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Abstract—The small angle X-ray scattering data obtained in an earlier investigation of a series of
Na-montmorillonite clay samples containing varying concentrations of sodium metaphosphate have
been used to calculate the potential energy ¢(x) of the interaction between two isolated parallel clay
platelets separated by a distance x. All ¢(x) curves have the form expected for Na-montmorillonite.
In each curve there is a potential well for a platelet separation approximately equal to the most
probable separation distance determined in the earlier study. Because the depth of the potential
well is of the order of 0-01 eV for all samples, the attractive forces are relatively weak. While the
calculated ¢(x) functions are not highly accurate, in future investigations precautions can be taken
to increase the reliability of the computed potential energy functions. This preliminary study suggests
that determination of ¢(x) from small angle X-ray scattering data can be a useful method for quantitative
study of interparticle forces in Na-montmorillonite clays.

INTRODUCTION

IN A RECENT investigation of interparticle inter-
actions in Na-montmorillonite clay suspensions
to which sodium metaphosphate had been added
(Andrews, Schmidt and van Olphen, 1967), small
angle X-ray scattering data were used to calculate
the pair correlation function g(x) which described
the probability} that, in an aggregate of parallel
platelets, the centers of two platelets would be
separated by a distance x.

The information about interparticle forces,
however, was obtained indirectly. These forces
can often be studied more conveniently by con-
sidering the potential energy ¢(x) of interaction
of two isolated parallel clay platelets separated
by a distance x.

The pair potential function ¢(x) can be calculated
from the experimental scattering data by use of
the one-dimensional analogue of the three-dimen-
sional theory employed in finding the pair potential
from the small angle X-ray scattering data from
southern bean mosaic virus suspensions (Schmidt
and Taylor, 1967). We have recently used the
scattering data of Andrews, Schmidt. and van
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+Our notation differs from the terminology of Andrews,
Schmidt and van Olphen. The function which they called
the probability density function P(x) is identical to our
pair correlation function g(x).
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Olphen to compute ¢(x) for a series of Na-
montmorillonite clay samples.

The pair correlation function g(x) can be obtained
from the scattering data by numerical evaluation
of the equation (Andrews, Schmidt and van
Olphen, 1967)

g(x) =1+ (Lim) [ dh[i(h)—1] coshx (1)

where h = 4m\"'sin(0/2), A is the X-ray wave-
length, @ is the scattering angle,

, I(h)
i) =1 NP Gy

I(h) is the scattered intensity, N is the number of
scattering particles in the sample, I,F2(h) is the
scattered intensity that would be obtained from
a single particle for the same experimental con-
ditions that were used to measure I(#), and L
is a normalizing constant. This constant can be
evaluated by noting that g(0) =0 because of the
finite thickness of the platelets. Then for x =0,
Eq. (1) gives§

L=—{[ dh[i(h)—l]}_1 )

§There is an error in Eq. (2) of Andrews, Schmidt and
van Olphen. On the right side of the equation, the term
containing the factor (L,/w) should be positive, not
negative. Also, the last two columns of Table | of their
paper are incorrectly labeled. In the notation used in the
rest of their paper, these values equal L,/2, not L,.
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To find ¢ (x), additional results from the theory
of fluids are necessary. Some approximate theories
express ¢ (x) in terms of g(x) and a function f(x),
known as the direct correlation function. For a
one-dimensional system like an aggregate of parallel
clay platelets, f(x) can be defined by the integral
equation

g(x)—1=f)+ (L) [ _dyfix—y) [g(y) —11.
(3)

In (3), g{x) and f(x) are defined to be even
functions of x.

Because the direct correlation function cannot
be directly calculated from the properties of the
system, Eq. (3) must be considered a definition
of the direct correlation function f(x) (Fisher,
1964). Nevertheless, a convenient interpretation
of (3) can be obtained by noting that according
to (3), the total interparticle correlation, which
is described by g(x), can be considered to be the
direct correlation between two particles, given
by f(x), plus the superposition of the indirect
correlations propagated from the first particle
to the second through a third particle. With this
interpretation, f(x) can be expected to have a
shorter range than g(x)—that is, for large x. f(x)
decreases more rapidly than g(x).

From (1) and the convolution theorem for
Fourier transforms

£ = (Lim) [ dn{1 = [i(1)] "} cos hx. (4)

Thus, from (1) and (4), both f(x) and g(x) can be
calculated from i(h), which-im turn is obtained
from the experimental scattering data.

One of the most successful of the modern
approximate theories of fluids is the Percus-
Yevick theory. In the one-dimensional form of
this theory (Wertheim, 1964).

d(x) =kTIn [1—f(x)/g(x)] (5)
where k is Boltzmann’'s constant, and T is the
absolute temperature.

After (1) and (4) have been used to compute
g(x) and f(x) from the experimental data, the
pair potential ¢ (x) can be found from (5).

Our calculations of the pair potential from the
small angle X-ray scattering data for a one-
dimensional system are analogous to the techniques
used by Mikolaj and Pings (1965, 1967) to obtain
the three-dimensional pair potential from large
angle X-ray scattering curves for argon.

RESULTS AND DISCUSSION

The scattering data discussed by Andrews et
al.(1967) were used to compute g(x) and f(x).
These functions were substituted in (5) to give
the pair potential ¢(x). The clay and sodium
metaphosphate concentrations are listed in Table
1. Figures 1, 2 and 3 show the ¢ (x) curves from
Samples 1, 2 and 3. The curves for Samples 4 and
5 had essentially the same form as the curves in
Figs. 1 and 3. For Sample 6 both the 7(h) and
¢ (x) curves were essentially identical to the
corresponding curves for Sampie 1. A sodium
metaphosphate concentration of O0-005N is
evidently too low to have an appreciable effect
on the interparticle interactions in these clays.

All pair potential curves have a similar form.
For small x, ¢(x) is large and positive and
corresponds to a large repulsive force. As x
increases, ¢ (x) becomes negative and has a mini-
mum at a distance approximately equal to the
equilibrium spacing between the platelets. For
larger x, the pair potential becomes positive again
and has a relatively low maximum. The function
f(x) then approaches zero as x becomes infinite.
This behavior agrees qualitatively with the form
of the pair potential generally considered to act
between Na-montmorillonite particles.

Table 1 lists the positions d, of the minima of
¢(x) and gives the depths ¢, of the potential
minima.i The values of d, are very nearly equal
to the equilibrium interplatelet distance d given
by Andrews et al. (For comparison, these values

tThe well depth ¢, is defined by the equation ¢, =
¢ (d,).

Table 1. Sample composition and values of d, d,,,and ¢,

Sample Concentration Concentration d d, b

(Wt. %) (eq/D) A A €V
1 10 0 184 205 0-006
6 10 0-005 177 200 0-005
5 10 0-010 157 170 0-003
4 10 0-025 138 152 0-006
3 10 0-050 98 103 0-015
2 10 0-100 82 88 0-011
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Fig. 3. The pair potential ¢ (x) for Sample 3.

are included in Table 1). Since the samples were
studied at room temperature, kT ~ 0-025eV.
For all samples the well depths are of the order
of 0-01eV and thus are somewhat less than kT.
The potential minimum therefore represents a
relatively weak attractive force.

The positions d ., of the potential minima differ
slightly from the equilibrium spacings d because
the most probable distance between platelets in
an assembly of parallel platelets is determined by
other factors besides ¢ (x), which is the potential
energy of interaction of a single pair of isolated
platelets.

As the sodium metaphosphate concentration is
raised, the position d, of the potential minimum
decreases, and there is a tendency for the well
depth ¢, to increase. These changes would be
expected from the compression of the diffuse
double layers on the negatively charged faces of
the particles which is caused by an increase of the
sodium ion activity in the equilibrium solution.

The pair potential ¢ (x) can also be found from
g(x) and f(x) by use of two other approximate
theories, Taylor (1968). For the clay samples,
all three theories were found to give essentially
the same pair potential ¢ (x).

A definite limit cannot be set on the uncertainty
in the values of ¢ (x). This function was calculated
from integral transforms of functions obtained from

the experimental data. In this type of calculation,
the relation between the final result and the initial
data is so complicated that error bounds cannot
be established. However, our experience indicates
that the uncertainty in ¢{(x) is certainly greater
than the uncertainty in the data points, which
were accurate within at least a few per cent.

A number of tests were made to estimate the
effect of uncertainties in the data, Taylor (1968).
These tests showed that the overall shape of the
¢(x) curves is almost certainly correct. This
conclusion is supported by the qualitative similarity
of the curves for the series of samples.

The absence of a single well-defined maximum
in the ¢(x) curve for Sample 2 is probably an
artifact, and the weak maxima and minima in this
curve for x > 100 A are almost certainly artifacts.

The maximum of the ¢(x) curve for Sample 5
was not as well-defined as in the curves for
Samples 1, 3, 4 and 6. The lack of definition of this
maximum probably is the result of an artifact.

The principal source of error in the ¢ (x) curves
is the uncertainty in the form of i(h) for small
h, Taylor (1968). Evaluation of g(x) and f(x)
required extrapolat.on of the i(h) curves to A = 0.
Equations (1) and (4) are Fourier cosine transforms,
and the integrand is large in the neighborhood of
x=0. Since this part of the integrand makes a
large contribution to the integral, the form of
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i(h) near h=0 has a relatively large influence
on g(x) and f(x). To check the effects of extra-
polation, several different extrapolations were
used to compute ¢ (x) for the same sample. Large
changes in ¢{x) were found to be produced by
unreasonably large variations of the extrapolation.
The shape of the measured portion of the i(%)
curve, however, defined the extrapolation well
enough to give meaningful ¢ (x) curves.

Although the position of the potential minimum
was found to be affected only slightly by the extra-
polation, the well depth was changed considerably.
Since the well depth is so sensitive to the small-
h extrapolation, the values of ¢, could be in error
by 25% or more. Nevertheless, the trend of the
¢. values in Table 1 quite clearly suggests that the
well depth increases with the concentration of
sodium metaphosphate.

Because of the sensitivity of the ¢(x) curve to
the small-A extrapolation, in future measurements
which are to be used for calculating the pair poten-
tial, the inner part of the scattering curve should
be measured especially carefully, and attempts
should be made to obtain data at k values as small
as possible.

Just as in this calculation of the pair potential
for a one-dimensional system, uncertainties in the
scattered intensity can have relatively large effects
on the three-dimensional pair potential obtained
from the large angle X-ray scattering data from
dense fluids. Verlet (1968, pp. 204-205) has
considered some of the problems encountered in
this type of calculation.

Our investigation indicates the feasibility of
using small angle X-ray scattering to determine
the form of the pair potential ¢(x) for clays. This
preliminary investigation has suggested procedures
and techniques which can provide more reliable

values of the pair potential. These pair potential
curves will be useful in providing an understanding
of the nature of the forces acting in suspensions
of clay particles.
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Résumé — Les données de dispersion des rayons X a petit angle obtenues dans une étude précédente
d’une série d’echantillons d’argile Na-montmorillonite contenant des concentrations variables de
métaphosphate de sodium ont été utilisées en vue de calculer I'énergie en puissance ¢ (x) de l'inter-
action entre deux platelets isolés et paralléles d’argile. séparés par la distance x. Toutes les courbes
¢ {x) ont la forme que I’on attend du Na-montmorillonite. Dans chaque courbe il existe un puits poten-
tiel pour la séparation de platelets a peu prés égal a la distance de séparation la plus probable déter-
minée selon 1'étude précédente. Etant donné que la profondeur du puits potentiel est de 'ordre de
0,01 eV pour tous les échantillons, les forces d’attraction sont relativement faibles. Tandis que les
fonctions calculées de ¢ (x) ne sont pas hautement précises, on pourra—dans le cas d’études ultéri-
eures — prendre des précautions en vue d’augmenter la précision des fonctions d’énergie potentielle
calculées. Cette étude préliminaire suggere que la détermination de ¢ (x) a partir des données de dis-
persion des rayons X a petit angle peut présenter une méthode utile pour une étude quantitative des
forces inter-particule dans les argiles Na-montmorillonite.

Kurzreferat— Die bei einer frilheren Untersuchung einer Reihe von Na-Montmorillonittonproben
mit verschiedenen Konzentrationen an Natriummetaphosphat mit kleinwinkliger Rontgenstrahlung
erhaltenen Streuungsdaten wurden verwendet um die Potentialenergie ¢ (x) der Wechselwirkung
zwischen zwei, durch eine Distanz x von einander getrennten, parallelen, Tonplattchen zu berechnen.
Alle die ¢(x) Kurven haben die fir Na-Montmorillonit erwartete Form. In jeder Kurve besteht eine
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Potentialvertiefung entsprechend einer Plittchendistanz, die ungefihr der in der fritheren Unter-
suchung bestimmten Trennungsdistanz gleich ist. Da die Tiefe der Potentialvertierung bei allen
Probenin der Grossenordnung von 0,01 eV liegt, sind die Anziehungskrirte verhaltnismassig schwach.
Die errechneten ¢ (x) Funktionen sind zwar nicht sehr genau, doch sollte es in zukiinftigen Unter-
suchungen moglich sein Massnahmen zu treffen um die Zuverlissigkeit der errechneten Potential-
energiefrunktionen zu erhohen. Diese vorldufige Untersuchung zeigt, dass die Bestimmung von
¢ (x) aus kleinwinkligen Rontgenstreungsdaten eine brauchbare Methode fiir eine quantitative
Untersuchung der Zwischenteilchenkrifte in Na-Montmorillonittonen darstellen kann.

Pe3tome—/[laHHble O PACcOPOCTPAHEHMM PEHITEHOBCKHMX JiyYedl noa MasbiM YIJIOM, MOJy4YEHHbIE
B XOJ€ NPOBENEHHOIO B NPOLUIOM HCCienoBaHus o6pa3uoB Na-MOHMHOPHINOHHTOBBIX [JIMH,
CONEpPXalluX pa3nH4YHble KOHLEHTpauuH MeradocdaTa HATPHA, NPUMEHANUCH, YTOOLI BLICYMTATH
MOTEHLIMANBHYIO JHEPrUIO ¢(x) B3IAMMOOTHOLUCHHS MEXAY ABYMs BbiAC/ICHHBIMH Mapasiie/ibHbIMHU
TIHHUCTBIMY MIACTHHKAMHM, OTAEJNEHHBIMH PacCTOAHHEM x. Bee kpuBble ¢(x) umMeroT GopMy, KoTopas
npeauauTes A1 Na-MOHTMOpPHINOHATA. B kaxioM KpuBOH uMeeTcA MOTEHUHAbHAA siMa 1
OTIENECHHA IUTACTMHOK, XoTopada npuOn. paBHa Hauboniee rpaBAONOAOOHOMY PACCTOAHUIO
pa3aenenus, onpeaeieHHOMyY B 0oJiee IpeablaylleM UCCaeJ0BaHUU. CHIlbl IPUTAKEHUS CPABHUTEb-
HO cabbl U3-3a TOro, 4TO rayOHHa NOTEeHUMANlbHOH simMbl nopsaka 0,01 56 ang scex oOpa3uoB.
B TO BpeMs Kak BbIMHUCIEHHBIE (PYHKLHM @(X) HE €CTh OYEHb TOYHBLIMH, B OYAYLUHMX HCCIEIOBAHUSX
MOXHO OyA€T MNPHHSTL MEPbI NPEAOCTOPOXHOCTH A NOBBIECHAS HAAEKHOCTH BbIYMCICHHBIX
DYHKUMN mOTeHUManbHON 3Hepruu. Hacrosiliee npeaBapMTENbHOE MCCIEIOBAHHE HABOAMUT Ha
MBIC/Ib, YTO ONpeAeNeHME ¢(x) Ha OCHOBAHMM JAaHHbIX PACNPOCTPAHEHHUS PEHTIEHOBCKMX JIyde
IO MaNibIM YIJIOM, MOXeT ObiThb NOJIE3HBIM METOAOM JJIfi KOJHHYECTBEHHOTO HCCACI0BaHUA
MEXYACTHYHBIX CHA B Na-MOHTMOPHIIJIOHHTOBBIX TJIHHAX.
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