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Abstract

Previous approaches to modelling interval-censored data have often relied on assump-
tions of homogeneity in the sense that the censoring mechanism, the underlying
distribution of occurrence times, or both, are assumed to be time-invariant. In this work,
we introduce a model which allows for non-homogeneous behaviour in both cases. In
particular, we outline a censoring mechanism based on a non-homogeneous alternating
renewal process in which interval generation is assumed to be time-dependent, and we
propose a Markov point process model for the underlying occurrence time distribution.
We prove the existence of this process and derive the conditional distribution of the
occurrence times given the intervals. We provide a framework within which the process
can be accurately modelled, and subsequently compare our model to the homogeneous
approach through a number of illustrative examples.
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1. Introduction

In previous work [25] we developed statistical methods for state estimation on interval-
censored data. The motivating example was that of determining the occurrence times of
residential burglaries based on police reports. In the criminology literature, such data are
known as aoristic crime data [20, 21]. Aoristic crime studies have mainly focused on ad hoc
methods [1], which can be helpful but may miss dependencies such as the near-repeat effect [4].
We developed a Bayesian statistical method that can account for inter-event dependencies [25].

This approach assumed that for each event occurrence the censoring mechanism is gov-
erned by a stochastic process. Specifically, an alternating renewal process was used to split
time up into observable and partially observable periods according to the two phases of the
renewal process. Either the event is fully observed, in which case the exact time of occurrence
is recorded, or only the interval between two jumps is recorded. The approach was shown to
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2 M. N. M. VAN LIESHOUT AND R. L. MARKWITZ

lead to a tractable mark distribution and is therefore amenable to Monte Carlo methods for
simulation.

The censoring mechanism based on alternating renewal processes imposes time-
homogeneity. In reality, events rarely occur homogeneously in time. For instance, returning
to the motivating example, there may be times of day that are more likely to be censored due
to the periodic behaviour of potential victims, such as being at work or asleep. Additionally,
burglars may choose to commit crimes at different rates at certain times of the day based on
their perception of victim behaviour. Thus, there may be inhomogeneity in both the underlying
distribution of occurrence times and the censoring mechanism.

This paper introduces a new model that rectifies the shortcomings discussed above. For
the censoring mechanism, we propose a non-homogeneous two-state semi-Markov process
[11, 12, 16, 23], also known as a non-homogeneous alternating renewal process. Conditional
intensity-based methods [10] are used to guarantee existence and we derive the joint, marginal,
and conditional distributions of the recorded starting point and interval length for each occur-
rence time. We then propose a marked point process model [7] for the complete data using a
non-homogeneous Markov point process [24] for the ground process of event occurrences and
a mark kernel based on the non-homogeneous alternating renewal process. We illustrate the
model by means of parametric examples that can describe various types of non-homogeneous
behaviour, culminating in a comparison of non-homogeneous and homogeneous models.

The plan of this paper is as follows. In Section 2 we recall the definition of a non-
homogeneous alternating renewal process on the half line and give an explicit expression for
the joint distribution of the time since the last jump and that to go until the next jump. In
Section 3 we formulate our marked point process model and study the conditional distribu-
tion of the ground process given the union of marks. In Section 4 we present some parametric
examples; a demonstration of the model in action is given in Section 5.

2. The non-homogeneous alternating renewal process

2.1. Definition and notation

Let (�,A, P) be a probability space. Consider the two-dimensional stochastic process
(Si, Xi), i ∈N0, on (�,A, P) with values in {0, 1} ×R

+. Here, Si denotes the ith state that the
process is in, and 0 = X0 ≤ X1 ≤ · · · are the jump times. Call a time interval that the process
spends in state 0 a Z-phase and in state 1 a Y-phase, in analogy to [25]. We set S0 = 1.

The non-homogeneous alternating renewal process can simply be seen as a special case
of the semi-Markov process with only two states. In the semi-Markov paradigm, the tuple
(Sn, Xn)∞n=1 defines a non-homogeneous alternating renewal process if

P(Sn+1 = j, Xn+1 ≤ x | (S0, X0) = (s0, x0), . . . , (Sn, Xn) = (sn, xn))

= P(Sn+1 = j, Xn+1 ≤ x | (Sn, Xn) = (sn, xn))

= P(Sn+1 = j, Xn+1 − Xn ≤ x − xn | (Sn, Xn) = (sn, xn))

= P(S1 = j, X1 − X0 ≤ x − xn | (S0, X0) = (sn, xn)), (2.1)

i.e. the joint conditional probability distribution of the sojourn time

Tn+1 = Xn+1 − Xn (2.2)

and the next state Sn+1 depends only on the nth state Sn and its jump time Xn, not on the entire
history of the process [6, 12, 16, 23] nor on the index n. This process is only Markov at the
jump times, hence the name semi-Markov.

https://doi.org/10.1017/jpr.2024.54 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.54


A non-homogeneous alternating renewal process model for interval censoring 3

It follows from (2.1) that the distribution of a non-homogeneous alternating renewal process
is completely specified by the starting state (or its probability distribution) and a semi-Markov
kernel G that describes the transition rates from state i to state j. Formally, for τ ≥ 0, x ≥ 0, and
i, j ∈ {0, 1},

Gij(x, τ ) = P(Sn+1 = j, Tn+1 ≤ τ | Sn = i, Xn = x), (2.3)

regardless of n = 0, 1, . . . Since only two transitions are possible, we proceed by using the
notation GY (x, τ ) = G10(x, τ ) and GZ(x, τ ) = G01(x, τ ), where the subscript denotes the state
that the process is in after jump time x. In the remainder of this paper, we shall assume that,
for all x ≥ 0, GY (x, ·) and GZ(x, ·) are absolutely continuous with respect to Lebesgue measure
and write gY (x, ·) and gZ(x, ·) respectively for their Radon–Nikodym derivatives.

2.2. Conditional intensities and non-explosion conditions

The conditional intensity, also known as the stochastic intensity, of a temporal point pro-
cess describes the infinitesimal conditional probability of occurrence given the history of the
process [14]. More precisely, for n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ . . . ≤ xn ≤ x,

λn+1(x; x1, . . . , xn) dx = P(Xn+1 ≤ x + dx | Xn+1 ≥ x, X0 = 0, X1 = x1, . . . , Xn = xn).

For a non-homogeneous alternating renewal process, the λn+1( · ; · ) are closely related to the
hazard rates of the sojourn times. To see this, recall that S0 = 1 and assume that n + 1 is odd.
Then, using (2.2), the conditional intensity of the jump process at time x given jumps at times
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn can be simplified as

λn+1(x; x1, . . . , xn) dx = P(Xn+1 ≤ x + dx | Xn+1 ≥ x, Xn = xn, Sn = 1)

= P(x − xn ≤ Tn+1 ≤ x − xn + dx | Xn = xn, Sn = 1)

P(Tn+1 ≥ x − xn | Xn = xn, Sn = 1)

= gY (xn, x − xn) dx

1 − GY (xn, x − xn)

whenever well-defined, using the absolute continuity of the semi-Markov kernel. Note that
this is exactly the hazard rate of the sojourn times. When GY (xn, x − xn) = 1, the conditional
intensity is set to zero. For even n + 1, a similar argument holds with gZ and GZ instead of gY

and GY .
The conditional intensity is a convenient tool to guarantee the existence of the process.

Indeed, [10] developed suitable comparison criteria under which explosion, the situation in
which there are infinitely many jumps in a finite time span, can be prevented. More formally,
the following proposition holds.

Proposition 2.1. (Explosion, from [10].) Let Xn and X∗
n be two temporal point processes with

corresponding conditional intensities λ and λ∗. If

• for every n ∈N0, λn+1 ≤ λ∗
n+1;

• for every n ∈N, either λn+1(x; x1, . . . , xn) or λ∗
n+1(x; x1, . . . , xn) depends only on

x − xn,

the probability of explosion at or before time x of the point process defined by λ is at most as
big as that of the point process defined by λ∗. Under the same conditions, for all n ∈N and
x ≥ 0, P(Xn ≤ x) ≤ P(X∗

n ≤ x).
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Proof. See [10, Corollaries 1, 2, and 5]. �

Below, we establish existence for two common families of sojourn time distributions, the
Gamma and the Weibull. We remark that in the semi-Markov paradigm, due to the Markov
property, λn+1(x; xn) = λn+1(x; x1, . . . , xn), as there is no dependence on previous values
x1, . . . , xn−1 of Xn. We will therefore use this notation in what follows.

Proposition 2.2. (Existence for Gamma distribution.) Let (Sn, Xn)∞n=1 be a non-homogeneous
alternating renewal process with values in {0, 1} ×R

+ with S0 = 1, X0 = 0, and semi-Markov
kernels GY (x, ·), GZ(x, ·) that follow Gamma distributions with shape and rate parameters
θY (x) = (kY (x), λY (x)) and θZ(x) = (kZ(x), λZ(x)) in [1, ∞) × (0, ∞). Write X∞ = limn→∞ Xn

for the time of explosion. If λY (x) ≤ c and λZ(x) ≤ c for all x ∈R
+ and some c > 0, then

P(X∞ < ∞) = 0.

The proof is deferred to Appendix A.1. Important special cases include kT (x) = 1 for expo-
nential distributions or, more generally, kT (x) ∈N corresponding to Erlang-distributed phases,
where T can be either Y or Z.

Proposition 2.3. (Existence for Weibull distribution.) Let (Sn, Xn)∞n=1 be a non-homogeneous
alternating renewal process with values in {0, 1} ×R

+ with S0 = 1, X0 = 0, and semi-Markov
kernels GY (x, ·), GZ(x, ·) that follow Weibull distributions with shape and rate parameters
θY (x) = (kY (x), λY (x)) and θZ(x) = (kZ(x), λZ(x)) in (0, ∞) × (0, ∞). Write X∞ = limn→∞ Xn

for the time of explosion. If:

(i) λY (x), λZ(x) ≤ c for some c > 0, and

(ii) either 1 ≤ kY (x) ≤ k, 1 ≤ kZ(x) ≤ k for some k ≥ 1, or kY (x) = kZ(x) = k for some k > 0,

then P(X∞ < ∞) = 0.

For the proof, see Appendix A.2. The case where k = 1 corresponds to exponential sojourn
times.

2.3. Renewal function: Existence and boundedness

The process counting the number of cycles having occurred by time t ≥ 0 can be written as
N(t) = sup{n ∈N0 : X2n ≤ t}, where a cycle is an interval of time within which each state occurs
once. Thus, N is a counting measure. The distribution of X2n, the jump time after completing
the nth cycle, is, for n ∈N0 and t ≥ 0,

F2n(t) = P

(
2n∑

i=1

Ti ≤ t

)
= P(X2n ≤ t) = P(N(t) ≥ n).

The renewal function is defined, analogously to that of the classic alternating renewal process,
as M(t) =EN(t), t ≥ 0 [12]. In our case,

M(t) =EN(t) =
∞∑

n=0

P(N(t) > n) =
∞∑

n=1

P(X2n ≤ t) =
∞∑

n=1

F2n(t)

is a 2n-fold convolution.
The following corollaries to Propositions 2.2 and 2.3 hold.
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FIGURE 1. Visualisation of a non-homogeneous alternating renewal process with initial values S0 = 1
and X0 = 0. At the dotted line, one cycle has passed – i.e. the process has taken both possible state values.
The jump times correspond to a change of state. Since t falls in state 1, a non-zero age A(t) and excess

B(t) are recorded. If t were to fall in state 0, an exact time would be recorded.

Corollary 2.1. (Renewal function bound for Gamma.) Let (Sn, Xn)∞n=1 be as in Proposition 2.2.
Then its renewal function M(t) satisfies M(t) ≤ ct, t ≥ 0.

For the proof, see Appendix A.3.

Corollary 2.2. (Renewal function bound for Weibull.) Let (Sn, Xn)∞n=1 be as in Proposition 2.3.
Then its renewal function M(t) is finite and bounded from above by the expectation E(N∗(t)) of
a renewal process N∗(t) with Weibull-distributed sojourn times having shape parameter k and
rate parameter c.

For the proof, see Appendix A.4.

2.4. Age and excess distributions

Now that the theoretical groundwork for the censoring mechanism has been laid, we pro-
ceed by determining the joint distribution of age and excess. The age A(t) is the time elapsed
since the last phase change, and B(t), the excess, is the time remaining until the next phase
change. For all t where the process is in state 0, or the Z-phase, we assume that the occurrence
time can be observed perfectly. Therefore we only consider age and excess with respect to
state 1, or the Y-phase. This also provides us with a concrete censoring mechanism: depend-
ing on the phase within which a point falls, we note either the exact occurrence time, or
the interval corresponding to the age and excess functions. Obtaining their joint distribution
allows us to specify the likelihood of intervals based on their starting point and length in
terms of the semi-Markov kernel GY . See Figure 1 for a visualisation of the age and excess
functions.

Proposition 2.4. (Age and excess.) Consider a non-homogeneous alternating renewal process
(Sn, Xn)∞n=1 with values in {0, 1} ×R

+ with S0 = 1, X0 = 0, semi-Markov kernels GY and GZ,
and associated counting measure N(t), t ≥ 0. Let the age process with respect to the Y-phase be
A(t) = (t − X2N(t)) 1{X2N(t)+1 > t} and define the excess with respect to the Y-phase as B(t) =
(X2N(t)+1 − t) 1{X2N(t)+1 > t}, where X2N(t) is the jump time immediately after N(t) cycles have
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been completed. Then, for t ≥ 0, 0 ≤ x ≤ t, and z ≥ 0,

P(A(t) ≤ x, B(t) ≤ z)

= GY (0, t) −
∫ t

t−x
[1 − GY (s, t + z − s)] dM(s) −

∫ t−x

0
[1 − GY (s, t − s)] dM(s)

+ 1{x = t}[GY (0, t + z) − GY (0, t)]. (2.4)

For the proof, see Appendix A.5.
From Proposition 2.4 we conclude that the probability that time t ≥ 0 falls in a Z-phase is

given by

wt = P(A(t) ≤ 0, B(t) ≤ 0) = GY (0, t) −
∫ t

0
[1 − GY (s, t − s)] dM(s). (2.5)

This case constitutes the atomic part of (2.4). The singular component on the line x = t has total
mass 1 − GY (0, t) and represents the case that t falls before the first jump of the alternating
renewal process.

The absolutely continuous component of (2.4) can be written as∫ x

0

∫ z

0
gY (t − u, u + v)m(t − u) du dv

provided that the Radon–Nikodym derivatives m of M and gY of GY exist. Recall that in our
proposed censoring mechanism, when t falls in a Y-phase the entire interval [t − A(t), t + B(t)]
is reported, which may be parametrised by the left-most point t − A(t) and length A(t) + B(t).
Suppose that A(t) = u, B(t) = v, and apply the change of variables a = t − u and l = u + v. We
find that the joint probability density function of left-most point and length is

qt(a, l) = m(a)gY (a, l)∫ t
0 [1 − GY (s, t − s)] dM(s)

1{0 ≤ a ≤ t ≤ a + l; l ≥ 0} (2.6)

upon scaling.

Proposition 2.5. (Marginal and conditional distribution.) Let gY and m be as before, and let
(A,L) be distributed according to qt(a, l) given by (2.6). Then the marginal probability density
function of A at a ∈ [0, t] is

ft(a) = m(a)[1 − GY (a, t − a)]∫ t
0 [1 − GY (s, t − s)] dM(s)

(2.7)

and the conditional probability density function of L given A = a is, for l ∈ [t − a, ∞),

ft, L |A=a(l) = gY (a, l)

1 − GY (a, t − a)
. (2.8)

For the proof, see Appendix A.6.

3. A model for non-homogeneous interval censoring

3.1. Model formulation

The ensemble of potentially censored occurrence times can be mathematically formalised
as a marked point process [7]. The ground process of points represents the uncensored event
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occurrences, which we model by a Markov point process [24] defined by a probability density
with respect to a unit-rate Poisson process. Temporal variations can be taken into account as
well as interactions between the points. Each point is subsequently marked, independently of
other points, either by an atom at the point when it is observed perfectly, or by the interval in
which the point lies in case of censoring. The mark kernel that governs the random censoring is
based on the distribution of age and excess in a non-homogeneous alternating renewal process.

Formally, let X be an open set on the real line. The state space NX of a point process X
consists of finite sets {x1, x2, . . . , xn} ⊂X , n ∈N0, which we equip with the Borel σ -algebra
of the weak topology [7, Appendix A2]. Let p be a measurable, non-negative function on X
that integrates to unity, and ∼ be a symmetric, reflexive relation on X . A point process X on X
having probability density p with respect to a unit-rate Poisson process is Markov with respect
to ∼ if [22, 24]:

(i) p is hereditary, i.e. p(x) > 0 implies that p(y) > 0 for all subsets y of x, and

(ii) the conditional intensity, defined as p(x ∪ {t})/p(x), with a/0 = 0 for a ≥ 0, depends
only on the neighbourhood {x ∈ x : x ∼ t} of t in x for every t ∈X \ x and every x =
{x1, . . . , xn} ⊂X for which p(x) > 0.

An interaction function is a family φ0, φ1, φ2, . . . of non-negative functions φi defined on
configurations of i points that take the value one whenever the configuration contains a pair
{x1, x2} of points that are unrelated, i.e. x1 �∼ x2. By the Hammersley–Clifford theorem [22], a
Markov density p can be factorised as

p(x) =
∏
y⊂x

φ|y|(y) (3.1)

for some interaction function φi, writing | · | for cardinality. The function φ1(x) can be used to
model temporal variations in the likelihood of events occurring. Higher-order terms φ2, φ3, . . .

govern interactions between pairs, triples, or tuples of points.
The points x in a realisation x of X are marked independently according to a mark kernel

ν(· | x) on R×R
+. A mark (a, l) represents an interval [a, a + l] that starts at a and has length

l. The mark kernel ν, which describes the conditional distribution of the mark given a location
in time [7], formalises the non-homogeneous alternating renewal process censoring discussed
in Section 2. For demonstrative purposes, we assumed a starting time of 0, which we now
set to −∞. Doing so also allows us to ignore the singular component. Hence, the appropriate
time-dependent mark kernel ν(· | x), x ∈X , for a Borel subset A ⊂R×R

+ is

ν(A | x) =
(

1 −
∫ x

−∞
[1 − GY (s, x − s)] dM(s)

)
δ({(x, 0)} ∩ A)

+
∫ x

−∞

∫ ∞

x−a
1{(a, l) ∈ A} GY (a, dl) dM(a). (3.2)

Write W for the marked point process defined by p(·) and ν(· | ·) [7, Proposition 4.IV]. A
realisation w is of the form

w = {w1, w2, . . . , wn} = {(x1, (a1, l1)), (x2, (a2, l2)), . . . , (xn, (an, ln))}

for ai ≤ xi ≤ ai + li for all i = 1, 2, . . . , n. We denote the set of realisations by NX×(R×R+).
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8 M. N. M. VAN LIESHOUT AND R. L. MARKWITZ

The model description is complete by noting that the observable pattern of marks after
censoring is U =⋃

(xi,(ai,li))∈W{(ai, li)}. To obtain the probability distribution of U, write, for
F in the Borel σ -algebra of the weak topology on NR×R+ ,

P(U ∈ F | X = x) =
∫

(R×R+)n
1({(a1, l1), . . . , (an, ln)} ∈ F)

n∏
i=1

dν((ai, li) | xi),

where x = {x1, . . . , xn}, and then take the expectation with respect to X.

3.2. Conditional distribution

Write u for a realisation of the interval set U. We are interested in the conditional
distributions of X and W given U.

Theorem 3.1. (Conditional distribution.) Let W be a marked point process with ground pro-
cess X on the open set X ⊂R defined by its probability density function p with respect to the
distribution of a unit-rate Poisson process having independent marks distributed according to
the mark kernel ν(· | x) for x ∈X given by (3.2). Let u be a realisation of U that consists of an
atomic part {(a1, 0), . . . , (am, 0)}, m ∈N0, and a non-atomic part {(am+1, lm+1), . . . , (an, ln)},
n ≥ m. Then the conditional distribution of X given U = u satisfies, for A in the Borel σ -algebra
of the weak topology on NX ,

P(X ∈ A | U = u) =
∫
X n−m

p({a1, . . . , am, x1, . . . , xn−m})1A({a1, . . . , am, x1, . . . , xn−m})
∑

D1,...,Dn−m∪j{Dj}={1,...,n−m}

n−m∏
i=1

1[am+i,am+i+lm+i](xDi ) dxi × c(u),

provided that the normalisation constant

c(u) =
[ ∫

X n−m
p(x ∪ {a1, . . . , am})

∑
D1,...,Dn−m∪j{Dj}={1,...,n−m}

n−m∏
i=1

1[am+i,am+i+lm+i](xDi ) dxi

]−1

exists in (0, ∞).

Proof. We must prove (see, e.g., [7, Appendix 3.1]), for each A in the Borel σ -algebra of
NX with respect to the weak topology and each F in the Borel σ -algebra of the weak topology
on N

R×R
+ , that

E[1F(U)P(X ∈ A | U)] =E[1F(U)1A(X)],

as in [25, (4)]. From the model description, writing wt for the modification of (2.5) over
(−∞,t), 
 for Lebesgue measure, and | · | for cardinality,
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E[1F(U)1A(X)]

=
∞∑

n=0

e−
(X )

n!∫
X n

1A(x)p({x1, . . . , xn})
∑

C0⊂{1,...,n}

1

(n − |C0|)!
∏
i∈C0

wxi

∫
(R×R

+
0 )n−|C0|

1F({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))

∑
C1,...,Cn−|C0|

∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj)gY (aj, lj)1[aj,aj+lj](xCj ) daj dlj

n∏
i=1

dxi. (3.3)

Similarly,

E[1F(U)P(X ∈ A | U)]

=
∞∑

n=0

e−
(X )

n!∫
X n

p({x1, . . . , xn})
∑

C0⊂{1,...,n}

1

(n − |C0|)!
∏
i∈C0

wxi

∫
(R×R

+
0 )n−|C0|

1F({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))

P(X ∈ A | U = {(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))
∑

C1,...,Cn−|C0|
∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj)gY (aj, lj)1[aj,aj+lj](xCj) daj dlj

n∏
i=1

dxi.

Next, we plug in the expression for P(X ∈ A | U = u) proposed in the statement of the theorem.
Upon substitution, changing integration order, and rearranging, we obtain

E[1F(U)P(X ∈ A | U)]

=
∞∑

n=0

e−
(X )

n!∑
C0⊂{1,...,n}

1

(n − |C0|)!∫
X n

p(y ∪ xC0 )1A(y ∪ xC0 )
∏
i∈C0

wxi
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∫
(R×R

+
0 )n−|C0|

1F({(a1, l1), . . . , (an−|C0|, ln−|C0|)} ∪ (xC0 × {0}))

c({(a1, l1), . . . , (an−|C0|, ln−|C0|) ∪ (xC0 × {0}))
∑

D1,...,Dn−|C0|
∪j{Dj}={1,...,n}\C0

n−|C0|∏
j=1

m(aj)gY (aj, lj)1[aj,aj+lj](yDj )

( ∫
X n−|C0|

p(x)
∑

C1,...,Cn−|C0|
∪j{Cj}={1,...,n}\C0

n−|C0|∏
j=1

1[aj,aj+lj](xCj)
∏
j �∈C0

dxj

)

n−|C0|∏
j=1

daj dlj
∏
i∈C0

dxi

n−|C0|∏
k=1

dyk =E[1F(U)1A(X)],

since the term within brackets cancels out against the normalisation constant c(·). �

Strikingly, although the marking mechanism is more complicated than that in [25], the
conditional distribution of X has the same form.

The conditional distribution of W can be obtained in the same vein, by considering 1A(W)
instead of 1A(X) for A a Borel set in NX×(R×R+), the space of marked point configurations. It
is given by

P(W ∈ A | U = u)

∝
∫
X n−m

p({a1, . . . , am, x1, . . . , xn−m})
1A({(a1, (a1, 0)), . . . , (am, (am, 0)), (x1, (am+1, lm+1)), . . . , (xn−m, (an, ln))})
n−m∏
i=1

1[am+i,am+i+lm+i](xi) dxi.

4. Modelling considerations

In this section, we consider parametric forms for p(·) and ν(· | x).

4.1. Non-homogeneous point process densities

We look first at inhomogeneity that manifests itself via the occurrence time distribution. In
view of (3.1), it is natural to add inhomogeneity by means of the first-order interaction function
φ1, a procedure known as type I inhomogeneity [13]. The idea is to let φ1({x}) = β(x) vary over
time according to a measurable function β that maps x ∈X to [0, ∞). In many applications, it
may make sense to model β as a step function. More specifically, given a measurable partition
B1, . . . , BK of X , set β(x) =∑K

k=1 βk1Bk (x), x ∈X , where βk ≥ 0 is the value that β takes in
the corresponding set Bk.
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The function φ1 can be combined with classic second- and higher-order interaction func-
tions. For instance, the probability density of the non-homogeneous area-interaction point
process [3] becomes

p(x) = αp

(∏
x∈x

β(x)

)
exp [−( log γ ) 
(X ∩ Ur(x))] (4.1)

with respect to a unit-rate Poisson process on X . The parameter γ quantifies the interaction
strength, r the radius of interaction, and αp = c(β(·), γ ) is a normalisation constant [3] that
depends on the function β as well as on γ . Additionally, Ur(x) =⋃n

i=1 B(xi, r), where B(xi, r)
is the closed interval [xi − r, xi + r]. We observe regularity for γ < 1 and clustering for γ > 1,
and γ = 1 corresponds to a non-homogeneous Poisson process with intensity function β. For
further examples, we refer to [24].

4.2. Parametric modelling of the mark kernel

To proceed, parametric forms for GY and m must be developed. We begin by modelling
GY , the semi-Markov kernel that determines the length of time until the next jump. We may
take one of the time-dependent probability density functions considered in Section 2.2. For
instance, gY (a, ·) could be the density function of an exponential distribution with rate

λ(a; α) = α(b + sin (ca)), a ∈R, (4.2)

where c specifies the period and b ≥ 1 the elevation away from 0. The parameter α determines
the amplitude of the harmonic.

We could proceed in a similar fashion for gZ . However, there are two problems with such an
approach. From a probabilistic point of view, tractable expressions for the renewal density m in
terms of the semi-Markov kernels GY and GZ do not seem to exist, and, statistically speaking,
lengths of Z-phases cannot be observed. Therefore, we shall model m directly. The following
proposition justifies this approach.

Proposition 4.1. (Renewal function modelling.) Let (Sn, Xn)∞n=1 be a non-homogeneous alter-
nating renewal process on {1} ×R

+ with S0 = 1 and X0 = 0 having semi-Markov kernel GY

defined by a density function gY (t, τ ), t ∈R
+, τ ∈ [0, ∞), and write m̃ for the density of its

renewal function M̃(t) =∑∞
n=1 P(Xn ≤ t). If h(t) : R+ → [0, ∞) is a Borel-measurable func-

tion such that h(t) ≤ m̃(t), then there exists a non-homogeneous alternating renewal process on
{0, 1} ×R

+ with G10 = GY and renewal density h.

Proof. As 0 ≤ h(t)/m̃(t) ≤ 1, we may use a time-dependent thinning approach with retention
probability p(t) = h(t)/m̃(t). Algorithmically, the sought-after process can be constructed as
follows. Initialise Ŝ0 = 1, X̂0 = 0, and X̂1 = X1. Also, set Ŝ2i = 1, Ŝ2i−1 = 0 for i ∈N, and j = 1.
For each jump time Xi, i = 1, 2, . . .,

• with probability p(Xi), if j is even, update X̂j+1 = Xi+1 and increment j by 1; for odd j
update X̂j+1 = X̂j, X̂j+2 = Xi+1, and increment j by 2;

• otherwise, if j is odd, update X̂j+1 = Xi+1 and increment j by 1; for even j update X̂j =
Xi+1 leaving j unchanged.
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Because complete cycles correspond to intervals in between accepted points Xi, i = 0, 1, 2, . . .,

H(t) =
∞∑

n=1

P(X̂2n ≤ t) =
∞∑

n=1

P(Xn ≤ t, Xn retained) =
∫ t

0

h(s)

m̃(s)
dM̃(s).

We can therefore conclude that the intensity of the thinned process is [h(t)/m̃(t)]m̃(t) = h(t)
(see, e.g., [7, pp. 78–79]) and hence (Ŝn, X̂n)∞n=1 is a non-homogeneous alternating renewal
process that satisfies the proposed conditions. �

As an illustration, suppose that m is a step function,

m(t) =
J∑

j=1

δj1Aj (t), t ∈R
+, (4.3)

that takes J different values δj > 0 on bounded Borel sets Aj (j = 1, . . . , J, with J ∈N) and
0 elsewhere. The following corollary lays out conditions under which h = m is the renewal
density of an alternating renewal process whose Y-phases are governed by (4.2).

Corollary 4.1. (Bound for proposed form of m.) A sufficient condition for (4.3) to be the
renewal density of a non-homogeneous alternating renewal process on {0, 1} ×R

+ with GY

given by (4.2) on R
+ is that for all j = 1, . . . , J we have δj ≤ α(b − 1).

Proof. For (4.3) to induce a non-homogeneous alternating renewal process, we require
h(t) ≤ m̃(t), where m̃(t) is the Radon–Nikodym derivative of the renewal function M̃(t). In
Proposition 4.1 we defined M̃(t) =∑∞

n=1 P(Xn ≤ t), with (Xn)∞n=0 being its associated jump
process of only Y-phases. By construction, its conditional intensity is λ̃n+1(t; t1, . . . , tn) =
λ(tn; α) for all 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

Observe that inf{λ(t; α) : t ∈R} = α(b − 1). Construct a Poisson process N∗(t) with inten-
sity ν = α(b − 1). By [10, Corollary 1], as λ∗

n+1(t; t1, . . . , tn) ≤ λ̃n+1(t; t1, . . . , tn), we may

conclude that the renewal function νt of N∗(t) is bounded from above by M̃(t) for all t. Hence
also ν ≤ m̃(t).

For h = m as in (4.3), in order to have
∑J

j=1 δj1Aj(t) ≤ α(b − 1), it is sufficient that
δj ≤ α(b − 1) for all j = 1, . . . , J to guarantee that m(t) is the renewal density of a non-
homogeneous alternating renewal process. �

As noted before, in practice, the starting point 0 is moved back to −∞. Realisations u from
the specified model may be obtained as follows. First, a set of points x ⊂X in time is chosen
according to the probability density function p(·) by, for example, coupling from the past [15]
or the Metropolis–Hastings algorithm [9]. Next, for each point x ∈ x, it is determined whether
or not it is an atom based on wx, see (2.5). If this is not the case, we appeal to Proposition 2.5
and use rejection sampling with a proposal distribution that simulates a uniformly distributed
point in Aj ∩ (−∞, x] chosen with probability δj
(Aj ∩ (−∞, x])/

∑J
i=1 δi
(Ai ∩ (−∞, x]) and

acceptance probability exp [−λ(a; α)(x − a)]. The result is a sample a from fx(a), cf. (2.7). The
length is then sampled according to an exponential distribution with parameter λ(a;α) shifted
by x − a (see (2.8)). It is interesting to observe that, in contrast to the alternating renewal case
studied in [25], using the marginal distribution with respect to A and then the conditional given
A is computationally simpler than sampling L first.
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4.3. Statistical aspects

In practical applications, both the family of probability density functions gY (t, τ ; θ ) for the
sojourn times in phase Y and the function m(t; ξ ) rely on unknown parameters η = (θ, ξ ) that
must be estimated. The log-likelihood L(η; u) follows directly from (3.3). Upon observing
u = {(a1, 0), . . . , (am, 0), (am+1, lm+1), . . . , (an, ln)},

L(η; u) =
m∑

i=1

log

(
1−
∫ ai

−∞
[1−GY (s, ai − s; θ )]m(s; ξ ) ds

)
+

n∑
i=m+1

log (m(ai; ξ )gY (ai, li; θ )).

(4.4)
When the semi-Markov kernels GY and GZ , as well as the renewal density m ≡ (EY +EZ)−1,
do not vary in time, (4.4) reduces to the renewal likelihood in [25].

We illustrate the procedure by means of a specific example. For the sojourn times, we take
an exponential model; for the function m, we use (4.3). Assume that GY (t, ·), t ∈R, is the
cumulative distribution function of an exponential distribution with rate parameter λ(t) as in
(4.2), so that GY (t, l; λ(t)) = 1 − e−lλ(t). In the homogeneous case where λ(t) ≡ α > 0 (that is,
b = 1 and c = 0), J = 1, A1 =R, and 0 ≤ δ1 ≤ α, we obtain∫ t

−∞
[1 − GY (s, t − s)]m(s) ds =

∫ t

−∞
e−α(t−s) ds = 1

α
=E[Y], (4.5)

where E[Y] refers to the expected length of a Y-phase in a homogeneous alternating renewal
process. Using this result, we obtain fY (l; α) = gY (t, l; λ(t)), where fY is the probability density
function of the length of such a Y-phase (see, e.g., [25, Theorem 2.2]). Following through, we
additionally obtain

L(α, δ1; u) = m log

(
1 − δ1

α

)
+ (n − m) log δ1 + (n − m) log α − α

n∑
i=m+1

li,

which corresponds exactly to the simplified version of [25, (7)], the log-likelihood in the
homogeneous case.

Returning to the non-homogeneous case, the atom probability for a given time x ∈X is

wx = 1 −
J∑

j=1

δj

∫
Aj∩(−∞,x]

e−(x−s)λ(s) ds.

The likelihood equation (4.4), after substitution and discarding of terms that do not depend on
the parameters, becomes

L(δ, α; u) =
m∑

i=1

log

(
1 −

J∑
j=1

δj

∫
(ai−Aj)∩[0,∞)

e−αr(b+sin (cai−cr)) dr

)

+
n∑

i=m+1

log

(
J∑

j=1

δj1Aj (ai)

)
+ (n − m) log α − α

n∑
i=m+1

li(b + sin (cai)).

The resulting equations can be solved numerically to find optimal values for δk, k = 1, . . . , J,
and α under the inequality constraints 0 ≤ δj ≤ α(b − 1), j = 1, . . . , J.
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The distribution of unobserved occurrence times may also be considered as a parameter
to be estimated using the reported intervals. To do so, since the form of the conditional dis-
tribution of W given U according to Theorem 3.1 is identical to that for alternating renewal
process-based censoring, the simulation techniques developed in [25] to obtain realisations of
the marked occurrence times given a sample u of U apply. A brief overview is provided below.

Let ζ be the parameter vector corresponding to the area-interaction process parameters
(β(·), γ ). Write p(x), the probability density from (4.1), as p(x; ζ ) = c(ζ )h(x; ζ ), where c refers
to the normalisation constant as before and h is the unnormalised density. Reference param-
eter values ζ0 are picked using a Monte Carlo EM approach [8], and the likelihood given the
interval set U = u, for N samples, is estimated by

lN(ζ ) = log

(
1

N

N∑
i=1

h(Xu,i; ζ )

h(Xu,i; ζ0)

)
− log

(
1

N

N∑
i=1

h(Xi; ζ )

h(Xi; ζ0)

)
,

where Xi are samples from the area-interaction process, and Xu,i are samples from the condi-
tional distribution of occurrence times given U = u [25]. The likelihood is then maximised to
find the optimal value(s) of ζ [8].

Once the area-interaction parameters have been estimated, a Metropolis–Hastings algorithm
[5, 18, 19] for a fixed number of points can be used to determine the most likely location of
the point within each interval, given the parameter values. For further details and conditions
under which the algorithm converges to the desired distribution, we refer to [25, Propositions
4.3–4.5].

5. Illustrations in practice

To show how the non-homogeneous model behaves, we present a few examples that show
the difference in behaviour between a homogeneous model and a non-homogeneous model.
Recall that, broadly speaking, there are three sources of inhomogeneity: the interval lengths
as governed by gY , the renewal density m, and the ground process responsible for the uncen-
sored event occurrences. Throughout this section, we set X = (0, 1). In general, we see that the
homogeneous model, due to the stationarity assumption, is not able to encapsulate the complex
behaviour that might be present in real-life applications, whereas the non-homogeneous model
has the potential to.

5.1. Model misspecification

The first source of inhomogeneity in our model is the semi-Markov kernel GY (a, ·) which
determines the time until the next jump for starting point a ∈R. In the homogeneous case, as in
(4.5), these may be assumed to be independent and identically Gamma or Weibull distributed
[25]. In the non-homogeneous case, the density function is dependent on a.

We have devised the following experiment to illustrate the effect of using a homogeneous
model erroneously. We generate a realisation of intervals using the non-homogeneous alternat-
ing renewal process model, where the interval censoring mechanism is governed by a Weibull
distribution with shape parameter k = 1 and rate parameter λY (t; α) = α(1.6 + sin (2π t)) (see
(4.2)) for α = 1. Regarding the other model ingredients, we assume that p(·) is of the form given
in (4.1) with β = 400 and γ = 1, i.e. a homogeneous Poisson process on X with intensity 400.
We additionally set m(t) = 0.6 1[−0.2,1)(t).

After generating these intervals using the non-homogeneous model, we now assume,
wrongly, that these intervals were instead generated by a homogeneous interval censoring
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FIGURE 2. The unbroken line corresponds to the actual probability density of interval length for k = 1
and λ(0.6; 1) = 1. The dotted line corresponds to the estimated survival time density.

scheme. Specifically, we fit a Weibull distribution with parameters k > 0 and constant rate
λY (t; α) ≡ α for α > 0 using maximum likelihood estimation (see, e.g., [25, Section 6.1.1])
and we obtain parameter estimates k̂ = 0.9 and α̂ = 2.0.

We plot the survival time densities for both sets of parameters. We must choose an exact
point in time to obtain the Weibull parameters for the non-homogeneous model, so we assume
that we are looking at time t = 0.6. This plot, for both models, can be seen in Figure 2.
Compared to the actual model, the homogeneous model is able to roughly discern the shape
of the distribution, but struggles with the scale. A homogeneous model would have generated
more intervals shorter than about 0.5, and fewer of longer length.

5.2. Inhomogeneity in renewal density and survival time

In our second experiment, we add inhomogeneity in m to the the model and study the effect
on fx, cf. (2.7). As in Section 5.1, consider an exponential semi-Markov kernel density gY

with rate parameter either constant, λ(t; α) = 1.3α, or varying in time according to λ(t; α) =
α(1.3 + sin (2π t)). Furthermore, set m(t) = 0.4 for t ∈ [−0.2, 1) in the constant case, and

m(t) =
{

0.4 t ∈ [−0.2, 0.4)

0.1 t ∈ [0.4, 1)

in the time-varying case. We set α = 1.6, so the largest value of δi which guarantees that gY

is the Radon-Nikodym derivative of a semi-Markov kernel is 1.6 × (1.3 − 1) = 0.48. Figure 3
shows the graphs of fx(·) for the four possible combinations of gY and m obtained from 200,000
samples from qx for x = 1. In Figures 3a and 3b, we assume that λ is constant. When m is also
constant as in Figure 3a, the marginal distribution of the starting times, by Proposition 2.5,
is a shifted exponential distribution. If m is allowed to vary in time, the exponential curve is
broken at t = 0.4, the discontinuity point of m, resulting in a zigzag pattern. In both Figures 3a
and 3c, m is constant, but in Figure 3c the rate parameter of gY varies according to a harmonic.
The resulting sinusoidal modulation is clearly visible. Finally, allowing m to vary too results
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(a) (b)

(c) (d)

FIGURE 3. Probability density function of the starting time fx(·) with x = 1 for various choices
of gY and m.

in a break at its discontinuity point t = 0.4 as seen in Figure 3d. We conclude that the non-
homogeneous model is able to capture various types of inhomogeneity well and is far more
flexible than the homogeneous one.

5.3. Inhomogeneity in occurrence time distribution

In the previous subsections, we have assumed that the first-order interaction function β of
the point process X of occurrence times remains constant over the entire sampling window
(0, 1). In our final example, we relax this assumption in that we consider a ‘peak time’ in
which events are more likely to occur and investigate the effect on the conditional distribution
of occurrences. More precisely, we take an area-interaction model (4.1) with

β(y) =

⎧⎪⎨
⎪⎩

3, y ∈ [0, c1),

5, y ∈ [c1, c2),

3, y ∈ [c2, 1],

and critical range [c1, c2) = [0.81, 0.85). The radius of interaction is set to r = 0.1 and we
consider both a regular (η = −1.2) and a clustered (η = 1.2) model.
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FIGURE 4. A comparison between a regular and clustered model with a ‘peak time’ added by changing
the intensity function within a critical range.

As in [25], consider the set u = {(0.45, 0.4), (0.51, 0), (0.58, 0)} that contains one non-
degenerate interval. Recall that the entries are parametrised as (a, l), where a is the starting
point and l is the length. Figure 4 plots the conditional distribution of the occurrence time on
the interval [0.45, 0.85] given u for the regular and clustered models. To create this figure, a
Metropolis–Hastings algorithm [25, Algorithm 4.2] was run for 600 000 time steps, with the
first 100 000 iterations thrown out due to burn-in.

The general shape of the graphs is similar to the corresponding plots for constant β = 3 in
[25, Figures 2 and 3]. For the clustered model, the occurrence time is more likely to happen
close to the atoms; for regular models the probability density is shifted away from the atoms.
In the non-homogeneous case, the higher value of β during the peak times causes a clear bump
in the range [c1, c2) = [0.81, 0.85), demonstrating the ability of the non-homogeneous model
to favour certain occurrence times over others.

The previous three experiments show the effects that the added non-homogeneity may have
on the model. It is able to draw from a more complicated interval censoring scheme to gener-
ate intervals and provide a more realistic starting time distribution based on the semi-Markov
kernel and Markov renewal function, while having the functionality of splitting the observa-
tion window into regions of differing likelihood, and deal with more complicated interaction
structures in the underlying point process. For a concrete application of the non-homogeneous
model to a crime dataset, we direct the reader to [17]. An application of the homogeneous
model can be found in [25, Section 6].

6. Conclusion

We introduced a time-dependent interval censoring mechanism that splits time into observ-
able and partially observable phases by means of a non-homogeneous alternating renewal
process on the real line. The process was shown to be well-defined for a range of Gamma
and Weibull semi-Markov kernels. We extended tools from renewal theory to derive families
of time-dependent joint distributions of age and excess, which in turn characterise the prob-
ability distribution of censored intervals. We then constructed a model wherein a possibly
non-homogeneous point process provides a mechanism to select points on the real line, which
are independently marked by the intervals resulting from the censoring mechanism. For this
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model, a conditional distribution was posited and verified. The influence of the model com-
ponents was demonstrated through parametrised examples. In future, we intend to apply this
model to data on arson fires and to add a spatial component.

Appendix A. Proofs of propositions

A.1. Proposition 2.2

Proof of Proposition 2.2. The probability density and cumulative distribution functions of
the Gamma distribution with shape and rate parameters k(x) and λ(x) are, for τ ≥ 0,

g(x, τ ; k(x), λ(x)) = λ(x)k(x)τ k(x)−1e−λ(x)τ

�(k(x))
, G(x, τ ; k(x), λ(x)) = γ (k(x), λ(x)τ )

�(k(x))
,

writing � for the gamma function and γ for the lower incomplete gamma function. The
conditional intensity is, for n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ . . . ≤ xn ≤ x,

λn+1(x; xn) = λn+1(x; x1, . . . , xn) = gT (xn, x − xn; kT (xn), λT (xn))

1 − GT (xn, x − xn; kT (xn), λT (xn))

= λT (xn)kT (xn)(x − xn)kT (xn)−1e−λT (xn)(x−xn)∫∞
λT (xn)(x−xn) ukT (xn)−1e−u du

,

where gT is either gY or gZ . We examine the limiting behaviour as x → ∞ and observe that

lim
x→∞ gT (xn, x − xn; kT (xn), λT (xn)) = 0, lim

x→∞ (1 − GT (xn, x − xn; kT (xn)λT (xn))) = 0.

Noting that both are differentiable on (0, ∞), by L’Hôpital’s rule,

lim
x→∞ λn+1(x; xn) = lim

x→∞
λT (xn)(x − xn) − (kT (xn) − 1)

x − xn
= λT (xn)

after simplifying.
To prove monotonicity, we now show that λn+1(x; xn) is increasing in x ≥ xn. In that case,

we obtain the previous equation as the upper bound. Write t = λT (xn)(x − xn). Then λn+1(x; xn)
can be written as λT (xn)h(t) for

h(t) = tkT (xn)−1e−t∫∞
t ukT (xn)−1e−u du

.

Therefore, it suffices to show that the function t → log h(t) is non-decreasing in t > 0. Now,

∂

∂t
log h(t) = kT (xn) − 1

t
− 1 + tkT (xn)−1e−t∫∞

t ukT (xn)−1e−u du
.

If t < kT (xn) − 1, we see directly that the derivative is positive. Otherwise, use integration by
parts to simplify the last term on the right-hand side to

1 − ∫∞
t [(kT (xn) − 1)/u]ukT (xn)−1e−u du∫∞

t ukT (xn)−1e−u du
.

Consequently,

∂

∂t
log h(t) =

∫∞
t {[(kT (xn) − 1)/t] − [(kT (xn) − 1)/u]}ukT (xn)−1e−u du∫∞

t ukT (xn)−1e−u du
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is non-negative. We conclude that λn+1(x; xn) is bounded by λT (xn) for all kT (xn) ≥ 1.
Recall our assumption that supx∈R+ max(λY (x), λZ(x)) ≤ c. We may then construct a

Poisson process N∗ with intensity λ∗
n+1(x; xn) = c. Clearly, λ∗ satisfies the second condition of

[10, Corollary 2]. Moreover, λn+1 ≤ c = λ∗
n+1 for every n ∈N0. Since a Poisson process with

constant intensity has probability zero to explode, we conclude that P(X∞ < ∞) = 0. �

A.2. Proposition 2.3

Proof of Proposition 2.3. Let GT (x, ·) and the associated parameter vector (λT (x), kT (x))
correspond to either Y- or Z-phase cases. The probability density and cumulative distribution
functions of the Weibull distribution with shape and rate parameters k(x) and λ(x) are, for
τ ≥ 0,

g(x, τ ; k(x), λ(x)) = k(x)λ(x)(λ(x)τ )k(x)−1e−(λ(x)τ )k(x)
,

G(x, τ ; k(x), λ(x)) = 1 − e−(λ(x)τ )k(x)
.

The conditional intensity is therefore, for n = 0, 1, . . . and 0 = x0 ≤ x1 ≤ . . . ≤ xn ≤ x,

λn+1(x; xn) = λn+1(x; x1, . . . , xn) = kT (xn)λT (xn)(λT (xn)(x − xn))kT (xn)−1.

Since the conditional intensity is unbounded, we cannot use a Poisson process to bound λn+1.
Instead, we turn to a homogeneous renewal process N∗ with sojourn times that are Weibull
distributed with shape parameter k and rate parameter c. By the strong law of large num-
bers, since the expected sojourn times are strictly positive, N∗ has explosion probability zero
[23, Section 3.1]. Also,

λn+1(x; xn) ≤ λ∗
n+1(x; xn) = kck(x − xn)k−1

and the right-hand side is a function of x − xn only. By [10, Corollary 2], P(X∞ < ∞) = 0. �

A.3. Corollary 2.1

Proof of Corollary 2.1. Construct a Poisson process N∗(t) with intensity c as in the proof of
Proposition 2.2 and write X∗

n for its jump times. By [10, Corollary 1], P(X2n ≤ t) is bounded
from above by P(X∗

2n ≤ t). Therefore,

EN(t) =
∞∑

n=1

P(X2n ≤ t) ≤
∞∑

n=1

P(X∗
2n ≤ t) =EN∗(t) = ct. �

A.4. Corollary 2.2

Proof of Corollary 2.2. Construct the renewal process N∗ as in the proof of Proposition 2.3.
Then, as in the proof of Corollary 2.1, E(N(t)) ≤E(N∗(t)). Also, E(N∗(t)) < ∞ (see [2] or [23,
Proposition 3.2.2.]). �
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A.5. Proposition 2.4

Proof of Proposition 2.4. By construction, X0 = 0 and S0 = 1. Now, for 0 ≤ x < t,

P(A(t) > x) = P(t − X2N(t) > x, X2N(t)+1 > t | S0 = 1, X0 = 0)

=
∞∑

n=0

P(t − X2n > x, X2n+1 > t, N(t) = n | S0 = 1, X0 = 0)

= 1 − P(T1 ≤ t | S0 = 1, X0 = 0)

+
∞∑

n=1

P(t − X2n > x, X2n+1 > t | S0 = 1, X0 = 0)

after simplifying and removing redundant conditions. Note that by (2.3), and as we know that
we are guaranteed to be in state 1, P(T1 ≤ t | S0 = 1, X0 = 0) = GY (0, t). Continuing,

P(A(t) > x) = 1 − GY (0, t) +
∞∑

n=1

P(X2n < t − x, X2n+1 > t | S0 = 1, X0 = 0)

= 1 − GY (0, t) +
∫ t−x

0
[1 − GY (s, t − s)] dM(s),

using the law of total probability and Fubini’s theorem. Considering the discrete components,

P(A(t) = 0) = 1 − P(A(t) > 0) = GY (0, t) −
∫ t

0
[1 − GY (s, t − s)] dM(s),

P(A(t) = t) = P(X1 > t) = 1 − GY (0, t).

Next, we turn to the excess. For z ≥ 0,

P(B(t) > z) = P(X2N(t)+1 > t + z | S0 = 1, X0 = 0)

= 1 − GY (0, t + z) +
∫ t

0
[1 − GY (s, t + z − s)] dM(s),

P(B(t) = 0) = 1 − P(B(t) > 0) = GY (0, t) −
∫ t

0
[1 − GY (s, t − s)] dM(s).

Using similar arguments, we can find an expression for the joint probability P(A(t) > x, B(t) >

z). For z ∈ [0, ∞) and x ∈ [0, t),

P(A(t) > x, B(t) > z) = P(X2N(t)+1 > t + z, t − X2N(t) > x | S0 = 1, X0 = 0)

= 1 − GY (0, t + z) +
∫ t−x

0
[1 − GY (s, t + z − s)] dM(s).

We can now handle the event {A(t) ≤ x, B(t) ≤ z} for 0 ≤ x < t, z ≥ 0 as follows:

P(A(t) ≤ x, B(t) ≤ z) = P(A(t) > x, B(t) > z) + 1 − P(B(t) > z) − P(A(t) > x)

= GY (0, t) −
∫ t

t−x
[1 − GY (s, t + z − s)] dM(s)

−
∫ t−x

0
[1 − GY (s, t − s)] dM(s).
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Finally, for x = t,

P(A(t) ≤ t, B(t) ≤ z) = GY (0, t + z) −
∫ t

0
[1 − GY (s, t + z − s)] dM(s)

and we obtain the proposed expression. �

A.6. Proposition 2.5

Proof of Proposition 2.5. Assume that 0 ≤ a ≤ t ≤ a + l and l ≥ 0. The marginal distribution
of the starting time ft(a) is

ft(a) =
∫

qt(a, l) dl = m(a)∫ t
0 [1 − GY (s, t − s)] dM(s)

∫ ∞

t−a
gY (a, l) dl

= m(a)[1 − GY (a, t − a)]∫ t
0 [1 − GY (s, t − s)] dM(s)

,

ft,L|A=a(l) = qt(a, l)

fa(a)
= gY (a, l)

1 − GY (a, t − a)
. �
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