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Using the theory of wave turbulence for rapidly rotating incompressible fluids derived
by Galtier (Phys. Rev. E, vol. 68, 2003, 015301), we find the locality conditions that
the solutions of the kinetic equation must satisfy. We show that the exact anisotropic
Kolmogorov–Zakharov spectrum satisfies these conditions, which justifies the existence
of this constant (positive) energy flux solution. Although a direct cascade is predicted in
the transverse (⊥) and parallel (‖) directions to the rotation axis, we show numerically that
in the latter case some triadic interactions can have a negative contribution to the energy
flux, while in the former case all interactions contribute to a positive flux. Neglecting the
parallel energy flux, we estimate the Kolmogorov constant at CK � 0.749. These results
provide theoretical support for recent numerical and experimental studies.
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1. Introduction

Wave turbulence theory describes a set of random waves in weakly nonlinear interactions
(Zakharov, L’Vov & Falkovich 1992; Nazarenko 2011; Galtier 2023). The strength of this
theory, based on a multiple-scale technique, lies in its analytical and rigorous character,
and the fact that it leads to a natural asymptotic closure of the hierarchy of moment
equations when considering the long-term statistical behaviour. We are interested here
in waves resulting from the rapid rotation, at a rate Ω , of an incompressible fluid:
these are inertial waves. They appear when the Coriolis force is introduced into the
Navier–Stokes equations, which breaks the spherical symmetry and introduces (statistical)
anisotropy. The theory of inertial wave turbulence was derived by Galtier (2003). It is an
asymptotic theory valid in the limit of small Rossby number Ro = U/(LΩ) � 1, with
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U a typical velocity and L a typical length scale. The theory, developed for three-wave
interactions, predicts anisotropic turbulence with a direct cascade preferentially in the
direction transverse to the axis of rotation Ω . In the limit k⊥ � k‖, where k⊥ and k‖ refer
to the wavenumbers perpendicular and parallel to Ω , respectively, an exact solution is
derived, the Kolmogorov–Zakharov (KZ) energy spectrum, which is Ek ∼ k−5/2

⊥ |k‖|−1/2.
This solution corresponds to a stationary state for which the energy flux is constant
and positive. Note that there is another type of solution, the Rayleigh–Jeans spectrum
associated with the thermodynamic equilibrium of the system and for which the energy
flux is zero.

Rotating hydrodynamic turbulence has been extensively studied both numerically
(Bellet et al. 2006; Pouquet & Mininni 2010; Pouquet et al. 2013; Le Reun et al. 2017;
Buzzicotti et al. 2018; Seshasayanan & Alexakis 2018; Sharma, Verma & Chakraborty
2019; van Kan & Alexakis 2020) and experimentally (Baroud et al. 2002; Morize, Moisy
& Rabaud 2005; van Bokhoven et al. 2009; Lamriben, Cortet & Moisy 2011; Campagne
et al. 2014; Yarom & Sharon 2014; Godeferd & Moisy 2015; Yarom, Salhov & Sharon
2017). In particular, recent studies (Le Reun, Favier & Le Bars 2020; Monsalve et al. 2020;
Yokoyama & Takaoka 2021) have reported energy spectra consistent with the prediction
of inertial wave turbulence theory. But until now, an important theoretical point has been
left out: the verification of the locality of the KZ spectrum to ensure the finiteness of the
energy flux. This is a criterion of locality of interactions that supports Kolmogorov’s idea
that the inertial range is independent of the largest (forcing) and smallest (dissipation)
scales. To prove the locality of the KZ spectrum, it is necessary to return to the kinetic
equation and study the convergence of the integrals (Zakharov et al. 1992); this is the first
objective of this article. The second objective is to study the energy flux to find an estimate
of the Kolmogorov constant.

After a brief introduction to inertial wave turbulence in § 2, we prove that the KZ
spectrum is indeed ‘local’, which gives strong theoretical support to recent numerical
and experimental studies. In § 3, we show numerically that the energy fluxes in the
perpendicular and parallel directions do not behave in the same way because in the latter
case some triadic interactions can have a negative contribution to the energy flux, whereas
in the former case all interactions contribute to a positive flux. We also numerically
estimate the Kolmogorov constant before concluding in § 4.

2. Locality conditions

2.1. Kinetic equation and KZ spectrum
The inviscid equations for incompressible flows in a rotating frame read

∂tw + u · ∇w = w · ∇u + 2Ω · ∇u, (2.1)

where u is a solenoidal velocity (∇ · u = 0), w = ∇ × u is the vorticity and Ω = Ω ê‖
(|ê‖| = 1) is the constant rotation rate. The linear solutions of (2.1) are inertial waves with
the angular frequency

ωk = 2Ω
k‖
k

. (2.2)

The first main result of the theory of inertial wave turbulence is the derivation of the
kinetic equation that describes the nonlinear evolution of the energy spectrum on a time
scale much larger than the wave period τ ∼ 1/ωk. For reasons of simplicity, we assume an
equipartition of energy densities between the co- and counter-propagating inertial waves,
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Locality and Kolmogorov constant in inertial wave turbulence

and therefore we do not consider the kinetic helicity, which is then zero. This turbulence
being anisotropic with a transfer mainly in the transverse direction to Ω , it is relevant
to write the kinetic equation in the limit k⊥ � k‖. Note that we often implicitly assume
that the energy is initially isotropically distributed at the largest scales of the system, but
the same dynamics is expected if initially the energy is located elsewhere, as long as
the inertial wave turbulence condition on the time scales is satisfied (see discussion in
Galtier (2003)). The exception is when the energy is confined to k‖ = 0, which cannot be
described by wave turbulence. In the limit k⊥ � k‖, the kinetic equation reads (for more
details, see Galtier (2003))

∂tEk = ε2

32Ω

∑
skspsq

∫
Δ⊥

sin θ
skspp‖

p2
⊥q2

⊥k‖
(sqq⊥ − spp⊥)2(skk⊥ + spp⊥ + sqq⊥)2Eq

× (p⊥Ek − k⊥Ep)δ

(
skk‖
k⊥

+ spp‖
p⊥

+ sqq‖
q⊥

)
δ(k‖ + p‖ + q‖) dp⊥ dq⊥ dp‖ dq‖.

(2.3)

Here Ek = E(k⊥, k‖) is the axisymmetric energy spectrum, si is the wave polarity (si = ±1
with i = k, p, q), θ is the angle between k⊥ and p⊥ in the triangle k⊥ + p⊥ + q⊥ = 0, δ

is the Dirac distribution, and the integration in the perpendicular direction is done over
the domain Δ⊥, which satisfies the previous triadic relation. The integral is preceded by
a factor ε2, with ε a small dimensionless parameter (0 < ε � 1), which can be identified
as the Rossby number (which also means that w � Ω). This means that the nonlinear
dynamics develops on a time scale ∼ τ/ε2, which is much longer than the wave period.
The stationary solution of the kinetic equation (2.3) is the KZ spectrum

Ek = CEk−5/2
⊥ |k‖|−1/2, (2.4)

where CE is necessarily positive (it will be defined later).

2.2. Convergence domain
We begin with a proposition.

PROPOSITION 2.1. The domain of convergence of the kinetic equation (2.3) for power-law
spectra Ek ∼ k−x

⊥ |k‖|−y is given by the locality conditions

3 < x + 2y < 4, (2.5)

2 < x + y < 4, (2.6)

both of which must be satisfied. This result shows a familiar property of wave turbulence:
the KZ spectrum, for which x = 5/2 and y = 1/2, falls exactly in the middle of the
convergence domain (see figure 1 for an illustration).

Proof . Starting from (2.3), we seek solutions of the form Ek = CEk−x
⊥ |k‖|−y and introduce

the dimensionless variables p̃⊥ = p⊥k−1
⊥ , q̃⊥ = q⊥k−1

⊥ , p̃‖ = p‖k−1
‖ and q̃‖ = q‖k−1

‖ .
After integration over the parallel wavenumbers, by taking advantage of the following
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Figure 1. Domain of convergence (where the energy flux is finite) of the kinetic equation for power-law
solutions Ek ∼ k−x

⊥ |k‖|−y. The blue disc at the centre of the domain corresponds to the KZ spectrum.

Dirac distribution property,∫
R

f (x)δ(g(x)) dx =
∑

i

f (xi)

|g′(xi)| such that g(xi) = 0, (2.7)

to find

p̃‖ = p̃⊥
skq̃⊥ − sq

sqp̃⊥ − spq̃⊥
, q̃‖ = q̃⊥

sp − skp̃⊥
sqp̃⊥ − spq̃⊥

, (2.8a,b)

one gets

∂tEk = ε2C2
E

32Ω
k4−2x
⊥ |k‖|−2y

∑
skspsq

∫
Δ⊥

skspq̃−x−y−2
⊥ (sqq̃⊥ − spp̃⊥)2(sk + spp̃⊥ + sqq̃⊥)2

× sin θ
skq̃⊥ − sq

sqp̃⊥ − spq̃⊥

∣∣∣∣ sp − skp̃⊥
sqp̃⊥ − spq̃⊥

∣∣∣∣
−y
(

1 − p̃−x−y−1
⊥

∣∣∣∣ skq̃⊥ − sq

sqp̃⊥ − spq̃⊥

∣∣∣∣
−y
)

×
∣∣∣∣ p̃⊥q̃⊥
spq̃⊥ − sqp̃⊥

∣∣∣∣ dp̃⊥ dq̃⊥, (2.9)

where sin θ =
√

1 − (1 + p̃2
⊥ − q̃2

⊥)2(2p̃⊥)−2. There are three regions where the triadic
interactions are non-local (regions A, B and C in figure 2) and therefore where convergence
of the integrals in expression (2.9) must be checked. We now establish the convergence
criteria for each of these three regions.

�

2.2.1. Region A
We define p̃⊥ = 1 + r cos β and q̃⊥ = r sin β, with r � 1 and β ∈ [π/4, 3π/4] the polar
coordinates with their origin at (p̃⊥, q̃⊥) = (1, 0). Two cases must be distinguished: sk =
sp and sk = −sp. An evaluation (to leading order) of the different terms of the integral (2.9)
is given in table 1. Note that these evaluations take into account the possible cancellation
of the integral due to β symmetry.
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q̃⊥

p̃⊥ p̃⊥q̃⊥ q̃⊥

1

1

A

B

C

1

A

(b)(a)

1

B

1

C

1 − p̃⊥

a − p̃⊥

p̃ ⊥
− 1

p̃ ⊥ 
+ 1

p̃⊥
q̃⊥ p̃⊥

Figure 2. (a) The kinetic equation (2.9) is integrated over a domain satisfying k⊥ + p⊥ + q⊥ = 0, which
corresponds to an infinite band where the boundaries are flattened triangles. Regions A, B and C (at infinity)
are those for which the triadic interactions are non-local. We define q̃⊥ = a − p̃⊥, for all a ∈ [1, +∞[, to
restrict the numerical integration to the domain Δ⊥. (b) Representation of the non-local triadic interactions for
regions A, B and C.

sk = sp sk = −sp

skq̃⊥ − sq

sqp̃⊥ − spq̃⊥
−1 −1∣∣∣∣ sp − skp̃⊥

sqp̃⊥ − spq̃⊥

∣∣∣∣ r|cos β| 2

(sqq̃⊥ − spp̃⊥)2 1 1
(sk + spp̃⊥ + sqq̃⊥)2 4 r2

sin θ r
√− cos 2β r

√− cos 2β

1 − p̃−x−y−1
⊥

∣∣∣∣ skq̃⊥ − sq

sqp̃⊥ − spq̃⊥

∣∣∣∣
−y

∝ r2 cos2 β ∝ r2 cos2 β∣∣∣∣ p̃⊥q̃⊥
spq̃⊥ − sqp̃⊥

∣∣∣∣ r|sin β| r|sin β|
dp̃⊥ dq̃⊥ r dr dβ r dr dβ

Table 1. Form of the different terms of the integral (2.9), in Region A, to the leading order.

When sk = sp, the criterion for convergence of the kinetic equation (2.9) will be given
by the following integral:

∫ R<1

0
r3−x−2y dr

∫ 3π/4

π/4
|cos β|2−y

√
− cos 2β (sin β)−1−x−y dβ. (2.10)

Therefore, there is convergence if x + 2y < 4.
When sk = −sp, we have

∫ R<1

0
r5−x−y dr

∫ 3π/4

π/4
cos2 β

√
− cos 2β (sin β)−1−x−y dβ (2.11)

and convergence is obtained if x + y < 6.
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sk = sq sk = −sq

skq̃⊥ − sq

sqp̃⊥ − spq̃⊥
skspr2 sin2 β −2sksp∣∣∣∣ sp − skp̃⊥

sqp̃⊥ − spq̃⊥

∣∣∣∣ 1 1

(sqq̃⊥ − spp̃⊥)2 1 1
(sk + spp̃⊥ + sqq̃⊥)2 4 r2

sin θ
√

1 − tan2 β
√

1 − tan2 β

1 − p̃−x−y−1
⊥

∣∣∣∣ skq̃⊥ − sq

sqp̃⊥ − spq̃⊥

∣∣∣∣
−y

1 − (r cos β)−x−y−1|r sin β|−y 1 − 2−y(r cos β)−x−y−1

∣∣∣∣ p̃⊥q̃⊥
spq̃⊥ − sqp̃⊥

∣∣∣∣ r|cos β| r|cos β|
dp̃⊥ dq̃⊥ r dr dβ r dr dβ

Table 2. Form of the different terms of the integral (2.9), in Region B, to the leading order.

2.2.2. Region B
We define p̃⊥ = r cos β and q̃⊥ = 1 + r sin β, with this time β ∈ [−π/4, π/4] the polar
coordinates with their origin at (p̃⊥, q̃⊥) = (0, 1). We have two cases: sk = sq and sk =
−sq. An evaluation (to leading order) of the different terms of the integral (2.9) is given
in table 2. Note that these evaluations take into account the possible cancellation of the
integral due to β symmetry.

When sk = sq, the criterion for convergence of the kinetic equation (2.9) will be given
by the following integral:∫ R<1

0
r3−x−2y dr

∫ +π/4

−π/4
(cos β)−x−y|sin β|2−y

√
1 − tan2 β dβ. (2.12)

Therefore, there is convergence if x + 2y < 4.
When sk = −sq, we have∫ R<1

0
r3−x−y dr

∫ +π/4

−π/4
(cos β)−x−y

√
1 − tan2 β dβ (2.13)

and convergence is obtained if x + y < 4.

2.2.3. Region C
We define p̃⊥ = (τ2 − τ1)/2 and q̃⊥ = (τ1 + τ2)/2, with −1 ≤ τ1 ≤ 1 and 1 � τ2. We
have two cases: sp = sq and sp = −sq. An evaluation (to leading order) of the different
terms of the integral (2.9) is given in table 3. Note that these evaluations take into account
the possible cancellation of the integral due to τ1 symmetry.

When sp = sq, the criterion for convergence of the kinetic equation (2.9) will be given
by the following integral:∫ +1

−1

√
1 − τ 2

1 |τ1|y+1 dτ1

∫ +∞

τ>1
τ

−x−2y+2
2 dτ2. (2.14)

Therefore, there is convergence if 3 < x + 2y.
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sp = sq sp = −sq

skq̃⊥ − sq

sqp̃⊥ − spq̃⊥
−sksp/2 −sksp/2∣∣∣∣ sp − skp̃⊥

sqp̃⊥ − spq̃⊥

∣∣∣∣ |τ2τ
−1
1 |/2 1/2

(sqq̃⊥ − spp̃⊥)2 τ 2
1 τ 2

2
(sk + spp̃⊥ + sqq̃⊥)2 τ 2

2 1 + τ 2
1

sin θ

√
1 − τ 2

1

√
1 − τ 2

1

1 − p̃−x−y−1
⊥

∣∣∣∣ skq̃⊥ − sq

sqp̃⊥ − spq̃⊥

∣∣∣∣
−y

1 − 2x+2y+1τ
−x−2y−1
2 |τ1|y 1 − 2x+y−1τ

−x−y−1
2∣∣∣∣ p̃⊥q̃⊥

spq̃⊥ − sqp̃⊥

∣∣∣∣ τ 2
2 |τ−1

1 |/4 τ2/4

dp̃⊥ dq̃⊥ ∝ dτ1 dτ2 ∝ dτ1 dτ2

Table 3. Form of the different terms of the integral (2.9), in Region C, to the leading order.

When sp = −sq, we have∫ +1

−1
(1 + τ 2

1 )

√
1 − τ 2

1 dτ1

∫ +∞

τ>1
τ

−x−y+1
2 dτ2, (2.15)

and convergence is obtained if 2 < x + y.
In conclusion, a solution is local if the following two conditions are satisfied:

3 < x + 2y < 4 and 2 < x + y < 4. (2.16a,b)

3. Kolmogorov constant

The KZ spectrum is particularly interesting because the associated constant flux allows
one to measure the so-called Kolmogorov constant CK . To do so, and following Zakharov
et al. (1992), we introduce the axisymmetric fluxes

∂tEk = −∂Π⊥(k⊥, k‖)
∂k⊥

− ∂Π‖(k⊥, k‖)
∂k‖

, (3.1)

and the power-law energy spectrum Ek = CEk−x
⊥ |k‖|−y (we only consider the region

k‖ > 0). With the dimensionless variables introduced in the previous section, we find after
applying the Kuznetsov–Zakharov transformation (see § 3.3 in Zakharov et al. (1992))

∂tEk = ε2C2
E

64Ω
k4−2x
⊥ |k‖|−2yI(x, y), (3.2)

with

I(x, y) =
∑

skspsq

∫
Δ⊥

sksp
p̃‖

p̃⊥q̃2
⊥

(sqq̃⊥ − spp̃⊥)2(sk + spp̃⊥ + sqq̃⊥)2 sin θ

× q̃−x
⊥ |q̃‖|−y(1 − p̃−1−x

⊥ |p̃‖|−y)(1 − p̃−5+2x
⊥ |p̃‖|−1+2y)

× δ

(
sk + sp

p̃‖
p̃⊥

+ sq
q̃‖
q̃⊥

)
δ(1 + p̃‖ + q̃‖) dp̃⊥ dq̃⊥ dp̃‖ dq̃‖. (3.3)
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Figure 3. (a) Integrand of I⊥, which is always positive. (b) Integrand of I‖, whose sign depends on the
perpendicular wavenumbers. (c) Integrand of I⊥ divided by the integrand of I‖. The blue colour corresponds
to negative values and the red colour to positive values. On the right, the dark colours testify that the integrand
of I⊥ is greater than that of I‖ in modulus.

After integration, and taking the limit (x, y) → (5/2, 1/2), the flux becomes constant
and equal to ΠKZ

⊥ and ΠKZ
‖ . Thanks to L’Hospital’s rule, we obtain(

ΠKZ
⊥

ΠKZ
‖

)
= ε2C2

E
64Ω

(
I⊥/|k‖|
I‖/k⊥

)
, (3.4)

where(
I⊥
I‖

)
≡
∑

skspsq

∫
Δ⊥

skspp̃‖
p̃⊥q̃9/2

⊥ |q̃‖|1/2
(sqq̃⊥ − spp̃⊥)2(sk + spp̃⊥ + sqq̃⊥)2 sin θ log

∣∣∣∣
(

p̃⊥
p̃‖

)∣∣∣∣
× (1 − p̃−7/2

⊥ |p̃‖|−1/2) δ

(
sk + spp̃‖

p̃⊥
+ sqq̃‖

q̃⊥

)
δ(1 + p̃‖ + q̃‖) dp̃⊥ dq̃⊥ dp̃‖ dq̃‖.

(3.5)

The ratio between the two fluxes ΠKZ
‖ /ΠKZ

⊥ is proportional to |k‖|/k⊥ (which is � 1)
and since I‖/I⊥ � 0.73 (as checked numerically) then ΠKZ

‖ � ΠKZ
⊥ , which is consistent

with a turbulent cascade mainly along the perpendicular direction. In figure 3, we show the
sign of the integrands of I⊥ and I‖ obtained from a numerical evaluation of expression (3.5)
after integration over the parallel wavenumbers, and for relatively small perpendicular
dimensionless wavenumbers (< 5). We see that for I⊥ the integrand is always positive,
while for I‖ the integrand can be either positive or negative depending on the perpendicular
wavenumbers (for the largest perpendicular wavenumbers it is always positive), but,
overall, the positive sign dominates in the sense that I‖ > 0. Therefore, the parallel cascade
is also direct but it is composed of different contributions, with some triadic interactions
contributing to an inverse cascade.

The energy flux being mostly perpendicular, we consider only the first line of (3.4), from
which we deduce the expression of CE. Then, from (2.4) we obtain (without any additional
hypothesis other than k⊥ � k‖)

Ek = CK

√
ΩΠKZ

⊥
ε2 k−5/2

⊥ and CK = 8√
I⊥

, (3.6a,b)

with CK the Kolmogorov constant, which can be measured by direct numerical simulation
or experimentally.
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Figure 4. Convergence of the numerical estimate of CK as a function of a.

On the theoretical side, to estimate the value of CK , we need to rewrite the expression
of I⊥. First of all, we integrate expression (3.5) over the parallel wavenumbers. Secondly,
because I⊥ is only defined on the domain Δ⊥, we introduce the change of variable q̃⊥ ≡
a − p̃⊥ where 1 ≤ a < +∞ and a − 1 ≤ 2p̃⊥ ≤ a + 1 which confines the integration to
this domain (see figure 2). We obtain

I⊥ =
∫ a=+∞

a=1

∫ p̃⊥=(a+1)/2

p̃⊥=(a−1)/2

∑
skspsq

Hskspsq
1p̃q̃ da dp̃⊥, (3.7)

where

Hskspsq
1p̃q̃ =

sksp

∣∣∣∣ sk(a − p̃⊥) − sq

p̃⊥(sp + sq) − spa

∣∣∣∣
(a − p̃⊥)9/2

√∣∣∣∣ (a − p̃⊥)(skp̃⊥ − sp)

p̃⊥(sp + sq) − spa

∣∣∣∣
× (sq(a − p̃⊥) − spp̃⊥)2(sk + spp̃⊥ + sq(a − p̃⊥))2

√
1 − (a2 − 2ap̃⊥ − 1)2

4p̃2
⊥

×
[

1 − p̃−4
⊥

(∣∣∣∣ sq − sk(a − p̃⊥)

p̃⊥(sp + sq) − spa

∣∣∣∣
)−1/2

]
log p̃⊥∣∣∣∣ sp

p̃⊥
− sq

a − p̃⊥

∣∣∣∣
, (3.8)

is a coefficient with the following symmetries:

Hskspsq
1p̃q̃ = H−sk−sp−sq

1p̃q̃ , (3.9)

which reduces by two the number of integrals to compute (four instead of eight).
A numerical integration of (3.7) gives finally

CK � 0.749. (3.10)

In figure 4, we show the convergence of CK to this value as a goes to infinity.
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4. Conclusion and discussion

In this article, we first derive the locality conditions for inertial wave turbulence and
verify that the anisotropic KZ spectrum – which is an exact stationary solution of the
problem – satisfies these conditions. The locality of the solution ensures: (i) the finiteness
of the associated flux; and (ii) the existence of an inertial range independent of large and
small scales where forcing and dissipation can occur. Next, neglecting the parallel energy
flux, we provide an estimate of the Kolmogorov constant that could be verified by direct
numerical simulation or experimentally. Our study completes that carried out by Galtier
(2003) and provides theoretical support for recent numerical and experimental studies
where energy spectra consistent with the prediction of inertial wave turbulence theory
have been reported (Le Reun et al. 2020; Monsalve et al. 2020; Yokoyama & Takaoka
2021).

Although the parallel energy flux is positive (like the perpendicular flux), we show
numerically that it is in fact the sum of positive and negative contributions. In other
words, in the parallel direction, we have triadic interactions that lead to both direct and
inverse transfers, with an overall direct cascade. This observation gives some support
to experimental results (Morize et al. 2005) showing that the dynamics along the axis
of rotation is more difficult to identify than the transverse one, as they exhibit inverse
cascade signatures. The presence of an inverse cascade in rotating turbulence is often
interpreted as the interaction between the slow mode (i.e. the fluctuations at k‖ = 0) and
inertial waves (Smith & Waleffe 1999). However, in our case the dynamics of the slow
mode is not described by the kinetic equation and the observation made is based solely on
the dynamics of inertial wave turbulence.

The theory of inertial wave turbulence was originally developed for energy and helicity
for which two coupled kinetic equations were derived (Galtier 2003). Here, helicity is
neglected for several reasons. First, it simplifies the mathematical analysis and the physical
interpretation. Secondly, in the presence of helicity, we cannot derive the Kolmogorov
constant because it involves two terms, even if we neglect the parallel flux. Thirdly,
numerical simulations are often performed initially without helicity (Bellet et al. 2006).
Some helicity may, of course, be produced, but it does not usually change the overall
dynamics very much. Fourthly, the study with helicity shows that only the state of maximal
helicity can give a KZ spectrum, but this situation is not natural, as the system quickly
breaks this initial assumption, unless it is maintained artificially (Biferale, Musacchio &
Toschi 2012).

The locality of the KZ spectrum gives some support to the limit of super-local
interactions sometimes taken to simplify the study of wave turbulence. Under this limit, a
nonlinear diffusion equation is found analytically with which the numerical study becomes
much easier (Galtier & David 2020). Interestingly, it was shown with this model that the
non-stationary solution exhibits a ∼ k−8/3

⊥ spectrum, which is understood as a self-similar
solution of the second kind, before forming – as expected – the KZ stationary spectrum
after a bounce at small scales. Note that this diffusion equation is similar to that derived
in plasma physics to study solar wind turbulence (David & Galtier 2019), which opens the
door to laboratory analysis of space plasmas.
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