ ︷︷ ︸
δ↓0−→|∪x∈ϕBD1(ψ−x)(x)|

≤ |K(ϕ, θδ)| ≤ | ∪x∈ϕ
(
BD1(ψ−x)(x) ∪ ∪z∈Ex(θδ)Bδ(z)

)|︸ ︷︷ ︸
δ↓0−→|∪x∈ϕBD1(ψ−x)(x)|

,

where the convergences follow because the chosen configurations are finite. Thus, we can
choose δ small enough for

∣∣|K(ϕ, θδ)| − | ∪x∈ϕ BD1(ψ−x)(x)|∣∣≤ ε. Scaling all the configu-
rations with 1 + ε gives that

∑
x∈(1+ε)ϕ ξ (α)((1 + ε)ψ − x) ≥ 1 + ε. Note that owing to the

finiteness of the configurations in B, we can let δ be small enough so that we still have∑
x∈(1+ε)ϕ ξ (α)((1 + ε)θδ − x) ≥ 1, which implies that ((1 + ε)ϕ, (1 + ε)θδ) ∈ B. Thus,

| ∪x∈ϕ BD1(ψ−x)(x)| ≥ |K(ϕ, θδ)| − ε= (1 + ε)−d|K((1 + ε)ϕ, (1 + ε)θδ)| − ε

≥ (1 + ε)−dinf
(ϕ,ψ)∈B

|A(ϕ, ψ)| − ε.

Since ε > 0 was arbitrary, we conclude the proof. �
Proof of Lemma 6. Throughout the proof we rely on the interpretation of the optimiza-

tion problem in Lemma 5. We set M := cmax + 1 and let (ϕ, ψ) ∈ B. Then we represent ϕ
as ϕ = {x1, . . . , xm} such that D1 ≥ D2 ≥ · · · ≥ Dm, where Di := D1(ψ − xi). Next, we define
the normalized α-weighted distances by γi := Dαi /(

∑
j≤m Dαj ), emphasizing that Di ≥ γ 1/α

i
because the denominator is at least 1. For the first part of the lemma, we will distinguish
between the two cases that the maximal nearest-neighbor distance of a configuration is either
large or small.

Case 1: γ1 ≤ 1/M. Note that by (FIN), each point in R
d is contained in at most cmax balls

BDi (xi), i ≤ m. Thus,

| ∪i≤m BDi (xi)| ≥ 1

cmax

∑
i≤m

|BDi (xi)| = κd

cmax

∑
i≤m

Dd
i ≥ κd

cmax

∑
i≤m

γ
d/α
i . (15)

Now we formally modify the weights {γi}i≤m to decrease this sum. More precisely, we
can decrease the values of γl for l ∈ {M + 1, . . . ,m} and simultaneously increase some of
γ1, . . . , γM until they are all equal to 1/M, while keeping

∑
i≤m γi = 1. Since concavity

implies that yd/α + zd/α ≥ (y + z)d/α for y, z ≥ 0, we deduce that this weight modification only
decreases the sum of the d/α-weighted values of the γi compared to (15). Thus,

κd

cmax

∑
i≤m

γ
d/α
i ≥ κd

cmax

∑
i≤M

M−d/α = κd

cmax
M1−d/α > κd = |B1(0)|, (16)

for α sufficiently large, depending only on cmax and d.

Case 2: γ1 > 1/M. First, we decompose the volume of the union of balls as

| ∪i≤m BDi (xi)| = |BD1 (x1)| + | ∪m
i=2

(
BDi (xi) \ BD1 (x1)

)|.
Now note that in the NNG, the balls BDi (xi) and BD1 (x1) cannot fully overlap, since xi cannot

be in the interior of BD1 (x1) and vice versa. Even after subtracting BD1 (x1), the volume of the
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remaining shape is still larger than half of its original volume. Thus, by concavity,

| ∪i≤m BDi (xi)| − κdγ
d/α
1 ≥ 1

cmax

m∑
i=2

∣∣BDi (xi) \ BD1 (x1)
∣∣≥ κd

2cmax

m∑
i=2

γ
d/α
i

≥ κd

2cmax
(1 − γ1)d/α .

Next, since the minimum of a concave function is attained at the boundary,

κdγ
d/α
1 + κd

2cmax
(1 − γ1)d/α ≥ κd min

{
1,M−d/α + 1

2cmax
(1 − 1/M)d/α

}
≥ κd (17)

for α sufficiently large depending on cmax and d. We summarize the requirement that α was
supposed to be sufficiently large by writing α ≥ α0 with α0 depending on cmax and d. Finally,
we point out that the configurations ({0}, {0, (1, 0, . . . , 0)}) are in B since cINF = 2 for the
NNG and it yields the influence zone that is a ball with radius 1 when using the interpretation
of the optimization problem for the NNG derived in Lemma 5. Thus, the volume of the unit
ball can indeed be approached by the infimum, which gives the first part of Lemma 6.

For the second part, fix δ > 0 and let the configurations (ϕ, ψ) ∈ B satisfy γ1 < 1 − δ. We
repeat the case distinction that we conducted in the first part; without any adjustments, (15)
and (16) show that if γ1 ≤ 1/M, there exists an ε1 > 0 depending on cmax and d such that

| ∪i≤m BDi (xi)| ≥ (1 + ε1)κd

for α ≥ α0. In the case that 1/M ≤ γ1 < 1 − δ, we can perform a similar calculation as the
one that led to (17); then, by concavity, as well as by the fact that the sum of strictly concave
functions is again strictly concave, we arrive at

| ∪i≤m BDi (xi)| ≥ κdγ
d/α
1 + κd

2cmax
(1 − γ1)d/α

≥ κd min

{
(1 − δ)d/α + δd/α

2cmax
,M−d/α + 1

2cmax
(1 − 1/M)d/α

}
≥ (1 + ε2)κd

for an ε2 > 0 depending on δ, cmax, and d if α ≥ α0. Taking ε= min{ε1, ε2} concludes the
proof. �

A slightly altered version of the proof of Lemma 6 would also work for the undirected
NNG. One would have to approximate ({0}, {0, (1, 0, . . . , 0)}) by putting an additional point
close to (1, 0, . . . , 0) to guarantee that the score of the origin is equal to 1. There are some
reasons why the bidirected version does not admit κd as solution of its optimization problem
for large α. First, Lemma 5 no longer holds for the bidirected NNG. Another reason is that
for ({0}, {0, (1, 0, . . . , 0)}), the value of the score function is ξ (α)(ψ) ≤ 1/2< 1 and cannot be
approximated with elements of B that yield a score of approximately 1 for the origin while
maintaining an influence zone with volume about κd.

4.2. Theorem 2(a) for the (un-/bidirected) kNN and the β-skeleton

Recall that we need to prove that the optimization problems of the graphs described in
Section 3 admit strictly positive solutions. Consider any of those graphs and let (ϕ, ψ) ∈ B.
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Note that this implies that∑
x∈ϕ

∑
y∈E(ψ−x)

|x − y|α︸ ︷︷ ︸
=:λx,y

≥
∑
x∈ϕ

E(ψ − x) ≥ 1, (18)

by the definitions of E and B that we recall from (1) and (9). First, we derive a lower bound
for |A(ϕ, ψ)| in terms of a volume of a union of suitable balls. This will be done sepa-
rately for the (un-/bidirected) kNN and the β-skeletons. After that we can consider both cases
simultaneously.

(un-/bidirected) kNN: First, since #ψ ≥ cINF = k + 1, we know that for any x ∈ ϕ, the addition
of a node within the interior of BDk(ψ)(x) would delete a vertex in {y : y ∈ E(ψ − x)}.
The influence zone prohibits such nodes, from which we deduce that |A(ϕ, ψ)| ≥ | ∪x

BDk(ψ)(x)| = | ∪x ∪yB
λ

1/α
x,y

(x)|. We intentionally let the balls after the equals sign overlap

to avoid being forced to distinguish between the (un-/bidirected) kNN and β-skeleton
below.

β-skeleton: For x ∈ ϕ and y ∈ E(ψ − x), define h(x, y) := (x + y)/2 as the midpoint between
x and y. The β-skeleton for β > 1 is a subgraph of the GG. Therefore, any node placed
in the ball B

λ
1/α
x,y /2

(h(x, y)) would remove the edge between x and y. Thus, |A(ϕ, ψ)| ≥
| ∪x ∪yB

λ
1/α
x,y /2

(h(x, y))|.
Now, let us enumerate the λx,y in decreasing order, i.e., λ1 ≥ λ2 ≥ · · · . Furthermore, we

set γi = λi/(
∑

j λj), implying that λi ≥ γi by (18). Because of (FIN) and the bound on the

maximal node degree, every point y ∈R
d is contained in at most (cmax + 1)2 of these balls.

Thus,

|A(ϕ, ψ)| ≥
∑

i

1

(cmax + 1)2
|B
λ

1/α
i /2

(0)| ≥
∑

i

1

2d(cmax + 1)2
|B
γ

1/α
i

(0)| =
∑

i

κdγ
d/α
i

2d(cmax + 1)2
.

Now, as in the proof of Lemma 6, we use concavity to arrive at

∑
i

κdγ
d/α
i

2d(cmax + 1)2
≥ κd

2d(cmax + 1)2

(∑
i

γi

)d/α

= κd

2d(cmax + 1)2
> 0.

Thus, Theorem 1(a) becomes applicable.

5. Proof of Theorem 1

The proof of Theorem 1 is split up into the upper bound (Section 5.1) and the lower bound
(Section 5.2).

5.1. Upper bound

We will follow the strategy that has already been successfully applied in [6], and divide
the contributions to Hn into those coming from small and those coming from large scores.
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These are then treated separately by the lemmas below, whose proofs are given after the proof
of the upper bound of Theorem 1. For convenience, we let

Rn(X) := max
x∈X∩Qn

R(X − x) (19)

denote the maximal stabilization radius in the sampling window; cf. (6). We start by bounding
summands with small contributions through a Poisson functional concentration inequality from
[3] to verify that these cannot contribute substantially to the excess.

Lemma 7. (Upper bound for contribution of small summands.) Let ε ∈ (0, 1) and a ∈ (0, (1 −
d/α)/2). Then

lim sup
n↑∞

1

nd2/α
log P

(
1

nd

∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X − x)< na}>μα + εr,Rn(X) ≤ n

)
= −∞.

(20)

Next we use a concentration result for binomial random variables from [14, Lemma 1.1] to
bound the number

J(a)
n (X) := #J (a)

n (X) := #{x ∈ X ∩ Qn : ξ (α)(X − x) ≥ na} (21)

of x ∈ X ∩ Qn that have a score of at least na.

Lemma 8. (Upper bound for number of large summands.) Let a ∈ (0, 1) and ε ∈ (0, ad/α).
Then

lim sup
n↑∞

1

nd2/α
log P

(
J(a)

n (X)> nd2/α−ε)= −∞. (22)

Furthermore, we bound the probability that a small number of Poisson points carry a lot of
the excess weight.

Lemma 9. (Upper bound for condensation probability.) Let m, n ≥ 1 and τ > 0. Then

P

⎛⎜⎝ ∑
x∈J (a)

n (X)

ξ (α)(X − x) ≥ τ, J(a)
n ≤ m,R3n(X) ≤ n

⎞⎟⎠
≤ (Idcmax + 1)4m2(5n)d2(Idcmax+1)2m exp

(
−τ d/α inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|

)
.

(23)

Before proving these lemmas, we apply them to get the upper bound.

Proof of the upper bound of Theorem 1. Let a ∈ (0, (1 − d/α)/2) and ε ∈ (0, ad/α). Then

P

( ∑
x∈X∩Qn

ξ (α)(X − x)>μαnd + rnd

)

≤ P

( ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X − x)< na} −μαnd > εrnd

)

+ P

( ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X − x) ≥ na} ≥ (1 − ε)rnd

)
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≤ P

(
1

nd

∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X − x)< na}>μα + εr,Rn(X) ≤ n

)

+ P

(
J(a)

n (X)> nd2/α−ε)

+ 2P(R3n(X)> n) + P

⎛⎜⎝ ∑
x∈J (a)

n (X)

ξ (α)(X − x) ≥ (1 − ε)rnd, J(a)
n (X) ≤ nd2/α−ε,R3n(X) ≤ n

⎞⎟⎠.

(24)

From Lemmas 7 and 8 we know that with our choices of a and ε, the first two summands
after the last inequality of (24) do not play a role in large-volume asymptotics. Moreover, with
the help of Markov’s inequality and Mecke’s formula [13, Theorem 4.4], we get that

P(R3n(X)> n) = P(#{x ∈ X ∩ Q3n : R(X − x)> n} ≥ 1) ≤E[#{x ∈ X ∩ Q3n : R(X − x)> n}]

=E

[ ∑
x∈X∩Q3n

1{R(X − x)> n}
]

=
∫

Q3n

P(R((X ∪ {x}) − x) ≥ n)dx

≤
∫

Q3n

∑
i≤Id

P(Si((X ∪ {x}) − x) ≥ n)dx.

(25)

From here, owing to the characteristics of (STA), it is implied that for each i ≤ Id and r> 0 it
holds that

|Si ∩ Br(0)| ≥ rd min
j≤Id

|Sj ∩ B1(0)|︸ ︷︷ ︸
=:ccones

,

and by applying a Poisson concentration bound [14, Lemma 1.2] for a large enough n, we can
continue our computations for each i ≤ Id and x ∈ Q3n with

P(Si((X ∪ {x}) − x) ≥ n) ≤ P
(
X(Si ∩ Bn/cSTA(0)) ≤ cSTA

)
≤ exp

(
−ccones

(
n

cSTA

)d

+ cSTA − cSTA log

(
cd+1

STA

cconesnd

))
,

where we recall that if X is interpreted as a Poisson random measure, we can denote the random
number of points in a Borel set by X(·). Therefore, continuing from (25), we arrive at

1

nd2/α
log P(R3n(X)> n) ≤ −ccones

cd
STA

nd(1−d/α) + cSTA

nd2/α
− 1

nd2/α
log

(
cd+1

STA

cconesnd

)
n↑∞−→ −∞.

(26)
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Thus, it remains to consider the fourth summand after the last inequality of (24). Here,
Lemma 9 yields

lim sup
n↑∞

1

nd2/α
log P

⎛⎜⎝ ∑
x∈J (a)

n (X)

ξ (α)(X − x) ≥ (1 − ε)rnd, J(a)
n (X) ≤ nd2/α−ε,R3n(X) ≤ n

⎞⎟⎠
≤ −((1 − ε)r)d/α inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|.

In brief, we arrive at

lim sup
n↑∞

1

nd2/α
log P(Hn >μα + r) ≤ −((1 − ε)r)d/α inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|.

Letting ε ↓ 0 concludes the proof of the upper bound. �
In the rest of this subsection, we will prove Lemmas 7, 8, and 9. The essential ingredient

for the proof of Lemma 7 is a concentration bound from [3, Corollary 3.3(i)].

Proof of Lemma 7. We start by introducing some of the notation from [3]. For the Poisson
process X, we define the functional

F(α)
n (X) :=

∑
x∈X∩Qn

ξ (α)(X ∩ Q3n − x)1{ξ (α)(X ∩ Q3n − x)< na}. (27)

Before we can apply the concentration bound, we need to find a link between the typical
value ndμα and the expectation of the functional defined in (27). We can find the connection
using the fact that, because of (STA), under the event {Rn(X) ≤ n}, this functional is equal to
the one considered in Lemma 7:

ndμα ≥E

[ ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X−x)<na}

]

≥E

[ ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X−x)<na}1{Rn(X)≤n}

]

=E

[ ∑
x∈X∩Qn

ξ (α)(X ∩ Q3n − x)1{ξ (α)(X ∩ Q3n − x)< na, Rn(X) ≤ n}
]

=E

[ ∑
x∈X∩Qn

ξ (α)(X ∩ Q3n − x)1{ξ (α)(X ∩ Q3n − x)< na}(1 − 1{Rn(X)> n})
]

=E[F(α)
n (X)] −E

[ ∑
x∈X∩Qn

ξ (α)(X ∩ Q3n − x)1{ξ (α)(X ∩ Q3n − x)< na, Rn(X)> n}
]

≥E[F(α)
n (X)] −E[X(Qn)na1{Rn(X)> n}].
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Subsequently, the Cauchy–Schwarz inequality yields

ndμα ≥E[F(α)
n (X)] −

√
E[X(Qn)2n2a]E[1{Rn(X)>n}]

=E[F(α)
n (X)] −

√
(n2d + nd)n2aP(Rn(X)> n).

As argued in (26), the factor P(Rn(X)> n) decays exponentially with n, and consequently
we can assume that n is large enough to guarantee that ndμα ≥E[F(α)

n (X)] − ε. Therefore,

P

( ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X−x)<na} > ndμα + ndεr,Rn(X) ≤ n

)

≤ P
(
F(α)

n (X)> ndμα + ndεr
)

≤ P(F(α)
n (X)>E[F(α)

n (X)] + ndεr − ε).

(28)

Furthermore, we need the difference operator Dy, y ∈R
d, defined by DyF(α)

n (X) := F(α)
n (X ∪

{y}) − F(α)
n (X). For β ≥ 0, we now set

V+
β (F(α)

n (X)) :=
∫
Rd

(
DyF(α)

n (X)1{DyF(α)
n (X)≤β}

)2
dy +

∑
x∈X

(
DxF(α)

n (X \ {x})1{DxF(α)
n (X\{x})>β}

)2
.

(29)
To apply [3, Corollary 3.3(i)], we need to find an almost sure upper bound for V+

β (F(α)
n ). Points

outside of Q3n do not affect the functional. Thus, choosing y ∈R
d \ Q3n in the difference

operator has no effect and yields DyF(α)
n (X) = 0. Moreover, by (FIN), adding a point to any

configuration can only affect the outgoing edges of cmax nodes, and the degree of each node is
bounded by cmax as well. Hence, supy∈Q3n

|DyF(α)
n (X)| ≤ (cmax + 1)2na =: β, and by the same

reasoning, supx∈X |DxF(α)
n (X \ {x})| ≤ β. Thus, we bound (29) by

V+
β (F(α)

n (X)) ≤
∫

Q3n

(cmax + 1)4n2ady = ((cmax + 1)2na)2(3n)d.

Then, by applying [3, Corollary 3.3(i)], we have

P(F(α)
n (X)>E[F(α)

n (X)] + ndεr − ε)

≤ exp

(
−ndεr − ε

2|β| log

(
1 + |β|(ndεr − ε)

((cmax + 1)2na)2(3n)d

))

= exp

(
− ndεr − ε

2(cmax + 1)2na
log

(
1 + (cmax + 1)2na(ndεr − ε)

(cmax + 1)4n2a(3n)d

))

= exp

(
−nd−a(εr − ε/nd)

2(cmax + 1)2
log

(
1 + n−a(εr − ε/nd)

(cmax + 1)23d

))
if ndεr − ε≥ 0. Finally, with the help of (28), we obtain

lim sup
n↑∞

1

nd2/α
log P

( ∑
x∈X∩Qn

ξ (α)(X − x)1{ξ (α)(X−x)<na} > ndμα + ndεr,Rn(X) ≤ n

)
= −∞

for a ∈ (0, (1 − d/α)/2). �
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FIGURE 4. Labeling of the boxes in three dimensions, where 27 labels are sufficient, and two dimensions,
where 9 are sufficient.

Proof of Lemma 8. Let a ∈ (0, 1). We divide Qn into a grid consisting of 	n1−a/α
d smaller
boxes with side length ln := n/	n1−a/α
. The set of all of these cubes is

Q := {
Q : Q = lnz + [−n/2,−n/2 + ln]d, z ∈ {0, . . . , 	n1−a/α
 − 1}d}.

Furthermore, we label each box in such a way that between two boxes of the same label there
are always two boxes with a different label. For instance, we can label the boxes according to
elements of the set L= {0, 1, 2}d, thus using #L= 3d different labels; see Figure 4. For m ∈L,
we denote the set of label-m cubes by

Q(m) := {
Q : Q = lnz + [−n/2,−n/2 + ln]d,

z = (z1, . . . , zd) ∈ {0, . . . , 	n1−a/α
 − 1}d with zi mod 3 = mi
}
,

so that #Q(m) = 	n1−a/α
d/3d + o(n1−a/α) =: Kn.
Setting Pn := (na/cmax)1/α , we start bounding the probabilities under consideration using

the bounded node degree:

P(J(a)
n (X)> nd2/α−ε) ≤ P

(
ξ (α)(X − x)> na for all x in some ϕ ⊆ X ∩ Qn with #ϕ ≥ nd2/α−ε)

≤ P

(
max

y∈E(X−x)
|y|> Pn for all x in some ϕ ⊆ X ∩ Qn with #ϕ ≥ nd2/α−ε

)
.

(30)

We now thin out the configuration consisting of all x as in the previous line, as follows. Starting
with any point x ∈ ϕ, we omit all points of ϕ that are at distance at most Pn to x. According
to (FIN2) with M = Pn, this operation removes at most cmax − 1 points. Repeating iteratively
for the other points of ϕ yields a configuration ϕ that contains at least Nn := nd2/α−ε/cmax
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nodes satisfying maxy∈E(X−x) |y|> Pn and |x − y|> Pn for all x, y ∈ ϕ with x �= y. Thus, we
can continue in (30) with

P

(
max

y∈E(X−x)
|y|> Pn for all x in some ϕ ⊆ X ∩ Qn with #ϕ ≥ nd2/α−ε

)

≤ P

(
max

y∈E(X−x)
|y|> Pn and |x − y|> Pn for all x �= y in some ϕ ⊆ X ∩ Qn with #ϕ ≥ Nn

)
.

(31)

Next, we note that in a ball of radius
√

dln, only a limited number of points can be placed so
that all of their mutual distances are larger than Pn. For large n, this number is bounded by
the number of balls with radius (na/cmax)1/α/2 that fit in a ball with radius 4

√
dna/α in such

a way that none of the smaller balls overlap. The ratio between the volume of B4
√

dna/α (0) and

the volume of B(na/cmax)1/α/2(0) yields the bound 8dcd/α
maxdd/2 for n large. Thus, after setting

Mn := Nn/(8dcd/α+1
max dd/2), we can use this argument to proceed in (31) and estimate, for n

sufficiently large,

P

(
max

y∈E(X−x)
|y|> Pn and |x − y|> Pn for all x �= y in some ϕ ⊆ X ∩ Qn with #ϕ ≥ Nn

)

≤ P

(
max

y∈E(X−x)
|y|> Pn and |x − y|>√

dln for all x �= y in some ϕ ⊆ X ∩ Qn with #ϕ ≥ Mn

)
.

(32)

In the event on the right-hand side of (32), each hypercube Q ∈Q contains at most one node
that has an edge larger than Pn. Furthermore, if maxy∈E(X−x) |y|> Pn holds for an x ∈ X, then
(STA) gives that R(X − x)> Pn. Thus, by a union bound, we arrive at

P

(
max

y∈E(X−x)
|y|> Pn and |x − y|>√

dln for all x �= y in some ϕ ⊆ X ∩ Qn with #ϕ ≥ Mn

)

≤
∑
m∈L

P

(
#{Q ∈Q(m) : max

y∈E(X−x)
|y|> Pn for some x ∈ Q ∩ X} ≥ Mn/3

d
)

(33)

≤
∑
m∈L

P

(
#{Q ∈Q(m) : R(X − x) ≥ Pn for some x ∈ Q ∩ X} ≥ Mn/3

d
)

.

Through a calculation performed in the same fashion as in (26), we get

P

(
max

x∈Q∩X
R(X − x) ≥ Pn

)
≤

∫
Q
P
(R(X ∪ {x} − x) ≥ (na/cmax)1/α)dx ≤ ldne−cnad/α

for n large enough and a value c> 0. Next, note that ln ≥ Pn. Thus, for a fixed m ∈L, the events
of finding a Poisson point with a stabilization radius exceeding Pn in a box Q are independent
for different choices of Q ∈Q(m). Therefore, a binomial concentration bound [14, Lemma 1.1]
gives that for each m ∈L,

P
(
#{Q ∈Q(m) : max

x∈Q∩X
R(X − x) ≥ Pn} ≥ Mn/3

d)
≤ exp

(
− Mn

3d2
log

(
Mn/3d

Knldne−cnad/α

))
,

(34)
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assuming n is sufficiently large. Now, note that

lim
n↑∞ − 1

nd2/α

Mn

3d2
log

(
Mn/3d

Knldne−cnad/α

)
= −∞ (35)

holds if ε ∈ (0, ad/α). Finally, combining (30), (31), (32), (33), (34), and (35) yields the desired
result. �

Proof of Lemma 9. Let m ≥ 1 and τ > 0, and let us assume that we are under the event
that we would like to bound in Lemma 9. Note that by (7), under {R3n(X) ≤ n} we have that
E(X − x) = E(X ∩ Q5n − x) for all x ∈ X ∩ Q3n. Under the event {J(a)

n (X) ≤ m}, we choose ϕ =
J a

n (X) and ψ ′ = ∪x∈ϕEx(X). From (STA), we obtain configurations θx, x ∈ ϕ ∪ψ ′, with E(X −
x) = E(θx − x) and #θx ≤ IdcSTA. The condition (STA) also implies that E(X − x) = E(ψ − x)
for every x ∈ ϕ ∪ψ ′ where ψ := ϕ ∪ψ ′ ∪x∈ϕ∪ψ ′ θx. Note that, thanks to the bound on the
stabilization radius, the set ψ is entirely contained in Q5n. Moreover, the bounded node degree
implies that

#ψ ≤ #ϕ + #ψ ′ + (#ϕ + #ψ ′)IdcSTA ≤ (IdcSTA + 1)(cmax + 1)m ≤ (Idcmax + 1)2m. (36)

Below, in the case that #ψ < cINF, we add cINF − #ψ points in X ∩ Q5n to ψ to be able to
apply (INF). To justify that X(Q5n) ≥ cINF − #ψ can be assumed here, we remark that under{∑

x∈J (a)
n (X)

ξ (α)(X − x) ≥ τ,R3n(X) ≤ n
}
, it must hold that X(Q5n) ≥ cINF. The reason for this

is that the fact that ξ (α)(X − x)> 0 for some x ∈ X ∩ Qn implies that X ∩ Qn cannot be empty,
and R3n(X) ≤ n implies that there have to be at least Id(cmax − 1) other Poisson points within
distance n of any point in Qn. Thus, we even get that X(Q5n) ≥ Id(cmax − 1) + 1 ≥ cINF, which
concludes this argument. Next, using (36) together with E(X − x) = E(ψ − x) and (INF), we
obtain that

P

( ∑
x∈J (a)

n (X)

ξ (α)(X − x) ≥ τ, J(a)
n (X) ≤ m,R3n(X) ≤ n

)

≤ P

(∑
x∈ϕ

ξ (α)(ψ − x) ≥ τ, for some ϕ ⊆ X ∩ Qn, #ϕ ≤ m and ϕ ⊆ψ ⊆ X ∩ Q5n,

cINF ≤ #ψ ≤ (Idcmax + 1)2m, E(ψ − x) = E(X − x) for all x ∈ ϕ ∪ ∪z∈ϕEz(ψ)

)

≤ P

(∑
x∈ϕ

ξ (α)(ψ − x) ≥ τ, for some ϕ ⊆ X ∩ Qn, #ϕ ≤ m and ϕ ⊆ψ ⊆ X ∩ Q5n,

cINF ≤ #ψ ≤ (Idcmax + 1)2m, E(ψ − x) ⊆ E((ψ ∪ {y} − x) for all y ∈ X and

x ∈ ϕ ∪ ∪z∈ϕEz(ψ)

)
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= P

(∑
x∈ϕ

ξ (α)(ψ − x) ≥ τ, for some ϕ ⊆ X ∩ Qn, #ϕ ≤ m and ϕ ⊆ψ ⊆ X ∩ Q5n,

cINF ≤ #ψ ≤ (Idcmax + 1)2m, X ∩ A(ϕ, ψ) = ∅
)

=: ( � ).

We remind the reader of the sets D′
l, l ∈N, and N ′ that were defined in Section 2, before

Equation (9). Note that by the assumptions in (CON),

0 = |Nl+1| =
∫

{(x1,...,xl)∈Rdl: pw.~distinct}
|D({x1, . . . , xl})|d(x1, . . . , xl),

which implies that |D′
l| = 0, and thus N ′ is a zero-set. In the following, let x = (x1, . . . , xl1 )

and y = (y1, . . . , yl2 ) represent ϕ and ψ \ ϕ, respectively. We will abuse notation and allow
x and y to be treated as sets. A combination of the union bound, Markov’s inequality, and
Mecke’s formula yields

( � ) ≤
∑

0≤l1,l2≤(Idcmax+1)2m

∫
Q

l2
5n

∫
Q

l1
5n

P

(∑
x∈x

ξ (α)(x ∪ y − x) ≥ τ, #y ≥ cINF, X ∩ A(x, x ∪ y) = ∅
)

dxdy

=
∑

0≤l1,l2≤(Idcmax+1)2m

∫
Q

l2
5n

∫
Q

l1
5n

1{∑x∈x ξ
(α)(x∪y−x)≥τ }1{x∪y�∈N ′, #y≥cINF} exp(−|A(x, x ∪ y)|)dxdy

≤ (Idcmax + 1)4m2(5n)d2(Idcmax+1)2m exp

(
−τ d/α inf

(x,x∪y)∈B
|A(x, x ∪ y)|

)
,

from which the assertion follows. �

5.2. Lower bound

First, if inf(ϕ,ψ)∈B |A(ϕ, ψ)| = ∞ then there is nothing to prove. Thus, throughout the proof
of the lower bound we assume that inf(ϕ,ψ)∈B |A(ϕ, ψ)|<∞. Recall that �·� denotes the ceiling
function, given by �t� := min{m ∈Z : m ≥ t} for t ∈R. The rough idea for the proof of the
lower bound is to use separated boxes

Wn := [
0, �n − nd/α log n − ( log n)2�︸ ︷︷ ︸

=:bn

]d

and Un := [n − nd/α log n, n]d and place the configuration responsible for the excess weight
entirely in Un while letting Wn be responsible for the typical value. The separation is achieved
by conditioning on points being close to the boundary of Wn. In particular, we introduce a
smaller box

W2−
n := [

2( log n)2, bn − 2( log n)2]
inside of Wn and condition on a certain number of points lying in Wn \ W2−

n . This is realized
by covering that volume with layers of boxes with side lengths between log n and 2 log n,
preferably hypercubes with length log n as pointed out in Figure 5. Hence, each box has a
volume between ( log n)d and (2 log n)d.
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FIGURE 5. Sketch of Un, Wn, W−
n , and W2−

n .

Hence, for sufficiently large n we need at most⌈
bd

n − (bn − 4( log n)2)d

( log n)d

⌉
≤

⌈
nd−1

( log n)d−3

⌉
(37)

additional boxes to cover the space Wn \ W2−
n entirely. We denote these boxes by (Q′

i)i and
define the event

Egood
n := {

X(Q′
i) ∈ [cmax, ( log n)2d) for all i

}
that will generate independence between the functional of Poisson points in Wn and Poisson
points in Un. In addition, we introduce the abbreviation

Hn(A, B) := 1

nd

∑
x∈X∩A

ξ (α)(X ∩ B − x)

for A, B ⊆R
d. For ε <μα , we also define the event

G1,n := {Hn(Wn,Wn)>μα − ε/2} ∩ Egood
n . (38)

The next lemma gives a lower bound for the probability of this event.

Lemma 10. (Lower bound for P(G1,n).) It holds that lim infn↑∞ n−d2/α log P(G1,n) ≥ 0.

We now focus our attention on what happens within Un. We will rescale a configuration so
that it is responsible for the entire excess weight and so that there is also enough flexibility

https://doi.org/10.1017/apr.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.10


Large deviations for graph functionals 61

to embed the points in open balls to get a configuration that can be attained with positive
probability. For the chosen ε, we will use

τn := ((r + ε)(1 + ε)nd)1/α

as the parameter for the rescaling. The following lemma will be used to find the proper
configuration within Un to rescale.

Lemma 11. (Approximation of optimal configurations.) Let ε > 0 and (ϕ, ψ) ∈ B. Then there
exists δ ∈ (0, 1) such that the following inequalities hold:

(a)

|
⋃

(zy)y∈ψ⊆Bδ(0)

A({x + zx : x ∈ ϕ}, {y + zy : y ∈ψ})
︸ ︷︷ ︸

=:Aδ(ϕ,ψ)

| ≤ |A(ϕ, ψ)| + ε

and

(b)

inf
(zx)x∈ψ⊆Bδ(0)

∑
x∈ϕ

ξ (α)({y + zy : y ∈ψ} − (x + zx))> 1/(1 + ε).

We insert another lemma to deal with the diameter of the influence zone.

Lemma 12. (Diameter of bounded influence zone.) Let (ϕ, ψ) ∈ B with |A(ϕ, ψ)|<∞. Then
there is δ ∈ (0, 1) such that diam(Aδ(ϕ, ψ))<∞.

Note that, if we pick (ϕ, ψ) ∈ B such that |A(ϕ, ψ)|<∞, then, for δ small enough, by
Lemma 12 the diameter of τnAδ(ϕ, ψ) is of order nd/α , while Un has side length nd/α log n.
This means we can choose n large enough for Un to contain a shifted copy of τnAδ(ϕ, ψ). Thus,
from now on we can assume that τnAδ(ϕ, ψ), as well as ∪x∈τnψB1(x), is entirely contained in
Un if |A(ϕ, ψ)|<∞.

We set

A−
δ,n := τnAδ(ϕ, ψ) \

⋃
x∈τnψ

B1(x),

and similarly to (38), we define the event

G2,n(δ) := {
X(B1(x)) = 1 for all x ∈ τnψ, X(A−

δ,n) = 0
}
. (39)

A bound for its probability is given in the following lemma.

Lemma 13. (Lower bound for P(G2,n(δ)).) Let δ ∈ (0, 1) and (ϕ, ψ) ∈ B. Then

lim inf
n↑∞

1

nd2/α
log P(G2,n(δ)) ≥ −(|A(ϕ, ψ)| + ε

)
(r + ε)d/α(1 + ε)d/α .

Now we can give the proof of the lower bound.

Proof of the lower bound of Theorem 1. First, fix two configurations (ϕ, ψ) ∈ B such that
|A(ϕ, ψ)| ≤ inf(ϕ′,ψ ′)∈B |A(ϕ′, ψ ′)| + ε. Because inf(ϕ′,ψ ′)∈B |A(ϕ′, ψ ′)|<∞ was assumed at
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the start of this section, |A(ϕ, ψ)|<∞ also has to be satisfied. Now, let δ > 0 be such that
(a) and (b) from Lemma 11 are satisfied. Under the event ∩x∈τnϕ{X(B1(x)) = 1}, we can find
(zx)x∈τnψ ⊆ B1(0) such that {x + zx} = X ∩ B1(x) for each x ∈ τnψ . Furthermore, if n is so large
that τnδ ≥ 1, then under {X(τnA−

δ ) = 0} it is guaranteed by (INF) that for each x + zx ∈ {y +
zy : y ∈ τnϕ} ∪ ∪w∈τnϕ(Ew+zw ({y + zy : y ∈ τnψ})),

E(X − (x + zx)) ⊇ E({y + zy : y ∈ τnψ} − (x + zx)). (40)

Then, also if τnδ ≥ 1, Lemma 11(b) and (40) give that∑
x∈τnψ

ξ (α)(X − (x + zx)) ≥
∑

x∈τnϕ

ξ (α)({y + zy : y ∈ τnψ} − (x + zx))> ταn /(1 + ε) = (r + ε)nd.

(41)
Note that the index set in the sum before the first inequality in (41) contains more points than
the one after it. The reason for this is that when a point is added outside of the influence
zone of (τnϕ, τnψ), our framework for graphs does not exclude new edges from being created
between two already existing nodes in τnψ . While it is admittedly hard to come up with an
actual example of a graph for which the following is possible, it might potentially happen that
when the points from X \ (τnψ) are added to τnψ , an additional edge arises from a point in
τnψ \ (τnϕ) to a point in τnϕ. In an undirected graph this could have the effect that the power-
weighted edge lengths of some outgoing edges from points in τnϕ are only taken into account
with the factor 1/2 on the left-hand side of the first inequality in (41), while being considered
with their full weight on the right-hand side of it. Summing over all points in τnψ lets us avoid
this issue.

As the remark after Lemma 12 suggets, we can assume that all of the occurring sets and con-
figurations are contained in Un, from which point (41) implies that G2,n(δ) ⊆ {Hn(Un,R

d)>
r + ε}.

We now define the set W−
n := [

( log n)2, bn − ( log n)2
]

and assert that under the event G1,n
from (38), we have

Hn(Wn \ W−
n ,Wn)< ε/2 (42)

for all large n. Once (42) is established, we can conclude the proof of the lower bound of
Theorem 1. Indeed, under Egood

n each box in Wn \ W−
n contains at least cmax Poisson points,

and therefore, if n is chosen large, then each of the cones around an x ∈ X ∩ W−
n has to contain

cmax Poisson points before the base of the cone leaves Wn, which more formally means that
∪i≤Id

(
(Si + x) ∩ BSi(X−x)(x)

)⊆ Wn. Thus, under Egood
n , again by (STA), we get that ξ (α)(X ∩

Wn − x) = ξ (α)(X − x) for all points x ∈ X ∩ W−
n if n is sufficiently large. In other words, the

layer of boxes containing points would not admit the score of points in W−
n being influenced

by any points outside of Wn. With (42) we get that under G1,n,

Hn
(
Wn,R

d)≥ Hn
(
W−

n ,R
d)= Hn

(
W−

n ,Wn
)= Hn

(
Wn,Wn

)− Hn
(
Wn \ W−

n ,Wn
)
>μα − ε.

In addition, G1,n and G2,n(δ) are independent for large n. Next, shifting the coordinate system
shows that P(Hn >μα + r) = P

(
Hn([0, n]d,Rd)>μα + r

)
. Hence,

P
(
Hn >μα + r

)≥ P
(
Hn

(
Un,R

d)> r + ε,Hn
(
Wn,R

d)>μα − ε
)

≥ P
(
G2,n(δ),G1,n

)
= P

(
G2,n(δ)

)
P
(
G1,n

)
.
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Using Lemmas 10 and 13, it follows that

lim inf
n↑∞

1

nd2/α
log P(Hn >μα + r) ≥ −

(
inf

(ϕ,ψ)∈B
|A(ϕ, ψ)| + ε

)
(r + ε)d/α, (43)

and letting ε ↓ 0 gives the asserted result.
It remains to prove (42) under the event G1,n. To that end, we recall that

Hn(Wn \ W−
n ,Wn) = 1

nd

∑
x∈X∩(Wn\W−

n )

ξ (α)(X ∩ Wn − x).

Henceforth, we bound the summands on the right-hand side separately in the cases where
dist(x, ∂Wn) ≥ c log n and where dist(x, ∂Wn)< c log n for a suitable c> 0.

First, consider the case dist(x, ∂Wn) ≥ c log n. If we cut off the cone Si + x at a distance
c log n for large enough c, then it still contains one of the boxes Q′

j. By definition of the event

Egood
n , each of these boxes contains at least cmax nodes. Therefore, Si(X ∩ Wn − x) is of order

log n for all 1 ≤ i ≤ Id.
Now, consider the case that dist(x, ∂Wn)< c log n. If a cone that arises from x does not inter-

sect Wn anymore after a distance from the apex of order log n, then it contains Poisson points of
X ∩ Wn only up until a distance of order log n. Since, by (STA), none of the lateral boundaries
of any cone are parallel to an axis of the coordinate system, we obtain that otherwise the cone
envelopes a whole box Q′

j after a distance from the apex of order log n. Then Si(X ∩ Wn − x)
is of order log n as argued for above. Hence, after n is chosen sufficiently large, (STA) yields
a finite configuration θx with θx ⊆ B( log n)2 (x) ∩ Wn satisfying that E(X ∩ Wn − x) = E(θx − x).
Together with the bounded node degree, we have for n large

ndHn(Wn \ W−
n ,Wn) ≤

∑
x∈X∩(Wn\W−

n )
y∈E(θx−x)

|y|

≤ X(Wn \ W−
n )cmax( log n)2α

≤ ( log n)2d
⌈

nd−1

( log n)d−3

⌉
cmax( log n)2α,

where the final inequality follows from (37), the upper bound on the number of Poisson points
in each box Q′

i. Hence, we can choose n sufficiently large to ensure that Hn(Wn \ W−
n ,Wn)<

ε/2. �
The key ingredient to prove Lemma 10 is a weak law of large numbers for Poisson

functionals from [16].

Proof of Lemma 10. We consider separately each of the two events whose intersection
forms G1,n. For Egood

n we use a Poisson bound from [14, Lemma 1.2] and calculate, for n
sufficiently large,
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P
(
Egood

n

)
= 1 − P

(
X(Q′

i)< cmax or X(Q′
i) ≥ ( log n)2d for some i

)
≥ 1 −

⌈
nd−1

( log n)d−3

⌉(
e−( log n)d ∑

i≤cmax−1

(2 log n)di

i! + e
− 1

2 ( log n)2d log
(

( log n)2d

(2 log n)d

))

≥ 1 − nd−1
(

e−( log n)d
( log n)dcmax+2 + e− 1

2 ( log n)2d
)

. (44)

Next, we deal with {Hn(Wn,Wn)>μα − ε/2}. Under the condition that X(Wn) = bd
n, we

can deduce(
Hn(Wn,Wn)

∣∣ X(Wn) = bd
n

) d= bd
n

nd

1

bd
n

∑
i≤bd

n

ξ (α)({X(n)
1 , . . . , X(n)

bd
n
} − X(n)

i

)
d= bd

n

nd

1

bd
n

∑
i≤bd

n

ξ (α)(bn{X̂1, . . . , X̂bd
n
} − bnX̂i

)
for X(n)

1 , X(n)
2 , . . . being independent and identically distributed (i.i.d.) uniform random vari-

ables on Wn and X̂1, X̂2, . . . being i.i.d. uniform random variables on [0, 1]d. In order to apply
[16, Theorem 2.1], we need to check the moment condition, i.e., that for p> 2,

sup
n≥1

E
[
ξ (α)(bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
)p]

<∞. (45)

We can use the bound on the node degree to get

E
[
ξ (α)(bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
)p]=

∫ ∞

0
P
(
ξ (α)(bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
)p
> s

)
ds

≤
∫ ∞

0
P
(|y|> (

s1/p/cmax
)1/α for some y ∈ E(bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
))

ds.

(46)

Next, from (STA) we can deduce that, for every s> 0, if bnX̂1 has an out-neighbor among
bn

{
X̂2, . . . , X̂bd

n

}
that is farther away than

(
s1/p/cmax

)1/α , then one of the cones aris-

ing from bnX̂1 has to extend until at least a distance of
(
s1/p/cmax

)1/α from its apex
before it contains cSTA vertices. More precisely, there has to be an i ≤ Id such that
Si
(
bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
)
>

(
s1/p/cmax

)1/α . Additionally, the intersection of Wn and
(
Si +

bnX̂1
) \ B(

s1/p/cmax

)1/α

(
bnX̂1

)
cannot be empty, since the aforementioned out-neighbor has to

be within Wn. Therefore, under the event from the last line of (46), it is implied by the definition
of Si(·) that for some i ≤ Id it holds that bn

{
X̂1, . . . , X̂bd

n

}∩ (
Si + bnX̂1

)∩ B(
s1/p/cmax

)1/α

(
bnX̂1

)
contains at most cmax points, while Wn ∩ (

Si + bnX̂1
) \ B(

s1/p/cmax

)1/α

(
bnX̂1

) �= ∅. With these

arguments we arrive at∫ ∞

0
P
(|y|> (

s1/p/cmax
)1/α for some y ∈ E(bn

{
X̂1, . . . , X̂bd

n

}− bnX̂1
))

ds

≤
∑
i≤Id

∫ ∞

0
P
(
#
(
bn

{
X̂1, . . . , X̂bd

n

}∩ (
Si + bnX̂1

)∩ B(
s1/p/cmax

)1/α

(
bnX̂1

))≤ cmax

and Wn ∩ (
Si + bnX̂1

) \ B(
s1/p/cmax

)1/α

(
bnX̂1

) �= ∅)ds.

(47)
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Furthermore, since the cones do not have lateral boundaries parallel to any axes, under the event
after the last inequality in (47), the volume of the set Wn ∩ (Si + bnX̂1) ∩ B(s1/p/cmax)1/α (bnX̂1) is
of order sd/(pα) and therefore at least csd/(pα) for all i, where c> 0 depends only on the layout
of the cones, α, and cmax. Thus, by the independence of X̂2, . . . , X̂bd

n
, when conditioned on X̂1,

we can bound the probability of the event after the last inequality in (47) by the probability of
a binomial random variable consisting of bd

n − 1 trials with success probability

P(bnX̂2 ∈ (Si + bnX̂1) ∩ B(s1/p/cmax)1/α (bnX̂1) | Wn ∩ (Si + bnX̂1) \ B(s1/p/cmax)1/α (bnX̂1) �= ∅)

≥ csd/(pα)/bd
n

realizing a value of at most cmax − 1. Thus, by a binomial concentration bound [14,
Lemma 1.1],

E
[
ξ (α)(bn{X̂1, . . . , X̂bd

n
} − bnX̂1)p]

≤ Id

∫ ∞

0
P
(
Bin

(
bd

n − 1, csd/(pα)/bd
n

)≤ cmax − 1
)
ds

≤ Id

∫ ∞

0
P
(
Bin(bd

n, csd/(pα)/bd
n) ≤ cmax

)
ds

≤ Id(cmax/c)pα/d + Id

∫ ∞

(cmax/c)pα/d
P
(
Bin(bd

n, csd/(pα)/bd
n) ≤ cmax

)
ds

≤ Id(cmax/c)pα/d + Id

∫ ∞

(cmax/c)pα/d
exp

(−csd/(pα)(1 − cmax
csd/(pα) + cmax

csd/(pα) log ( cmax
csd/(pα) )

)
ds<∞.

In particular, the bound does not depend on n. Therefore, the moment condition (45) is satisfied.
Now, [16, Theorem 2.1] gives

1

bd
n

bd
n∑

i=1

ξ (α)(bn
{
X̂1, . . . , X̂bd

n

}− bnX̂i
) P−→μα,

and since bd
n/n

d n↑∞−→ 1, it follows that

lim
n↑∞ P

(
Hn(Wn,Wn)>μα − ε/2 | X(Wn) = bd

n

)= 1. (48)

Now we can use the union bound to arrive at

P(G1,n) ≥ P
(
Hn(Wn,Wn)>μα − ε/2

) + P
(
Egood

n
)− 1

≥ P
(
Hn(Wn,Wn)>μα − ε/2 | X(Wn) = bd

n

)
P(X(Wn) = bd

n) + P
(
Egood

n
)− 1

≥ P
(
Hn(Wn,Wn)>μα − ε/2 | X(Wn) = bd

n

)exp
(
− 1

12bd
n

)
√

2πbd
n

+ P
(
Egood

n
)− 1,

where in the last line we used [14, Lemma 1.3]. By (48) we can assume n large enough so that

P
(
(Hn(Wn,Wn)>μα − ε/2 | X(Wn) = bd

n

)≥ 1/2.
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Hence, combining this with (44), we get that

P(G1,n) ≥ 1

2

exp
(
− 1

12bd
n

)
√

2πbd
n

− nd−1(e−( log n)d
( log n)dcmax+2 + e− 1

2 ( log n)2d)
,

as asserted. �
We continue with the proof of Lemma 11.

Proof of Lemma 11. First, we show that⋂
δ>0

⋃
(zy)y∈ψ⊆Bδ(0)

A({x + zx : x ∈ ϕ}, {x + zx : x ∈ψ})
︸ ︷︷ ︸

=:Aδ(ϕ,ψ)

⊆ A(ϕ, ψ) ∪ D(ψ), (49)

where we recall that D(ψ) = {y ∈R
d : ϕ ∪ {y} ∈ N#ϕ+1}. The subset relation in (49) holds

because if we let y ∈ ∩δ>0Aδ(ϕ, ψ) \ D(ψ), then for every δ ∈ (0, 1) there exists a family
(zw)w∈ψ ⊆ Bδ(0) such that y ∈ A({w + zw : w ∈ ϕ}, {w + zw : w ∈ψ}). Hence,

Ex+zx ({w + zw : w ∈ψ}) �⊆ Ex+zx ({w + zw : w ∈ψ} ∪ {y})
for some

x + zx ∈ {w + zw : w ∈ ϕ} ∪ ∪v+zv∈{w+zw : w∈ϕ}(Ev+zv({w + zw : w ∈ψ})).
Since y �∈ D(ψ), we can apply (CON) to both sides, choosing δ sufficiently small, which
gives Ex(ψ) �⊆ Ex(ψ ∪ {y}) for some x ∈ ϕ ∪ ∪v∈ϕ(Ev(ψ)) and therefore y ∈ A(ϕ, ψ). Since
|D(ψ)| = 0, we deduce from (49) that for δ sufficiently small we have |Aδ(ϕ, ψ)| ≤
|A(ϕ, ψ)| + ε.

To prove Part (b), note that since ψ is finite, we can use (CON) and find δ ∈ (0, 1) small
enough so that for all choices of (zx)x∈ψ ⊆ Bδ(0) we have

{w − zw : w ∈ Ex+zx ({y + zy : y ∈ψ})} = Ex(ψ). (50)

This means the graph looks the same despite some small noise of at most δ for every node.
But the finiteness of the configuration combined with (50) guarantees that for δ sufficiently
small,

inf
(zx)x∈ψ⊆Bδ(0)

∑
x∈ϕ

ξ (α)({y + zy : y ∈ψ} − (x + zx))> 1/(1 + ε).

�
What follows is the proof of Lemma 12.

Proof of Lemma 12. Let (ϕ, ψ) ∈ B be such that |A(ϕ, ψ)|<∞. The key step is to construct
a finite set of points θ ⊆R

d and a scalar R> 0 such that, for all x ∈ η := ϕ ∪ ∪z∈ϕ(Ez(ψ)) and
(zy)y∈ψ ⊆ Bδ(0), we have (i) R(

({y + zy : y ∈ψ} ∪ θ ) − (x + zx)
)≤ R, and (ii)

E({y + zy : y ∈ψ} − (x + zx)
)⊆ E(({y + zy : y ∈ψ} ∪ θ ) − (x + zx)

)
. (51)

Once θ is constructed, we assert that Aδ(ϕ, ψ) ⊆⋃
x∈η BR+1(x). Indeed, for any v ∈R

d \⋃
x∈η BR+1(x), the definition of the stabilization radius implies that

E(({y + zy : y ∈ψ} ∪ θ ) − (x + zx)
)= E(({y + zy : y ∈ψ} ∪ θ ∪ {v}) − (x + zx)

)
. (52)
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Hence, combining (51), (52), and (STA) gives that

E({y + zy : y ∈ψ} − (x + zx)
)⊆ E(({y + zy : y ∈ψ} ∪ {v}) − (x + zx)

)
,

thereby proving the assertion that v �∈ Aδ(ϕ, ψ).
It remains to prove the existence of R> 0 and θ ⊆R

d. To that end, first note that
|Ti(x, δ)| = ∞ for all i ≤ Id and x ∈R

d, where Ti(x, δ) := ∩y∈Bδ(x)(Si + y). Since |Aδ(ϕ, ψ)|<
∞, by Lemma 11(a), if δ is chosen appropriately, it follows that for every x ∈ η and i ≤ Id there
are distinct w(1)

x,i , . . . ,w(cSTA)
x,i ∈ Ti(x, δ) \ Aδ(ϕ, ψ). Then, defining θ := {w(j)

x,i : x ∈ η, i ≤ Id, j ≤
cSTA}, we note that (INF) implies the property (51). Now, set

R := max
x∈η, z∈Bδ(x)
i≤Id,j≤cSTA

cSTA|z − w(j)
x,i| ≤ max

x∈η
i≤Id,j≤cSTA

cSTA|x − w(j)
x,i| + cSTAδ,

and note that the finiteness of the configurations in B implies that R<∞. Then the definition
of the stabilization radius yields R(

({y + zy : y ∈ψ} ∪ θ ) − (x + zx)
)≤ R, as asserted. �

Finally, we show Lemma 13.

Proof of Lemma 13. Let (ϕ, ψ) ∈ B and δ ∈ (0, 1) be given according to the setting of
Lemma 11. First note that B1(x) ⊆ Bτnδ(x) for sufficiently large n ≥ 1. Moreover, the events
{X(B1(x)) = 1 for all x ∈ τnψ} and {X(A−

δ,n) = 0} are independent. Thus, we can examine them
separately and start with the first one. We assume that n is chosen large enough so that all of
the balls around points in τnψ are disjoint. Therefore,

P
(
X(B1(x)) = 1 for all x ∈ τnψ

)=
∏

x∈τnψ

P
(
X(B1(x)) = 1

)= κ
#ψ
d e−#ψκd .

For the second event, Lemma 11(a) yields

P
(
X(A−

δ,n) = 0
)≥ P

(
X(τnAδ(ϕ, ψ)) = 0

)≥ exp
(−(|A(ϕ, ψ)| + ε

)
τ d

n

)
.

All of this combined shows that for large enough n,

1

nd2/α
log P(G2,n(δ)) ≥ 1

nd2/α
log

(
κ

#ψ
d e−#ψκd

)
−

(
inf

(ϕ,ψ)∈B
|A(ϕ, ψ)| + ε

)
((r + ε)(1 + ε))d/α

n↑∞−→ −
(

inf
(ϕ,ψ)∈B

|A(ϕ, ψ)| + ε
)

((r + ε)(1 + ε))d/α,

as asserted. �

6. Proof of Theorem 2

The proof of Theorem 2 consists mainly of a refinement of the steps in the proofs of
Theorem 1 and Lemma 9.

Proof of Theorem 2(a). To begin with, let δ ∈ (0, 1), and for ε ∈ (0, (1 − d/α)/(2α)), set
hn,ε := 	nd2/α−ε
. Putting H′

n := n−d ∑
i≤hn,ε

Z(i)
n , we will look separately at the numerator

and the denominator of

P
(
H′

n < r(1 − δ)
∣∣ Hn >μα + r

)= P(H′
n < r(1 − δ),Hn >μα + r)

P(Hn >μα + r)
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and prove that this ratio tends to zero. To start with the numerator, recall how Lemma 9 was
used in the proof of Theorem 1. The event {Hn >μα + r} was split up into small and large
contributions. Instead of ε, here we use an arbitrary ε̃ < (1 − d/α)/(2α) ∧ δ to divide the term
μαnd + rnd. Then, since ε̃ < δ, we have{

H′
n < r(1 − δ)

}∩
{ ∑

x∈J (a)
n (X)

ξ (α)(X − x) ≥ rnd(1 − ε̃), J(a)
n (X) ≤ hn,ε

}
= ∅.

Using this, Lemma 7, and Lemma 8 similarly as in the proof of Theorem 1 gives that

lim sup
n↑∞

1

nd2/α
log P

(
H′

n < r(1 − δ),Hn >μα + r
)= −∞. (53)

For the denominator, after additionally assuming that ε̃ < μα , we deduce from (43) that

P(Hn >μα + r) ≥ exp(−γ (ε̃)nd2/α + o(nd2/α)), (54)

where γ (ε̃) := (inf(ϕ,ψ)∈B |A(ϕ, ψ)| + ε̃
)
(r + ε̃)d/α . Together, (53) and (54) imply that for any

c> 0, if n is chosen large enough, then we have that

P
(
H′

n < r(1 − δ)
∣∣ Hn >μα + r

)≤ exp(−cnd2/α + o(nd2/α))

exp(−γ (ε̃)nd2/α + o(nd2/α))
,

which indeed converges to 0 when we let n go to infinity, provided that c> γ (ε̃).
Next, we prove that the statement about the other side holds, i.e.,

P
(
H′

n > r(1 + δ)
∣∣ Hn >μα + r

) n↑∞−→ 0.

To that end, we note that the proof of Lemma 9 extends without any changes to the case where
we replace J (a)

n (X) by the set of nodes with the hn,ε largest scores. Then, applying this result
with τ = rnd(1 + δ) and m = hn,ε yields

P
(
H′

n > r(1 + δ),R3n ≤ n
)

≤ ((Idcmax + 1)2hn,ε)
2(5n)d2(Idcmax+1)2hn,ε exp

(
−(rnd(1 + δ))d/α inf

(ϕ,ψ)∈B
|A(ϕ, ψ)|

)
= exp

(
−(rnd(1 + δ))d/α inf

(ϕ,ψ)∈B
|A(ϕ, ψ)| + o(nd2/α)

)
.

Proceeding similarly to the proof of Theorem 1, we get the bound for the numerator and can
estimate

P
(
H′

n > r(1 + δ)
∣∣ Hn >μα + r

)≤ exp
(−(rnd(1 + δ))d/α inf(ϕ,ψ)∈B |A(ϕ, ψ)| + o(nd2/α)

)
exp(−γ (ε̃)nd2/α + o(nd2/α))

.

Now, choosing ε̃ small enough so that the bound for the numerator converges to 0 faster than
the bound for the denominator gives the claimed convergence. Thus,

P
(|H′

n/r − 1|> δ ∣∣ Hn >μα + r
) n↑∞−→ 0,

as asserted. �
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Showing Part (b) mainly requires repeating the steps of Part (a). Nevertheless, it is a bit more
challenging since we need to replicate Lemma 9 in a slightly extended form that incorporates
the additional bound for the sum of the largest scores within the sample space.

Proof of Theorem 2(b). Let m0 > 0 satisfy (11). Let δ, ε > 0 be chosen as in the proof of
Part (a). This time, let ε̃ < (1 − d/α)/(2α) ∧ δ/2 be arbitrary, and define H′

n := n−d ∑m0
i=1 Z(i)

n

and H′(ϕ, ψ) := ∑m0
i=1 Z(i)(ϕ, ψ). As in the proof of Lemma 9, we can show that

P

(
H′

n < (1 − ε̃)r 1−δ
1−δ/2 ,

∑
x∈J (a)

n (X)

ξ (α)(X − x) ≥ (1 − ε̃)rnd, J(a)
n ≤ 	nd2/α−ε
,R3n(X) ≤ n

)

≤ kn,ε exp

(
−((1 − ε̃)rnd)d/α inf

(ϕ,ψ)∈B,H′(ϕ,ψ)<(1−δ)/(1−δ/2)
|A(ϕ, ψ)|

)
, (55)

where

kn,ε := (Idcmax + 1)4	nd2/α−ε
2(5n)d2(Idcmax+1)2	nd2/α−ε
 ∈ eo(nd2/α).

Furthermore, repeating the arguments from the proof of Theorem 1 as we did to get (53), but
replacing Lemma 9 with (55), we arrive at

P
(
H′

n < r(1 − δ),Hn >μα + r
)≤ P

(
H′

n < (1 − ε̃)r 1−δ
1−δ/2 ,Hn >μα + r

)
≤ exp

(
−((1 − ε̃)rnd)d/α inf

(ϕ,ψ)∈B,H′(ϕ,ψ)<(1−δ)/(1−δ/2)
|A(ϕ, ψ)| + o(nd2/α)

)
,

(56)

which is sufficient for dealing with the numerator.
For the denominator, we can reuse the inequality stated in (54) with the assumption

ε̃ < μα . Next, because of (11) applied to δ′ = 1 − (1 − δ)/(1 − δ/2), we can require ε̃ to be
small enough to ensure that

((1 − ε̃)r)d/α inf
(ϕ,ψ)∈B,H′(ϕ,ψ)<1−δ′

|A(ϕ, ψ)|>
(

inf
(ϕ,ψ)∈B

|A(ϕ, ψ)| + ε̃
)

((r + ε̃))d/α . (57)

We proceed by plugging (54) and (56) into the fraction that arises from the conditional
probability and get

P
(
H′

n < r(1 − δ)
∣∣ Hn >μα + r

)
≤ exp

(−(1 − ε̃)d/αrd/αnd2/α inf(ϕ,ψ)∈B,H′(ϕ,ψ)<1−δ′ |A(ϕ, ψ)| + o(nd2/α)
)

exp
(−(inf(ϕ,ψ)∈B |A(ϕ, ψ)| + ε̃)(r + ε̃)d/αnd2/α + o(nd2/α)

) ,

which converges to 0 by the assumed relationship of the coefficients in (57).

The assertion on the upper tails, i.e., P
(
H′

n > r(1 + δ)
∣∣ Hn >μα + r

) n↑∞−→ 0, follows analo-
gously to Part (a). �
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