
JFP 34, e8, 57 pages, 2024. c© The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796824000066

Algebraic effects and handlers for arrows

T A K A H I R O S A N A D A
Research Institute for Mathematical Sciences, Kyoto University, Japan

(e-mail: tsanada@fpu.ac.jp)

Abstract

We present an arrow calculus with operations and handlers and its operational and denotational
semantics. The calculus is an extension of Lindley, Wadler and Yallop’s arrow calculus.

The denotational semantics is given using a strong (pro)monad A in the bicategory of categories
and profunctors. The construction of this strong monad A is not trivial because of a size problem.
To build denotational semantics, we investigate what A -algebras are, and a handler is interpreted as
an A -homomorphisms between A -algebras.

The syntax and operational semantics are derived from the observations on A -algebras. We prove
the soundness and adequacy theorem of the operational semantics for the denotational semantics.

1 Introduction

Hughes (2000) introduced the notion of arrow as an extension of the notion of monad for
Haskell to capture non-monadic computational effects. As a syntactic development, the
arrow calculus was introduced by Lindley et al. (2010). Their calculus is an arrow version
of Moggi’s metalanguage (Moggi, 1991). As a semantic development, Heunen and Jacobs
(2006), Jacobs et al. (2009), Asada (2010) revealed that arrows are strong monads in the
bicategory Prof of categories and profunctors.

It is a natural question whether we can construct an arrow version of algebraic effects
and effect handlers since arrows are an extension of monads. Plotkin and Power (2001a,b)
presented an algebraic view for computational effects. Plotkin and Pretnar (2013) provided
effect handlers as a way to implement effects. Algebraic effects and effect handlers are the
foundations of programming languages with effects that correspond to finitary (or more
generally ranked) monads. Can we obtain an arrow version of such foundations?

Lindley (2014) defined an effect system λflow which has algebraic effects and handlers
for arrows, monads and idioms. However, the effect system λflow is not satisfactory for the
following reasons.

• The theoretical background of algebraic effects for arrows is ambiguous. Any
categorical explanation of algebraic theories for arrows is not given.

• The syntax is complicated. It is unclear why the construction of handlers is given in
that way.

• Denotational semantics is not defined. It seems hard to give denotational semantics
because the algebraic foundation of effects and handlers is not discussed enough.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000066
https://orcid.org/0000-0003-3409-6963
mailto:tsanada@fpu.ac.jp
https://doi.org/10.1017/S0956796824000066

2 T. Sanada

We present an arrow calculus with operations and handlers as an extension of the
arrow calculus. We discuss a categorical foundation for algebraic theories for arrows and
give denotational semantics for our calculus by constructing an appropriate strong monad
in (Ens-)Prof. As a main result, soundness and adequacy theorems of the operational
semantics with respect to denotational semantics are proven.

Our contributions are as follows.

• We describe algebras for arrows from a 2-categorical point of view.
• We present an arrow calculus with operations and handlers based on the notions

of algebras for arrows. The progress and preservation theorems for the calculus are
shown.

• We give a denotational semantics for the calculus and prove the soundness theorem.
There are the following non-trivial points in defining the denotational semantics.

– The “smallness” of an appropriate strong monad in (Ens-)Prof. The collection of
arrow terms, which are arrow analogues of terms in ordinary algebraic theories,
is a proper class, not a set. Hence, the “smallness” of a monad that we construct
is not trivial. We prove the “smallness” of the monad by counting the number of
normal forms of arrow terms, which was introduced by Yallop (2010) for Haskell
programs of arrow types.

– A treatment of strength to construct an algebra from a handler. Unlike ordi-
nary handlers, we need a trick to define an interpretation of handlers for arrows
because of the strength of strong monads in Prof. We define interpretation �−�S

with a set S as a parameter to construct an algebra from a handler.

1.1 Arrows in Haskell

Hughes (2000, 2005) introduced arrows as a generalisation of monads. In Haskell, arrows
are defined using a type class.

class Arrow a where

arr :: (x -> y) -> a x y

(>>>) :: a x y -> a y z -> a x z

first :: a x y -> a (x, z) (y, z)

An instance of Arrow is required to satisfy the following arrow laws.

(a >>> b) >>> c= a >>> (b >>> c) (1.1)

arr (g ◦ f)= arr f >>> arr g (1.2)

arr id >>> a= a (1.3)

a >>> arr id= a (1.4)

first a >>> arr (id× f)= arr (id× f) >>> first a (1.5)

first a >>> arr π1 = arr π1 >>> a (1.6)

first a >>> arr α= arr α >>> first (first a) (1.7)

first (arr f)= arr (f × id) (1.8)

first (a >>> b)= first a >>> first b (1.9)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 3

Table 1. Logic gates

AND OR NOT NAND

Symbol

Boolean function
AND(x, y)
= x∧ y

OR(x, y)
= x∨ y

NOT(x) =
¬x

NAND(x, y)
=¬(x∧ y)

where π1 : X × Y → X is a projection, and α : (X × Y)× Z → X × (Y × Z) is an
associator.

We explain some intuition of the type class Arrow. Let A be an instance of Arrow. A type
A x y is the type of computations whose input type is x and output type is y. The function
arr makes pure computation arr f of type A x y from a function f of type x -> y. The
function (>>>) composes two computations f of type A x y and g of type A y z and returns
a computation f >>> g of type A x z. The function first introduces an additional type z
to the input and output types of a computation f of type A x y and returns a computation
first f of type A (x, z) (y, z).

1.2 An example: logic circuit simulation by effects and handlers

Suppose we want to write a simulator for logic circuits. Logic circuits are composed of
wires and gates. Wires connect gates and transmit boolean values. There are different types
of gates, such as AND, OR, NOT and NAND. The gates AND, OR and NAND take two
boolean values as inputs and outputs one boolean value. The gate NOT takes one boolean
value as an input and outputs one boolean value. See Table 1 for the definitions as boolean
functions of the gates.

1.2.1 Logic circuit simulation by ordinary algebraic effects and handlers

We can write a simulator for logic circuits in a language with ordinary algebraic effects
and handlers. Let �LC be {AND : Bool×Bool � Bool, OR : Bool×Bool � Bool, NOT :
Bool � Bool, NAND : Bool×Bool � Bool}. The set �LC is a set of algebraic operations
and called a signature. For example, AND : Bool×Bool � Bool ∈�LC is an operation
that takes two boolean values as inputs and outputs one boolean value.

First, we write a handler to implement NAND and OR by AND and NOT.

H1 = {NAND(x, y), k �→ let u⇐AND(x, y) in let v⇐NOT(u) in k(v)

OR(x, y), k �→ let u⇐NOT(x) in let v⇐NOT(y) in

let w⇐AND(u, v) in let z⇐NOT(w) in k(z)}
Second, we write a handler to implement NOT and AND.

H2 = {AND(x, y), k �→ if x then(if y then k(true) else k(false)) else k(false)

NOT(x), k �→ if x then k(false) else k(true)}

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

4 T. Sanada

By the handlers H1 and H2, we can simulate logic circuits. For example, we define a
program P as

P= (
let x⇐NAND(true, false) in let y⇐OR(x, false) in AND(y, true)

)
. (1.10)

The program P corresponds to the following logic circuit.

true

false
false
true

Then, we can obtain the simulation result of P by handling it with H1 and H2:

handle(handle P with H1) with H2 →∗ true.

The advantage of using handlers is that the structure of a logic circuit can be separated
from its implementation. We can use a different implementation for logic circuits using
the following handlers:

H3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AND(x, y), k
�→ let u⇐NAND(x, y) in let v⇐NOT(u) in k(v)

OR(x, y), k
�→ let u⇐NOT(x) in let v⇐NOT(y) in let w⇐NAND(u, v) in k(w)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

H4 = {NOT(x), k �→ let u⇐NAND(x, x) in k(u)},

H5 = {NAND(x, y), k �→ if x then(if y then k(false) else k(true)) else k(true)}.
We have handle(handle(handle P with H3) with H4) with H5 →∗ true.

1.2.2 A problem of the approach with ordinary effects and handlers

Although we can write logic circuits with ordinary algebraic effects, the expressive power
of programming languages with such effects is too high. This is because it is possible to
describe dynamic- or meta-operations on circuits that cannot be realised in normal circuits.
For example, let Q be the following program:

Q= (
let x⇐AND(true, false) in if x then AND(x, true) else NOT(x)

)
. (1.11)

This program corresponds to the following “logic circuit.”

x

true

false

trueif x

if ¬x

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 5

The above “logic circuit” has dynamic selection of circuits according to the output value
of the first AND gate. Since such dynamic selection is an “out-of-circuit” operation, we
want to restrict the possibility of writing such a program.

1.2.3 Logic circuit simulation by the arrow calculus with operations and handlers

Since arrows generalise monads, the expression power of arrows is weaker than that of
monads. We can exploit the constraints to restrict dynamic selection of logic circuits.
Algebraic effects that correspond to arrows, which we introduce as the arrow calculus
with operation and handlers in this paper, have a restriction such that it is impossible to
perform conditional branching on their output to select subsequent algebraic effects.

The formal syntax of the arrow calculus with operations and handlers is given in
Section 4.1. Here, we give informal descriptions of the syntax and explain the restriction.

The arrow calculus has two kinds of judgements:

� �M : A and � � �� P ! A
where � = x1 : A1, . . . , xn : An and �= y1 : B1, . . . , ym : Bm are typing environments and A
is a type. The term M is a pure function of the context, of type A. The command P is a
computation which takes inputs of types � and returns an output of type A under the con-
text �. Compared to the arrow class in Haskell (Section 1.1), the command P corresponds
to a Haskell function of type “�→ Ar � A” where Ar is an instance of the arrow class
Arrow.

If we have a pure function M from � to A, we can obtain a pure command:

�, ��M : A
� � �� �M ! A

This rule corresponds to arr of the class Arrow in Haskell.
Let � be a set of operations, called a signature. For an operation op ∈�, we can perform

the operation with an input M :

op : γ � δ ∈� �, ��M : γ
� � �� op(M) ! δ

Abstraction and application of commands are given by the following rules, respectively:

� � x : A� P ! B
� � λ•x : A.P : A� B and

� � L : A� B �, ��M : A
� � �� L •M ! B

where the type A� B corresponds to a type Ar A B in Haskell. The rule for L •M
corresponds to (>>>) of the class Arrow in Haskell.

We also have sequential composition let x⇐ P in Q of commands P and Q, which
corresponds to (>>>) and first in Haskell:

� � �� P ! A � � x : A, ��Q ! B
� � �� let x⇐ P in Q ! B

For terms M , N1 and N2, we can add if M then N1 else N2 to the arrow calculus. If we
add a conditional branching like if M then P1 else P2, where P1 and P2 are commands, to
the syntax of the arrow calculus, we cannot interpret the calculus using strong promonads.
This is an important difference from the ordinary algebraic effects.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

6 T. Sanada

This restriction comes from semantic observation. A term of an algebra of a promonad,
which is a semantic counterpart of arrows, is a sequence (without branching) of opera-
tions, whereas a term of an algebra of an ordinary monad is a tree of operations. Hence, we
cannot add a conditional branching to the arrow calculus because the algebraic structure
has no branching, and we can do conditional branching in a language with ordinary alge-
braic effects because the algebraic structure has branching. This observation is informally
described by Lindley (2014), and we give a formal explanation in Section 5.2.

Let us return to the simulation of logic circuits. Now we can restrict the dynamic selec-
tion of circuits by using the constraints of the arrow calculus. The program P defined by
(1.10) is also a valid program in the arrow calculus, and Q defined by (1.11) is not a
program in the arrow calculus.

In the arrow calculus with operations and handlers, handlers H ′
1 and H ′

2 corresponding
to H1 and H2 are defined as follows.

H ′
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NAND, k : Bool�Bool � z : Bool×Bool �→ let u⇐AND(z) in
let v⇐NOT(u) in k • v

OR, k : Bool�Bool � z : Bool×Bool �→ let u⇐NOT(fst z) in
let v⇐NOT(snd z) in
let w⇐AND(〈u, v〉) in
let z⇐NOT(w) in
k • z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H ′
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AND, k : Bool�Bool � z : Bool×Bool
�→ k • (if(fst z) then(if(snd z) then true else false) else false)

NOT, k : Bool�Bool � x : Bool
�→ k • (if x then false else true)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Note that, in the construction of H ′
2, we can use if’s because these if’s select terms, not

commands.
We can simulate logic circuits by handling P with H ′

1 and H ′
2:

handle(handle P with H ′
1) with H ′

2 →∗ �true.
We can also construct handlers H ′

3, H ′
4 and H ′

5 corresponding to H3, H4 and H5. For more
details, see Section 4.3.1.

1.3 The structure of this paper

The rest of this paper is organised as follows. Section 2 is a section on categorical pre-
liminaries. In Section 3, we describe algebras for a monad in the bicategory of categories
and profunctors and observe the universality of a free algebra. The arrow calculus with
operations and handlers is introduced in Section 4. Typing rules and operational semantics
are presented. In Section 5, we define the denotational semantics for the arrow calculus
with operations and handlers. The definition of models is given in Section 5.1. We tackle
the “smallness” problem and construct a model in Section 5.2. In Section 5.3, we define
the interpretation with attention to the treatment of strength. Soundness and adequacy are
shown in Section 5.4.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 7

2 Preliminaries on category theory

In this paper, we assume that the readers are familiar with basic notions of category theory
such as adjunctions, monads, presheaves, the Yoneda lemma, Eilenberg–Moore categories
and monoidal categories as described in a textbook by Mac Lane (1971). A textbook
by Leinster (2014) is also a good reference for category theory. We use advanced top-
ics of category theory such as coends, 2-categories, bicategories and enriched categories.
Readers unfamiliar with coends are referred to Appendix A. Readers unfamiliar with
higher categories such as 2-categories, bicategories and enriched categories are referred
to Appendix B.

Throughout this paper, we use the following notation.

Notation 2.1. We denote the categories of sets and maps and classes and maps of classes
as Set and Ens, respectively. The 2-category of small categories and functors is denoted
by Cat. For a category C, we write the class of objects of C as Ob(C). We write IdC for
the identity functor on C. When a category C= (C,⊗, J) is symmetric monoidal closed,
we write
 : C(A⊗ B, C)→C(A, B⇒C) for the currying operator, where B⇒C is an
internal hom of the symmetric monoidal closed category C.

2.1 Profunctors

Arrows can be seen as strong monads in the bicategory Prof of categories and profunctors
(Heunen and Jacobs, 2006; Jacobs et al., 2009; Asada, 2010). We review profunctors and
strong monads in Prof.

In the following definition of profunctors, we use coends, which are defined and gave
an informal description in Appendix A. For more detailed explanation of coends, see also
Mac Lane (1971, Section 9) or Loregian (2021, Section 1).

Definition 2.2 (profunctor, Bénabou, 2000). Let C and D be categories. A profunctor
F : C→� D from C to D is a functor F : Dop ×C→ Set. For profunctors F : C→� D and
G : D→� E, their composite G ◦ F : C→� E is defined by taking the coend:

(G ◦ F)(E, C)=
∫ D∈D

G(E, D)× F(D, C) (2.1)

for E ∈Ob(E) and C ∈Ob(C). The identity profunctor IC : C→� C is defined by

IC(C, D)=C(C, D)

for C, D ∈Ob(C). A 2-cell α : F⇒G between profunctors F, G : C→� D is a natural
transformation.

A profunctor F : C→� D is an analogue of a binary relation r⊆C×D between two sets
C and D. We identify the binary relation r with its characteristic function D×C→ 2. A
composition s ◦ r⊆C× E of two relations r⊆C×D and s⊆D× E is defined as follows:

(s ◦ r)(e, c) ⇐⇒ ∃d ∈D. s(e, d)∧ r(d, c).

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

8 T. Sanada

Table 2. Analogy between profunctors and binary relations

A profunctor F : C→� D A binary relation r⊆C×D

Substance A functor F : Dop ×C→ Set A function r : D×C→ 2

Composition
(G ◦ F)(E, C)=∫ D G(E, D)× F(D, C)

(s ◦ r)(e, c) ⇐⇒
∃d. s(e, d)∧ r(d, c)

Identity IC(C, C′)=C(C, C′) i(c, c′)=
{

0 if c �= c′
1 if c= c′

This definition of compositions is similar to the definition of compositions of profunctors
(2.1) because the coend operator

∫ D∈D(−) is an analogue of an existential quantifier ∃D ∈
D. (−) as described in Appendix A. The correspondence between profunctors and binary
relations is summarised in Table 2.

A profunctor G : 1→� C is a presheaf G : Cop → Set on C. We have (H ◦G) ◦ F ∼=
H ◦ (G ◦ F) and ID ◦ F ∼= F ∼= F ◦ IC. That is, associativity and unitality hold up to nat-
ural isomorphism, not strictly. Moreover, the class of small categories and profunctors
forms a bicategory. Roughly speaking, a bicategory is a “category” whose hom-sets have
a category structure and whose composition and identity are associative and unital up
to isomorphism. See Appendix B.2 or Borceux (1994, Section 7.7) for the definition of
bicategories. We write the bicategory of profunctors as Prof.

From a functor F : C→D, we can obtain two profunctors F∗ : C→� D and F∗ : D→� C

which are defined by

F∗(D, C)=D(D, FC), F∗(C, D)=D(FC, D)

on objects C ∈Ob(C) and D ∈Ob(D). For morphisms f in C and g in D, F∗(g, f) and
F∗(f , g) are also defined appropriately.

2.2 Monads in the bicategory of profunctors

To capture notions of computations, strong monads have been used in functional program-
ming (Moggi, 1989, 1991). In this paper, to capture notions of computation, we use monads
in the bicategory Prof instead of ordinary monads, that is monads in the 2-category Cat.
For the definition of monads in 2-categories and bicategories, see Appendices B.1 and B.2.

We call a monad in Prof a promonad. A strong promonad is a promonad with a strength.

Definition 2.3 (strong promonad, Asada, 2010; Asada and Hasuo, 2010). Let C=
(C,⊗, J) be a monoidal category. A strong promonad on C is a profunctor A : C→� C

with 2-cells ηA : IC⇒A , μA : A ◦A ⇒A , and σA : (⊗∗) ◦ (A × IC)⇒A ◦ (⊗∗):

C C

IC

A

⇓ ηA , C

C

C

A A

A

⇓μA ,

C×C C×C

C C

⊗∗ ⊗∗

A × IC

A

⇓ σA

satisfying the axioms shown in Figure 1.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 9

C

C

C

A

IC

A

A

⇓ η ⇓μ
=

C

C

C

A

IC A

∼=
C

C

C

A

A

A

IC

⇓ η⇓μ
=

C

C

C

A

A IC

∼=

C

C C

C

A

A

A

A

A
⇓μ

⇓μ
=

C

C C

C

A

A

A

A

A
⇓μ

⇓μ

C×C×C C×C×C

C×C C×C C×C

C C

I×⊗∗ ⊗∗ × I

⊗∗ ⊗∗

A × I× I

A × I

A

⊗∗ × I

⊗∗

∼=

⇓ σ × I

⇓ σ

=

C×C×C C×C×C

C×C C×C C×C

C C

I×⊗∗

⊗∗ ⊗∗

A × I× I

A × I

A

⊗∗ × II×⊗∗

⊗∗

∼=

∼=

⇓ σ

C

C×C

C

C×C

C

C

(Id× J)∗

I

A × I

⊗∗

A

⊗∗

A I

∼=

∼=

⇓ σ = C

C×C

C

C×C

C

C

(Id× J)∗

I

A × I

⊗∗

A I

(Id× J)∗
A

∼=

∼=
∼=

C×C C×C

C C

⊗∗ ⊗∗

I× I

A × I

A

⇓ η× I

⇓ σ

=
C×C C×C

C C

⊗∗ ⊗∗

I× I

I

A

∼=

⇓ η

C×C

C

C×C

C

C×C

C

⊗∗

⊗∗

⊗∗

A × I A × I

A A

A

⇓ σ ⇓ σ

⇓μ =

C×C

C

C×C

C×C

C

⊗∗ ⊗∗

A × I A × I

A

A × I

⇓μ× I

⇓ σ

Fig. 1. Axioms for a strong promonad.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

10 T. Sanada

Hughes (2000), Jacobs et al. (2009), Asada (2010) showed that a promonad corre-
sponds to an arrow type in Haskell. The unit η : IC⇒A of a promonad A corresponds to
arr : (x -> y) -> A x y:

η : IC⇒A

ηA,B : C(A, B)→A (A, B) natural in A and B

The multiplication μ : A ◦A ⇒A of the promonad A corresponds to
(>>>) : A x y -> A y z -> A x z:

μ : A ◦A ⇒A

μA,C :
∫ B∈C

A (A, B)×A (B, C)→A (A, C) natural in A and C

μA,B,C : A (A, B)×A (B, C)→A (A, C) natural in A and C, and extranatural in B

The strength σ : ⊗∗ ◦ (A × IC)⇒A ◦⊗∗ of the promonad A corresponds to
first : A x y -> A (x, z) (y, z). The proof of the correspondence is complicated,
see Asada (2010, Theorem 14):

σ : ⊗∗ ◦ (A × IC)⇒A ◦⊗∗
A (A, B)→A (A⊗C, B⊗C) natural in A and B, and extranatural in C

From a monad, we can obtain a promonad:

Proposition 2.4. Let T : C→C be a monad. The profunctor T∗ : C→� C is a promonad.

Note that the profunctor T∗ : C→� C is a functor C
op ×C→ Set, and we have

T∗(C, D)=C(C, T D)=K(T)(C, D) where K(T) is the Kleisli category for the
monad T . Hence, each monad can be regarded as a promonad. In this sense, arrows are a
generalisation of monads.

For a monad T : C→C in Cat, there exists a category EM (T) called the Eilenberg–
Moore category of T . It satisfies the following property (Street, 1972):

Cat(D, EM (T))∼= EM (Cat(D, T)) (2.2)

where Cat(D, T) : Cat(D, C)→Cat(D, C) on the right-hand side is a monad on the func-
tor category Cat(D, C) defined by Cat(D, T)(F)=T ◦ F. The category EM (Cat(D, T))
is the Eilenberg–Moore category of the monad Cat(D, T).

For a promonad A : C→� C in Prof, there exists a category EM (A) (Wood, 1985) that
satisfies

Prof(D, EM (A))� EM (Prof(D, A)) (2.3)

where Prof(D, A) : Prof(D, C)→ Prof(D, C) on the right-hand side is a monad on the
profunctor category Prof(D, C) defined by Prof(D, A)(F)=A ◦ F.

Definition 2.5 (the Eilenberg–Moore category of a promonad, Wood, 1985). Let A : C→�
C be a promonad in Prof. The Eilenberg–Moore category EM (A) of A is defined as
follows:

• Ob(EM (A))=Ob(C).
• For A, B ∈Ob(EM (A)), EM (A)(A, B)=A (A, B).

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 11

• For A ∈Ob(EM (A)), the identity on A is ηA
A,A(idA) ∈A (A, A).

• For a ∈ EM (A)(A, B) and b ∈ EM (A)(B, C), the composition b ◦ a is μA
A,B,C(a, b).

There is an identity-on-objects functor J : C→ EM (A) defined by ηA
A,B : C(A, B)→

A (A, B). The functor J induces an adjunction J∗ � J∗ in Prof:

C EM (A)

J∗

J∗
.

The promonad A coincides with the composition of J∗ and J∗ i.e., A ∼= J∗ ◦ J∗.

2.3 Size issues

An arrow corresponds to a strong promonad, but when trying to interpret a programming
language with, for example, Set, one faces size problems because the natural interpretation
is not a set. That is, an endoprofunctor A : Set→� Set must be a functor A : Setop × Set→
Ens, not a functor Setop × Set→ Set, because the composition of profunctors is defined
by a coend. Hence, the interpretation A (�A�, �B�) of an arrow type A� B (in a Haskell-
like notation, Ar A B, where Ar is an instance of the class Arrow) is a class, not a set.
Asada (2010) introduced V-small profunctors in V

′-Prof. The size problem is solved using
Set-small profunctors in Ens-Prof.

Readers who are not concerned about size issues may skip the rest of this section. For
the definition of enriched categorical notions such as V-categories and V-functors, see
Appendix B.3 and Kelly (1982, Section 1).

Definition 2.6 (V-profunctors). Let V be a sufficiently cocomplete symmetric monoidal
category and C and D be V-categories. A V-profunctor F from C to D, written F : C→� D,
is a V-functor F : Dop ⊗C→V. A 2-cell α from V-profunctors F : C→� D to G : C→�
D, written α : F⇒G is a V-natural transformation between the V-functors. For two V-
profunctors F : C→� D and G : D→� E, their composite G ◦ F : C→� E is defined by the
following coend in V:

(G ◦ F)(E, C)=
∫ D∈D

G(E, D)⊗ F(D, C).

The identity V-profunctor IC : C→� C is defined by

IC(C, D)=C(C, D).

The collection of small V-categories, V-profunctors and 2-cells, forms a bicategory
V-Prof. The bicategory Prof is the special case of V-Prof where V= (Set,×, 1).

Definition 2.7 (Asada, 2010). Let V be a symmetric monoidal category, V′ be a suffi-
ciently cocomplete symmetric monoidal closed category and J : V→V

′ be a symmetric
strong monoidal fully faithful functor. A V

′-profunctor F : C→� D is V-small if there
exists a V

′-functor F◦ : Dop ⊗C→V such that J ◦ F◦ = F:

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

12 T. Sanada

D
op ⊗C V

′

V

F

F◦
J . (2.4)

Let J : Set→Ens be the embedding. A Set-small strong Ens-promonad A : Set→� Set
is an Ens-functor A : Setop × Set→Ens with 2-cells η, μ and σ which make A a strong
Ens-promonad, and an Ens-functor A ◦ : Setop × Set→ Set satisfying

Setop × Set Ens

Set

A

A ◦ J .

If a suitable Set-small strong Ens-promonad A : Set→� Set exists, then we can define
the interpretation of an arrow type A� B (which will be introduced in Section 4.1) by
�A� B�=A ◦(�A�, �B�).

We will introduce an arrow calculus with operations and handlers in Section 4.1 and
define models of the calculus as appropriate small promonads (Definition 5.1). As a con-
crete model, we will construct a Set-small strong Ens-promonad A which has sufficient
structure to interpret the arrow calculus in Section 5.2.

3 Algebras of arrows

For an ordinary monad T : C→C, a T -algebra is a pair 〈A, a〉 of an object A ∈C

and a morphism a : T A→ A in C satisfying appropriate axioms, that is an object of
the Eilenberg-Moore category EM (T). An ordinary effect handler is interpreted as a
homomorphism between two T -algebras.

What is an A -algebra for a promonad A : C→� C? We answer this question in the next
section (Section 3.1) from a 2-categorical point of view. We also discuss the universality
of a free A -algebra in Section 3.2. A handler for arrows is interpreted as a homomorphism
between A -algebras in the sense of Section 3.1.

3.1 Algebras of promonads

Let 1 be the category with a single object and a single morphism (the identity). For a monad
T : C→C, a T -algebra is a functor 1→ EM (T) in Cat. Similarly, for a promonad
A : C→� C, we call a profunctor 1→� EM (A) in Prof an A -algebra where EM (A) is
the Eilenberg–Moore category of A (Definition 2.5).

By (2.2), a T -algebra a : 1→ EM (T) corresponds to a Cat(1, T)-algebra α, that is the
following equation holds:

1

EM (T)

C C

a�A� �A�

U U

T

= =
⇒
ξ

=

1

C C

�A� �A�

T

⇒
α

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 13

where A ∈C, �A� : 1→C is the constant functor, and the 2-cell ξ is defined by ξf =
f : T U(f)→Uf for a T -algebra f : T A→ A. Hence, specifying a T -algebra a : 1→
EM (T) is equivalent to specifying a morphism α : T A→ A satisfying ordinary equations
for a T -algebra.

Similarly, by (2.3), a A -algebra a : 1→� EM (A) corresponds to a Prof(1, A)-algebra
α up to isomorphism, that is

1

EM (A)

C C

aG G

J∗ J∗

A

∼= ∼=
⇒
μ

∼=

1

C C

G G

A

⇒
α

.

The Prof(1, A)-algebra α satisfies the following equations.

1

C C

G G

A

IC

⇒
α

⇑η

=

1

C C

G G

IC

∼=
(3.1)

1

C

C

C

G G

A A

A

⇒
α

⇑μ

=

1

C

C

C

G

G

G

A A

⇒
α

⇒
α (3.2)

Note that (3.1) is equivalent to αX ,Y (ηX ,Y (f), k)= (Gf)(k) for any X , Y ∈C, f ∈C(X , Y)
and k ∈GY , and (3.2) is equivalent to αX ,Z(μX ,Y ,Z(a, b), k)= αX ,Y (a, αY ,Z(b, k)) for any
X , Y , Z ∈C, a ∈A (X , Y), b ∈A (Y , Z) and k ∈GZ.

Hence, specifying an A -algebra a : 1→� EM (A) is equivalent to specifying a presheaf
G : Cop → Set and a 2-cell α : A ◦G⇒G in Prof satisfying (3.1) and (3.2). We call such
a pair 〈G, α〉 also an algebra.

Definition 3.1 (algebras and homomorphisms). Let A : C→� C be a promonad. An alge-
bra for A is a pair 〈G, α〉 of a presheaf G : Cop → Set and a 2-cell α : A ◦G⇒G in Prof.
A homomorphism h from an algebra 〈G, α〉 to an algebra 〈H , β〉, written h : 〈G, α〉→
〈H , β〉, is a 2-cell h : G⇒H in Prof such that β ◦ (A h)= h ◦ α.

In other words, a homomorphism h : 〈G, α〉→ 〈H , β〉 is a natural transformation from
G to H that makes the following diagram commute:

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

14 T. Sanada

A (X , Y)×GY GX

A (X , Y)×HY HX

αX ,Y

A (X ,Y)×hY hX

βX ,Y

for any X , Y ∈C.

Remark 3.2. We defined an algebra as a morphism from 1 to an Eilenberg–Moore
object. We justify the use of 1. A morphism D→ EM (T) in Cat corresponds to
1→ EM (Cat(D, T)). Similarly, a morphism D→� EM (A) in Prof corresponds to 1→�
EM (A × IDop). In both case, a morphism from a category D to an Eilenberg–Moore object
of a (pro)monad corresponds to a morphism from 1 to another Eilenberg–Moore object.

3.2 Arrow handlers as homomorphisms between algebras

A free A -algebra for a promonad A has a universal property, which is similar to the
universal property for a free T -algebra for an ordinary monad T . Theorem 3.3 shows
the universality of a free A -algebra. An effect handler for arrows is interpreted by the
homomorphism induced by the universality.

Theorem 3.3. Let A be a promonad on C, C ∈C, G : 1→� C be a profunctor, that is
a presheaf on C, and 〈G, α : A ◦G⇒G〉 be an A -algebra. If φ : C(−, C)→G is a
morphism between presheaves, then there exists a unique homomorphism

φ† :
〈
A (−, C), μA

−,C : A ◦A (−, C)⇒A (−, C)
〉→〈G, α : A ◦G⇒G〉

between A -algebras that makes the following diagram commute up to isomorphism:

C(−, C) A (−, C)

G

ηA−,C

φ
φ† . (3.3)

Proof
We define φ† = α ◦ (A φ) ◦ ρ−1 : A (−, C)→G where ρ is the right unitor:

A (−, C) (A ◦ IC)(−, C)=A ◦ (C(−, C)) A ◦G G.
∼=

ρ−1

A φ α (3.4)

We check that φ† makes the diagram (3.3) commute. In the following diagram, the bottom
triangle commutes by (3.1).

C(−, C) A (−, C)

A ◦C(−, C)

G A ◦G

IC ◦G G

ηA−,C

φ

∼=

A φ

∼= α

∼=

ηA G

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 15

To show that the above square commutes, it suffices to show the commutativity of the
following diagram for each object A of C:

C(A, C) A (A, C)

GA

∫ B∈C
A (A, B)×C(B, C)

∫ B∈C
C(A, B)×GB

∫ B∈C
A (A, B)×GB

ηA
A,C

φA
∼=

∼= A φ

ηA G

(f : A→C) ηA
A,C(f)

φA(f) [ηA
A,C(f), idC]

[idA, φA(f)] [ηA
A,A(idA), φA(f)] [ηA

A,C(f), φC(idC)]

ηA
A,C

φA ∼=

∼= A φ

ηA G

where [x, y] denotes the equivalence class of a pair (x, y), see the proof of Proposition A.3
in Appendix A. By chasing the diagram, it is enough to show [ηA

A,A(idA), φA(f)]=
[ηA

A,C(f), φC(idC)] in
∫ B∈C

A (A, B)×GB for each A ∈C and f : A→C. Consider the

following commutative diagram.

A (A, A)×GC A (A, A)×GA

A (A, C)×GC

∫ B∈C
A (A, B)×GB

A (A,A)×Gf

A (A,f)×GC
ωA

ωC

For 〈η(idA), φC(idC)〉 ∈A (A, A)×GC, we have

ωA((A (A, A)×G(f))〈η(idA), φC(idC)〉)
=ωA(〈η(idA), (Gf)(φC(idC))〉)
=ωA(〈η(idA), φC(f)〉) (by the naturality of φ)

= [η(idA), φC(f)]

and

ωC((A (A, f)×G(C))〈η(idA), φC(idC)〉)
=ωC(〈A (A, f)(η(idA)), φC(idC)〉)
=ωC(〈η(f), φC(idC)〉) (by the naturality of ηA,−)

= [η(f), φC(idC)].

Hence, we have [η(idA), φ(f)]= [η(f), φ(idC)].

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

16 T. Sanada

Next, we show that φ† is a homomorphism μA
−,C → α of A -algebras. It suffices to show

the commutativity of the left and right square in the following diagram. The right square
commutes because α is an A -algebra (3.2), and the left square commutes by the naturality
of μ and φ and some calculation similar to the above argument.

A 2(−, C) A 2 ◦C(−, C) A 2 ◦G A ◦G

A (−, C) A ◦C(−, C) A ◦G G

μA−,C

∼=

A φ†

A 2φ

μG

A α

α

∼=

φ†

A φ α

�

By the Yoneda lemma, giving a morphism φ : C(−, C)→G between presheaves is
equivalent to giving an element p ∈GC. In the proof of Theorem 3.3, φ† is defined by
(3.4). Hence, for a ∈A (A, C), φ†(a) is calculated to be α([a, p]). In summary, we obtain
the following corollary.

Corollary 3.4. Let A be a promonad on C, C ∈C, G be a presheaf on C, and 〈G, α〉 be
an A -algebra. For an element p ∈GC, there is a homomorphism

h :
〈
A (−, C), μA

−,C : A ◦A (−, C)⇒A (−, C)
〉→〈G, α : A ◦G⇒G〉

satisfying hA(a)= α([a, p]) for any A ∈C and a ∈A (A, C), and h(ηA
A,C(f))= (Gf)(p) for

any A ∈C and f : A→C in C.

When G in Corollary 3.4 is a presheaf A ′(−, D) for another promonad A ′ : C→� C and
an object D ∈C, we obtain the following corollary.

Corollary 3.5. Let A and A ′ be promonads on C, D ∈C, and α be a family
(αA,B : A (A, B)×A ′(B, D)→A ′(A, D))A,B∈C of maps which is natural in A and extranat-
ural in B and satisfies (3.1) and (3.2) for G=A ′(−, D). For an element p ∈A ′(C, D),
there is a homomorphism

h :
〈
A (−, C), μA

〉→ 〈
A ′(−, D), α

〉
such that h(a)= αA,C(a, p) for any A ∈C and a ∈A (A, C), and hA(ηA

A,C(f))=A ′(f , D)(p)
for any A ∈C and f : A→C in C.

We use Corollary 3.5 to interpret handlers for arrows.

Remark 3.6. Note that we can prove Theorem 3.3 in another way. From the promonad
A : C→� C, we can obtain a cocontinuous monad Ã : [Cop, Set]→ [Cop, Set] by the

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 17

Types A, B, C, D ::= β | A× B | A→ B | A� B where β ∈ BType

Environments �, � ::=� | �, x : A

Terms M , N , L ::= x | 〈M , N〉 | fst M | snd M | λx : A.M |MN | λ•x : A.P

Values V , W ::= x | 〈V , W 〉 | λx : A.M | λ•x : A.P

Commands P, Q, R ::= �M | let x⇐ P in Q | L •M | op(M) | handle R with H

Handlers H ::= { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op∈�

Fig. 2. The syntax of the arrow calculus with operations and handlers.

following construction. Then, using the universality of free Ã -algebra, Theorem 3.3 is
proved.

F : C→� D

F : Dop ×C→ Set

F : C→ [Dop, Set]
currying

F̃ : [Cop, Set]→ [Dop, Set]: cocontinuous
left Kan extension

4 The arrow calculus with operations and handlers

The arrow calculus was introduced by Lindley et al. (2010, 2011). We add operations and
handlers to their calculus.

4.1 Syntax and typing rules

Let BType be a set of base types, and � be a set of operations. We assume that two base
types γ (coarity) and δ (arity) are assigned for each operation op ∈�. We write op : γ � δ

when the coarity and arity of op are γ and δ, respectively. The syntax is shown in Figure 2.
The difference from the original arrow calculus (Lindley et al., 2010, 2011) is the addition
of op(M), handle R with H to the commands and handlers H .

We call a type A primitive (written �(A)) if A is constructed only by β, × and →.
Formally, �(A) is defined as follows.

β ∈ BType
�(β)

�(A) �(B)
�(A× B)

�(A) �(B)
�(A→ B)

The typing rules for the arrow calculus are shown in Figure 3. The notion of primitive
types is used in the rule T-HANDLER.

A type A� B is that of an effectful computation such that the type of its inputs is A and
the type of its outputs is B.

As we described in Section 1.2.3, a term M is a pure function and a command P is an
effectful computation. The command �M is a pure computation, which corresponds to
arr in Haskell. The command L •M is a command that invokes an arrow L with an input
M . It corresponds to (>>>) and arr in Haskell. The command let x⇐ P in Q is a sequential
composition of commands P and Q, which corresponds to (>>>) and first in Haskell. The
command op(M) is an operation invocation with an input M .

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

18 T. Sanada

The derivation of � �M : A

�, x : A� x : A
T-VAR

�, x : A�M : B
� � λx : A.M : A→ B

T-ABS

� �M : A→ B � �N : A
� �MN : B T-APP

� � x : A� P ! B
� � λ•x : A.P : A� B

T-CABS

� �M : A � �N : B
� � 〈M , N〉 : A× B

T-PAIR
� �M : A× B
� � fst M : A

T-FST
� �M : A× B
� � snd M : B T-SND

The derivation of � � �� P ! A
�, ��M : A

� � �� �M ! A T-PURE
� � L : A� B �, ��M : A

� � �� L •M ! B T-CAPP

� � �� P ! A � � x : A, ��Q ! B
� � �� let x⇐ P in Q ! B T-LET

op : γ � δ ∈� �, ��M : γ
� � �� op(M) ! δ T-OP

� � �� P !C �H : C⇒D
� � �� handle P with H !D T-HANDLE

The derivation of �H : C⇒D

�(C)∧�(D) � � x : C � P !D (
k : δ�D � z : γ �Qop !D

)
(op : γ�δ)∈�

� { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op∈� : C⇒D
T-HANDLER

Fig. 3. Typing rules for the arrow calculus with operations and handlers.

A judgement � �M : A for a term means that the term M is a pure function from � to
A. A judgement � � �� P ! A for a command means that the command P is a computation
such that the type of its inputs is � and the type of its outputs is A under the context �.

In the construction of handlers:

H = { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op∈� , (4.1)

the command P corresponds to the p ∈A ′(C, D) in Corollary 3.5, and the family {Qop}op∈�

of commands determines an algebraic structure α in Corollary 3.5.
Handlers for arrows are very similar to handlers for ordinary monads. The difference is

that, in the handler (4.1), x : C and z : γ are not ordinary contexts, but inputs of the effectful
computation P and Qop, respectively.

4.2 Operational semantics

We present the reduction rules for closed terms � �M : A and closed commands � � � � P !
A. We define two kinds of evaluation contexts as follows.

E ::= [−] | E N | VE | E •N | (λ•x.P) • E | �E | op(E) | fst E | snd E | 〈E , M〉 | 〈V , E 〉
F ::= [−] | let x⇐F in Q

We put a term in the hole of a context E [−] and a command in the hole of a context F [−].
The reduction relation is shown in Figure 4.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 19

The reduction relation for terms: M →M ′ for � �M : A.

fst〈V , W 〉→ V O-FST

snd〈V , W 〉→W O-SND

(λx.M)V →M[V/x] O-β

M →M ′
E [M]→ E [M ′] O-CTXE

The reduction relation for commands: P→ P′ for � � � � P ! A.

(λ•x.P) • V → P[V/x] O-β•

let x⇐�V in Q→Q[V/x] O-LET

handle�Vwith H → P[V/x] O-HVAL

handle F [op(V)] with H →Qop[V/z, (λ•y : δ. handle F [�y] with H) /k] O-HOP

where H = { � x �→ P} ∪ {op, k � z �→Qop}op∈� .

P→ P′
F [P]→F [P′] O-CTXF

Fig. 4. Operational semantics.

Type preservation (Proposition 4.3) and progress (Proposition 4.1) hold for the arrow
calculus with operations and handlers.

Proposition 4.1 (progress). The following hold.

1. For any well-typed term � �M : A, there exists a term M ′ such that M →M ′ or M
is a value.

2. For any well-typed command � � � � P ! A, one of following holds.

a. There exists a command P′ such that P→ P′.
b. P= �V for some value V.
c. P=F [op(V)] for some operation op, value V and context F .

Lemma 4.2 (substitution). Let � and � be contexts. The following hold.

1. If �, x : A�M : B and � �N : A are derivable, then � �M[N/x] : B is derivable.
2. If �, x : A � �� P ! B and � �N : A are derivable, then � � �� P[N/x] ! B is deriv-

able.
3. If � � x : A, �� P ! B and �, ��N : A are derivable, then � � �� P[N/x] ! B is

derivable.

Proof The proof is by induction on the derivations. �

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

20 T. Sanada

Proposition 4.3 (Type preservation). The following hold.

1. For any well-typed term � �M : A, if M →M ′ then � �M ′ : A.
2. For any well-typed command � � � � P ! A, if P→ P′ then � � � � P′ ! A.

Proof The proof is by induction on the derivation of M →M ′ and P→ P′, and
Lemma 4.2. �

4.3 Example

In the description of handlers, clauses that just forward their input shall be omitted. For
example, let � = {op1, op2}, we write

H = {op1, k � z �→Q1}
for H = { � x �→ �x} ∪ {op1, k � z �→Q1, op2, k � z �→ let u⇐ op2(z) in k • u}.

4.3.1 Logic circuit simulation

We explain the details of the example of logic circuit simulation in Section 1.2.3. Let
BType= {Bool}. The base type Bool is a type for boolean values. We add the following
constants to the arrow calculus.

true : Bool, false : Bool.

Let �LC be the signature of logic circuits defined in Section 1.2. We extend the arrow
calculus by adding if M then N1 else N2 to terms with the following typing rule:

� �M : Bool � �N1 : A � �N2 : A
� � if M then N1 else N2 : A

The operational semantics is extended by adding the following evaluation context and
reduction relations.

E ::= · · · | if E then N1 else N2,

if true then N1 else N2 →N1,

if false then N1 else N2 →N2.

Let QNAND be let u⇐AND(z) in let v⇐NOT(u) in k • v and QOR be let u⇐
NOT(fst z) in let v⇐NOT(snd z) in let w⇐AND(〈u, v〉) in k •w. The handler H ′

1 =
{NAND, k � z �→QNAND, OR, k � z �→QOR} and H ′

2 defined in Section 1.2.3 is well-typed:
�H ′

1 : Bool⇒Bool and �H ′
2 : Bool⇒Bool.

We check the derivation of �H ′
1 : Bool⇒Bool. Let � = k : Bool�Bool, �= z :

Bool×Bool and �′ = (�, u : Bool). The derivation of � � ��QNAND !Bool is as follows.

AND : Bool×Bool � Bool
�, �� z : Bool×Bool

� � ��AND(z) !Bool

NOT : Bool � Bool
�, �′ � u : Bool

� � �′ �NOT(u) !Bool

� � k : Bool�Bool
�, �′, v : Bool� v : Bool

� � �′, v : Bool� k • v !Bool

� � �′ � let v⇐NOT(u) in k • v !Bool
� � ��QNAND !Bool

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 21

handle(handle NAND(〈true, false〉) with H ′
1) with H ′

2

→ handle QNAND[〈true, false〉/z, (λ•y. handle�ywith H ′
1)/k] with H ′

2

= handle

⎛
⎝ let u⇐AND(〈true, false〉) in

let v⇐NOT(u) in
(λ•y. handle�ywith H ′

1) • v

⎞
⎠ with H ′

2

→
(

λ•y. handle

(
let u⇐�y in let v⇐NOT(u) in
(λ•y. handle�ywith H ′

1) • v

)
with H ′

2

)

•
⎛
⎝ if(fst〈true, false〉)

then(if(snd〈true, false〉) then true else false)
else false

⎞
⎠

→∗
(

λ•y. handle

(
let u⇐�y in let v⇐NOT(u) in
(λ•y. handle�ywith H ′

1) • v

)
with H ′

2

)
• false

→∗ handle

(
let v⇐NOT(false) in
(λ•y. handle�ywith H ′

1) • v

)
with H ′

2

→
(

λ•y′. handle

(
let v⇐�y′ in
(λ•y. handle�ywith H ′

1) • v

)
with H ′

2

)
•

⎛
⎝ if false

then false
else true

⎞
⎠

→∗ handle handle�truewith H ′
1 with H ′

2

→ handle�truewith H ′
2

→�true
Fig. 5. The evaluation of handle(handle NAND(〈true, false〉) with H ′

1) with H ′
2.

Similarly, we can derive � � ��QOR !Bool. Hence, the derivation of �H ′
1 : Bool⇒Bool

is as follows:

x : Bool� x : Bool
� � x : Bool� �x !Bool

(
k : δ�Bool � z : γ �Qop !Bool

)
op∈�LC

�H ′
1 : Bool⇒Bool

where QAND = let u⇐AND(z) in k • u and QNOT = let u⇐NOT(z) in k • u.
The evaluation of handle(handle NAND(〈true, false〉) with H ′

1) with H ′
2 is shown in

Figure 5.

4.3.2 Read only state

Let BType= {Unit, Bool} and � = {get : Unit � Bool}. The operation get is expected to
read a state of type Bool and return the stored value. We can implement get using a handler.

The following judgements are derivable:

x : Bool� x : Bool
� � x : Bool� �x !Bool

k : Bool�Bool� k : Bool�Bool k : Bool�Bool, z : Unit� true : Bool
k : Bool�Bool � z : Unit� k • true !Bool .

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

22 T. Sanada

Hence, we can construct a handler H = { � x �→ �x; get, k � z �→ k • true} and derive �
H : Bool⇒Bool. This handler H implements get so that the stored value is true. For
example, the reduction of a program handle get(〈〉) with H is as follows.

handle get(〈〉) with H → (λ•y. handle�ywith H) • true
→ (handle�ywith H)[true/y]

= handle�truewith H

→�x[true/x]

= �true

5 Denotational semantics

5.1 Models of arrow calculus

We define models of the arrow calculus, in which the arrow calculus with operations is
interpreted.

Definition 5.1 (a model of arrow calculus). A model of the arrow calculus consists of the
following data.

• A cartesian closed category (ccc) C.
• A cocomplete cartesian closed category C

′.
• A cartesian fully faithful functor J : C→C

′.
• A C-small strong promonad A : C→� C on C in C

′-Prof (Definitions 2.3 and 2.7).

For a ccc C, a cocomplete ccc C
′ and a cartesian fully faithful functor J : C→C

′, the
identity C

′-profunctor IC : C→� C on C defined by IC(A, B)= (JA⇒ JB)= J (A⇒ B) is a
C-small strong promonad on C in C

′-Prof. We have I◦
C

(A, B)= (A⇒ B) and J ◦ I◦
C
= IC:

C
op ×C C

′

C

IC

I◦
C

J .

Definition 5.2 (interpretation). Given a model of arrow calculus (C, C′, J , A), inter-
pretation �β� ∈C of each base type β ∈ BType and interpretation �op� : A (�δ�,−)⇒
A (�γ �,−) of each operation op : γ � δ, we define interpretation of the arrow calculus
with operations (without handlers). The interpretation �A� of a type A is defined as a natu-
ral extension of �β� with �A� B�=A ◦(�A�, �B�). For a term � �M : A and a command
� � �� P ! A, their interpretation �M� : ���→ �A� in C and �P� : ���→A ◦(���, �A�) in
C are defined as in Figure 6.

We discuss interpretation of handlers in Section 5.3.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 23

Interpretation �� �M : A� : ���→ �A� of terms

T-CABS: �� � λ•x : A.P : A� B�= �P�

and for the other rules, �� �M : A� is defined straightforwardly.

Interpretation �� � �� P ! A� : ���→A ◦(���, �A�) of commands

T-PURE:

�� � �� �M ! A�=
(

���

�M�−−−→ I◦

C
(���, �A�)

η−→A ◦(���, �A�)

)
T-CAPP:

�� � �� L •M ! B�=
(

���
〈m,�L�〉−−−−→A ◦(���, �A�)×A ◦(�A�, �B�)

μ−→A ◦(���, �B�)

)
where

m=
(

���

�M�−−−→ I◦(���, �A�)

η−→A ◦(���, �A�)

)
T-LET:

�� � �� let x⇐ P in Q ! B�

=
⎛
⎝ ���

〈d,p,�Q�〉−−−−→A ◦(���, ���2)×A ◦(���2, �A�× ���)×A ◦(�A�× ���, �B�)
μ×id−−→A ◦(���, �A�× ���)×A ◦(�A�× ���, �B�)

μ−→A ◦(���, �B�)

⎞
⎠

where

d =
(

���
!−→ 1

(λx.〈x,x〉)−−−−−→ I◦(���, ���2)
η−→A ◦(���, ���2)

)

p=
(

���
�P�−→A ◦(���, �A�)

σ−→A ◦(���2, �A�× ���)

)
T-OP:

�� � �� op(M) ! δ�=
(
���

〈m,o〉−−→A ◦(���, �γ �)×A ◦(�γ �, �δ�)
μ−→A ◦(���, �δ�)

)
where

m=
(

���

�M�−−−→ I◦(���, �γ �)

η−→A ◦(���, �γ �)

)

o=
(

���
!−→ 1

(id)−−→ I◦(�δ�, �δ�)
η−→A ◦(�δ�, �δ�)

�op��δ�−−−−→A ◦(�γ �, �δ�)

)

Fig. 6. The categorical semantics.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

24 T. Sanada

f ∈ Set(A, B)
arr(f) ∈Arr�(A, B)

op : γ � δ ∈�

op ∈Arr�(�γ �, �δ�)
a ∈Arr�(A, B) b ∈Arr�(B, C)

a >>> b ∈Arr�(A, C)

a ∈Arr�(A, B)
firstC(a) ∈Arr�(A×C, B×C)

Fig. 7. Construction of Arr�(A, B) ∈Ens for A, B ∈ Set.

5.2 Construction of a model of the arrow calculus

We give a semantics of the arrow calculus with operations and handlers using a Set-small
strong Ens-promonad A on Set. We fix an interpretation of the base types �−� : BType→
Set. Here BType is regarded as a discrete category.

First, we construct a map Arr� : Ob(Setop)×Ob(Set)→Ob(Ens).

Definition 5.3 (arrow term). For sets A and B, Arr�(A, B) is defined to be the smallest
class satisfying the rules in Figure 7. We call an element in Arr�(A, B) an arrow term. An
equation is a pair of arrow terms (t, t′) where t, t′ ∈Arr�(A, B) for some sets A and B. A
theory is a pair (�, E) of a signature � and a set E of equations.

In the following, we consider only the case E=∅.
Unfortunately, Arr�(A, B) is a proper class because it contains a >>> b for any X ∈ Set,

a ∈Arr�(A, X) and b ∈Arr�(X , B). However, we can define an equivalence relation ∼ on
Arr�(A, B) and obtain Set-small strong Ens-promonad Arr�(−1,−2)/∼ : Set→� Set.

The equivalence relation ∼ is defined as the smallest congruence relation satisfying the
following axioms (5.1)–(5.9), which correspond to the arrow laws (1.1)–(1.9).

(a >>> b) >>> c∼ a >>> (b >>> c) (5.1)

arr(g ◦ f)∼ arr(f) >>> arr(g) (5.2)

arr(id) >>> a∼ a (5.3)

a >>> arr(id)∼ a (5.4)

first(a) >>> arr(id× f)∼ arr(id× f) >>> first(a) (5.5)

first(a) >>> arr(π1)∼ arr(π1) >>> a (5.6)

first(a) >>> arr(α)∼ arr(α) >>> first(first(a)) (5.7)

first(arr(f))∼ arr(f × id) (5.8)

first(a >>> b)∼ first(a) >>> first(b) (5.9)

We denote Arr�(A, B)/∼ as A�(A, B). We define secondX (a)= arr(symX ,A) >>>

firstX (a) >>> arr(symX ,B) for a ∈Arr�(A, B), where the map symY ,Z : Y × Z → Z × Y is
defined by symY ,Z(y, z)= (z, y).

We use string diagram like notation introduced by Asada and Hasuo (2010). Arrow
terms are depicted as follows.

A Bf = arr(f) for f : A→ B in Set

�γ � �δ�op = op for op : γ → δ ∈�

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 25

A
B

Ca b = a >>> b for a ∈Arr�(A, B) and b ∈Arr�(B, C)

A B

C C

a = firstC(a) for a ∈Arr�(A, B)

Especially, we write

A
A
A
= A

A
A

d for the map d : A→ A× A defined by d(a)= (a, a),

A
A

B
= A

A
B

π1 for the first projection π1 : A× B→ A,

A
B

B = A
B

Bπ2 for the second projection π2 : A× B→ B.

The Set-smallness of Arr(−1,−2)/∼ is proven from Proposition 5.5. It says that every
arrow term is equivalent to the normal form. The normal form was introduced by Yallop
(2010) for arrows in Haskell to compare two programs. The normal form here is essentially
the same as his except that it is defined for arrow terms a ∈Arr�(A, B). The size of the
collection of all normal forms is small.

Definition 5.4 (normal form). Let n be a natural number, (opi : γi � δi)n
i=1 be a sequence

of operations, (fi : �δi−1�× · · · × �δ1�× A→ �γi�)n
i=1 be a sequence of maps and g : �δn�×

· · · × �δ1�× A→ B. We define an arrow term nf
(
(opi)

n
i=1, (fi)n

i=1; g
)

inductively as fol-
lows:

nf ((), (); g)= arr(g) (n= 0)

nf
(
(opi)

n
i=1, (fi)

n
i=1; g

)= arr(dA) >>> firstA(arr(f1) >>> op1)

>>> nf
(
(opi)

n
i=2, (fi)

n
i=2; g

)
(n > 0)

where dX : X → X × X is the diagonal map: dX (x)= (x, x). We call nf
(
(opi)

n
i=1, (fi)n

i=1; g
)

a normal form.

Proposition 5.5. Let A and B be sets. For any a ∈Arr�(A, B), there exist a natural number
n ∈N, a sequence of operations (opi : γi � δi)i=1,...,n, a sequence of maps (fi : �δi−1�×
· · · × �δ1�× A→ �γi�)i=1,...,n and g : �δn�× · · · × �δ1�× A→ B such that

a∼ nf
(
(op)n

i=1, (fi)
n
i=1; g

)
.

Proof sketch We prove by induction on the structure of a ∈Arr�(A, B). Since the proof
is very long, we only prove the following two cases here and the rest of the proof is sent to
the appendix.

In case a= arr(f) for some f : A→ B. The proposition trivially holds for n= 0.
In case a= op for some (op : γ � δ) ∈� with �γ �= A and �δ�= B. We have

a= op

∼ arr(id) >>> op

∼ arr(π1 ◦ dA) >>> op

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

26 T. Sanada

�γ � �δ�op ∼ �γ � �δ�π1 ◦ d�γ � op

∼ �γ � �δ�d��� π1 op

∼ �γ � �δ�d���

op
π1

∼ �γ � �δ�d���

id�γ � op
π1

Fig. 8. In case a= op.

∼ arr(dA) >>> arr(π1) >>> op

∼ arr(dA) >>> first(op) >>> arr(π1)

∼ arr(dA) >>> firstA(arr(id�γ �) >>> op) >>> arr(π1).

See Figure 8. �

The collection A ◦
�(A, B) of all normal forms in Arr�(A, B) is a set, not a proper class,

because

A ◦
�(A, B)=

⋃
n∈N

⎧⎨
⎩nf

(
(opi)

n
i=1, (fi)

n
i=1; g

) ∣∣∣∣∣∣
(opi : γi � δi)n

i=1 ∈�n,
(fi : �δi−1�× · · · × �δ1�× A→ �γi�)n

i=1,
g : �δn�× · · · × �δ1�× A→ B

⎫⎬
⎭ .

We identify an equivalence class [a] for an arrow term a ∈Arr�(A, B) with its normal form.
The map A� : Ob(Setop)×Ob(Set)→Ob(Ens) is extended to an Ens-profunctor

A� : Set→� Set by defining A�(f , g)([a])= [arr(f) >>> a >>> arr(g)] for f : A′ → A,
g : B→ B′ and a ∈Arr�(A, B). We have constructed a model of the arrow calculus.

Proposition 5.6. The data (Set, Ens, J , A�) is a model of the arrow calculus
(Definition 5.1).

Note that the model (Set, Ens, J , A�) is the free model in the sense that if
(Set, Ens, J , A) is also a model and a family

(
�op� : A (�δ�,−)⇒A (�γ �,−)

)
(op : γ�δ)∈�

of interpretation of operations is specified, then there is a unique 2-cell h : A� ⇒A which
is compatible with units and multiplications of A� and A .

5.3 Interpretation of handlers

We interpret handlers in the model (Set, Ens, J , A�) of the arrow calculus. We fix an
interpretation of base types �−� : BType→Ob(Set).

5.3.1 The problem of strength

Unlike in the case of the strong monad T : Set→ Set in Cat, in the case of the strong
promonad A : Set→� Set in Ens-Prof, the treatment of the strength is non-trivial. To

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 27

interpret a handler as a A ◦
�-homomorphism, we have to construct a family of maps(

αA,B : A ◦
�(A, B)×A ◦

�(B, �D�)→A ◦
�(A, �D�)

)
A,B

(5.10)

from a handler H = { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op:

� � x : C � P !D (k : δ�D � z : γ �Qop !D)op:γ�δ

�H : C⇒D
T-HANDLER

.

The problem is that we cannot define the maps (5.10) since there is no way to define
α(firstS(op), b) for op : γ � δ and b ∈A ◦

�(�δ�× S, �D�):

A ◦
�(�γ �× S, �δ�× S)×A ◦

�(�δ�× S, �D�)→A ◦
�(�γ �× S, �D�)

(firstS(op), b) �→ α(firstS(op), b).
(5.11)

To define the above map, we need maps A ◦
�(�δ�× S, �D�)→A ◦

�(�γ �× S, �D�) as an
interpretation of Qop. However, in the naïve interpretation (Definition 5.2), the command
Qop is interpreted as a map �Qop� : A ◦

�(�δ�, �D�)→A ◦
�(�γ �, �D�).

5.3.2 Interpretation with a parameter

We solve this problem by using an additional parameter S ∈Ob(Set) in the interpretation of
terms. This additional parameter enables us to define maps A ◦

�(�δ�× S, �D�)→A ◦
�(�γ �×

S, �D�) as an interpretation of Qop. For a type A and a set S, we define the interpretation
�A�S as an extension of �β� for β ∈ BType.

�β�S = �β�

�A× B�S = �A�S × �B�S

�A→ B�S = �A�S ⇒ �B�S

�A� B�S =A ◦
�(�A�S × S, �B�S)

The interpretation ���S of a context � is defined as an extension of the interpretation of
types:

���S = 1, ��, x : A�S = ���S × �A�S .

The key is the interpretation �A� B�S of a type A� B. Adding S to the “input
argument” of the arrow allows us to deal with strength.

If a type A is primitive, its interpretation is independent of S, that is we can show the
following lemma by the definitions.

Lemma 5.7. If a type A is primitive (�(A)), then �A�S = �A�1 for any S.

Next, we define interpretation of terms and commands. For judgements � �M : A and
� � �� P : A, we want to define:

�� �M : A�S : ���S → �A�S ,

�� � �� P ! A�S : ���S →A ◦
�(���S × S, �A�S).

Let e ∈ ���S . The interpretation of terms is defined as follows. In the following, definitions
are described by elements of sets, rather than by morphisms as in Figure 6. This is to avoid

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

28 T. Sanada

making the definition of interpretation of handlers more complex than necessary.

��, y : A� y : A�S(e, a)= a a ∈ �A�S

�� � 〈M1, M2〉 : A1 × A2�
S(e)= (�M1�

S(e), �M2�
S(e))

�� � fst M : A�S(e)= π1(�M�S(e))

�� � snd M : A�S(e)= π2(�M�S(e))

�� �MN : B�S(e)= �M�S(e)
(
�N�S(e)

)
�� � λy : A.M : A→ B�S(e)= �M�S(e,−)

�� � λ•y : A.P : A� B�S(e)= �P�S(e)

The interpretation of commands is defined as follows.

�� � �� �M ! A�S(e)= arr

(
���S × S

π1−→ ���S �M�S (e,−)−−−−−→ �A�S
)

�� � �� L •M ! B�S(e)= firstS
(

arr
(
�M�S(e,−)

))
>>> �L�S(e)

�� � �� op(M) ! δ�S(e)= arr

(
���S × S

π1−→ ���S �M�S (e,−)−−−−−→ �γ �

)
>>> op

�� � �� let y⇐ P in Q ! B�S(e)= arr (d) >>> first
(
�P�S(e)

)
>>> �Q�S(e)

where d(z)= (z, z) for z ∈ ���S × S.

The interpretation of �let y⇐ P in Q�S(e) is illustrated as follows.

�S

S BS
PS

QS

To interpret handling � � �� handle R with H !D, we construct an algebra from H = { �
y : C �→ P !D} ∪ {op, k : δ�D � c : γ �→Qop !D}op:γ�δ∈� . Note that the derivation is

� � �� R !C
�(C)∧�(D)

� � y : C � P !D(
k : δ�D � c : γ �Qop !D

)
op:γ�δ∈�

�H : C⇒D
T-HANDLER

� � �� handle R with H !D T-HANDLE

By Lemma 5.7, we have �C�S = �C�1 and �D�S = �D�1. We have maps:

�Qop�
S : A ◦

�(�δ�× S, �D�1)→A ◦
�(�γ �× S, �D�1) for each op : γ � δ ∈�.

The maps �Qop�
S induce an A�-algebra α on the presheaf A�(−, �D�) as follows.

α : A ◦
�(A, B)×A ◦

�(B, �D�1)→A ◦
�(A, �D�1)

(arr(f), a) �→ arr(f) >>> a

α : A ◦
�(A, B)×A ◦

�(B, �D�1)→A ◦
�(A, �D�1)

(b1 >>> b2, a) �→ α(b1, α(b2, a))

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 29

α : A ◦
�(�γ �, �δ�)×A ◦

�(�δ�, �D�1)→A ◦
�(�γ �, �D�1)

(op, a) �→ �Qop�
1(a)

α : A ◦
�(�γ �× S, �δ�× S)×A ◦

�(�δ�× S, �D�1)→A ◦
�(�γ �× S, �D�1)

(firstS(op), a) �→ �Qop�
S(a)

Note that, since every arrow term is equivalent to a normal form (Proposition 5.5), α(b, a)
is well defined.

We also have �P�1 ∈A�(�C�1, �D�1). Hence, by Corollary 3.5, there exists a homomor-
phism h : μ→ α such that the following diagram commutes:

Set(−, �C�1) A ◦
�(−, �C�1)

A ◦
�(−, �D�1)

η

[(−)>>>�P�1]
h .

We use the homomorphism h to interpret handle R with H :

�� � �� handle R with H !D�S(e)= h���S (�R�S(e)) for e ∈ ���S

and write �H� for the homomorphism h.
The denotational semantics �−�S defined here is compatible with the categorical

semantics �−� (Definition 5.2) in the model (Set, Ens, J , A�) in the following sense.

Proposition 5.8. Let � and � be primitive contexts and A be a primitive type. Let M be a
term and P be a command of the arrow calculus with operations (without handlers). The
following hold.

1. If � �M : A then �M�S = �M� for any S.
2. If � � �� P ! A then (arr(js) >>> �P�S(e))= �P�(e) for any S, s ∈ S and e ∈ ���

where js(z)= (z, s) for z ∈ ���.

Proposition 5.9. Let � and � be contexts and A be a type. Let M be a term and P be a
command of the arrow calculus with operations (without handlers). The following hold.

1. If � �M : A then �M�1 = �M�.
2. If � � �� P ! A then �P�1 = �P�.

Hence, we write �A�1 and ���1 simply as �A� and ���, respectively.

Remark 5.10. Let C be a cartesian closed category, C′ be a cocomplete cartesian closed
category and J : C→C′ be a strong cartesian fully faithful functor. For an ordinary strong
monad T : C→C, we do not have the problem on the strength. The reason is as follows.
Let A : C→� C be a strong promonad T∗ (Proposition 2.4) in C

′-Prof defined by

A (A, B)=C(A, T B)= (JA⇒ JT B) ∈C
′

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

30 T. Sanada

for a strong monad T : C→C. This promonad A is C-small. Judgements {k : δ�D � z :
γ �Qop : D}op∈� are interpreted as morphisms

�Qop� : �γ �× (�δ�⇒T �D�)→T �D�, op ∈�

in C. An A -algebra α can be constructed from the set of morphisms {�Qop�}op∈� . The
map (5.11) is defined as follows.

C(�γ �× S, T (�δ�× S))×C(�δ�× S, T �D�)→C(�γ �× S, T �D�)

(firstS(op), b) �→
−1(
�Qop� ◦ (
b)).
(5.12)

The key is that if A (A, B)=C(A, T B), we have

LA,B,C : A ◦(C× A, B)∼=A ◦(C, A ◦(A, B)) for any A, B, C ∈C. (5.13)

Conversely, assume that (5.13) holds. We have

L −1
A,B,A ◦(A,B) : A ◦(A ◦(A, B), A ◦(A, B))→A ◦(A ◦(A, B)× A, B)

idA ◦(A,B) �→L −1
A,B,A ◦(A,B)(idA ◦(A,B))=: appA,B.

The arrow with the maps appA,B are known as a higher-order arrow (Hughes, 2000), which
is equivalent to an ordinary monad (i.e. A (A, B)=C(A, T B) for a monad T).

5.4 Soundness and adequacy

We prove the soundness (Theorem 5.13) of the operational semantics in Section 4.2 for
the denotational semantics in Section 5.3.

First, observe the denotations of substituted terms and commands.

Lemma 5.11. The following hold.

1. If �, x : A�M : B and � � V : A, then �M[V/x]�S(c)= �M�S(c, �V�S(c)).
2. If �, x : A � �� P ! B and � � V : A, then �P[V/x]�S(c)= �P�S(c, �V�S(c)).
3. If � � x : A, �� P ! B and �, �� V : A, then

�P[V/x]�S(c)= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �P�S(c)

= �S

S
BS

�V�S(c,−)
�P�S(c)

The following lemma is used to show the soundness for (handle F [op(V)] with H)→
Qop[V/z, (λ•y : δ. handle F [�y] with H)/k].

Lemma 5.12. If � � � �F [op(V)] !C, then

�F [op(V)]�S(�)= firstS(arr(�V�S) >>> op) >>> �F [�y]�S(�)

holds.

Combining Lemmas 5.11 and 5.12, we obtain the soundness theorem for the arrow
calculus with operations and handlers.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 31

Theorem 5.13 (soundness). The following hold.

1. If � �M : A and M →M ′, then �M�S = �M ′�S for any S.
2. If � � � � P ! A and P→ P′, then �P�S = �P′�S for any S.

Next, we prove the adequacy theorem using logical relations as done in Bauer and
Pretnar (2013), Sanada (2023). The logical relations relate programs of type A and ele-
ments of �A�. Let BType= {Unit}. We add a constant 〈〉 to the terms and values. We also
add the following derivation rules to the arrow calculus:

� � 〈〉 : Unit
T-UNIT

.

The interpretation �Unit� is the singleton set {�} and �〈〉�S : ���S → �Unit�S = {�} is the
unique map.

Definition 5.14 (logical relation). We define relations (�A)⊆ �A�× {M | � �M : A} and
(�A)⊆A�(1, �A�)× {P | � � � � P ! A} for each type A as follows:

� �Unit M ⇐⇒ M →∗ 〈〉
v �A1×A2 M ⇐⇒ (M →∗ 〈V1, V2〉)∧ (π1(v) �A1 V1)∧ (π2(v) �A2 V2)

f �A→B M ⇐⇒ (M →∗ λx : A.M ′)∧ ∀N .∀w.(w �A N =⇒ fw �B MN)

a �A�B M ⇐⇒ (M →∗ λ•x : A.P)∧ ∀N .∀w.(w �A N =⇒ arr(w) >>> a�B M •N)

nf ((), (); v)�A P ⇐⇒ ∃V . (v �A V)∧ (P→∗ �V)

nf
(
(op)n

i=1, (ui)
n
i=1; v

)
�A P ⇐⇒

⎧⎨
⎩
∃U . (u1 �γ1 U)∧ (P→∗ F [op1(U)]), and
∀w.∀W . (w �δ W =⇒
arr(w) >>> nf

(
(opi)

n
i=2, (ui)n

i=2; v
)
�A F [�W]).

Note that by Proposition 5.5 every arrow term is equivalent to a normal form, and the
relation a�A P is inductively defined on the number n of operations contained by an arrow
term a ∈A�(1, �A�).

Lemma 5.15. The following hold.

1. If M →∗ M ′ and v �A M ′, then v �A M.
2. If M →∗ M ′ and v �A M, then v �A M ′.
3. If P→∗ P′ and a�A P′, then a�A P.
4. If P→∗ P′ and a�A P, then a�A P′.

We can prove the following theorem using Lemma 5.15.

Theorem 5.16. Let � = x1 : A1, . . . , xm : Am and �= y1 : B1, . . . , yn : Bn. The following
hold.

1. For � �M : A and vi ∈ �Ai� and Vi with vi �Ai Vi for each i ∈ {1, . . . , m},
�M�(v1, . . . , vm) �A M[V1/x1, . . . , Vm/xm].

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

32 T. Sanada

2. For � � �� P !C, vi ∈ �Ai� and Vi with vi �Ai Vi for each i ∈ {1, . . . , m} and wj ∈
�Bj� and Wj with wj �Bj Wj for each j ∈ {1, . . . , n},

arr(〈w1, . . . , wn〉) >>> �P�(v1, . . . , vm)

�C P[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

Proof sketch The proof is done by induction on the derivation of � �M : A and � � ��
P !C.

Here, we only show the most non-trivial case T-CABS, and the rest of the proof is sent
to the appendix. The derivation is

� � y : B� P !C
� � λ•y : B.P ! B�C

T-CABS
.

By the induction hypothesis, we have

arr(w) >>> �P�(v1, . . . , vm)�C P[V1/x1, . . . , Vm/xm, W/y] (5.14)

for any w and W with w �B W . Given N and w satisfying w �B N , we have N →∗ W for a
value W by the definition of �B. Applying Lemma 5.15(2), we have w �B W . Hence, (5.14)
holds for this w and W . Now, we have

(λ•y : B.P[V1/x1, . . . , Vm/xm]) •N →∗ (λ•y : B.P[V1/x1, . . . , Vm/xm]) •W

→ P[V1/x1, . . . , Vm/xm, W/y].

Thus, applying Lemma 5.15(3), we have

arr(w) >>> �P�(v1, . . . , vm)�C (λ•y : B.P[V1/x1, . . . , Vm/xm]) •N .

Since �P�= �λ•y : B.P�, we have

�λ•y : B.P�(v1, . . . , vm) �B�C (λ•y : B.P[V1/x1, . . . , Vm/xm]).

�

As a corollary of the above theorem, we can show adequacy.

Corollary 5.17 (adequacy). If � � � � P !Unit and �P�= arr(�) ∈A�(1, �Unit�), then
P→∗ �〈〉.

Proof By Theorem 5.16, we have arr(�)= �P��Unit P. By the definition of�Unit, we have
P→∗ �V for a value V and � �Unit V . By the definition of �Unit, we have V = 〈〉. Hence,
P→∗ �〈〉. �

6 Related work

Paterson (2001) introduced a notation for arrows. As mentioned by Lindley et al. (2010),
there is a translation between the arrow calculus and Paterson’s notation, see Table 3.

There is another approach to semantics for arrows: Freyd categories (Atkey, 2011). As
Asada (2010, Theorem 23) proved, small strong monads on C in Ĉ-Prof with respect to
the Yoneda embedding� : C→ Ĉ are equivalent to arrows in the sense of Atkey (2011,

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 33

Table 3. Translation between the arrow calculus and Paterson’s notation

Arrow calculus with operations Paterson’s notation

λ•x : A.P proc x→ P
L •M L≺M
�M returnA≺M
op(M) op≺M
let x⇐ P in Q do{x← P; Q}

Definition 2.1). We have adopted the profunctor approach because it is easier to consider
with regard to algebras, which are the basis of handlers.

There are some notions of algebras for arrows or profunctors. Jacobs et al. (2009)
defined an algebra for a promonad A : C→� C as a 2-cell χ : A ⇒ IC subject to some
axioms (Jacobs et al., 2009, Definition 6.5), which is different from ours. From a 2-cell
χ : A ⇒ IC, we obtain A ◦C(−, C)⇒C(−, C) for any C ∈Ob(C). Hence, an algebra in
the sense of Jacobs et al. (2009) is a family of special algebras in this paper.

In nLab (2021), an algebra for a profunctor H : C→� C is defined as a pair (X , x) of an
object X ∈C and an element x ∈H(X , X), which does not induce our definition of algebras.

Altenkirch et al. (2010) introduced relative monads as a generalisation of monads. Let
C be a category and Ĉ= [Cop, Set]. A relative monad T : C→ Ĉ on the Yoneda embed-
ding � : C→ Ĉ corresponds to a promonad on C (Altenkirch et al., 2010, Theorem 9).
An Eilenberg–Moore algebra for T is a pair (G, χ) of an object G ∈ Ĉ and a natural
transformation χ = {χZ : Ĉ(�Z, G)→ Ĉ(T Z, G)}Z subject to some axioms (Altenkirch
et al., 2010, Definition 3). Eilenberg–Moore algebras for a relative monad T are equiva-
lent to algebras in the sense of Definition 3.1 for the promonad A defined by A (X , Y)=
T YX . Especially, giving χZ : Ĉ(�Z, G)→ Ĉ(T Z, G) natural in Z is equivalent to giving
α : A (Y , Z)×GY →GZ natural in Z and extranatural in Y because we have∫

Z∈Cop
Set

(
Ĉ(�Z, G), Ĉ(T Z, G)

)
∼=

∫
Z∈Cop

Set
(
GZ, Ĉ(T Z, G)

)
the Yoneda lemma

∼=
∫

Z∈Cop
Set

(
GZ,

∫
Y∈Cop

Set(T ZY , GY)

)
∼=

∫
Z∈Cop

∫
Y∈Cop

Set (GZ, Set(T ZY , GY))

∼=
∫

Z∈Cop

∫
Y∈Cop

Set (A (Y , Z)×GZ, GY) .

Here, we used end
∫

X (−), which is the dual notion of coend. Uustalu (2010) introduced
strong relative monads, which corresponds to strong promonads.

Pieters et al. (2020) introduced handlers for monoidal effects. In their framework,
an inductive handler for arrows (without static parameters) is constructed by giving a
2-cell (IC + #� ◦A)⇒A in the bicategory of (strong) profunctors, where #�(A, B)=∐

(op:γ�δ)∈� C(A, �γ �× (�δ�⇒ B)). A 2-cell (IC + #� ◦A)⇒A consists of

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

34 T. Sanada

• a family of maps ηA,B : C(A, B)→A (A, B) natural in A and B, and
• families of maps ιop,A,B,C : C(A, �γ �× (�δ�⇒C))×A (C, B)→A (A, B) natural in

A and B and extranatural in C.

From this semantic structure, Pieters et al. (2020) defined syntax of inductive handlers for
arrows (without static parameters) as follows.

ihandler
| ε (f: A→B) �→ N : P(A,B)
| op (k: A→(γ ,δ→C), l: P(C,B)) �→ Mop : P(A,B)

From an inductive handler, we can obtain a handler in the sense of this paper because we
have the following map in Set:

Proposition 6.1. There is a map

� :
∫

A

∫
B

Set
(

(IC + #� ◦A)(A, B), A (A, B)
)

→A (D, D)×
∏

op:γ�δ

Set(A (�δ�, D), A (�γ �, D))

for any set D.

Hence, given a 2-cell h : (IC + #� ◦A)⇒A , we have π1(�(h)) ∈A (D, D) and
{πop(π2(�(h))) : A (�δ�, D)→A (�γ �, D)}op, which determine a handler in the sense of
this paper. Note that inductive handlers cannot modify the answer type whereas handlers
in the sense of this paper can.

7 Conclusion and future work

We have introduced an arrow calculus with operations and handlers and defined its oper-
ational semantics and denotational semantics. The calculus design is based on categorical
observations. The preservation and progress theorems are proved. We have also proved
soundness and adequacy.

For future work, we plan to investigate the following topics.
λflow is a calculus with handlers for monads, arrows and idioms (Lindley, 2014). The

relationship between the arrow calculus with operations and handlers and λflow is to be
investigated. Is there translation from the arrow calculus with operations and handlers to
Lindley’s λflow?

Combination of handlers for monads and arrows in categorical way is interesting to
investigate. Monoidal effects by Pieters et al. (2020) are one answer to this question. As
another answer, can we use double categorical frameworks, focusing on the relationship
between monads and promonads?

An algebraic theory corresponds to a finitary monad (Adamek and Rosicky, 1994). Can
we develop a promonad version of such theory?

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 35

Acknowledgements

We thank Kazuyuki Asada for helpful discussions, suggestions on the structure of the
paper and comments, Masahito Hasegawa, Ichiro Hasuo, Satoshi Kura, Keisuke Hoshino
and Yuto Kawase for helpful discussions and comments and anonymous reviewers for
their many valuable suggestions, comments and pointing us to related work. We also thank
Soichiro Fujii for providing his gentle introduction to profunctors (Fujii, 2021). This work
was supported by JST Grant Number JPMJFS2123.

Conflicts of interest

None.

References

Adamek, J. & Rosicky, J. (1994) Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series. Cambridge University.

Altenkirch, T., Chapman, J. & Uustalu, T. (2010) Monads need not be endofunctors. In
Foundations of Software Science and Computational Structures. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 297–311.

Asada, K. (2010) Arrows are strong monads. In Proceedings of the Third ACM SIGPLAN Workshop
on Mathematically Structured Functional Programming. New York, NY, USA: Association for
Computing Machinery, pp. 33–42.

Asada, K. & Hasuo, I. (2010) Categorifying computations into components via arrows as profunc-
tors. Electron. Notes Theoret. Comput. Sci. 264(2), 25–45. Proceedings of the Tenth Workshop on
Coalgebraic Methods in Computer Science (CMCS 2010).

Atkey, R. (2011) What is a categorical model of arrows? Electron. Notes Theoret. Comput. Sci.
229(5), 19–37. Proceedings of the Second Workshop on Mathematically Structured Functional
Programming (MSFP 2008).

Bauer, A. & Pretnar, M. (2013) An effect system for algebraic effects and handlers. In Algebra and
Coalgebra in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–16.

Bénabou, J. (2000) Distributors at work. Lecture notes by Thomas Streicher, https://www2.
mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.

Borceux, F. (1994) Handbook of Categorical Algebra. Encyclopedia of Mathematics and its
Applications, vol. 1. Cambridge University.

Fujii, S. (2021) Introduction to profunctors. Available on YouTube, https://www.youtube.com/
playlist?list=PLOtyxrAiMd3BvBc0XSU6JB6rKmrmhgDNG.

Heunen, C. & Jacobs, B. (2006) Arrows, like monads, are monoids. Electron. Notes Theoret.
Comput. Sci. 158, 219–236. Proceedings of the 22nd Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS XXII).

Hughes, J. (2000) Generalising monads to arrows. Sci. Comput. Program. 37(1), 67–111.
Hughes, J. (2005) Programming with arrows. In Advanced Functional Programming. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 73–129.
Jacobs, B., Heunen, C. & Hasuo, I. (2009) Categorical semantics for arrows. J. Funct. Program. 19,

403–438.
Kelly, G. M. (1982) Basic Concepts of Enriched Category Theory. Cambridge. New York:

Cambridge University.
Leinster, T. (2014) Basic Category Theory. Cambridge Studies in Advanced Mathematics.

Cambridge University.
Lindley, S. (2014) Algebraic effects and effect handlers for idioms and arrows. In Proceedings of the

10th ACM SIGPLAN Workshop on Generic Programming. ACM, pp. 47–58.
Lindley, S., Wadler, P. & Yallop, J. (2010) The arrow calculus. J. Funct. Program. 20(1), 51–69.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://www.youtube.com/playlist?list=PLOtyxrAiMd3BvBc0XSU6JB6rKmrmhgDNG
https://www.youtube.com/playlist?list=PLOtyxrAiMd3BvBc0XSU6JB6rKmrmhgDNG
https://doi.org/10.1017/S0956796824000066

36 T. Sanada

Lindley, S., Wadler, P. & Yallop, J. (2011) Idioms are oblivious, arrows are meticulous, monads are
promiscuous. Electron. Notes Theoret. Comput. Sci. 229(5), 97–117. Proceedings of the Second
Workshop on Mathematically Structured Functional Programming (MSFP 2008).

Loregian, F. (2021) (Co)end Calculus. London Mathematical Society Lecture Note Series.
Cambridge University.

Mac Lane, S. (1971) Categories for the Working Mathematician. Graduate Texts in Mathematics,
vol. 5. New York: Springer-Verlag.

Moggi, E. (1989) Computational lambda-calculus and monads. In Fourth Annual Symposium on
Logic in Computer Science, pp. 14–23.

Moggi, E. (1991) Notions of computation and monads. Inf. Comput. 93(1), 55–92. Selections from
1989 IEEE Symposium on Logic in Computer Science.

nLab. (2021) Algebra for a profunctor. nLab, Retrieved on November 7, 2023, from https://
ncatlab.org/nlab/show/algebra+for+a+profunctor.

Paterson, R. A. (2001) A new notation for arrows. In ACM SIGPLAN International Conference on
Functional Programming.

Pieters, R. P., Rivas, E. & Schrijvers, T. (2020) Generalized monoidal effects and handlers. J. Funct.
Program. 30, e23.

Plotkin, G. & Power, J. (2001a) Adequacy for algebraic effects. In Foundations of Software Science
and Computation Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–24.

Plotkin, G. & Power, J. (2001b) Semantics for algebraic operations. Electronic Notes in Theoretical
Computer Science. 45, 332–345. MFPS 2001.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Logical Methods Comput. Sci. 9(4).
Sanada, T. (2023) Category-graded algebraic theories and effect handlers. Electron. Notes Theoret.

Inf. Comput. Sci. Volume 1 - Proceedings of MFPS XXXVIII.
Street, R. (1972) The formal theory of monads. J. Pure Appl. Algebra. 2(2), 149–168.
Uustalu, T. (2010) Strong relative monads. In Short Contribution in International Workshop on

Coalgebraic Methods in Computer Science 2010.
Wood, R. J. (1985) Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques

26(2), 135–168.
Yallop, J. (2010) Abstraction for Web Programming. PhD thesis. University of Edinburgh.

A Coends

In this section, we review the definition and construction of coends. We also give an
informal description of coends.

Definition A.1 (extranatural transformation). Let F, G : Cop ×C→D be functors. An
extranatural transformation φ from F to G, we write φ : F⇒G, is a family of mor-
phisms (φC : F(C, C)→G(C, C))C∈Ob(C) such that the following diagram commutes for
any morphisms f : C→C′ in C:

F(C, C) G(C, C)

F(C′, C) G(C, C′)

F(C′, C′) G(C′, C′)

φC

G(C,f)F(f ,C)

F(C′,f)
φC′

G(f ,C′)

In the following, we deal only with extranatural transformations whose codomain (G) is
a constant functor.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://ncatlab.org/nlab/show/algebra+for+a+profunctor
https://ncatlab.org/nlab/show/algebra+for+a+profunctor
https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 37

A coend is a pair of an object and an extranatural transformation defined for a functor.
It has a universal property like a colimit.

Definition A.2 (coend). Let F : Cop ×C→D be a functor. A coend of F is a pair of an
object

∫ C∈C F(C, C) ∈D and an extranatural transformation

ω : F⇒
∫ C∈C

F(C, C)

satisfying the following universal property. If φ : F⇒ X is an extranatural transformation
to an object X ∈D, then there exists a unique morphism κ :

∫ C∈C F(C, C)→ X such that
φ = κ ◦ω:

F(C′, C)

F(C, C) F(C′, C′)

∫ C∈C
F(C, C)

X

F(f ,C) F(C′,f)

ωC

φC

ωC′

φC′
κ

The existence of a coend of F : Cop ×C→D depends on the properties of C, D and F.
The following proposition is known (Loregian, 2021, (1.29)) for the cases we often use in
this paper.

Proposition A.3. If C is small, for the functor F : Cop ×C→ Set, the coend ω : F⇒∫ C∈C F(C, C) of F always exists.

Proof We only construct the set
∫ C∈C F(C, C) and ω, and the proof of universality is

left to the reader. First, we define an equivalence relation ∼ on a set
∐

C∈Ob(C) F(C, C) as
follows. For a ∈ F(C, C) and b ∈ F(C′, C′), a∼ b if there exists a morphism f : C→C′ in
C and c ∈ F(C′, C) such that F(f , C)(c)= a and F(C′, f)(c)= b.

F(C′, C)

F(C, C) F(C′, C′)

F(f ,C) F(C′,f)

c

a b

F(f ,C) F(C′,f)

We write [a] for the equivalence class of a ∈ F(C, C) in ∼. Now, we define

∫ C∈C
F(C, C) :=

⎛
⎝ ∐

C∈Ob(C)

F(C, C)

⎞
⎠ /∼ . (A1)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

38 T. Sanada

We define ωC : F(C, C)→ ∫ C∈C F(C, C) as the canonical injection:

ωC : F(C, C)→
∫ C∈C

F(C, C)

a �→ [a].

�

The proof of Proposition A.3 relies on the construction (A1), which small cocomplete-
ness of Set . Similarly, we can show that a coend

∫ C F(C, C) for a functor F : Setop ×
Set→Ens exists because Ens is sufficiently cocomplete.

Informally, we can think of
∫ C∈C as an existential quantifier ∃ over C ∈Ob(C). An

element w of
∫ C∈C F(C, C) is regarded as a witness of a proposition that there exists C ∈

Ob(C) such that F(C, C) holds.

B 2-Categories, bicategories and enriched categories

B.1 2-Categories

Roughly speaking, a 2-category is a category whose hom-sets have a categorical structure.

Definition B.1 (2-categories). A 2-category C consists of the following data.

• A class Ob(C). We call an element a of Ob(C) an object or a 0-cell.
• A family {C(a, b)}a,b∈Ob(C) of categories, called hom-categories. We call an object f

of C(a, b) a morphism or a 1-cell from a to b of C. A morphism α : f → g in C(a, b)
is called a 2-cell from f to g of C.

• An identity functor ida : 1→C(a, a) for each a ∈Ob(C).
• A composition functor $a,b,c : C(b, c)×C(a, b)→C(a, c) for each a, b, c ∈Ob(C)

subject to the following axioms expressed by the (strict) commutativity of

(C(c, d)×C(b, c))×C(a, b) C(b, d)×C(a, b)

C(c, d)× (C(b, c)×C(a, b)) C(c, d)×C(a, c) C(a, d)

$×C(a,b)

∼= $

C(c,d)×$ $

(B1)

1×C(a, b) C(a, b)× 1

C(b, b)×C(a, b) C(a, b) C(a, b)×C(a, a)

idb×C(a,b)
∼=

C(a,b)×ida
∼=

$ $

(B2)

We write f : a→ b for a 1-cell f from a to b, and α : f ⇒ g for a 2-cell α from f to g:

a b.

f

g

⇓ α

We also write g ◦ f for the composition $(g, f) of 1-cells f : a→ b and g : b→ c.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 39

For 1-cells, the axiom (B1) is the associativity of composition and (B2) is the unitality
of composition. Let f : a→ b, g : b→ c and h : c→ d be 1-cells in a 2-category C. The
associativity of composition (B1) for the 1-cells f , g and h is

(h ◦ g) ◦ f = h ◦ (g ◦ f) (B3)

in the hom-category C(a, d), and the unitality (B2) for the 1-cell f is

(idb ◦ f)= f = (f ◦ ida) (B4)

in the hom-category C(a, b).
An example of 2-categories is the 2-category Cat, whose 0-cells, 1-cells and 2-cells are

small categories, functors and natural transformation, respectively.
2-category theory is a formal language to describe the ordinary category theory. For

example, a definition of monads in 2-categories is as follows.

Definition B.2 (monads in 2-categories). Let C be a 2-category. A monad in C is an endo
1-cell t : c→ c equipped with

• a 2-cell η : idc ⇒ t called a unit and
• a 2-cell μ : t ◦ t⇒ t called a multiplication

such that the following axioms hold:

c

c

c

id

t

t

t

⇓ η ⇓μ = c

c

c

id

t

t

=
c

c

c

t

t

t

id
⇓ η⇓μ = c

c

c

t

t

id

=

c

c c

c

t

t

t
t

t

⇓μ ⇓μ = c

c c

c

t

t

t
t

t

⇓μ
⇓μ

Monads in the 2-category Cat in the sense of Definition B.2 coincide with ordinary
monads.

B.2 Bicategories

In the definition of 2-categories, the axioms (B1) and (B2) are strict in the sense that the
equalities hold in the hom-categories. From a category-theoretic principle, these axioms
may be too strict because we want to identify two functors in (B1) and (B2) which are not
only strictly equal, but naturally isomorphic.

Definition B.3 (bicategories). A bicategory C consists of the same data in the defini-
tion of 2-categories (Definition B.1) which make (B1) and (B2) commute up to natural
isomorphism.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

40 T. Sanada

For 1-cells f : a→ b, g : b→ c and h : c→ d in a bicategory C, the associativity of
composition (B1) and the unitality (B2) are expressed as follows:

(h ◦ g) ◦ f ∼= h ◦ (g ◦ f) in the category C(a, d), (B5)

(idb ◦ f)∼= f ∼= (f ◦ ida) in the category C(a, b). (B6)

The equalities in (B3) and (B4) are replaced by the isomorphisms.
We can obtain a definition of monads in bicategories from the definition of monads in

2-categories (Definition B.2).

B.3 Enriched categories

We write Cat0 = (Cat0,×, 1) for the monoidal category of small categories and func-
tors. In the definition of 2-categories (Definition B.1), the monoidal structure of Cat0

is essential to describe the identity functors ida and composition functors $a,b,c and the
axioms. The descriptions of the identity and composition in ordinary categories also use the
monoidal structure of Set= (Set,×, 1). We generalise (2-)categories from this perspective
and obtain the following definition of enriched categories.

Definition B.4 (enriched category). Let V= (V,⊗, J) be a symmetric monoidal category.
A V-enriched category (or simply a V-category) C consists of the following data.

• A class Ob(C) of objects.
• A family of objects {C(a, b)}a,b∈Ob(C) of V. We call C(a, b) ∈V a hom-object.
• A morphism ida : J →C(a, a) for each a ∈Ob(C), called an identity.
• A morphism $a,b,c : C(b, c)⊗C(a, b)→C(a, c) for each a, b, c ∈Ob(C), called a

composition

subject to the following axioms expressed by the commutativity of

(C(c, d)⊗C(b, c))⊗C(a, b) C(b, d)⊗C(a, b)

C(c, d)⊗ (C(b, c)⊗C(a, b)) C(c, d)⊗C(a, c) C(a, d)

$⊗C(a,b)

∼= $

C(c,d)⊗$ $

(B7)

J ⊗C(a, b) C(a, b)⊗ J

C(b, b)⊗C(a, b) C(a, b) C(a, b)⊗C(a, a)

idb⊗C(a,b)
∼=

C(a,b)⊗ida
∼=

$ $

(B8)

An ordinary category is a Set-enriched category, and a 2-category in the sense of
Definition B.1 is a Cat0-enriched category.

The enriched version of a functor between categories is called a V-functor, which
preserves V-category structures. See Kelly (1982) for the definition.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 41

C Proofs for Section 4 (The arrow calculus with operations and handlers)

Proposition 4.1 (progress). The following hold.

1. For any well-typed term � �M : A, there exists a term M ′ such that M →M ′ or M
is a value.

2. For any well-typed command � � � � P ! A, one of following holds.

a. There exists a command P′ such that P→ P′.
b. P= �V for some value V.
c. P=F [op(V)] for some operation op, value V and context F .

Proof (1). By induction on the derivation of � �M : A.
In case T-VAR. This case cannot happen because the context is empty.
In case T-ABS. In this case, we have M = λx.N for some term N , and M is a value.

x : A�N : B
� � λx.N : A→ B

T-ABS.

In case T-APP. We have

� �M1 : B→ A � �M2 : B
� �M1M2 : A

T-ABS.

By the induction hypothesis, M1 is a value or M1 →M ′
1 for some M ′

1, and M2 is a value or
M2 →M ′

2 for some M ′
2. If M1 →M ′

1 holds for some M ′
1, then we have M1M2 →M ′

1M2. If
M1 is a value, then M1 = λx.N for some N because � �M1 : A→ B. We have two subcases:
If M2 is a value V , then we have M1M2 = (λx.N)V →N[V/x]. If M2 →M ′

2 holds for some
M ′

2, then we have M1M2 = (λx.N)M2 → (λx.N)M ′
2.

In case T-CABS. In this case, we have M = λ•x.N for some term N , and M is a value.

� � x : A�N ! B
� � λ•x.N : A� B

T-CABS.

In case T-PAIR.

� �M1 : A � �M2 : B
� � 〈M1, M2〉 : A× B

T-PAIR
.

By the induction hypothesis, M1 is a value or M1 →M ′
1 for some M ′

1, and M2 is
a value or M2 →M ′

2 for some M ′
2. If M1 →M ′

1 holds for some M ′
1, then we have

〈M1, M2〉→ 〈M ′
1, M2〉. If M1 is a value V1, we have two subcases: if M2 is a value V2,

then M = 〈M1, M2〉 = 〈V1, V2〉 is a value. If M2 →M ′
2 holds for some M ′

2, then we have
〈M1, M2〉 = 〈V1, M2〉→ 〈V1, M ′

2〉.
In case T-FST, T-SND. Straightforward.
(2). By induction on the derivation of � � � � P ! A.
In case T-PURE. We have

� �M : A
� � � � �M ! A T-PURE

for some term M . By (1), M is a value or M →M ′ holds for some M ′. If M is a value
V , then P= �V and this satisfies (b). If M →M ′ holds for some M ′, then we have P=
�M→ �M ′.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

42 T. Sanada

In case T-CAPP. We have

� � L : B� A � �N : B
� � � � L •N ! A T-CAPP

.

By the similar argument to Case T-APP, we have either L •N → L′ •N for some L′,
L= (λ•x.L1) and L •N → L •N ′ for some N ′, or L= (λ•x.L1), N is a value, and L •N =
(λ•x.L1) • V → L1[V/x] for some V .

In case T-LET. We have

� � � � P ! B � � x : B�Q ! A
� � � � let x⇐ P in Q ! A T-LET

.

By the induction hypothesis, we have the following three cases.

1. P→ P′ for some command P′. We have (let x⇐ P in Q)→ (let x⇐ P′ in Q).
2. P= �V for some value term V . We have (let x⇐ P in Q)= (let x⇐�V in Q)→

Q[V/x].
3. P=F [op(V)] for some value term V , operation symbol op ∈� and context F .

We have P=F ′[op(V)] for F ′ = (let x⇐F in Q).

In case T-OP. We have

op : γ � δ � �M : γ
� � � � op(M) ! δ T-OP

.

By the induction hypothesis, M is a value or M →M ′ for some M ′. If M is a value V , then
P= op(V)=F [op(V)] for F = [−]. If M →M ′ holds, then P= op(M)→ op(M ′).

In case T-HANDLE. We have

� � � � R !C �H : C⇒D
� � � � handle R with H !D T-HANDLE

where H = { � x : C �→ P} ∪ {k : δ�D � z : γ �Qop}op∈� . By the induction hypothesis, we
have the following three cases.

1. R→ R′ for some command R′. We have (handle R with H)→ (handle R′ with H).
2. R= �V for some value term V . We have

(handle R with H)= (handle�Vwith H)→ P[V/x].

3. R=F [op(V)] for some value term V , operation symbol op ∈� and context F .
We have

(handle R with H)= (handle F [op(V)] with H)

→Qop[V/z, (λ•y. handle F [�y] with H)/k].

�

D Proofs for Section 5 (Denotational semantics)

Proposition 5.5. Let A and B be sets. For any a ∈Arr�(A, B), there exist a natural number
n ∈N, a sequence of operations (opi : γi � δi)i=1,...,n, a sequence of maps (fi : �δi−1�×

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 43

· · · × �δ1�× A→ �γi�)i=1,...,n and g : �δn�× · · · × �δ1�× A→ B such that

a∼ nf
(
(op)n

i=1, (fi)
n
i=1; g

)
.

Proof We prove by induction on the structure of a ∈Arr�(A, B).
In case a= arr(f) for some f : A→ B. This case is proved in the main text.
In case a= op for some (op : γ � δ) ∈� with �γ �= A and �δ�= B. This case is

proved in the main text.
In case a= firstX (a′) for some a′ ∈Arr�(A′, B′) with A′ × X = A and B′ × X = B. By

the induction hypothesis, we have

a′ ∼ nf
(
(opi)i=1,...,n, (fi)i=1,...,n; g

)
for some n ∈N, a sequence of operations (opi : γi � δi)i=1,...,n, a sequence of maps
(f ′i : �δi−1�× · · · × �δ1�× A′ → �γi�)i=1,...,n and g′ : �δm�× · · · × �δ1�× A′ → B′.

We show a= firstX (a′)∼ nf
(
(opi)i=1,...,n, (f ′i)i=1,...,n; g× idX

)
for some f ′i (i= 1, . . . , n)

by induction on n.
In the base case, n= 0, we have

a= firstX (a′)
∼ firstX (nf ((), (); g))

= firstX (arr(g))

∼ arr(g× idX)

= nf ((), (); g× idX)

We assume that the claim holds in case n and show the claim in case n+ 1. We have

a= firstX (a′)
∼ firstX (nf

(
(opi)i=1,...,n+1, (fi)i=1,...,n+1; g

)
)

= firstX (arr(dA′) >>> firstA′ (arr(f1) >>> op1) >>> nf
(
(op1+i)i=1,...,n, (f1+i)i=1,...,n; g

)
)

∼ firstX (arr(dA′) >>> firstA′ (arr(f1) >>> op1))

>>> firstX (nf
(
(op1+i)i=1,...,n, (f1+i)i=1,...,n; g

)
)

∼ arr(dA′×X) >>> firstA′×X (arr(f1 ◦ π1) >>> op1)

>>> firstX (nf
(
(op1+i)i=1,...,n, (f1+i)i=1,...,n; g

)
)

∼ arr(dA) >>> firstA(arr(f1 ◦ π1) >>> op1)

>>> nf
(
(op1+i)i=1,...,n, (f ′1+i)i=1,...,n; g× idX

)
∼ nf

(
(opi)i=1,...,n, (f ′i)i=1,...,n; g× idX

)
where f ′1 = f1 ◦ π1 : A′ × X → �γ1�. See Figure D1.

In case a= b >>> c for some b ∈Arr�(A, X) and c ∈Arr�(X , B). By the induction
hypothesis, we have

b∼ nf
(
(opi)i=1,...,m, (fi)i=1,...,m; g′

)
for some m ∈N, (opi : γi � δi)i=1,...,m, (fi : �δi−1�× · · · × �δ1�× A→ �γi�)i=1,...,m and
g′ : �δn�× · · · × �δ1�× A→ X , and

c∼ nf
(
(opm+i)i=1,...,m, (f ′i)i=1,...,m; g′′

)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

44 T. Sanada

A′ B′

X X

a′ ∼ A′ B′

X X

nf
(

(opi)
n+1
i=1 , (fi)

n+1
i=1 ; g

)

∼ A′ B′

X X

f1 op
nf

(
(op1+i)

n
i=1, (f1+i)n

i=1; g
)

∼ A′
B′

X

X

π1 f1 op

nf
(
(op1+i)

n
i=1, (f1+i)n

i=1; g
)

∼ A′
B′

X

X

f1 ◦ π1 op

nf
(
(op1+i)

n
i=1, (f1+i)n

i=1; g
)

∼ A′
B′

X

X

f1 ◦ π1 op

nf
(
(op1+i)

n
i=1, (f ′1+i)

n
i=1; g× idX

)

∼ A Bnf
(

(opi)
n+1
i=1 , (f ′i)n+1

i=1 ; g× idX

)

Fig. D1. In case a= firstX (a′) and a′ ∼ nf
(

(op)n+1
i=1 , (fi)

n+1
i=1 ; g

)
.

for some n ∈N, (opm+i : γm+i � δm+i)i=1,...,n, (f ′i : �δm+i−1�× · · · × �δm+1�× A→
�γm+i�)i=1,...,n and g′′ : �δm+n+1�× · · · × �δm+1�× X → B. We show a= b >>> c∼
nf

(
(op)i=1,...,m+n, (fi)i=1,...,m+n; g

)
for some (fi)i=m+1,...,m+n and g by induction on n.

In the base case, n= 0, we have

a= b >>> c

∼ nf
(
(op)i=1,...,m, (fi)i=1,...,m; g′

)
>>> nf

(
(), (); g′′

)
= nf

(
(op)i=1,...,m, (fi)i=1,...,m; g′

)
>>> arr(g′′)

∼ nf
(
(op)i=1,...,m, (fi)i=1,...,m; g′′ ◦ g′

)
.

We assume that the claim holds in case n, and show the claim in case n+ 1. We have

a= b >>> c

∼ nf
(
(opi)i=1,...,m, (fi)i=1,...,m; g′

)
>>> nf

(
(opm+i)i=1,...,n+1, (f ′i)i=1,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(g′)

>>> nf
(
(opm+i)i=1,...,n+1, (f ′i)i=1,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(g′) >>> arr(dX) >>> first(arr(f ′1) >>> opm+1)

>>> nf
(
(opm+i)i=2,...,n+1, (f ′i)i=2,...,n+1; g′′

)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 45

A Bb c

∼ A Bnf
(
(opi)

m
i=1, (fi)m

i=1; g′
)

nf
(

(opm+i)
n+1
i=1 , (f ′m+i)

n+1
i=1 ; g′′

)
∼ A Bnf

(
(opi)

m
i=1, (fi)m

i=1; id
)

g′ nf
(

(opm+i)
n+1
i=1 , (f ′m+i)

n+1
i=1 ; g′′

)

∼ A Bnf
(
(opi)

m
i=1, (fi)m

i=1; id
)

g′
f ′m+1 opm+1

nf
(

(opm+i)
n+1
i=2 , (f ′m+i)

n+1
i=2 ; g′′

)

∼ A Bnf
(
(opi)

m
i=1, (fi)m

i=1; id
) g′

g′

f ′m+1 opm+1
nf

(
(opm+i)

n+1
i=2 , (f ′m+i)

n+1
i=2 ; g′′

)

∼ A Bnf
(
(opi)

m
i=1, (fi)m

i=1; id
) fm+1 opm+1

g′
nf

(
(opm+i)

n+1
i=2 , (f ′m+i)

n+1
i=2 ; g′′

)

∼ A Bnf
(

(opi)
m+1
i=1 , (fi)

m+1
i=1 ; id× g′

)
nf

(
(opm+i)

n+1
i=2 , (f ′m+i)

n+1
i=2 ; g′′

)
∼ A Bnf

(
(opi)

m+n+1
i=1 , (fi)

m+n+1
i=1 ; g

)

Fig. D2. In case a= b >>> c and c∼ nf
(

(opi)
n+1
i=1 , (f ′i)n+1

i=1 ; g′′
)

.

∼ nf
(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(d�δn�×···×�δ1�×A) >>> arr(g′ × g′) >>> arr(f ′1 × id) >>> first(opm+1)

>>> nf
(
(opm+i)i=2,...,n+1, (f ′i)i=2,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(d�δn�×···×�δ1�×A) >>> arr((f ′1 ◦ g′)× g′) >>> first(opm+1)

>>> nf
(
(opm+i)i=2,...,n+1, (f ′i)i=2,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(d�δn�×···×�δ1�×A) >>> first(arr(f ′1 ◦ g′)) >>> arr(id× g′) >>> first(opm+1)

>>> nf
(
(opm+i)i=2,...,n+1, (f ′i)i=2,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m, (fi)i=1,...,m; id

)
>>> arr(d�δn�×···×�δ1�×A) >>> first(arr(f ′1 ◦ g′)) >>> first(opm+1) >>> arr(id× g′)
>>> nf

(
(opm+i)i=2,...,n+1, (f ′i)i=2,...,n+1; g′′

)
∼ nf

(
(opi)i=1,...,m+1, (fi)i=1,...,m+1; id× g′

)
>>> nf

(
(opm+1+i)i=1,...,n, (f ′1+i)i=1,...,n; g′′

)

where fm+1 = f ′1 ◦ g′. See Figure D2. By the induction hypothesis, we obtain

a∼ nf
(
(opi)i=1,...,m+1+n, (fi)i=1,...,m+1+n; g

)
for some (fm+1+i)i=1,...,n and g.

�

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

46 T. Sanada

Lemma 5.11. The following hold.

1. If �, x : A�M : B and � � V : A, then �M[V/x]�S(c)= �M�S(c, �V�S(c)).
2. If �, x : A � �� P ! B and � � V : A, then �P[V/x]�S(c)= �P�S(c, �V�S(c)).
3. If � � x : A, �� P ! B and �, �� V : A, then

�P[V/x]�S(c)= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �P�S(c)

= �S

S
BS

�V�S(c,−)
�P�S(c)

Proof The proof is by induction on the derivations.
(3). In case T-PURE. The derivation is

�, x : A, ��M : B
� � x : A, �� �M ! B T-PURE

.

By the induction hypothesis (1), we have

�M[V/x]�S(c,−)= �M�S(c, �V�S(c,−),−) ◦ d���S

for any c ∈ ���S . Hence, we have

��M[V/x]�S(c)= ��M[V/x]�S(c)

= arr(�M[V/x]�S(c,−) ◦ π1)

= arr(�M�S(c, �V�S(c,−),−) ◦ d���S ◦ π1)

= arr(π1) >>> arr(d���S) >>> arr(�M�S(c, �V�S(c,−),−))

= arr(π1) >>> arr(d���S) >>> arr(�M�S(c,−,−) ◦ (�V�S(c,−)× id���S))

= arr(π1) >>> arr(d���S) >>> first���S (�V�S(c,−)) >>> arr(�M�S(c,−,−))

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> arr(π1) >>> arr(�M�S(c,−,−))

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> ��M�S(c).

In case T-CAPP. The derivation is

� � L : C� B �, x : A, ��M : C
� � x : A, �� L •M ! B T-CAPP

.

By the induction hypothesis (1), we have

�M[V/x]�S(c,−)= �M�S(c, �V�S(c,−),−) ◦ d���S

for any c ∈ ���S . Hence, we have

�(L •M)[V/x]�S = �L • (M[V/x])�S

= firstS(arr(�M[V/x]�S(c,−))) >>> �L�S(c)

= firstS(arr(�M�S(c, �V�S(c,−),−) ◦ d���S)) >>> �L�S(c)

= firstS(arr(d���S) >>> arr(�M�S(c, �V�S(c,−),−))) >>> �L�S(c)

= firstS(arr(d���S) >>> first���S (�V�S(c,−)) >>> arr(�M�S(c,−,−))) >>> �L�S(c)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 47

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> firstS(arr(�M�S(c,−,−))) >>> �L�S(c)

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> �L •M�S(c).

In case T-LET. The derivation is

� � x : A, �� P !C � � y : C, x : A, ��Q ! B
� � x : A, �� let y⇐ P in Q ! B T-LET

.

By the induction hypothesis (3), we have

�P[V/x]�S(c)= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �P�S(c)

= �S

S
CS

�V�S(c,−)
�P�S(c)

�Q[V/x]�S(c)=
CS

�S

AS

S

BS

�V�S(c,−)

�Q�S(c)

=
CS

�S

S

BS�V�S(c,−)
�Q�S(c)

Hence, we have

�(let y⇐ P in Q)[V/x]�S(c)= �let y⇐ P[V/x] in Q[V/x]�S(c)

=
�S

S

CS

BS

�V�S(c,−)
�P�S(c)

�V�S(c,−)
�Q�S(c)

=
�S

S BS

�V�S(c,−)
�P�S(c)

�Q�S(c)

= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �let y⇐ P in Q�S(c).

In case T-OP. The derivation is

op : γ � δ ∈� �, x : A, ��M : δ
� � x : A, �� op(M) ! δ T-OP

.

By the induction hypothesis (1), we have

�M[V/x]�S(c,−)= �M�S(c, �V�S(c,−),−) ◦ d���S

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

48 T. Sanada

for any c ∈ ���S . Hence, we have

�op(M)[V/x]�S(c)= �op(M[V/x])�S(c)

= arr(π1) >>> arr(�M[V/x]�S(c),−) >>> op

= arr(π1) >>> arr(�M�S(c, �V�S(c,−),−) ◦ d���S) >>> op

= arr(π1) >>> arr(d���S) >>> arr(�M�S(c, �V�S(c,−),−)) >>> op

= arr(π1) >>> arr(d���S) >>> first���S (�V�S(c,−)) >>> arr(�M�S(c,−,−)) >>> op

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> arr(π1) >>> arr(�M�S(c,−,−)) >>> op

= firstS(arr(d���S) >>> first���S (�V�S(c,−))) >>> arr(π1) >>> �op(M)�S(c).

In case T-HANDLE. The derivation is

� � x : A, �� P !C �H : C⇒D
� � x : A, �� handle P with H !D T-HANDLE

.

By the induction hypothesis (3), we have

�P[V/x]�S(c)= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �P�S(c).

Hence, we have

�(handle P with H)[V/x]�S(c)= �handle P[V/x] with H�S(c)

= h
(
�P[V/x]�S(c)

)
= h

(
firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �P�S(c)

)
= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> h

(
�P�S(c)

)
= firstS(arr(d���S) >>> first���S (arr(�V�S(c,−)))) >>> �handle P with H�S(c).

�

Lemma 5.12. If � � � �F [op(V)] !C, then

�F [op(V)]�S(�)= firstS(arr(�V�S) >>> op) >>> �F [�y]�S(�)

holds.

Proof The proof is by induction on the structure of F .
If F = [−], then we have

�op(V)�S(�)= arr(�V�S(�) ◦ π1) >>> op

= arr(π1) >>> arr(�V�S(�)) >>> op

= firstS(arr(�V�S(�)) >>> op) >>> arr(π1)

= firstS(arr(�V�S(�)) >>> op) >>> arr(π1)

= firstS(arr(�V�S(�)) >>> op) >>> ��y�S(�).

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 49

Otherwise, F = (let x⇐F ′ in P), we have

�F [op(V)]�S(�)

= �let x⇐F ′[op(V)] in P�
S(�)

= arr(d���S×S) >>> first���S×S(�F ′[op(V)]�S(�)) >>> �P�S(�)

= arr(d���S×S) >>> first���S×S(firstS(arr(�V�S) >>> op) >>> �F ′[�y]�S(�)) >>> �P�S(�)

= firstS(arr(�V�S(�)) >>> op) >>> �let x⇐�y in P�S(�)

= firstS(arr(�V�S(�)) >>> op) >>> �F [�y]�S(�).

by the induction hypothesis. �

Theorem 5.13 (soundness). The following hold.

1. If � �M : A and M →M ′, then �M�S = �M ′�S for any S.
2. If � � � � P ! A and P→ P′, then �P�S = �P′�S for any S.

Proof By induction on the derivations M →M ′ and P→ P′.
(1). In case O-FST. We have � � fst〈V1, V2〉 : A1 and fst〈V1, V2〉→ V1. The derivation

of � � fst〈V1, V2〉 : A1 is

� � V1 : A1 � � V2 : A2

� � 〈V1, V2〉 : A1 × A2
T-PAIR

� � fst〈V1, V2〉 : A1
T-FST

.

We have

�fst〈V1, V2〉�S(�)= π1(�V1�
S(�), �V2�

S(�))= �V1�
S(�)

for any S and � ∈ ���S = 1= {�}.
In case O-SND. Similar to the case O-FST.
In case O-β. We have � � (λx : A.M)V : B and (λx : A.M)V →M[V/x]. The derivation

of � � (λx : A.M)V : B is

x : A�M : B
� � λx : A.M : A→ B

T-ABS � � V : A
� � (λx : A.M)V : B T-APP.

We have

�(λx : A.M)V�S(�)= �λx : A.M�S(�)
(
�V�S(�)

)
= �M�S(�, �V�S(�))

= �M[V/x]�S(�) Lemma 5.11

for any S and � ∈ ���S = 1= {�}.
In case O-CTXE. We have � � E [M] : A and E [M]→ E [M ′]. From the derivation of

E [M]→ E [M ′], we have M →M ′. By the induction hypothesis, we have �M�S = �M ′�S .
We obtain �E [M]�S = �E [M ′]�S by induction on the structure of E .

(2). In case O-β•. We have � � � � (λ•x : A.P) • V ! B and (λ•x : A.P) • V → P[V/x]. The
derivation of � � � � (λ•x : A.P) • V ! B is

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

50 T. Sanada

� � x : A� P ! B
� � λ•x : A.P : A� B

T-CABS � � V : A
� � � � (λ•x : A.P) • V ! B T-CAPP

We have

�(λ•x : A.P) • V�S(�)= firstS
(

arr
(
�V�S

))
>>> �λ•x : A.P�S(�)

= firstS
(

arr
(
�V�S

))
>>> �P�S(�)

= �P[V/x]�S(�) Lemma 5.11

for any S and � ∈ ���S = 1= {�}.
In case O-LET. We have � � � � let x⇐�V in Q ! B and let x⇐�V in Q→Q[V/x].

The derivation of � � � � let x⇐�V in Q ! B is

� � V : A
� � � � �V ! A T-PURE � � x : A�Q ! B

� � � � let x⇐�V in Q ! B T-LET
.

We have

�let x⇐�V in Q�S(�)

= arr (d) >>> first
(
��V�S(�)

)
>>> �Q�S(�)

= arr (d) >>> first
(

arr
(
�V�S ◦ π1

))
>>> �Q�S(�)

= firstS(arr(d)) >>> first���S×S

(
arr �V�S

)
>>> �Q�S(�)

= �Q[V/x]�S(�) Lemma 5.11

for any S and � ∈ ���S = 1= {�}.
In case O-HVAL. We have � � � � handle�Vwith H !D and handle�Vwith H →

P[V/x] where H = { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op:γ�δ∈� . The derivation
of � � � � handle�Vwith H !D is

� � V : C
� � � � �V !C T-PURE

� � x : C � P !D k : δ�D � z : γ �Qop !D
�H : C⇒D

T-HANDLER

� � � � handle�Vwith H !D T-HANDLE

where C and D are primitive. We have

�handle�Vwith H�S(�)= h���S (��V�S(�))

= h���S (arr(�V�S ◦ π1))

= arr(�V�S) >>> �P�

= �P[V/x]�S(�) Lemma 5.11

for any S and � ∈ ���S = 1= {�}.
In case O-HOP. We have � � � � handle F [op(V)] with H !D and

handle F [op(V)] with H →Qop[V/z, (λ•y : δ. handle F [�y] with H)/k] where
H = { � x : C �→ P} ∪ {op, k : δ�D � z : γ �→Qop}op:γ�δ∈� . The derivation of

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 51

� � � � handle F [op(V)] with H !D is

� � � �F [op(V)] !C
� � x : C � P !D k : δ�D � z : γ �Qop !D

� �H : C⇒D
T-HANDLER

� � � � handle F [op(V)] with H !D T-HANDLE

where C and D are primitive. We have

�handle F [op(V)] with H�S(�)

= h���S (�F [op(V)]�S(�))

= h1

(
firstS(arr(�V�S) >>> op) >>> �F [�y]�S(�)

)
Lemma 5.12

= α
(

firstS(arr(�V�S) >>> op) >>> �F [�y]�S(�) >>> �P�
)

= α
(

firstS(arr(�V�S) >>> op), α
(
�F [�y]�S(�) >>> �P�

))
= α

(
firstS(arr(�V�S) >>> op), h

(
�F [�y]�S(�)

))
= α

(
firstS(arr(�V�S) >>> op), h

(
�F [�y]�S(�)

))
= firstS(arr(�V�S)) >>> �Qop�

S
(

h
(
�F [�y]�S(�)

))
= firstS(arr(�V�S)) >>> �Qop�

S
(
�handle F [�y] with H�S(�)

)
= firstS(arr(�V�S)) >>> �Qop�

S
(
�λ•y : δ. handle F [�y] with H�S(�)

)
= �Qop[V/z, (λ•y : δ. handle F [�y] with H)/k]�S(�). Lemma 5.11

In case O-CTXF. We have � � � � P ! A and F [P]→F [P′]. From the derivation of
F [P]→F [P′], we have P→ P′. By the induction hypothesis, we have �P�S = �P′�S .

We show �F [P]�S = �F [P′]�S by induction on the structure of F . If F = [−], we
have nothing to do. Suppose F = let x⇐F ′ in Q. By the induction hypothesis, we have
�F ′[P]�S = �F ′[P′]�S . From the definition of the interpretation of let x⇐ R in Q, we
obtain �F [P]�S = �let x⇐F ′[P] in Q�S = �let x⇐F ′[P′] in Q�S = �F [P′]�S . �

Lemma 5.15. The following hold.

1. If M →∗ M ′ and v �A M ′, then v �A M.
2. If M →∗ M ′ and v �A M, then v �A M ′.
3. If P→∗ P′ and a�A P′, then a�A P.
4. If P→∗ P′ and a�A P, then a�A P′.

Proof We can prove (3) and (4) straightforwardly by the definition. To prove (1) and (2),
we do induction on the type A.

(1). In case Unit. Suppose M →∗ M ′ and v �Unit M ′. We have v = � and M ′ →∗ 〈〉 by
the definition of �Unit. Hence, we have M →∗ M ′ →∗ 〈〉, which means v �Unit M .

In case A1 × A2. Suppose M →∗ M ′ and v �A1×A2 M ′. We have M →∗ M ′ →∗ 〈V1, V2〉,
π1(v) �A1 V1 and π2(v) �A2 V2. This means v �A1×A2 M .

In case A→ B. Suppose M →∗ M ′ and f �A→B M ′. We have M →∗ M ′ →∗ λx : A.M ′′

and (w �A N =⇒ fw �B M ′N) for any N and w. Given N and w with w �A N , we have

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

52 T. Sanada

fw �B M ′N . Since M →∗ M ′, we have MN →∗ M ′N . By the induction hypothesis (1), we
have fw �B MN . This means f �A→B M .

In case A� B. Suppose M →∗ M ′ and a �A�B M ′. We have M →∗ M ′ →∗ λ•x : A.P
and (w �A N =⇒ arr(w) >>> a�B M ′ •N) for any N and w. Given N and w with w �A N ,
we have arr(w) >>> a�B M ′ •N . Since M →∗ M ′, we have M •N →∗ M ′ •N . By (3), we
have arr(w) >>> a�B M •N . This means a �A�B M .

(2). Note that we can show that M ′ →∗ V if M →∗ V and M →∗ M ′.
In case Unit. Suppose M →∗ M ′ and v �Unit M . We have v= � and M →∗ 〈〉 by the

definition of �Unit. Hence, we have M ′ →∗ 〈〉, which means v �Unit M ′.
In case A1 × A2. Suppose M →∗ M ′ and v �A1×A2 M . We have M →∗ 〈V1, V2〉, π1(v) �A1

V1 and π2(v) �A2 V2. This means v �A1×A2 M since we have M ′ →∗ 〈V1, V2〉.
In case A→ B. Suppose M →∗ M ′ and f �A→B M . We have M →∗ λx : A.M ′′ and (w �A

N =⇒ fw �B MN) for any N and w. Given N and w with w �A N , we have fw �B MN . Since
M →∗ M ′, we have MN →∗ M ′N . By the induction hypothesis (2), we have fw �B M ′N .
This means f �A→B M ′.

In case A� B. Suppose M →∗ M ′ and a �A�B M . We have M →∗ λ•x : A.P and
(w �A N =⇒ arr(w) >>> a�B M •N) for any N and w. Given N and w with w �A N , we
have arr(w) >>> a�B M •N . Since M →∗ M ′, we have M •N →∗ M ′ •N . By (4), we have
arr(w) >>> a�B M ′ •N . This means a �A�B M ′. �

Theorem 5.16. Let � = x1 : A1, . . . , xm : Am and �= y1 : B1, . . . , yn : Bn. The following
hold.

1. For � �M : A and vi ∈ �Ai� and Vi with vi �Ai Vi for each i ∈ {1, . . . , m},
�M�(v1, . . . , vm) �A M[V1/x1, . . . , Vm/xm].

2. For � � �� P !C, vi ∈ �Ai� and Vi with vi �Ai Vi for each i ∈ {1, . . . , m} and wj ∈
�Bj� and Wj with wj �Bj Wj for each j ∈ {1, . . . , n},

arr(〈w1, . . . , wn〉) >>> �P�(v1, . . . , vm)

�C P[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

Proof The proof is done by induction on the derivation of � �M : A and � � �� P !C.
Suppose that � = x1 : A1, . . . , xm : Am and �= y1 : B1, . . . , yn : Bn, Vi is a value and vi ∈
�Ai� with vi �Ai Vi for each i ∈ {1, . . . , m}, and Wj is a value and wj ∈ �Bj� with wj �Bj Wj

for each j ∈ {1, . . . , n}.
(1) The case T-CABS is proved in the main text, and the other cases are proved

straightforwardly by the definition of �A.
(2) In case T-PURE. The derivation is

�, ��M : A
� � �� �M ! A T-PURE

.

By the induction hypothesis, we have

�M�(v1, . . . , vm, w1, . . . , wn) �A M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 53

By the definition of �A, there exists a value � V : A such that

M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]→∗ V .

Thus, we obtain �M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]→∗ �V. We have

arr(〈w1, . . . , wn〉) >>> ��M�(v1, . . . , vm)

= arr(〈w1, . . . , wn〉) >>> arr(�M�(v1, . . . , vm,−))

= arr(�M�(v1, . . . , vm, w1, . . . , wn)).

Therefore, by the definition of �A, we have

arr(〈w1, . . . , wn〉) >>> ��M�(v1, . . . , vm)

�A �M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

In case T-CAPP. The derivation is

� � L : A� B �, ��M : A
� � �� L •M ! B T-CABS

.

By the induction hypothesis, we have

�L�(v1, . . . , vm) �A�B L[V1/x1, . . . , Vm/xm],

�M�(v1, . . . , vm, w1, . . . , wn) �A M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

By the definition of �A�B, we have

arr(�M�(v1, . . . , vm, w1, . . . , wn)) >>> �L�(v1, . . . , vm)

�B L[V1/x1, . . . , Vm/xm] •M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

We also have

arr(〈w1, . . . , wn〉) >>> �M • L�(v1, . . . , vm)

= arr(〈w1, . . . , wn〉) >>> arr(�M�(v1, . . . , vm,−)) >>> �L�(v1, . . . , vm)

= arr(�M�(v1, . . . , vm, w1, . . . , wn)) >>> �L�(v1, . . . , vm)

and

(L •M)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]

= L[V1/x1, . . . , Vm/xm] •M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

Therefore, we have

arr(〈w1, . . . , wn〉) >>> �M • L�(v1, . . . , vm)

�B (L •M)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

In case T-OP. The derivation is

�, ��M : γ (op : γ � δ) ∈�

� � �� op(M) ! δ .

By the induction hypothesis, we have

�M�(v1, . . . , vm, w1, . . . , wn) �γ M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]. (D1)

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

54 T. Sanada

By the definition of �δ , there exists a value U such that

M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]→∗ U . (D2)

From (D1), (D2), and Lemma 5.15(1), we have

�M�(v1, . . . , vm, w1, . . . , wn) ��γ � U . (D3)

We have

op(M)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]

= op(M[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn])

→∗ op(U)

=F [op(U)]

for the trivial context F = [−], and

arr(〈w1, . . . , wn〉) >>> �op(M)�(v1, . . . , vm)

= arr(〈w1, . . . , wn〉) >>> arr(�M�(v1, . . . , vm,−)) >>> op

= arr(�M�(v1, . . . , vm, w1, . . . , wn)) >>> op

= arr(�M�(v1, . . . , vm, w1, . . . , wn)) >>> op >>> �F [�y]�.

If w �δ W then arr(w)�δ �W =F [�W]. Therefore, by the definition of �δ , we have

arr(〈w1, . . . , wn〉) >>> �op(M)�(v1, . . . , vm)

�δ op(M)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

In case T-LET. The derivation is

� � �� P ! B � � y : B, ��Q ! A
� � �� let x⇐ P in Q ! A .

Let P′ = P[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn] and Q′ =
Q[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]. By the induction hypothesis, we have

arr(〈w1, . . . , wn〉) >>> �P�(v1, . . . , vm)�A P′

and

arr(〈u, w1, . . . , wn〉) >>> �Q�(v1, . . . , vm)�B Q′[U/y]

for any u ∈ �B� and a value U with u �B U . By the definition of �A, there are two cases.
Case P′ →∗ �U for a value U and there exists u ∈ �B� such that arr(w1, . . . , wn) >>>

�P�(v1, . . . , vm)= arr(u) and u �B U . We have

(let y⇐ P in Q)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]

= let y⇐ P′ in Q′

→∗ let y⇐�U in Q′

→Q′[U/y]

and

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 55

arr(#w) >>> �let y⇐ P in Q�(v1, . . . , vm)

= arr(#w) >>> arr(d) >>> first(�P�(v1, . . . , vn)) >>> �Q�(v1, . . . , vn)

= arr(d) >>> first(arr(#w) >>> �P�(v1, . . . , vn)) >>> second(arr(#w)) >>> �Q�(v1, . . . , vn)

= arr(d) >>> first(arr(u)) >>> second(arr(#w)) >>> �Q�(v1, . . . , vn)

= arr(〈u, w1, . . . , wm〉) >>> �Q�(v1, . . . , vn)

where #w= 〈w1, . . . , wn〉. Hence, by Lemma 5.15(3), we obtain

arr(#w) >>> �let y⇐ P in Q�(v1, . . . , vm)

�B (let y⇐ P in Q)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

Case P′ →∗ F [op(U)] for a value U and op : γ � δ and there exists u ∈ �γ � with
u �γ U and b ∈A�(�δ�, �A�) such that arr(〈w1, . . . , wn〉) >>> �P�(v1, . . . , vm)= arr(u) >>>

op >>> b and w �δ W =⇒ arr(w) >>> b�A F [�W] for any w ∈ �δ� and a value W . We
have

(let y⇐ P in Q)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]

= let y⇐ P′ in Q′

→∗ let y⇐F [op(U)] in Q′

=F ′[op(U)]

where F ′ = let y⇐F in Q′, and

arr(#w) >>> �let y⇐ P in Q�(#v)

= arr(#w) >>> arr(d) >>> first(�P�(#v)) >>> �Q�(#v)

= arr(d) >>> first(arr(#w) >>> �P�(#v)) >>> second(arr(#w)) >>> �Q�(#v)

= arr(d) >>> first(arr(u) >>> op >>> b) >>> second(arr(#w)) >>> �Q�(#v)

= arr(u) >>> op >>> b >>> arr(λb.〈b, #w〉) >>> �Q�(#v)

= arr(u) >>> op >>> arr(λx.〈x, #w〉) >>> first(b) >>> �Q�(#v)

= arr(u) >>> op >>> b′

where #w= 〈w1, . . . , wn〉, #v = 〈v1, . . . , vm〉 and b′ = arr(λx.〈x, #w〉) >>> first(b) >>> �Q�(#v).
Given w ∈ �δ� and � �W : δ with w �δ W , we can show arr(w) >>> b′ �B F ′[�W].
Therefore, we have

arr(#w) >>> �let y⇐ P in Q�(v1, . . . , vm)

�B (let y⇐ P in Q)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

In case T-HANDLE. The derivation is

� � �� R !C
� � x : C � P !D (

k : δ�D � z : γ �Qop !D
)

op∈�

�H : C⇒D
� � �� handle R with H !D

where H = { � x : C �→ P} ∪ {k : δ�D � z : γ �→Qop}op. Let R′ =
R[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]. By the induction hypothesis, we have

arr(〈w1, . . . , wn〉) >>> �R�(v1, . . . , vm)�C R′.

By the definition of �C , there are two cases.

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

56 T. Sanada

Case R′ →∗ �U for a value U and there exists u ∈ �C� such that arr(〈w1, . . . , wn〉) >>>

�R�(v1, . . . , vm)= arr(u) and u �C U . By the induction hypothesis and u �C U , we have

arr(u) >>> �P��D P[U/x].

We have

arr(〈w1, . . . , wn〉) >>> �handle R with H�(v1, . . . , vm)

= arr(〈w1, . . . , wn〉) >>> �H�(�R�(v1, . . . , vm))

= �H�(arr(〈w1, . . . , wn〉) >>> �R�(v1, . . . , vm))

= �H�(arr(u))

= arr(u) >>> �P�

and

(handle R with H)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]= handle R′ with H

→∗ handle�Uwith H

→ P[U/x].

Therefore, by Lemma 5.15(3), we obtain

arr(〈w1, . . . , wn〉) >>> �handle R with H�(v1, . . . , vm)

�D (handle R with H)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]

Case R′ →∗ F [op(U)] for a value U and op : γ � δ ∈� and there exist u ∈ �γ � with
u �γ U and b ∈A�(�δ�, �C�) such that arr(〈w1, . . . , wn〉) >>> �R�(v1, . . . , vm)= arr(u) >>>

op >>> b and w �δ W =⇒ arr(w) >>> b�C F [�W] for any w ∈ �δ� and � �W : δ. Let
Q′op =Qop[U/z, (λ•y. handle F [�y] with H)/k]. We have

(handle R with H)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn]= handle R′ with H

→∗ handle F [op(U)] with H

→Q′op

By the induction hypothesis and u �γ U , we have arr(u) >>> �Qop�(κ)�D Q′op for
any κ ∈ �δ�D� with κ �δ�D (λ•y. handle F [�y] with H). We can show �H�(b) �δ�D

λ•y. handle F [�y] with H from ∀w. ∀W . w �δ W =⇒ arr(w) >>> b�C F [�W]. Thus,
we have

arr(u) >>> �Qop�(�H�(b))�D Q′op

By Lemma 5.15(3), we obtain

arr(〈w1, . . . , wn〉) >>> �handle R with H�(v1, . . . , vm)

= arr(〈w1, . . . , wn〉) >>> �H�(�R�(v1, . . . , vm))

= �H�(arr(〈w1, . . . , wn〉) >>> �R�(v1, . . . , vm))

= �H�(arr(u) >>> op >>> b)

= arr(u) >>> �Qop�(�H�(b))

�D (handle R with H)[V1/x1, . . . , Vm/xm, W1/y1, . . . , Wn/yn].

�

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

Algebraic effects and handlers for arrows 57

E Proofs for Section 6 (Related work)

Proposition 6.1. There is a map

� :
∫

A

∫
B

Set
(

(IC + #� ◦A)(A, B), A (A, B)
)

→A (D, D)×
∏

op:γ�δ

Set(A (�δ�, D), A (�γ �, D))

for any set D.

Proof By the following calculation:∫
A

∫
B

Set
(

(IC + #� ◦A)(A, B), A (A, B)
)

∼=
∫

A

∫
B

Set

(
C(A, B)+

∫ C #�(A, C)×A (C, B), A (A, B)

)
∼=

∫
A

∫
B

Set (C(A, B), A (A, B))×
∫

A

∫
B

∫
C

Set
(#�(A, C)×A (C, B), A (A, B)

)
∼=

∫
B

∫
A

Set (C(A, B), A (A, B))×
∫

A,B,C
Set

(#�(A, C), A (C, B)⇒A (A, B)
)

∼=
∫

B
A (B, B)×

∫
A,B,C

Set
(#�(A, C), A (C, B)⇒A (A, B)

)
∼=

∫
B

A (B, B)×
∫

A,B,C

∏
op:γ�δ

Set
(
C(A, �γ �× (�δ�⇒C)), A (C, B)⇒A (A, B)

)
∼=

∫
B

A (B, B)×
∏

op:γ�δ

∫
B,C

∫
A

Set
(
C(A, �γ �× (�δ�⇒C)), A (C, B)⇒A (A, B)

)
∼=

∫
B

A (B, B)×
∏

op:γ�δ

∫
B,C

A (C, B)⇒A (�γ �× (�δ�⇒C), B)

∼=
∫

B
A (B, B)×

∏
op:γ�δ

∫
B,C

Set
(
A (C, B), A (�γ �× (�δ�⇒C), B)

)
projection−−−−−→A (D, D)×

∏
op:γ�δ

Set(A (�δ�, D), A (�γ �× (�δ�⇒ �δ�), D))

id×∏
Set(A (�δ�,D),φ)−−−−−−−−−−−−→A (D, D)×

∏
op:γ�δ

Set(A (�δ�, D), A (�γ �, D))

where φ : A (�γ �× (�δ�⇒ �δ�), D)→A (�γ �, D) is defined as

φ(a)=μA
�γ �,�γ �×(�δ�⇒�δ�),D

(
ηA

�γ �,�γ �×(�δ�⇒�δ�)(〈id�γ �,
(id�δ�)〉), a
)

.

�

https://doi.org/10.1017/S0956796824000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000066

	Algebraic effects and handlers for arrows
	Introduction
	Arrows in Haskell
	An example: logic circuit simulation by effects and handlers
	Logic circuit simulation by ordinary algebraic effects and handlers
	A problem of the approach with ordinary effects and handlers
	Logic circuit simulation by the arrow calculus with operations and handlers

	The structure of this paper

	Preliminaries on category theory
	Profunctors
	Monads in the bicategory of profunctors
	Size issues

	Algebras of arrows
	Algebras of promonads
	Arrow handlers as homomorphisms between algebras

	The arrow calculus with operations and handlers
	Syntax and typing rules
	Operational semantics
	Example
	Logic circuit simulation
	Read only state

	Denotational semantics
	Models of arrow calculus
	Construction of a model of the arrow calculus
	Interpretation of handlers
	The problem of strength
	Interpretation with a parameter

	Soundness and adequacy

	Related work
	Conclusion and future work
	Coends
	2-Categories, bicategories and enriched categories
	2-Categories
	Bicategories
	Enriched categories

	Proofs for Section 4 (The arrow calculus with operations and handlers)
	Proofs for Section 5 (Denotational semantics)
	Proofs for Section 6 (Related work)

