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DECIDABILITY OF ADMISSIBILITY: ON A PROBLEM BY FRIEDMAN

AND ITS SOLUTION BY RYBAKOV

JEROEN P. GOUDSMIT

Abstract. Rybakov (1984a) proved that the admissible rules of IPC are decidable. We give

a proof of the same theorem, using the same core idea, but couched in the many notions that

have been developed in the mean time. In particular, we illustrate how the argument can be

interpreted as using refinements of the notions of exactness and extendibility.

§1. Introduction. Think of your favorite logic. Now, remember the
theorems and forget the rules. Is it possible to reconstruct the rules from this
limited information alone? A good first try would be to consider all rules
that yield the same set of theorems.1 This works out fine if you were thinking
of classical propositional logic. Although you might have been thinking of
different rules, you can be sure that they generate the just described set.
If intuitionistic logic is your logic of choice, this procedure likely left you
sorely disappointed. Indeed, a good deal of the just defined rules will seem
unfamiliar, surpassing most of the popular axiomatizations. The rule below
is a good example: adding this rule to an axiomatization does not change
the set of provable theorems.

¬÷→φ∨ø/(¬÷→φ)∨(¬÷→ø). (1)

There even is an infinite series of distinct rules present and it would be pretty
safe to wager youwere thinking of none of them. In the following, we present
a proof showing that this set of so-called admissible rules, however wild, is
decidable.
The admissible rules of a logic are those rules under which the set of
its theorems is closed. They are the valid rules of a logic, defined only in
terms of the theorems present, irrespective of axiomatization. This in sharp
contrast to derivable rules, those rules where the conclusion can be shown to
follow from the assumptions using the specific rules of inference available.
Derived rules are strongly bound to an axiomatization, merely present by
convention, whereas admissible rules are true invariants.
Although all derivable rules are admissible rules, the converse need not
hold. Moreover, whereas derivable rules remain admissible—and indeed,
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2 JEROEN P. GOUDSMIT

derivable—when adding additional axioms or rules, the same cannot be
said for admissible rules in general. This makes the notion of admissibility
quite intricate, even in the case of logics as well-behaved as intuitionistic
propositional logic.
In the beginning of the twentieth century, the distinction between
admissibility and derivability was not yet widely perceived. Moh (1957)
observed this confusion.2 He noted that, even though a rule might well
be admissible, it need not be a “rule of procedure”; what we now call a
derivable rule. Kleene (1952, p. 94) also made the distinction. He called
admissible rules derivable and derivable rules directly derivable. He noted,
as above, that only the latter kind need be preserved under extensions of the
logic. The currently prevalent nomenclature comes from Lorenzen (1955),
who introduced the term “Zulässigkeit”. This was quickly translated into
the now commonly used term “admissibility” by Craig (1957).3 Before we
continue, let us give a formal definition.

Definition 1.1 (Admissible Rule). A rule φ/ø is said to be admissible in
a logic Λ when ⊢Λó(φ) entails ⊢Λó(ø) for each substitution ó.

Early on, it was shown that the admissible rules of the classical
propositional calculus (CPC) are all derivable, as discussed by Belnap and
Thomason (1963) and Belnap et al. (1963).4 The situation is much more
intricate in the intuitionistic propositional calculus (IPC). Let us give a few
examples.
First, let us think back to the example (1) given above. It follows through
the work of Kreisel and Putnam (1957) that this rule is not derivable, yet
Harrop (1956) proved that it is admissible. Recall that the admissibility of
a rule need not be preserved when extending the logic. This rule is special
in that regard, as Prucnal (1979) proved it to be admissible in all axiomatic
extensions of IPC.
Note that the above rule can be generalized by replacing ¬÷ with an
arbitrary Harrop formula. Minari and Wroński (1988) proved that the
resulting rule is admissible in all extensions of IPC. Not all admissible yet
underivable rules are admissible in all intermediate logics. Take, for instance,
the following rule which first appeared in the work of Citkin (1977) as a
generalization of a rule by Mints (1972).

((φ→÷)→φ∨ø)∨è/((φ→÷)→φ)∨((φ→÷)→ø)∨è.

2For more background on the paper of Moh (1957), we refer to its review byWang (1960)
and the subsequent paper Wang (1965), which, in turn, was reviewed by Church (1975).
3From here onwards, the term got adopted by the community at large. It already appears

in Schütte (1960, p. 40), who attributes it to Lorenzen. The term “permissible rule” also
appears in some of the earlier works on admissible rules. The definition is identical and
appears to originate from Pogorzelski (1968), where “dopuszczalna” (Polish for admissible)
is translated as “permissible”.
4Note that the latter makes use of the term “admissible rule” and explicitly attributes it to

Lorenzen.

https://doi.org/10.1017/bsl.2020.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2020.43


DECIDABILITY OF ADMISSIBILITY 3

This rule is admissible in IPC, but it is not admissible in the Kreisel–Putnam
logic KP, which is obtained by adding the implication corresponding to (1)
as an axiom to IPC.5 However, there are several extensions of IPC in which
this rule is derivable, for instance the Gödel–Dummett logic LC.
The study of admissible rules is related to several fields within mathemati-
cal logic. First, the admissible rules of IPC relate closely to the propositional
structure of Heyting Arithmetic. Through De Jongh’s Theorem, it is known
that the propositional logic ofHeytingArithmetic is equal to IPC. This result
has been reproven and extended numerous times and appears very robust.6

One may wonder whether the propositional rules of Heyting arithmetic
equal the admissible rules of IPC. Visser (1999) proved this to indeed be the
case.
Second, the admissible rules of IPC are intimately related to the quasi-
equations that hold in the quasi-variety generated by the free Heyting
algebra.7 A similar connection exists between the admissible rules of any
algebraizeble logic and the quasi-variety generated by said logic’s free
algebras. Admissible rules correspond, under this perspective, to the Horn
sentences that hold in free algebras.
Finally, let us mention unification theory, in the sense of Siekmann (1989)
and Baader (1992). In unification theory, one is concerned with unifying
two expressions within a given language modulo a given theory. One could,
for instance, try to unify an expression in the language of propositional logic
to the expression ⊤, modulo the axioms of IPC. This amounts to finding a
substitution, called a “unifier”, that makes a given formula derivable. The
problem of finding an algorithm that can generate the most general unifiers
of a given formula modulo IPC was already posed by G.E. Mints in 1984.8

Ghilardi (1997) illustrated how this syntactic endeavor can be expressed
in a more algebraic and categorical manner. Using this new perspective,9

Ghilardi (1999) solved the unification problem for IPC. This approach
was later adapted by Iemhoff (2001b) to characterize the admissible rules
of IPC.
It is easy to see that a formula φ is a theorem of IPC precisely if ⊤/φ
is an admissible rule. As such, the study of admissibility encompasses the
study of the theorems of IPC. It is well-known that the set of theorems of
IPC is decidable; in fact, Statman (1979) proved it to be pspace-complete.
Recall that admissible rules correspond to quasi-equations that hold in free
Heyting algebras. As such, they form a subtheory of the first-order theory of
Heyting algebras, which Rybakov (1985b) and Idziak (1989) independently

5This immediately follows from Iemhoff (2005, Theorem 5.5) and Citkin (2012,
Proposition 1).
6See de Jongh et al. (2011) for recent developments and an overview of the history.
7We refer to Metcalfe and Röthlisberger (2013, Section 2) for definitions of the relevant

terminology.
8See Ershov and Goncharov (1986, Problem 103).
9The novelty was in using the notion of projectivity to study unification. Similar notions

appeared earlier, such as transparent unification as introduced by Wroński (1995).
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4 JEROEN P. GOUDSMIT

proved to be undecidable. It is thus a natural question to ask the following,
paraphrasing Friedman (1975, Problem 40):

Is there a decision procedure to determine whether a rule φ/ø is
admissible in IPC?

An affirmative answer was given by Rybakov (1984a). His method
proved extremely powerful, allowing him to answer analogous questions for
numerous modal logics. Among those, the modal logics of the finite slice,
treated inRybakov (1984c), modal logics extending S4.2, treated inRybakov
(1984b), the modal logic Grz of Grzegorczyk (1964), treated in Rybakov
(1987a,b, 1990b, 1991c), and the provability logic GL of Löb, treated in
Rybakov (1990a, 1991a), deserve special mention. Later, Ghilardi (1999,
p. 374) answered Friedman’s question through different means. Jeřábek
(2005, Theorem 4.3) eventually proved that admissibility in IPC is coNEXP
complete.
Besides answering Friedman’s question, Rybakov’s method can also be
applied to tackle many problems related to admissibility, in particular the
following four.

(i) The decidability of the universal theory of free algebras, treated in
Rybakov (1992b, 1996).

(ii) Characterizing those extensions of a given logic that inherit all
rules, as covered in Rimatskij and Rybakov (2005), Rutskii and
Fedorishin (2002), Rybakov (1993), Rybakov et al. (1999a), Rybakov
and Rimatskij (2002).

(iii) Describing a set of rules from which all others follow, as discussed
in Rybakov (1985a, 1987b, 1995, 1999, 2001, 2004), Rybakov et al.
(1999c, 2000a, 2000b), and Fedorishin (2007).

(iv) Giving a set of most general unifiers for a given formula, as treated
in Babenyshev and Rybakov (2011), Odintsov and Rybakov (2013) ,
and Rybakov (2011, 2013a,b).

In this paper, we describe Rybakov’s solution to Friedman’s problem. His
original solution is expressed in the modal logic S4 and transferred to IPC
via the Gödel–Tarski translation.We present a direct solution, loosely based
on the reasoning of Odintsov and Rybakov (2013).
The proof rests on one central concept, analogous to the notion of the
boundedmodel property. One of the ways in which one can prove that the set
of theorems of IPC is decidable is by constructing some complexity measure
on formulae and showing that a formula is derivable in IPC if and only if
it holds in all models whose size is bounded in terms of the measure of
complexity of said formula. As a measure, one can take the number of all
subformulae of a given formula. The following is a well-known result due to
McKinsey and Tarski (1946, Theorem 1.11).

Theorem 1.2. A formula φ is derivable in IPC if and only if it holds in
any Kripke model whose size is exponentially bounded by the number of
subformulae of φ.
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DECIDABILITY OF ADMISSIBILITY 5

Thedecidability of the set of theoremsof IPC canbederived from the above
theorem, using the following two observations. First, one can effectively
produce all Kripke models of some bounded size on the basis of this size
alone. Second, given a finitemodel, it is decidablewhether thismodel satisfies
a given formula.
We present a notion of semantics for admissible rules in such a way that
the above reasoning can be applied, mutatis mutandis, to the problem of
deciding the set of admissible rules of IPC. There are three components
to this approach: giving the proper notion of semantics, showing that one
can effectively produce all finitely many models of bounded complexity and
showing that validity of a formula at a model is decidable. The first three
sections will be devoted to the first problem, the last section to the second.
Once the appropriate notion of semantics is given, it will be clear that the last
matter needs practically no thought. Although the number of sections might
suggest otherwise, the technical difficulties lie mostly effectively generating
all models of a bounded complexity.
Let us briefly go through the plan in some detail, without delving too
deeply into the technicalities. Bear in mind that the plan is aimed at proving
the decidability of the admissible rules of IPC. As argued above, this can
be achieved in a natural manner by finding a suitably refined notion of
semantics.
We provide an algorithm to effectively construct a set of Kripke models

KΣ to each finite set of formulae Σ, satisfying the following two conditions:

Condition1The rule φ/ø is admissible in IPC if and only if it is valid on
all members of KΣ, for any pair of formulae φ,ø ∈ Σ.

Condition2The set of models KΣ is finite.
Condition3Given a model in KΣ, it is decidable whether a rule is valid

on it.

Given a class of models and a notion of validity satisfying the above, the
decidability of admissibility in IPC follows quite readily, as spelled out in
Theorem 3.3. Our problem is thus reduced to finding such a class.
In Section 2, we describe, for each set of variables, a Kripke model that
is complete with respect to the formulae using only those variables. This
model is known as the universal model or characterizing model and is used
extensively in the study of admissibility.
We define the notion of validity we wish to consider in Section 3 and
inspect two classes of Kripke models that satisfy condition 1. The first class
is that of the so-called exact models, which are, intuitively speaking, images
of the universal model under maps that preserve the validity of all formulae.
This class has the disadvantage of not being intrinsically described, leaving
us in need of an effective definition of membership of this class, as required
by condition 2.
Attempting to remedy this we switch to the second class, namely the
class of extendible models. These extendible models satisfy a significant part
of the defining conditions of the universal model. Very roughly speaking,
if a nonrooted model can be embedded into an extendible model, then a
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6 JEROEN P. GOUDSMIT

one-point extension of said model can be embedded, too. When restricting
attention to finite extendible models, condition 3 is clearly satisfied. We
indicated that this approach is doomed to failure, leaving us in need of a
more refined notion of semantics.
In Section 4, we refine the notion of exact models to adequately exact
models. These models are, again intuitively speaking, images of universal
models under a maps that preserve the validity of but a fixed and finite set
of formulae. In general, the validity of all formulae is not guaranteed to be
preserved. We show that this notion satisfies both condition 1 and 3. At this
point, the difficulty lies in proving the completeness direction in condition 1,
which follows from a standard filtration argument. This notion, like that of
exact models, is not intrinsically defined, which makes it hard to see whether
condition 2 is met.
Finally, in Section 5, we remove this last limitation. We introduce
the notion of adequately extendible models, in analogy to the notion of
extendibility of Section 3. It is easy to see that this notion satisfies both
condition 2 and condition 3, yet the validity of condition 1 is not apparent
at all.
We prove that the notions of adequate extendibility and adequate
exactness actually coincide. The one direction, from adequate exactness
to adequate extendibility, is rather straightforward. The other, however,
requires considerable work. We devote a great deal of space to the proof,
including many remarks that aim to aid one’s intuition. After this, all
conditions have been met and decidability thus follows.
The main contribution of this paper is an exposition of Rybakov’s
approach to Friedman’s problem. Rybakov’s approach has proven to be
both powerful and of great applicability and it has given rise to numerous
results over the past three decades. We explain the concepts used in this
approach and explain their usage in one of the most basic settings, that
of intuitionistic propositional logic. We claim no originality in the results
presented here; instead we offer originality in presentation. The purpose
of this exercise is to clarify and celebrate a central result in the study of
admissibility, in the hope that connecting it to known concepts in novel
ways will lead to alternative avenues of generalization.

§2. Universal model. The purpose of this section is to give a description
of the structure of the Lindenbaum algebra of IPC in a language with finitely
many variables, which corresponds to the free Heyting algebra on a finite
number of generators. We describe, given a finite set of variables, the so-
called universal model alluded to in the title of this section. This is an image-
finite Kripke model whose definable upsets correspond to the elements of
a free Heyting algebra. This model is surprisingly manageable and plays a
crucial role in our search for semantics of admissible rules.
Before we continue with the technical contents of this section, let us, for
but a moment, reflect upon the history of the universal model. Its origins
lie in the work of Rieger (1949), and, independently in that of Nishimura
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(1960), who gave a full description of the free Heyting algebra on one
generator. Urquhart (1973) was the first to give a description of the free
Heyting algebra on an arbitrary finite number of generators.
Closure algebras stand to the modal logic S4 as Heyting algebras stand
to IPC. The structure of the free closure algebra remained mysterious for
quite some time. Indeed, when Horn (1978) described the structure of the
Lindenbaum algebras for S5, he stated: “The free closure algebra with one
generator is already so complicated that its structure is unknown.” Blok
(1977) wrote, in a paper on the structure of the open elements in free
closure algebras: “[...] even a description of the free object on one generator
seems to be beyond reach, as yet.” An answer was eventually given by
Shehtman (1978), who built on the work of Esakia and Grigolia (1975). An
independent description was given, later, by Bellissima (1985).
These types of models have been used extensively in the study of
admissibility. Rieger andNishimura’s description of the freeHeyting algebra
on one generator was used by de Jongh (1982) to study the admissible rules
of IPC in one variable. Most famously, Rybakov (1984a) used descriptions
of free Heyting algebras and free closure algebras to prove the decidability
of admissibility in IPC.
Over time, many descriptions of free Heyting algebras have arisen. The
following is not an exhaustive enumeration of the literature; undoubtably,
many works are omitted. Although the descriptions are similar—they are,
after all, concernedwith the same object—they each have their own flavor. In
particular, one can discern the approach taken by de Jongh (1968),Urquhart
(1973), Rybakov (1984a), and Bellissima (1986). The approach taken by
de Jongh (1968) is reflected in the work of de Jongh and Yang (2011) and
Bezhanishvili (2006). Hendriks (1996, Section 2.5) is similar in background,
but his construction proceeds via the the notion of semantic types. The
description of Rybakov (1984a) is used by Gencer (2002) and Odintsov and
Rybakov (2013), to name but a few. Finally, the method of Bellissima (1986)
is employed by Darnière and Junker (2010) and Elageili and Truss (2012).
The description given here will most closely resemble that of Bezhanishvili
(2006).
Before we proceed to describe the universal model, we first give some
basic definitions. The logics under consideration are propositional in nature.
Given a fixed set of variablesX , we define the set of formulae by the following
grammar:

L(X ) ::= X | ⊤ | ⊥ | L(X )∨L(X ) | L(X )∧L(X ) | L(X )→L(X ).

We write ¬φ as an abbreviation for φ→⊥ and φ ≡ ø denotes
(φ→ø)∧(ø→φ). Semantics will be given byKripkemodels for intuitionistic
logic. Motivation and further background can be found in the text books by
Blackburn et al. (2001), Chagrov and Zakharyaschev (1997), and Troelstra
and van Dalen (1988).

Definition 2.1 (Kripke model). AKripke model consists of a partial order
P, called the underlying Kripke frame , and a monotonic function v : P →
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8 JEROEN P. GOUDSMIT

P(X ), called the valuation . We inductively define when a formula ÷ ∈ L(X )
holds at a world p ∈ P, denoted v,p 
 ÷, as follows.

V,P 
⊤ := true,
V ,P 
⊥ := false,
V ,P 
 x := p ∈ v(x) for variables x ∈ X,
V,P 
 φ∧ø := p
φ and p
ø,
V,P 
 φ∨ø := p
ø or p
ø,
V,P 
 φ→ø := for all q ≥ p,q
φ implies q
ø.

In the above, we used X to denote the set of propositional variables. This
is not common practise, but the deviation is neither without precedent nor
without purpose. Precedent can be found inGhilardi (1999), whose notation
we follow. The purpose, or point, is that we want tomaintain a close analogy
to Universal Algebra, where one would consider algebras generated by a set.
By analogy, the variables are the generators and are chosen from a set X .
We need to fix a bit more notation.We reserve v and u for names ofKripke
models and we use P andQ as names of Kripke frames. An arbitrary subset
of a Kripke frame will be denoted byW or S. For convenience, we use the
corresponding lower-case letters to denote elements of these sets.
A subset W ⊆ P such that the inequality w ≤ p entails p ∈W for all
w ∈W and p ∈ P is said to be an upset. Given an arbitrary subsetW ⊆ P,
one can consider the upset generated by W and the strict upset generated by
W, defined respectively as follows:

↑W := {p ∈ P
∣

∣ there is a w ∈W such that w ≤ p},

7→W := {p ∈ P
∣

∣ there is a w ∈W such that w< p}.

IfW ⊆ P is an antichain, observe that 7→W = ↑W –W . Whenever an upset
U is equal to the upset generated by a singleton set, we say that U is a

principal upset. We simply write ↑p to mean ↑{p} and we similarly write 7→p

for 7→{p}. When U ⊆ P is an upset, then one can consider the restriction
v ↾U :U →P(X ) . The resulting model is said to be a generated submodel
of v.
The natural type ofmaps to consider betweenpartial orders aremonotonic
functions. The sole difference between a Kripke frame and a partial order
is that maps of Kripke frames f : P → Q are monotonic maps satisfying
↑f(p) ⊆ f(↑p) for all p ∈ P. When v : P →P(X ) and u : Q→P(X ) are
Kripke models, then f is a map of Kripke models if it is a map between the
underlying frames, and in addition, it satisfies v = u ◦f. Such a map is often
referred to as a bounded morphism or p-morphism.
Given a model v : P→P(X ) and a formula φ ∈ L(X ), we write

JφKv := {p ∈ P
∣

∣ v,p
φ}.

This set is an upset and it is called the upset defined by φ. Note that whenever
φ and ø are equivalent, then JφKv = JøKv . Upsets of this form play a large
role in the following, hence Definition 2.2 below.
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DECIDABILITY OF ADMISSIBILITY 9

Definition 2.2 (Definable). Let v : P → P(X ) be a Kripke model. An
upset U ⊆ P is said to be definable when there exists a formula φ such that
U = JφKv . The formula φ is said to be a defining formula of U and is denoted
by defU .10

Suppose one is given a map of Kripke frames f : P → Q. Whenever we
have valuations on both frames, v : P→P(X ) and u : Q→P(Y ) say, one
can wonder whether the preimage of a definable upset in u under the map f
is definable in v as well. If this is the case, then we say that f is a definable
map f : v → u. Clearly, for this condition to hold it is both necessary and
sufficient that the preimage of JyKu is definable for every y ∈ Y .
Recall that a Heyting algebra A is a bounded distributive lattice, endowed
with a binary operation⇒ satisfying the equations

(a⇒ b)∧a = a ∧b,
(a⇒ b)∧b = b,
a⇒ (b∧ c) = (a⇒ b)∧ (a⇒ c),

a⇒ a = 1.

(2)

Alternatively, A is a partial order, that, when considered as a category, is
cartesian closed. The order ≤ on A is determined by a ≤ b iff a∧b = a. In
this reading, the operations ∧, ∨ and⇒ naturally correspond to taking the
product, coproduct and exponent respectively.
Maps between Heyting algebras are maps of bounded distributive lattices
that respect the operation⇒. In symbols, a map between Heyting algebras
f : A→B is a map of bounded distributed lattices, satisfying the following
for all a,b ∈ A.

f(a⇒ b) = f(a)⇒ f(b). (3)

Through de Jongh and Troelstra (1966), it is known that there is an
equivalence between the categories of finite Heyting algebras and their
maps and the category of finite Kripke frames and their maps. As per
this equivalence, a finite Kripke frame corresponds to the partial order
of its upsets and this partial order can be endowed with a Heyting algebra
structure in a uniquemanner. In the following,we describe a slightly different
connection.
Given a model v : P → P(X ), one can consider defs(v), the set of its
definable upsets. It is an easy matter to verify that this partial order is a
bounded distributive lattice, that is to say, it has all finite products and
co-products when seen as a category. The operation⇒ can be defined as:

U ⇒ V = {p ∈ P
∣

∣ q ∈U implies q ∈ V for all q ≥ p}

= JdefU→defV Kv .

10Note that defU by no means uniquely defines a formula in L(X ). Indeed, ifø ∈L(X ) is
such that v 
 φ ≡ ø then φ would be just as good a candidate for defU as ø. We make sure
to only use the notation “ def–” when this difference is immaterial. Although it introduces
some ambiguity, the convenience this affords us compensates this by a decent margin.
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10 JEROEN P. GOUDSMIT

It is a simple exercise to verify that the equalities of (2) in fact hold.Moreover,
a definable map of Kripke frames f : v → u yields a map between the
associated Heyting algebras defs(u) and defs(v). Indeed, when we define:

defs(f) : defs(u)→ defs(v), U 7→ f–1(U ),

it is easy to verify that the equation (3) is satisfied.
We now have the language to more formally express the purpose of this
section. Per finite set X , we seek an image-finite model such that its Heyting
algebra of definable upsets equals the free Heyting algebra generated by X .
This model is known as the universal model on X .
The key concept in the description of the universal model is that of a cover.
Intuitively, a subset of a partial order covers an element in the same partial
order if the upsets they both generate differ at most in this latter element.
An example would be the set of immediate successors of a given node, which
cover said node. The definition below is taken from Ghilardi (2004).

Definition 2.3 (Cover). Let P be a Kripke frame, let W ⊆ P be an
arbitrary subset, and let p ∈ P be a point. We say that W covers p, denoted
W κ p, whenever the following equivalence holds for all q ∈ P:

p ≤ q iff p = q or q ∈ ↑W. (4)

Note that ∅ κ p precisely if p is maximal. The notion of a cover is not
strict, in the sense that W κ p can hold even if p ∈W . In fact, we always
have {p} κ p. This in contrast to the notion of a total cover, as employed
by Grigolia (1995) and Bezhanishvili (2006). Using our definition, W is a
total cover of p if W κ p and p 6∈W . Jeřábek (2005) would call p a tight
predecessor ofW in precisely the same situation. Were the model to be the
canonical model, then Iemhoff (2001a) would use the same term.
The following lemma motivates the importance of this notion. Roughly
speaking, any map of Kripke frames must preserve covers. The converse
need not always hold, but whenever the domain is image finite, it surely
does. We omit its proof, as the argument is fairly straightforward.

Lemma 2.4 (Ghilardi, 2004, Lemma 3). Let P and Q be Kripke frames,
and let f : P→Q be a monotonic map. Suppose that P is image finite. Now,
f is a map of Kripke frames if and only if for all finiteW ⊆ P and p ∈ P we
know thatW κ p implies f(W ) κ f(p).

It is well-known that IPC has the finite model property; a formula is a
theorem of IPC precisely if it holds in all finite, rooted models. Picture a
model on a fixed set of variables and assume that it contains a copy of
every finite, rooted model on that very set of variables. This model must, by
the finite model property, be complete with respect to all formulae on said
variables. Each element of the free Heyting algebra generated by the fixed
set of variables defines an upset in this model and two distinct elements yield
distinct upsets by this model’s completeness.
The above reasoning suggests to define the universal model as being a
particular model that contains a copy of each finite, rooted model. Indeed,
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as can be seen in Corollary 2.9, this is sufficient to prove that its definable
upsets correspond in a one-to-one fashion to the elements of a free Heyting
algebra. This is precisely the approach we take. First, in Definition 2.5
we give a property which Theorem 2.6 will show to ensure the above
described situation. Second, in Corollary 2.7, we observe that there is only
one image-finite model with this property up to isomorphism. This leads
to Definition 2.8.

Definition 2.5 (Universality). A model v : P → P(X ) is said to be
universal if for all finite antichains W ⊆ P and all Y ⊆ X with Y ⊆ v(w)
for all w ∈W , there exists a unique p ∈ P such that v(p) = Y andW κ p.

Theorem 2.6. Let X be a finite set of variables and let u : Q→P(X ) be
universal. For any image-finite model v : P→P(X ) there exists a unique map
of Kripke models f : v→ u.

Proof. We prove the first statement with the proviso that v is finite, from
whence the image-finite case is immediate. Indeed, existence of such a map
in the image-finite case follows from taking the union of all such maps in the
finite, rooted case. This map is well-defined and unique, anything else would
contradict the unicity in the finite, rooted case.
We proceed by induction on the number of elements inP. In the base case,
we know P to be empty and so the desired surely holds. Now, suppose we
know the desired for all finite rooted models v where P is of size at most n.
Write p for the root of P and consider the upset U = 7→p. Induction yields
a map of Kripke models fk : (v ↾ (↑k))→ u per k ∈ U . We know that the
desired f : v→ U(X ) must satisfy f ↾ (↑k) = fk for all k ∈U .
Consider the function defined by fU =

⋃

k∈U fk : (v ↾ U ) → u. This
function is well-defined due to the uniqueness that is ensured by induction.
Moreover, it is a map of Kripke models. We see that V =fU (U ) is an upset
and note that there must be a finite antichain W ⊆ V such that ↑W = V .
Hence, there exists a unique q ∈U(X ) such that bothW κ q and u(q)= v(p).
It is clear that V κ q holds. By Lemma 2.4, we know that the map f ought
to send p to q. Define f = fU ∪〈pq〉 and the desired follows. ⊣

Corollary 2.7. Up to isomorphism of Kripke models, there is at most one
image-finite model on any given finite set of variables that is universal.

Proof. Suppose v : P → P(X ) and u : Q → P(X ) are both universal.
Through Theorem 2.6, there are maps of Kripke models f : v → u and
g : u → v. The same theorem ensures that f ◦ g = idu and g ◦f = idv ,
proving the desired. ⊣

Definition 2.8 (Universal Model). The universal model on X , denoted
u : U(X )→P(X ), is the unique image-finite model on X that is universal.

Intuitively, one starts with an empty model and iteratively adds points
such that to each finite subset and to each set of variables that holds at this
subset one has some point covered by this subset, at which precisely these
variables hold. This yields a sequence of Kripke models un : Pn → P(X ),
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such that

u=
⋃

n∈N

un, U(X ) =
⋃

n∈N

Pn.

At the zeroth stage, we consider an empty Kripke model. Hence u0 is the
unique function P0 = ∅ → P(X ). The only antichain in P0 thus is ∅. One
would have to expand P0 into P1 to accommodate more points and one
would extend the valuation u0 appropriately into u1. There would be points
pY ∈ P1 per Y ⊆ X satisfying ∅ κ pY and u1(pY ) = Y . This means that the
universal model must have a maximal point per subset of X .
After the (n+1)th stage, one inspects each subsetW ⊆ Pn+1. IfW would
be contained within Pn and one would add a new point p into Pn+2 such
thatW κ p, then the uniqueness demanded by universality would be broken.
Indeed, a point q satisfying W κ q with un+1(q) = un+2(q) already exists,
as it was added in a previous step. One thus only considers sets W where
the intersection with Pn+1 – Pn is nonempty. Moreover, if W would be
the singleton set {p} and one would add a point such that W κ q and
un+2(q) = un+1(p), then uniqueness would be violated, too. Indeed,W κ p
also holds and so the point q would be superfluous.
The model described by Definition 2.8 is the union of all the models
obtained from the above construction. Although we do not consider the
concrete details of the above construction in the following, let us spend a
few words on the attention we paid to avoiding violating the uniqueness
demanded by universality.
In Corollary 2.9, we prove that any two distinct points can be discerned by
their theories. Consider a generic Kripke model v : P→P(X ) and suppose
that there are points p,q ∈ p such that v(p) = v(q) holds, and bothW κ p
and W κ q hold for a given antichain W ⊆ P. There exists an obvious
map of Kripke models from v to the model where p and q are conflated,
proving that one could not possibly discern between these points through
their theories.
This idea goes back to de Jongh and Troelstra (1966, Definition 4.4).
In the case where p and q are comparable, they called the resulting map
of Kripke models an α-reduction. If p and q are incomparable, then the
resulting map is said to be a â-reduction. Similar maps are considered by
Anderson (1969, Section 4), respectively called operation 1 and operation
2.11 Bellissima (1986), too, considers this and speaks of α-degenerate and
α-duplicate points respectively. These same notions occur in Odintsov and
Rybakov (2013, p. 773), under the names duplicates and twins respectively.
Note that the precautions taken against constructing two points covered by
the same set, in our loose description of the construction of U(X ) above,
correspond respectively to preventing the creation of duplicates and twins.
For a more extensive treatment of this topic we refer to Goudsmit (2018).

11This similarity was already noted by Troelstra in his review (MR0248004) of this paper.
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Corollary 2.9. Let X be a finite set of variables. The Heyting algebra of
definable upset of the universal model u : U(X )→P(X ) is isomorphic to free
Heyting algebra generated by X via the mappings

J–K
u
: F(X )→ defs(U(X )) and def(–) : defs(U(X ))→ F(X ).

Proof. It is easy to verify that both functions, as mentioned in the
theorem, are maps of Heyting algebras. Let us argue that these maps
are mutually inverse. The one direction is straightforward enough. Indeed,
JdefU K

u
=U follows immediately when writing out the definitions.

We focus on the other direction. Know that defJφK
u
is a formula ø such

that JφK
u
= JøK

u
. We wish to show that φ = ø holds in F(X ), that is to say,

that ⊢IPCφ ≡ ø. We reason by contradiction and assume, without loss of
generality, that φ 6 ⊢IPCø. By the finite model property, this gives us a finite,
rooted Kripke model v : P → P(X ) such that v 
 φ and v 6
 ø. Through
Theorem 2.6 we know there to be a map of Kripke models f : v → u.
Consequently, f(p) 
 φ yet f(p) 6
 ø. This shows that f(p) ∈ JφK

u
and

f(p) 6∈ JøK
u
, proving JφK

u
6= JøK

u
as desired. ⊣

Naturally, the above has been proven many times over. See Chagrov and
Zakharyaschev (1997, Theorem 8.86) and Shehtman (1978, Theorem 6) for
modal counterparts of the above theorem. A proof in the intuitionistic case
can be found in Urquhart (1973, Theorem 3), Bellissima (1986, Corollary
2.5), and Bezhanishvili (2006, Theorem 3.2.20).
The following Corollary 2.10 is an immediate consequence of Corollary
2.9. This, too, has been proven many times in the past. We point to Rybakov
(1997, Theorem 3.3.6) in particular. The first appearance of a statement of
this nature in the literature on admissibility appears to be Rybakov (1984a,
Theorem 2), concerning the modal logic S4.

Corollary 2.10. For each finite X and each φ ∈ L(X ) one has u 
 φ if
and only if ⊢IPC φ, where u : U(X )→P(X ).

The universal model is such that the order between elements is expressible
in terms of formulae. On an intuitive level, this is what Theorem 2.12 aims to
show. This observation will play a crucial role in our later arguments about
the universal model. In particular, this observation entails that, when seen as
a general frame, the universal model is refined in the sense of Jeřábek (2009).
We choose to include this definition, instead of the more general notion of
being refined, as the extra information encapsulated in being order-defined
will be crucial in the proof of Theorem 5.5.

Definition 2.11 (Order-defined). Amodel is said to be order-defined when
all principle upsets and complements of principle downsets are definable.

Theorem 2.12. Let X be a finite set of variables. Now, u : U(X )→P(X )
is order-defined.

Proof. We will show, using well-founded induction, that the following
equivalences hold for any p ∈U(X ). Each atomic part of the right-hand side
of these equivalences corresponds to an upset and each of these upsets are
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definable, be it by induction or on their own right.12 For convenience, we
writeW for the set of immediate successors of p and remark thatW κ p.

p ≤ q iff v(p)⊆ v(q) and (5)

for all k ≥ q, if v(p)⊂ v(k) or k 6≤ w for some w ∈W

then k ∈ ↑W.

q 6≤ p iff for all k ≥ q, if k ∈ ↑p then k ∈ ↑W. (6)

Let us first focus on (5). The implication from left to right is immediate. From
right to left, suppose that p 6≤ q yet the right-hand side does hold. Suppose
that q 6≤ w for some w ∈W . This immediately entails that q ∈ ↑w ⊇ ↑p, a
contradiction.
We may thus assume that q is the maximal node such thatW ⊆ ↑q. The
right-hand side of (5) still holds for q, as it is upwards closed. We will prove
thatW κ q and v(q) = v(p), proving p = q by the definition of U(X ), quod
non.
To this end, take k ∈U(X ) to be such that q < k. By maximality, we know
that W 6⊆ ↑q. It now follows through (5) that k ∈ ↑W , which shows that
W κ q.
Let us now prove that v(p) = v(q). We know that v(p) ⊆ v(q), so we
need but exclude v(p) ⊂ v(q). If this were the case, then q ∈ ↑W ⊆ ↑p, a
contradiction. This finishes the proof of (5). As the equivalence (6) is clear,
we are done. ⊣

Lemma 2.13. Let X be a finite set of variables and let v : P→P(X ) be an
image-finite, order-defined model. There exists an upset U ⊆ U(X ) such that
v and u ↾U are isomorphic as Kripke models.

Proof. By Theorem 2.6, we know of a unique map of Kripke models
f : v→U(X ).We first show that f is injective. Indeed, suppose p1,p2 ∈P are
given such that f(p1) = f(p2). Note that ↑p1 is definable in v. We observe
that v,p1 
 def↑p1 and hence u,f(p1) 
 def↑p1, leading to v,p2 
 def↑p1.
We can thus conclude p1 ≤ p2 and the converse holds for a similar reason.
This proves p1 = p2, as desired.
To finish the argument, we define U := f(P). The existence of a map of
Kripke models g : (u ↾U )→ v satisfying f ◦g = idv and g ◦f = idu readily
follows. ⊣

Recall that we defined the universal model to be the least model satisfying
certain properties.Wemight as well replace these properties by the statement
that the model be complete with respect to all formulae in L(X ), that is to
say, U(X ) is the least Kripke model v : P→P(X ) such that

v
÷ if and only if ⊢IPC÷ for all ÷ ∈ L(X ). (7)

From Corollary 2.9 it is clear that the universal model satisfies (7). One can
readily prove that it is the smallest such model through (6). Indeed, suppose

12Note that the finiteness ofX is crucial to the definability of v(p)⊆ v(q) and v(p)⊂ v(q).
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there is a proper generated submodel v := u ↾ U : U → P(X ) satisfying
(7), where U ⊂ U(X ) is some upset. This must mean that there is a point
p ∈U(X ) such that p 6∈U . By (6) we know of a formula φ ∈L(X ) such that
U(X ),q 
 φ if and only if q 6≤ p. If there is a q ∈U such that u,q 6
 φ, then
q ≤ p and p ∈U , a contradiction. Hence we know that v 
 φ and u 6
 φ. By
(7) this yields ⊢IPCφ and 6 ⊢IPCφ, a clear contradiction.
Some authors introduce the universal model in this manner. An example
is Rybakov (1984c), whose n-characterizing model essentially amounts to
a model that satisfies (7) for some set of variables X with |X | = n. Both
approaches can be taken for many logics. For intermediate logics, they
coincide whenever the logic at hand has the finite model property. We will
work with the definition as given above, as the abundance of covers plays a
crucial rule in the following.

§3. Semantics for rules. In this section, we explore potential notions
of semantics for admissible rules. Our first description is extrinsic and
our second more intrinsic in nature. Neither meet all the requirements
as mentioned in the introduction, yet they do provide motivation for the
more sophisticated notion we consider in the next section. As argued in the
introduction, our search for semantics amounts to providing an algorithm
that generates a class of Kripke models out of a set of formulae that satisfies
three particular conditions. Before we proceed any further, let us formalize
these desiderata. To this end, we define what we mean when we say that a
rule is valid on amodel.Moreover, we define a convenient property of sets of
formulae. Using these two definitions, we give a more precise formulation of
the desiderata on our notion of semantics and provide a proof of decidability
under the assumption that said conditions can be met.

Definition 3.1 (Valid). Let v :P→P(X ) be a model and let φ,ø ∈ L(X )
be formulae. We say that the rule φ/ø is valid on v whenever v 
 φ implies
v 
 ø.

Definition 3.2 (Adequate Set). A set of formulae Σ⊆ L(X ) is said to be
adequate precisely if it is closed under taking subformulae, that is:

for all φ,ø ∈ L(X ) and ⊕= ∧,∨,→,φ⊕ø ∈ Σ implies φ,ø ∈ Σ.

The set of subformulae of a formula φ is denoted Sub(φ) and it is the smallest
adequate set containing φ.

Theorem 3.3. Suppose that there exists an algorithm that produces a set
of Kripke models KΣ whenever one inputs a finite adequate set of formulae
Σ⊆ L(X ) subject to the following conditions.

Condition1The rule φ/ø is admissible in IPC if and only if it is valid on
all members of KΣ, for any pair of formulae φ,ø ∈ Σ.

Condition2The set of models KΣ is finite.
Condition3Given a model in KΣ, it is decidable whether a rule is valid on

it.
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Now, the set of admissible rules for IPC is decidable.

Proof. We provide an algorithm that decides whether a given rule is
decidable.On inputφ/øwe construct the adequate set Σ :=Sub(φ)∪Sub(ø).
By assumption, we can effectively produce a class of Kripke models KΣ
satisfying the three conditions above. Verify whether v 
 φ implies v 
 ø
for all v ∈ KΣ. The rule is admissible precisely if the above holds, due to
Condition 1. Condition 2 ensures that we can effectively run through all
models inK and Condition 3 guarantees we can effectively test validity. This
proves the desired. ⊣

Recall that the validity at a universal model corresponds to derivability in
IPC, as expressed in Corollary 2.10. Because admissible rules are concerned
with a connection between the derivability in IPC of two formulae, it makes
sense to use universal models as a notion of semantics. A first approximation
would be the following characterization of admissibility, using formulae
φ,ø ∈ L(X ):

A rule φ/ø ∈ is admissible iff for all substitutions ó : L(X )→L(Y )

u
ó(φ) implies u
ó(φ) for u : U(Y )→P(Y ).
(8)

Although the above is completely true, it is also completely unsatisfactory.
Moreover, Theorem 3.3 is even applicable, as the above equivalence does not
fit the notion of validity of Theorem 3.1. The idea, however, is close to the
desired, so let us improve from here. We aim to define a kind of model that
encompasses the right-hand side of (8). To this end, we employ the notion
of definable maps of Kripke frames, as described earlier.

Definition 3.4 (Exact Model). Let v : P → P(X ) be a model. We say
that v is exact whenever there is a surjective, definable map f : u→ v, where
u : U(Y )→P(Y ) is the universal model on some finite set of variables Y .

The above definition is adopted from Bezhanishvili and de Jongh (2012,
Corollary 4.6), based on exact formulae. We do not go into the details of
exact formulae, sufficed to say that a formula is exact whenever the upset
it defines in the universal model gives rise to an exact model in our sense
above. Such exact formulae derive from de Jongh (1982) and this notion was
further developed by de Jongh and Visser (1996, Section 2).
Note that the Kripke frame U(Y ) is image-finite and being image-finite is
preserved by surjective, monotonic maps. Consequently, all exact models
are image-finite. In particular, this means that rooted exact models are
necessarily finite.

Example 3.5 Consider the setting where X = {x} and think of the model
v : P→P(X ) as depicted on the right-hand side of Figure 1. The required
definable map of Kripke frames f : U(X )→ v is depicted by the dashed
lines, whose behavior is partially described by Lemma 2.4. Observe that
the following equalities hold. Definability already follows from the first
equation, the other two are given for reference.

f–1
(

JxKv
)

= J¬¬xK
u
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x
x

Figure 1. An example of an exact model, together with a definable, surjective map of Kripke frames

from the universal model.

f–1
(

J¬xKv
)

= J¬¬¬xK
u
= J¬xK

u
,

f–1
(

J¬¬x→xKv
)

= J¬¬¬¬x→¬¬xK
u
= J⊤K

u
.

An exhaustive list of exact models on one variables is not very long. Indeed,
up to isomorphism it is given by the upsets in U(X ) defined by one of
the formulae ⊤, x, ¬x, ¬¬x and ¬¬x→x. For more details on this and
for a complete description of all finite exact models, we refer to Arevadze
(2001). An exhaustive characterization of exact models in two variables is
much harder to give, for this we refer to Bezhanishvili and de Jongh (2012,
Theorem 5.21).

Exact models are our first attempt at defining semantics for admissible
rules. We claim that the assignment which maps Σ ⊆ L(X ) to the set of all
exact models onX satisfies at least the first condition of Theorem 3.3. This is
what we prove in Theorem 3.6 below. Descriptions like this occur elsewhere
in the literature, the following is comparable in nature to Rybakov (1997,
Theorem 3.3.10) and Iemhoff (2001b, Corollary 3.15).

Theorem 3.6 (Soundness and Completeness for Exact Models). The
following are equivalent for each pair of formulae φ,ø ∈ L(X ):

1. the rule φ/ø is admissible;
2. the rule φ/ø is valid on every exact model v : P→P(X ).

The implication from 1 to 2 corresponds to soundness of admissibility
with respect to exact models and its converse, naturally, corresponds to
completeness.We first provide a little bit of machinery, of which the theorem
is but a simple corollary.

Lemma 3.7. Let v : P→P(X ) be an exact model. There exists a finite set
of variables Y and a substitution ó : L(X )→L(Y ) such that:

⊢IPCó(÷) iff v
÷ for all ÷ ∈ L(X ). (9)

Proof. Because v is exact, we know there to be a finite set of variablesX
together with a surjective, definable map of Kripke frames f : u→ v where
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u is the universal model u : U(Y )→P(Y ). Define the substitution

ó : L(X )→L(Y ), x 7→ deff–1
(

JxKv
)

.

We claim that the following equivalence holds. From here, (9) follows from
Corollary 2.10 and the surjectivity of f.

p
ó(÷) if and only if f(p)
÷. (10)

We prove (10) by structural induction along ÷. In the atomic case, the
desired follows directly from the definitions. The conjunctive and disjunctive
cases can immediately be seen to hold through induction. We treat the
implicative case ÷ = φ→ø in some detail. Observe that p 
 ó(÷) precisely if
for all q ≥ p we have that q 
 ó(φ) implies q 
 ó(ø). By induction, we know
this to mean that for each q ≥ p we have that f(q) 
 φ implies f(q) 
 ø.
This is equivalent to f(p) 
 φ→ø, as f is a map of Kripke frames, proving
the desired. ⊣

Lemma 3.8 (Ghilardi, 1999, Proposition 2). Let ó : L(Y )→ L(X ) be a
substitution and let v : P→P(X ) be a model. There is a model ó∗(v) : P→
P(Y ) such that the identity function idP :P→P is a definable map v→ ó∗(v)
satisfying:

v,p
ó(÷) iff ó∗(v),f(p)
÷ for all ÷ ∈ L(Y ) and p ∈ P. (11)

Proof. We define the valuation ó∗(v) as

ó∗(v)(p) = {y ∈ Y
∣

∣ v 
 ó(y)}.

One can prove the validity of (11) by structural induction along ÷, the atomic
case holds by definition. ⊣

Proof of Theorem 3.6. Suppose 1 holds and suppose that v :P→P(X )
is an exact model. Consider the substitution ó as ensured by Lemma 3.7,
satisfying (9). If v 
 φ then ⊢IPCó(φ) by (9). By the admissibility of φ/÷, we
know this to entail ⊢IPCó(ø). Hence (9) ensures v 
 ø to hold. This proves
2, as desired.
Conversely, suppose 1 does not hold. This gives a substitution ó :L(X )→

L(Y ) such that ⊢IPCó(φ) and 6 ⊢IPCó(ø). Now, consider the universal model
u : U(Y )→P(Y ) and know that u 
 ó(φ) and u 6
 ó(ø) by Corollary 2.10.
Through Lemma 3.8, we learn of a model ó∗(u) : U(Y )→ P(X ) and a
surjective, definable map f : u → ó∗(u) satisfying (11). See that ó∗(u) is
exact and the rule φ/ø is not valid on ó∗(u). This proves that 2 does not
hold, as desired. ⊣

The above shows that exactmodels provide sound and complete semantics
for the admissible rules of IPC. It thus makes sense to ask: is the assignment
which maps any finite adequate set Σ ⊆ L(X ) to the set KΣ of all exact
models on X of the appropriate type to apply Theorem 3.3? In order for
this to be true, said assignment has to be effective and it has to satisfy all
three conditions posed by this theorem. We go over these conditions and
then return to the matter of effectivity.
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Condition 1 poses no problem, for this amounts to the soundness and
completeness we have just proven in Theorem 3.6. We continue with
condition 3 and wish to knowwhether it is decidable whether a rule holds on
an exact model. Perhaps counterintuitively so, this condition is not a major
concern. If an exactmodel is presented bymeans of the substitution towhich
it corresponds due to Lemma 3.7 and 3.8, then the validity at said model
can be effectively reduced to the derivability in IPC of the original formula
under the given substitution. As the latter is well-known to be decidable, this
settles condition 2. An even nicer description of the validity on exact models
is possible. Indeed, it follows through the uniform interpolation theorem of
Pitts (1992) that any exact model on X corresponds to a formula in L(X ),
as proven by de Jongh and Visser (1996, Corollary 2.4). More precisely, to
every exact model v :P→P(X ) one can construct a formula φ ∈L(X ) such
that:

φ⊢IPC÷ if and only if v
÷ for all ÷ ∈ L(X ).

Sufficed to say that this argumentwas not yet known at the time ofRybakov’s
original proof, which was originally presented in 1984, a solid seven years
before Pitts uniform interpolation theorem was published. His proof gets
around this problem; in our further arguments, we do not appeal to the
reasoning given in this paragraph.
We continue our inspection of the conditions with condition 2. It poses
quite the challenge, to be sure.When the set of variables under consideration
is at most one, then there are but finitely many exact models up to
isomorphism. The situation changes drastically from two variables onwards,
as in this situation there are infinitely many nonisomorphic exact models, as
shown by Bezhanishvili and de Jongh (2012). To get around this problem,
we switch to a different notion of model in Section 4.
For the sake of argument, let us continue to the matter of effectivity.
There has to be some type of algorithm which produces KΣ out of Σ. In this
context, this comes down to the question: when given a model on X , how
does one know that it is exact? The definition, as it is given above, is in noway
intrinsic. Indeed, it refers to a definable map that exist “outside” the model
itself and as such it is not clear that one can tell whether a model is exact
by “looking at it”. It would be quite helpful to have an intrinsic description
of exact models; a description which can be tested on the model itself. Such
type of semantics can be found in the extendible extendible models, which
arise out of the work of de Jongh (1982). See also Iemhoff (2001b,Definition
1), Bezhanishvili and de Jongh (2012), and Ghilardi (2004, Proposition 4)
for comparable notions.

Definition 3.9 (Extendible). A Kripke frame P is said to be extendible
when, for each finite antichainW ⊆P, there exists an element p ∈P such that
W κ p.

Any exact model is necessarily extendible, as we show in Lemma 3.10
below. As an immediate consequence of this and Theorem 3.6, we know that
extendible models are complete with respect to all admissible rules.
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Lemma 3.10. Let v : P → P(X ) be an exact model. The model v is
extendible, too.

Proof. As v is exact, we know there to be a surjective definable map
f : u→ v, where u : U(Y )→P(Y ) is the universal model on a finite set of
variables Y. LetW ⊆ P be a finite antichain. There exists a finite antichain
S ⊆ f–1(W )⊆ U(Y ) such that f(S) =W . By the definition of U(Y ), there
must be a q ∈ U(Y ) such that S κ q. It now follows that f(S) =W κ f(q)
through Lemma 2.4, proving the desired. ⊣

One may wonder whether every model in which all admissible rules are
valid must be extendible. This is not plausible in full generality, as the
definition of validity depends solely on the theory of the model, whereas
extendibility depends on its shape. Indeed, one could easily construct two
models with equal theories, of which only one is extendible.
Ghilardi (1999, p. 867), in essence, showed that the notions of exactness
and extendibility coincide when restricting to definable upsets of the
universal model.13 It thus follows that the definable extendible subsets of
the universal model are sound with respect to the admissible rules of IPC.
They are complete as well, as can be seen through Lemma 3.10 and an
inspection of the proof of Lemma 3.8. AsGhilardi (2002) already remarked,
the approach taken by Ghilardi (1999) leads to a proof of the decidability of
admissibility. However, the technique employed here was not yet present at
the time of Rybakov (1984a) and his approach is the one we aim to describe.
Note that extendibility, although it is an intrinsic notion, is not a priori
an effectively testable property of a model. Were the model to be finite,
though, then extendibility can be readily verified. It may seem plausible
that one could obtain sound and complete semantics for admissible rules
by restricting attention to those finite models that happen to be extendible.
This thought is not too outlandish, given that formulae most certainly are
complete with respect to finite models. Rules, however, are not. We refer to
Fedorishin and Ivanov (2003) and Goudsmit (2016) for a full argument on
this and point to Rybakov et al. (1999b) for an argument in the modal case.
In the next section, we inspect a weakening of the notion of exactness that
can be safely restricted to the finite.

§4. Adequately exact models. Filtration is one of the classic techniques
used to prove the finite model property for logics, both modal and
intuitionistic. The key observation is that, when trying to determine the

13This is not precisely the statement that Ghilardi proved. His proof can, however, be easily
construed as showing this. Indeed, let U ⊆ U(X ) be a definable upset and take φ ∈ L(X ) to
be such thatU = JφK

u
for u : U(X )→P(X ). Note thatU is extendible in our sense precisely

when φ∗ has the extension property in the sense of Ghilardi (1999, p. 886). We know that
if U is exact, then U is extendible by Lemma 3.10. Through the above and Ghilardi (1999,
Theorem 2), it now follows that φ is projective. This, in turn, entails the extendibility of U
via Lemma 3.8 or Bezhanishvili and de Jongh (2012, Theorem 4.17). For more details on
this correspondence, we refer to the latter Bezhanishvili and de Jongh (2012) in the general
case and to Arevadze (2001) in the case where U is finite.
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validity of a given formula, it suffices to distinguish but finitely many truth
values within any model. To be a tad more precise, one can restrict attention
to a finite set of formulae and only observe a model up to the equivalence
relation that identifies nodes which behave identically with respect to that
chosen set of formulae. One could employ the same type of observation to
the study of admissibility. In fact, one has.
In the previous section, we considered the notion of exact models. These
models come equipped with a surjective map of Kripke frames from the
universal model, preserving the validity of all formulae in the language.
Below, we weaken the notion of exactness, in such a way that only the
validity of but a given, specific set of formulae need be preserved. For most
of our practical applications, this set will be finite.
When one is only interested in the validity of formulae in a given adequate
set Σ, many of the above described notions can be weakened. We first
reconsider the requirements we impose upon a map and then inspect an
appropriately refined notion of exactness. Amapf :P→Q betweenKripke
models v : P→P(X ) and u was defined in such a way that the equivalence
(12) below holds for all formulae. In general, this is much more than we
need. We are concerned with maps that are guaranteed to satisfy this only
for formulae in Σ.

v,p
÷ if and only if u,f(p)
÷. (12)

To define maps in such a manner would mix syntax and semantics where
no such collusion is necessary. Instead, we make use of maps satisfying
the “closed domain condition” of Zakharyaschev (1992), or rather, the
intuitionistic variant as described by Bezhanishvili and Bezhanishvili (2017,
Section 4). Lemma 4.4 shows that this semantic condition is sufficient to
retrieve the desired syntactic information. Take care to note that any map
of Kripke frames satisfies this condition.

Definition 4.1 (Closed Domain Condition). Let f : P → Q be a
monotonic map between posets and let D be a subset of Q. We say that f
satisfies the closed domain condition for D (in short: f has the cdc for D)
whenever the following holds.

if ↑f(p)∩D 6= ∅ then f(↑p)∩D 6= ∅. (13)

When the above holds for all D ∈ D and D is a set of subsets of Q, then f is
said to have the cdc for D.

In the above context, we callD a domain and refer toD as a set of domains.
A domain should always be understood as a subset of a given Kripke frame.
Maps that satisfy the cdc are closed under composition in the technical
sense of Lemma 4.2.

Lemma 4.2. Let f : P → Q and g : Q → K be monotonic maps and let
D ⊆ P(K) be a set of domains. Suppose that g has the cdc for D and f has
the cdc for g–1(D). Now, g ◦f has the cdc for D.
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x

Figure 2. A model on the variables X = {x}, where the marked subset is the domain on which the

implication ¬¬x→x is not valid.

Proof. Suppose that ↑(g ◦f)(p) ∩ D 6= ∅. By assumption, we get
g(↑f(p))∩D 6= ∅. We can thus readily deduce that ↑f(p)∩ g–1(D) 6= ∅,
proving f(↑p)∩g–1(D) to be nonempty. We obtain (g ◦f)(↑p)∩D 6= ∅, as
desired. ⊣

Out of all the potential domains one could define on a model, we
are particularly interested in those domains that arise syntactically as in
Definition 4.3. These domains are precisely the sets of points where certain
implications fail to hold. Note that such domains need not be upsets, as
illustrated by Figure 2.

Definition 4.3. Let v : P → P(X ) be a model and let Σ ⊆ L(X )
be an adequate set. We define the domains specified by Σ as DΣv :=
{

JφKv – JøKv
∣

∣ φ→ø ∈ Σ
}

.

Lemma4.4 shows that amonotonicmap respects the validity of Σ precisely
if it satisfies the cdc for DΣv , much like a map of Kripke models respects
the validity of all formulae. Moreover, monotonic maps that satisfy the
cdc are a generalization of maps of Kripke frames, which we illustrate in
Lemma 4.6 below. Intuitively speaking, a monotonic map into an order-
defined Kripke model is a map of Kripke frames precisely whenever
it satisfies the cdc for all domains that can be specified in the sense
of Definition 4.3.

Lemma 4.4. LetΣ⊆L(X ) be an adequate set of formulae, let v :P→P(X )
and u : Q→ P(X ) be models, and let f : P → Q be a monotonic map such
that for all p ∈ P and x ∈ X ∩Σ we have x ∈ v(p) iff x ∈ (u ◦f)(p).14 The
following are equivalent:

1. the function f has the cdc for DΣu ;
2. the equivalence (14) holds.

v,p
÷ if and only if u,f(p)
÷ for all ÷ ∈ Σ and p ∈ P. (14)

Proof. Suppose that 1 holds. We prove (14) for all p ∈ P by structural
induction along ÷ ∈ Σ. In the base case, the desired is immediate by defini-

14Note that the requirement that v = u ◦f is included in the definition of a map of Kripke
models. As f is merely assumed to be a monotonic map, a map between posets, we need to
impose some constraint to this effect.
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tion. Both the conjunctive and disjunctive case follow straightforwardly by
induction. Now, suppose ÷ = φ→ø and note that φ,ø ∈ Σ holds as Σ was
assumed to be adequate. Consider p ∈ P and q ∈Q such that v,p 
 φ→ø,
f(p)≤ q and u,q 
 φ. If u,q 6
 ø then we know:

↑f(p)∩
(

JφKu – JøKu
)

6= ∅.

Through the cdc for DΣu , we have some k ≥ p such that u,f(k) 
 φ and
v,f(k) 6
 ø. By induction, (14) allows us to deduce that v,k 6
 φ→ø, a
contradiction. This proves the implication from left to right in (14); the
other direction is immediate.
Conversely, suppose 2 holds. We assume that ↑f(p)∩D 6= ∅ for some
D ∈ DΣu . This gives us some φ→ø ∈ Σ such that D = JφKu – JøKu . As a
consequence, we immediately know that u,f(p) 6
 φ→ø. It follows through
(14) that v,p 6
 φ→ø, so there is some q ≥ p such that v,q 
 φ and v,q 6
ø.
Using (14) again, we obtain u,f(q)
 φ and u,f(q) 6
ø. This, in turn, yields
f(↑p)∩D 6= ∅, proving 1 as desired. ⊣

In the previous sections, we worked with definable maps between Kripke
frames. Consider models v :P→P(X ) and u :Q→P(Y ). When we merely
know a monotonic map f : P → Q to satisfy the cdc for DΣu , it is not
reasonable to require that the preimage of every definable set is definable.
The most one could reasonably expect is the preservation of definability
under preimages of f for upsets defined by formulae from Σ. It is both
sufficient and necessary to require this for the variables in Σ, which is how
we define it.

Definition 4.5 (Adequate map). Let v : P → P(Y ) and u : Q → P(X )
be Kripke models, let D be a set of subsets of Q, and let f : P → Q be a
monotonic map. We say that f is a D-adequate map f : v→ u whenever f has
the cdc for D and the set f–1(JxKu) is definable for all x ∈ X . If f : v→ u is
a DΣu -adequate map, we say that it is a Σ-adequate map.

In the previous section,wedefined the notionof an exactmodel.Definition
4.7 below generalizes this, replacing maps of Kripke models by maps
satisfying an instance of the cdc. The old notion can be retrieved, as follows
immediately from the next lemma.

Lemma 4.6. LetP be a poset and let u :Q→P(X ) be an image-finite order-
defined model. Suppose f :P→Q satisfies the cdc forDΣu , where Σ :=L(X ).
Then f is a map of Kripke frames.

Proof. Take p ∈ P and q ∈ Q to be such that f(p) ≤ q. Now consider
the formulae

φ := def↑q and ø := defQ –↓ q.

It is clear that q 
 φ and q 6
ø, hence ↑f(q)∩(JφKu – JøKu) is nonempty. By
assumption, this yields us some k ≥ p such that u,f(k)
 φ and u,f(k) 6
ø.
The former proves q ≤ f(k), whereas the latter proves f(k) ≤ q. We thus
derive f(k) = q, as desired. ⊣
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Definition 4.7 (Adequately Exact). Let v :P→P(X ) be a Kripke model
and let D be a set of subsets of P. We say that v is adequately exact for D
whenever there exists a finite set of variables Y and a surjective, D-adequate
map f : u→ v where u : U(Y )→P(Y ).

Theorem 3.6 showed us that exactmodels can serve as sound and complete
semantics for arbitrary admissible rules. When restricting attention to
admissible rules drawn from a particular adequate set, it suffices to consider
adequately exact models instead. The major upside of this, is that there is an
obvious bound on the sensible size of an adequately exact model. Indeed,
as we are only interested in the validity of formulae of a given adequate set,
the size of all models one needs to be concerned with can be bound in terms
of the size of this adequate set. As such, the first and third condition as
mentioned in the introduction are clearly satisfied; the next section of this
paper is devoted to proving the second.

Theorem 4.8 (Soundness and Completeness for Adequately Exact
Models). Let Σ be an adequate set. The following are equivalent for any
φ,ø ∈ Σ:

1. the rule φ/ø is admissible;
2. the rule φ/ø is valid on every model v : P → P(X ) that is adequately
exact with respect to DΣv with P ⊆ P(Σ).

In order to prove the above Theorem 4.8, we proceed in a manner similar
to the proof of Theorem 3.6. Lemma 4.10 and 4.11 below play analogous
roles to Lemma 3.7 and 3.8 respectively. Their proofs are omitted, as they
can be obtained through straightforwardly generalizing the proofs of their
forebears. Lemma 4.9 is a fresh ingredient and it plays a key role in Theorem
4.8.Moreover, in combinationwithLemma3.8 it gives rise tomany examples
of adequately exact models.

Lemma 4.9 (Filtration). Let v : P → P(X ) be a model and let Σ be an
adequate set. There exists a model u :Q→P(Y ) and a surjective, Σ-adequate
map f : v→ u, such that Q ⊆ P(Σ).

Proof. We define the partial order Q as the following set of subsets of
P(Σ), ordered by inclusion.

Q :=
{{

φ ∈ Σ
∣

∣ v,p 
 φ
} ∣

∣ p ∈ P
}

.

The valuation u :Q→P(X ) is defined by u(q) = q∩X . There is an obvious
surjective, monotonic map f : P→Q. The desired follows from Lemma 4.4
and a straightforward inductive argument. ⊣

Lemma 4.10. Let Σ ⊆ L(X ) be an adequate set and let v : P →P(X ) be
a Σ-adequately exact model. There exists a finite set of variables Y and a
substitution ó : L(X )→L(Y ) such that:

⊢IPCó(÷) iff v
÷, for all ÷ ∈ Σ. (15)
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Lemma 4.11. Let ó : L(Y )→L(X ) be a substitution, let Σ⊆ L(X ) be an
adequate set, and let v : P → P(X ) be a model. There is a model ó∗(v) :
P →P(Y ) such that the identity function idP : P → P is a Σ-adequate map
v→ ó∗(v) satisfying:

v,p
ó(÷) iff ó∗(v),f(p)
÷, for all ÷ ∈ Σ and p ∈ P. (16)

Proof of Theorem 4.8. Suppose that 1 holds and let v : P→P(X ) be
adequately exact with respect toDΣv . This provides uswith a finite setY and a
surjective, Σ-adequate map f : u→ v, where u :U(Y )→P(Y ) is a universal
model. Through Lemma 4.10, there exists a substitution ó : L(X )→L(Y )
satisfying (15). If v 
 φ then ⊢IPCó(φ) follows from (15), so the admissibility
of φ/ø yields ⊢IPCó(ø). Applying (15) yet again shows v 
 ø, proving 2.
Conversely, suppose that 1 does not hold. We thus obtain a substitution
ó : L(X )→ L(Y ) such that ⊢IPCó(φ) and 6 ⊢IPCó(ø), where Y can safely
be assumed to be finite. As a consequence, we know u : U(Y )→ P(Y ) to
be such that u 
 ó(φ) and u 6
 ó(ø) via Corollary 2.10. Now apply Lemma
4.11, in order to obtain the model ó∗(u) : U(Y )→P(X ) and a Σ-adequate
map f : u→ ó∗(u). The desired is obtained through Lemma 4.9. ⊣

§5. Decidability of admissibility. Even though we now know that ade-
quately exact models suffice to determine the admissible rules of IPC,
the problem of decidability is not yet solved. The definition of adequate
exactness is in no way intrinsic and it is not at all apparent that one
can decide whether a model is adequately exact. In this section, we give
an intrinsic description of adequate exactness. This description is to be
sufficiently concrete, so that it can clearly be decided on finite models.
Roughly speaking, the notion of adequate extendibility we introduce here
stands to adequate exactness as extendibility stands to exactness. We show
that a model is adequately exact precisely if it is adequately extendible. As
a consequence, admissibility of IPC is decidable. Furthermore, the proofs
given in this section can be used to reprove some popular results in the
literature, among which the characterization of finite projective Heyting
algebras.
We first introduce a generalization of the concept of a cover, as treated in
Definition 2.3. It is an easy exercise to show that this new notion is indeed a
generalization of Definition 2.3. Definition 5.1 is a semantic way of looking
at the notion that Rybakov uses. The correspondence between this semantic
notion and the more syntactic approach as taken by Rybakov is given in
Lemma 5.2.

Definition 5.1 (Adequate Cover). Let P be a poset, let D be a set of
subsets, let p ∈ P, and letW ⊆ P. We say that W is a D-adequate cover of p,
denotedWκDp, whenever:

if ↑p∩D 6= ∅ then p ∈D or ↑W ∩D 6= ∅, for all D ∈ D. (17)

In the following, we write WκΣp to mean that WκDp for D = DΣv .
Recall Definition 2.3, where we defined W κ p. The above definition is a
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generalization of this concept. Indeed, if the ambientmodel is order-defined,
thenW κ p is equivalent toWκΣp for Σ := L(X ).15

Lemma 5.2. Let v :P→P(X ) be amodel, let Σ⊆L(X ) be an adequate set,
and let D =DΣv . The following are equivalent for all p ∈ P and finiteW ⊆ P:

1. WκΣp;
2. the equivalence (18) holds for all φ→ø ∈ Σ and p ∈ P.

v,p 
 φ→ ø iff v,W 
 φ→ ø and (v,p 
 φ implies v,p 
 ø). (18)

Proof. Suppose 1 holds and let φ→ø ∈ Σ be arbitrary. The implication
from left to right in (18) is immediate, asW ⊆↑p. In order to prove the other
direction, we assume that v,p 6
 φ→ø. It is clear that ↑p∩(JφKv – JøKv) 6= ∅,
hence we know that either p ∈ JφKv – JøKv or ↑W ∩ (JφKv – JøKv) 6= ∅. The
former entails v,p 
 φ and v,p 6
ø, whereas the latter ensures v,W 6
 φ→ø.
This proves 2.
Conversely, suppose 2 holds. Take an arbitraryD ∈DΣv , a point p ∈P, and
suppose that ↑p∩D 6= ∅. We know thatD = JφKv – JøKv for some φ→ø ∈ Σ.
It thus follows that v,p 6
 φ→ø. By (18), we know that v,W 6
 φ→ø or
v,p 
 φ and v,p 6
 ø. The latter disjunct entails p ∈D, whereas the former
entails ↑W ∩D 6= ∅. This proves 1, as desired. ⊣

Recall that wemotivated the usefulness of the notion of covers via Lemma
2.4. The following Lemma 5.3 plays an analogous role in justifying the
purpose of adequate covers.

Lemma 5.3. Let P and Q be Kripke frames, let D be a set of subsets of Q,
and let f : P → Q be a monotonic map. Suppose that P is image finite. The
following are equivalent:

1. the function f satisfies the cdc for D;
2. for every p ∈ P and for every finite W ⊆ P,if W κ p, then
f(W )κDf(p).

Proof. Suppose 1 holds. Let p ∈ P andW ⊆ P be such thatW is finite
andW κ p. Via monotonicity, it follows that f(W )⊆ ↑f(p). Fix a D ∈ D
and suppose that ↑f(p)∩D 6= ∅. As f is assumed to have the cdc for D, we
know that f(↑p)∩D 6= ∅, so we can take some q ≥ p such that f(q) ∈D.
BecauseW κ p, we now know that either p = q or q ∈ ↑W . In the former
case, we know that f(p) = f(q) ∈ D. In the latter case, there is a w ∈W
such that w ≤ q. Consequently, f(q)≥f(w) and so f(q) ∈ ↑f(W )∩D, as
desired.
Conversely, suppose 2 holds. Let p ∈ P and D ∈ D be such that ↑f(p)∩
D 6= ∅. We proceed by well-founded induction along n := |↑p|. Suppose that
we know:

↑f(k)∩D 6= ∅ implies f(↑k)∩D 6= ∅ for all k ∈ P with |↑k|< n. (19)

15A more granular equivalence can be given as well. Definition 2.11, the specification of
what it means to be order-defined, can easily be generalized to the adequate case. Say that a
model v :P→P(X ) is order-defined by Σ whenever each principal upset and the complement
of each principal downset can be defined by means of a formula from Σ. With this in mind,
W κ p is equivalent toWκΣp whenever the ambient model is order-defined by Σ.
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Our goal is to prove that f(↑p)∩D 6= ∅. First, note thatW := 7→p is finite
and satisfies W κ p. By 2, we thus know f(W )κDf(p). We gather that
f(p) ∈ D or ↑f(W )∩D 6= ∅. In the former case, we are done, so assume
we are in the latter case. This yields some w ∈W such that ↑f(w)∩D 6= ∅.
We know that:

⋃

s∈W

f(↑s)⊆ f(↑p),

hence (19) finishes the argument when instantiating k = w. We have thus
proven 1, as desired. ⊣

The following Definition 5.4 is a generalization of Definition 3.9. When
instantiatingD toDΣv for some adequate set Σ⊆L(X ), one can see reflections
of this notion inRybakov (1990b, Theorem15.3) andOdintsov andRybakov
(2013, Proposition 4.1.b) through the lens of Lemma 5.2.

Definition 5.4 (Adequately Extendible). Let P be a poset and let D be
a set of subsets of P. We say that P is adequately extendible for D whenever
there is a point p ∈ P to each finiteW ⊆ P such thatWκDp.

A function ì : P(P)→ P is said to be an adequate choice of covers for D,
whenever WκDì(W ) for all W ⊆ P. Clearly, a finite poset is adequately
extendible precisely if it has an adequate choice of covers. This might make
the latter notion appear redundant, yet it is quite convenient in practise. We
use this notion in the proof of Theorem 5.6 below, where it gives us a handle
on the choices involved.
Theorem 5.5 is the main conclusion of this section. It shows that
adequately exact models are the same as adequately extendible models. The
proof in one direction is relatively straightforward and quite reminiscent of
Lemma 3.10. The remainder of this section is devoted to the other direction.

Theorem 5.5. Let v : P → P(X ) be a finite model and let D be a set of
subsets of P. The following are equivalent:

1. the model v is adequately exact for D;
2. the model v is adequately extendible for D.

Proof of Theorem 5.5, 1 implies 2. Suppose 1 holds. We know there
to be a finite set of variables Y , together with a surjective D-adequate map
f : u→ v, where u : U(Y )→P(Y ) is the universal model on Y. LetW ⊆ P
be a finite subset, we need to find some p ∈ P such thatWκDp.
Consider the set f–1(W ). Fix a finite antichain S ⊆ f–1(W ) satisfying
the equation ↑S = ↑f–1(W ). We know there to be a point q ∈ U(Y ) such
that S κ q. It is easy to see that f–1(W ) κ q holds as well. By Lemma 5.3,
we know that f

(

f–1(W )
)

=WκDf(q) =: p, proving 2. ⊣

Instead of proving the other direction directly, we take a detour through
the following Theorem 5.6.

Theorem 5.6 (Extension Theorem). Let v :P→P(X ) be an order-defined
finite model, let D ⊆ P(P) be a set of subsets, and let ì : P(P)→ P be an
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adequate choice of covers for D. Consider the universal model u : U(Y )→
P(Y ) on a finite set of variablesY and the submodel u :U →P(Y ) generated
by a definable upset U ⊆ U(Y ). If there is a D-adequate map g : u→ v, then
there exists a D-adequate map f : u→ v satisfying f ↾U = g.

Proof of Theorem 5.5, 2 implies 1. Suppose 2 holds. We define Y :=
X +P and construct a model u∗ as:

u∗ : P→P(Y ), p 7→ v(p)∪
{

q ∈ P
∣

∣ p ≤ q
}

.

Note that the model u∗ is order-defined. Indeed, one can readily verify that
the following equivalences hold for all p,q ∈ P:

p ≤ q iff q 
 p;

q 6≤ p iff q 
 k for some k 6≤ p.

Hence, through Lemma 2.13, there is an upset U ⊆ U(Y ) such that the
model u := u ↾U :U →P(Y ) is isomorphic to u∗, where u : U(Y )→P(X ).
Write g : u → u∗ and g–1 : u∗ → u for the maps of Kripke models we thus
know to exist.
By Theorem 5.6, there exists some D-adequate map f : u → u∗ such
that f ↾ U = g. The latter condition guarantees that the Σ-adequate map
f is surjective. Finally, observe that the map idP : P → P is a definable
map h : u∗ → v, simply because every upset in u∗ is definable. We can thus
construct a surjective D-adequate map h ◦f : u → v through Lemma 4.2.
This shows that v is adequately exact for D, proving 1. ⊣

The Extension Theorem 5.6 is the core of Rybakov’s method towards
obtaining decidability of admissibility. Indeed, it has been provenmany time
over, inmanydifferent guises.Our formulationof the proof ismostly inspired
by Odintsov and Rybakov (2013, Theorem 4.2), although the presentation
is quite different.
The earliest occurrence of this technique in the literature came from
Rybakov (1984a, Lemma 4), where a similar statement is proven for S4.16 It
is not straightforward to recognize the statement of Theorem 5.6 in Lemma
4 of Rybakov (1984a). Indeed, this lemma makes no mention of the notion
of adequate extendibility, or anything similar to it. Instead, it concretely
describes six properties, some of which (property 4 and 6 to be precise) are
analogous to what we encompass by adequate extendibility. A more honest
description would be to say that this lemma proves the implication from 1 to
2 of Theorem 5.5, immediately followed by the observation that adequately
exact models are sound with respect to admissibility.

16This technique is employed to establish decidability of admissibility in many modal and
intermediate logics. To illustrate the wide applicability of this technique, let us but mention
Rybakov (1986a, Lemma 3), Rybakov (1986b, Lemma 4), Rybakov (1987b, Lemma 8),
Rybakov (1987a, Lemma8),Rybakov (1990a, Proposition 5),Rybakov (1990b, Theorem20),
Rybakov (1991a, Proposition 8), Rybakov (1991b, Theorem 4), Rybakov (1991c, Theorem
7), Rybakov (1992a, Theorem 4), Rybakov (1994, Lemma 7), all of which culminate to
Rybakov (1997, Theorem 3.9.6).
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Before we move on to the actual proof, let us first give a rough exposition
of the technique involved. To this end, we consider the edge-case where
g is the identity map idU : U → U . To satisfy all prerequisites, the upset
U ⊆ U(X ) of the universal model u : U(X )→P(X ) ought to be finite. The
goal of the theorem thus becomes constructing a definable map f : u→ U
such that f satisfies the cdc for D and f obeys the equality f ↾ U = idU .
This goal is attainable no matter the choice of D; indeed, it is possible to
make f a definable map.
Let us first illustrate why there exists a map of Kripke frames and
defer thoughts of definability. We have thus reduced the Extension
Theorem5.6 to the following, which is but a reformulation ofGhilardi (2004,
Proposition 4).

Theorem 5.7. LetU ⊆U(X ) be an upset that is both finite and extendible.17

Now, there exists amapofKripke framesf :U(X )→U such thatf ↾U = idU .

Proof by Ghilardi (2004). Observe that, if the map f were to exist, it
ought to preserve covers by Lemma 2.4. We can thus define the value of the
map f on q ∈ U(X ) inductively along the height of q. If q ∈U then f(q) is

defined to be q. Otherwise, we know that f( 7→q) already has been defined.
This subset of U must cover at least one node, define f(q) to equal one of
these. The resulting function is a map of Kripke frames. ⊣

The above construction is quite elegant in its simplicity, yet it does have
two major drawbacks. First, at no finite stage in the process can the map f
be seen as completed or fully determined. Second, it does not show that f is
definable. One can fill both of these lacunae by using the method given in
the proof below.
Observe that there exists a finite number N, such that every point in U
generates an upset of size at most N. In general, the number N := |U |
certainly does the trick. We construct a definable upset A(W ) ⊆ U(X ) per
subsetW ⊆ U . These upsets will be such that their union equals the entire
universal model. Moreover, the value of f : U(X )→ U at q ∈ U(X ) is
determined by the smallest S ⊆ U such that q ∈ A(W ) and this value will
be covered by W. This also makes it clear that W must generate the same

upset as f( 7→q).
In the proof below, we take an approach similar to the above. Do note that
the prerequisites are quite different; Theorem 5.6 never actually assumes that
P is extendible. Indeed, the theorem requires that P is adequately extendible
for D, given some fixed D. This matters not, as in the reasoning above
one could replace cover by adequate cover for D and the argument applies
mutatis mutandis.
For the applicability of this theorem, it is crucial that preimages of upsets
under f are definable. As illustrated above, the crux of the matter is that
such preimages are unions of A(W ) for suitably chosenW ⊆ P. These sets

17Note that to each finite X there are only finitely many such upsets, see Arevadze (2001,
Chapter 5) for details.
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A(W ) are constructed inductively along the size ofW, together with partial
definitions of the desired map f. The majority of the work lies in making
sure that these sets A(W ) behave coherently and that their union equals the
entirety of U(X ).
In the proof below, we construct a sequence of maps such that five
conditions are satisfied. Let us make a few remarks on these conditions. The
conditions of Compatibility and Closed Domain are quite straightforward;
the former is a natural ingredient of a piece-wise construction and the latter
is the piece-wise formulation of the closed domain condition f ought to
satisfy.
The condition Domain Growth ensures that the sequence converges to a
map which has all of the universal model in its domain. Image bound, on
the other hand, ensures that the division of U(X ) into the not necessarily
disjoint upsets A(W ) for W ⊆ P contains enough information to specify
the behavior of f. Finally, the condition Identity ensures that the resulting
map satisfies f ↾U = g.

Proof of Theorem 5.6. We construct a finite sequence of monotonic
maps with increasing domains, in such a way that the final map in this series
is the desiredD-adequatemapf : u→ v. For greater notational convenience,
let us write

Pn(P) := {W ⊆ P
∣

∣ n = |W |}.

We also define the natural number N := |P|+1. We claim that for each
n ≤ N and each W ⊆ Pn(P) there exists a definable upset A(W ) ⊆ U(X )
and aD-adequate mapfn : domfn→P, satisfying the following conditions
for all n ≤N .

Compatibility For all m ≤ n we have that: fm ⊆ dom fn ⊆ U (X ) and
fm = fn ↾ dom fm.

ClosedDomain For all q ∈ dom fn andD ∈Dwe have that ↑fn(q)∩D 6=
∅ implies fn(↑q)∩D 6= ∅.

DomainGrowth If |fn( 7→q)|< n then q ∈ dom fn.

Image Bound For allW ∈ Pn(P), q ∈ A(W ) implies fn( 7→q)⊆W .
Identity The equality f0 = g holds.

Suppose that the above can be constructed. Due to Domain Growth, it is
clear that domfN = U(X ). Indeed, any q ∈ U(X ) satisfies

∣

∣fN ( 7→q)
∣

∣ ≤ |P|< |P|+1 =N,

so q ∈ dom fN follows. The map fN satisfies all constraints imposed upon
f, as follows immediately from Compatibility, Closed Domain and Identity.
Consequently, we know that we need but prove that these constraints can
truly be satisfied.
The definitions of A(W ) and fn, combined with their respective proofs
of correctness, will proceed by induction along n. Let us first, uniformly for
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all cases, define

dom fn :=U ∪
⋃

i <n

⋃

S∈Pi (P)

A(S). (20)

In the case that n = 0, we simply define f0 = g. We also construct the set
A(W ) forW ∈ P0(P). Know thatW = ∅, so it suffices to define

A(∅) :=
{

q ∈ U(X )
∣

∣ q is maximal
}

.

This upset is finite and as such definable. Let us now verify that all conditions
are satisfied. Indeed, Compatibility holds trivially, Closed Domain is valid
by assumption, and Identity holds by construction. See that, if q 
A(∅), then

q is maximal and so 7→q = ∅, proving Image Bound. Moreover,
∣

∣f0(↑q)
∣

∣< 0
is never satisfied, hence Domain Growth holds vacuously. We have thus
verified all conditions.
We now turn to the case where n =m+1 and define the map fm+1. First
note that, through (20), we know

dom fm+1 = dom fm ∪
⋃

S∈Pm(P)

A(S). (21)

Recall that, for any S ∈ Pm(P), the upset A(S) is known to be definable by
induction. Using this, we define fm+1 by cases:

fm+1(q) := fm(q) if q ∈ dom fm, (22)

fm+1(q) := ì
(

fm
(

7→q
))

if q ∈ dom fm+1 and q 6∈ dom fm. (23)

Before we continue, we first prove the following.

if q ∈ dom fm+1 and q 6∈ dom fm,

then fm( 7→q) is the unique S ∈ Pm(P) with q ∈ A(S).
(24)

We know that there exists some S ∈ Pm(P) such that q ∈ A(S), due to (21).

From Image Bound, we gather thatfm( 7→q)⊆ S. If this inclusion were strict,
then

∣

∣

∣
fm( 7→q)

∣

∣

∣
< |S|=m,

so Domain Growth would yield q ∈ dom fm. Yet we explicitly assumed this

not to be the case, a contradiction. This entailsW = fm( 7→q), proving (24).
Let us now prove that the map fm+1 is monotonic. Suppose q,k ∈
dom fm+1 are given such that q ≤ k holds. We distinguish three cases below,
these are both exhaustive and mutually exclusive.

1. Both q and k are in dom fm.
2. q 6∈ dom fm and k ∈ dom fm.
3. Neither q nor k are in dom fm.

In the case 1, the desired is immediate, as fm is monotonic by induction.

In the case 2, observe that fm(k) ∈ fm( 7→q). By definition (23) and the

assumption on ì, we know that fm+1(q) = ì(fm( 7→k)) ≤ fm(k), resolving
this case.
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Finally, we treat the case 3. Because q ∈ dom fm+1 – dom fm, we know

q ∈A(fm( 7→q)) by (24).As q≤ k, it also follows thatk ∈A(fm( 7→q)). Another

application of (24) now yields fm( 7→q) = fm( 7→k), proving

fm+1(q) = ì(fm( 7→q)) = ì(fm( 7→k)) = fm+1(k).

We have thus shown that fm+1(q)≤fm+1(k) in all cases 1, 2, 3, hence fm+1
is monotonic.
We now proceed to prove that fm+1 is definable. To this end, letU ⊆ P be
a definable upset in v : P→P(X ). We claim that f–1m+1(U ) can be expressed
as:

f–1m+1(U ) = f
–1
m (U )∪

⋃

{

A(W )
∣

∣W ∈ Pm(P) and ì(W ) ∈U
}

. (25)

Once we know (25) to hold, the definability is immediate. Indeed, all
constituents are known to be definable by induction and the connectives
can all readily be internalized.
To prove the inclusion from left to right, suppose that q ∈ dom fm+1
is such that fm+1(q) ∈ U . We distinguish between whether q ∈ dom fm
does or does not hold. If it does, then fm+1(q) = fm(q) by (22) and hence

q ∈ f–1m (U ). In the case that it does not, we know that q ∈ A(fm( 7→q)) by
(24). By definition (23), we know that

ì
(

fm( 7→q)
)

= fm+1(q) ∈U,

proving the desired.
To prove the other direction, we suppose that q ∈ U(X ) is either such
that q ∈ dom fm, or q 6∈ dom fm and q ∈ A(W ) for someW ∈ Pm(P) with
ì(W ) ∈U . The former case is immediate. In the latter case, fix thisW and

note that (24) ensures W = fm( 7→q). Because ì(W ) ∈ U and fm+1(q) =
ì(W ) holds by definition (23), the desired follows.
Now, let us prove that the conditions are satisfied. It is clear that
Compatibility holds. To show that Closed Domain holds, take some
q ∈ dom fm+1 and D ∈ D to be such that

↑fm+1(q)∩D 6= ∅.

We distinguish two cases, either q ∈ dom fm holds or it does not. If it does,
then Compatibility and induction ensure that

fm+1(↑q)∩D = fm(↑q)∩D 6= ∅.

In the other case, definition (23) yields fm+1(q) = ì(fm( 7→q)). Observe that
the inequality ↑fm+1(q)∩D 6= ∅ holds, hence we know of some p ∈ P
such that both fm+1(q) ≤ p and p ∈ D hold. By the assumption on ì, it

follows thatfm+1(q)∈D orfm( 7→q)∩D 6= ∅. One can easily check that both
disjuncts ensure

fm+1(↑q)∩D 6= ∅,

proving that the Closed Domain condition holds.

https://doi.org/10.1017/bsl.2020.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2020.43


DECIDABILITY OF ADMISSIBILITY 33

Finally, we construct the sets A(W ) for W ∈ Pm+1(P), prove their
definability, and show that both the conditions Domain Growth and Image
Bound hold.

A(W ) :=

{

q ∈ U(X )

∣

∣

∣

∣

if k ∈ f–1m (↑p) then k ∈ f
–1
m ( 7→p),

for all k ≥ q and p ∈ P –W

}

. (26)

Because v : P → P(X ) is assumed to be order-defined, we know that ↑p
is definable. We know fm to be a definable map through induction, hence
f–1m (↑p) is definable as well. With this information, we can give the defining
formula of A(W ) as:

defA(W ) :=
∧

p∈P–W

deff–1m (↑p)→deff–1m ( 7→p).

WeproveDomainGrowth. Let q ∈U(X ) be such that |fm+1( 7→q)|<m+1.
If q ∈ dom fm then q ∈ dom fm+1, as readily follows throughCompatibility.
Consider now the other case, where q 6∈ dom fm. ThroughCompatibility, we

know that fm( 7→q)⊆ fm+1( 7→q). We distinguish two cases, either |fm( 7→q)|<

m or |fm( 7→q)|=m. In the former case, we know q ∈ dom fm by induction,
a contradiction.
Let us focus on the latter case, that is, we assume |fm( 7→q)| = m. This

ensures us that fm+1( 7→q) = fm( 7→q). We argue by contradiction and assume

that q 6∈ dom fm+1. Our goal will be to derive that q ∈ A(fm+1( 7→q)), which
would ensure q ∈ dom fm+1, an immediate contradiction.

To this end, let p ∈ P – fm+1( 7→q) and k ≥ q be given. Assume that k ∈
f–1m+1(↑p). If q = k holds, then q ∈ dom fm+1 follows, a contradiction. So

suppose that k ∈ 7→p. If fm+1(k) = p, then we have p ∈ fm+1( 7→q), another

contradiction. This proves that k ∈ f–1m+1( 7→p). We have thus proven that

q ∈ A(fm+1( 7→q)), as desired.
Finally, we prove that Image Bound holds. LetW ∈Pm+1(P) be given.We

wish to prove that if q ∈ A(W ), then fm+1( 7→q)⊆W . Suppose the contrary,
that is, suppose there is some k > q such that k ∈ dom fm+1 yet fm+1(k) 6∈
W . We see that p ∈ f–1m+1(↑p) for p :=fm+1(p) 6∈W . Clearly, p < fm+1(k)

does not hold, a contradiction with k ∈ f–1m+1( 7→p). This proves the desired,
finishing the argument. ⊣
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