
Forum of Mathematics, Sigma (2024), Vol. 12:e125 1–29
doi:10.1017/fms.2024.78

RESEARCH ARTICLE

A local-global principle for unipotent characters
Damiano Rossi

FB Mathematik, RPTU Kaiserslautern–Landau, Postfach 3049, 67663 Kaiserslautern, Germany;
E-mail: damiano.rossi.math@gmail.com.

Received: 26 July 2023; Revised: 21 July 2024; Accepted: 13 August 2024

2020 Mathematics Subject Classification: Primary – 20C20, 20C33

Abstract
We obtain an adaptation of Dade’s Conjecture and Späth’s Character Triple Conjecture to unipotent characters of
simple, simply connected finite reductive groups of type A, B and C. In particular, this gives a precise formula for
counting the number of unipotent characters of each defect d in any Brauer ℓ-block B in terms of local invariants
associated to e-local structures. This provides a geometric version of the local-global principle in representation
theory of finite groups. A key ingredient in our proof is the construction of certain parametrisations of unipotent
generalised Harish-Chandra series that are compatible with isomorphisms of character triples.

1. Introduction

The local-global conjectures are currently some of the most interesting and challenging problems in
the representation theory of finite groups. Among others, these include the McKay Conjecture [44], the
Alperin–McKay Conjecture [1] and Alperin’s Weight Conjecture [2] all of which can be deduced by
a deeper statement known as Dade’s Conjecture [21], [22], [23]. The latter also implies the celebrated
Brauer’s Height Zero Conjecture introduced in [4] and whose proof has recently been completed in [39]
and [60] while relying on a combined effort of many other authors.

In this paper, we are particularly interested in Dade’s Conjecture which, for every prime number ℓ,
suggests a precise formula for counting the number of irreducible characters of a finite group, with a
given ℓ-defect and belonging to a given Brauer ℓ-block, in terms of the ℓ-local structure of the group
itself. This conjecture has been further extended in [64] where the Character Triple Conjecture was
formulated by introducing a compatibility with N-block isomorphisms of character triples, hereinafter
denoted by∼𝑁 , as defined in [64, Definition 3.6]. This notion plays a fundamental role in many aspects
of group representation theory and, as we will see later, gives us a way to control the representation
theory of local subgroups. Furthermore, it was exploited to reduce Dade’s Conjecture to finite quasi-
simple groups as explained in [64, Theorem 1.3].

Our aim is to adapt and prove the two conjectures described in the previous paragraph to the case
of unipotent characters of finite reductive groups. The approach considered here is inspired by ideas
introduced by the author in [57] and provides further evidence for the conjectures formulated in that
paper [57, Conjecture C and Conjecture D]. The latter have been shown to imply Dade’s Conjecture and
the Character Triple Conjecture, respectively, for all finite reductive groups in nondefining characteristic
(see [56, Theorem E and Theorem F]). In particular, thanks to the results obtained in [56] (see also [58]),
the ℓ-local structures considered above are replaced by more suitable e-local structures arising from
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2 D. Rossi

the geometry of the underlying algebraic group that are compatible with the framework of Deligne–
Lusztig theory. Therefore, our results also suggest the existence of an e-local-global principle for the
representation theory of finite reductive groups.

More precisely, let G be a connected reductive group defined over an algebraically closed field F of
positive characteristic p and let 𝐹 : G → G be a Frobenius endomorphism endowing G, as a variety,
with an F𝑞-structure for some power q of p. We denote by G𝐹 the finite reductive group consisting of
the F𝑞-rational points on G. Furthermore, we fix an odd prime ℓ different from p and denote by e the
multiplicative order of q modulo ℓ. We let L𝑒 (G, 𝐹) denote the set of e-chains of (G, 𝐹) of the form
𝜎 = {G = L0 > L1 > · · · > L𝑛}, where each L𝑖 is an e-split Levi subgroup of (G, 𝐹). The final term
of the e-chain 𝜎 is denoted by L(𝜎) = L𝑛, while |𝜎 | := 𝑛 is the length of 𝜎. Observe that the latter
induces a partition of the set L𝑒 (G, 𝐹) into the sets L𝑒 (G, 𝐹)± consisting of those e-chains 𝜎 that satisfy
(−1) |𝜎 | = ±1. Furthermore, notice that G𝐹 acts by conjugation on the set L𝑒 (G, 𝐹) and indicate by
G𝐹

𝜎 the stabiliser of the e-chain 𝜎. It follows directly from the definition that this action preserves the
length of e-chains and, in particular, it restricts to an action of G𝐹 on the set L𝑒 (G, 𝐹)>0 of e-chains of
positive length.

Now, to each nonnegative integer d and Brauer ℓ-block B of the finite group G𝐹 , we associate a set
L𝑑

u (𝐵)± consisting of quadruples (𝜎,M, 𝜇, 𝜗) where 𝜎 is an e-chain belonging to L𝑒 (G, 𝐹)±, (M, 𝜇) is
a unipotent e-cuspidal pair of (L(𝜎), 𝐹) such that M does not coincide with G, and 𝜗 is an irreducible
character of the e-chain stabiliser G𝐹

𝜎 belonging to the character set Irr𝑑ps (𝐵𝜎 , (M, 𝜇)) defined by the
choice of d, B,𝜎 and (M, 𝜇) as described in Definition 5.5. Once again, the group G𝐹 acts by conjugation
on L𝑑

u (𝐵)± and we indicate the corresponding set of G𝐹 -orbits by L𝑑
u (𝐵)±/G𝐹 . Moreover, for every

such orbit 𝜔, we denote by 𝜔• the corresponding G𝐹 -orbit of pairs (𝜎, 𝜗) such that (𝜎,M, 𝜇, 𝜗) ∈ 𝜔
for some unipotent e-cuspidal pair (M, 𝜇).

With the above notation, we are now able to state our first main result. In order to avoid unnecessary
technical complications, in the next theorem we assume that the prime ℓ does not divide |Z(G)𝐹 :
Z◦(G)𝐹 | keeping in mind, however, that this assumption can be removed as explained Theorem 5.10
(see also Remark 5.8).

Theorem A. Suppose that G is a simply connected group whose irreducible components are of type A,
B or C and consider an odd prime ℓ not dividing |Z(G)𝐹 : Z◦(G)𝐹 |. For every Brauer ℓ-block B of
G𝐹 and every nonnegative integer d, there exists an AutF(G𝐹 )𝐵-equivariant bijection

Λ : L𝑑
u (𝐵)+/G𝐹 → L𝑑

u (𝐵)−/G𝐹

such that (
𝑋𝜎,𝜗 ,G𝐹

𝜎 , 𝜗
)
∼G𝐹

(
𝑋𝜌,𝜒,G𝐹

𝜌 , 𝜒
)

for every 𝜔 ∈ L𝑑
u (𝐵)+/G𝐹 , (𝜎, 𝜗) ∈ 𝜔•, (𝜌, 𝜒) ∈ Λ(𝜔)• and where 𝑋 := G𝐹

� AutF (G𝐹 ) and
AutF(G𝐹 ) is the group of automorphisms described in Section 3.1.

The above statement describes a local-global phenomenon analogous to that introduced by Späth’s
Character Triple Conjecture but in the framework of Deligne–Lusztig theory for the unipotent characters
of finite reductive groups. Theorem A also offers further evidence for the validity of [57, Conjecture
D], in fact the set L𝑑

u (𝐵)± introduced above is a subset of the set of quadruples L𝑑 (𝐵)± considered in
[57, Conjecture D]. Furthermore, notice that the Brauer ℓ-block B in Theorem A is not required to be
unipotent. In fact, the character set Irr𝑑ps (𝐵𝜎 , (M, 𝜇)) might be nonempty even in the case where B is
not unipotent (see Remark 5.6).

Next, we obtain a formula for counting the number of unipotent characters of ℓ-defect d in the
Brauer ℓ-block B in terms of local invariants associated to e-local structures. For each e-chain 𝜎 of
(G, 𝐹) with positive length, we define k𝑑

u (𝐵𝜎) to be the number of characters belonging to one of
the character sets Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) for some unipotent e-cuspidal pair (M, 𝜇) of (L(𝜎), 𝐹) up to
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G𝐹
𝜎-conjugation (see also (5.8)). Furthermore, let k𝑑

u (𝐵) and k𝑑
c,u (𝐵) be the number of irreducible

characters with ℓ-defect d and belonging to the Brauer ℓ-block B that are unipotent and unipotent e-
cuspidal, respectively. Then, by using the bijection given by Theorem A we can determine the difference
k𝑑

u (𝐵) − k𝑑
c,u (𝐵) in terms of an alternating sum involving the terms k𝑑

u (𝐵𝜎) arising from the e-local
structure G𝐹

𝜎 .

Theorem B. Suppose that G is a simple, simply connected group of type A, B or C and consider an
odd prime ℓ. For every Brauer ℓ-block B of G𝐹 and every nonnegative integer d, we have the equality

k𝑑
u (𝐵) − k𝑑

c,u (𝐵) =
∑
𝜎

(−1) |𝜎 |+1k𝑑
u (𝐵𝜎),

where 𝜎 runs over a set of representatives for the action of G𝐹 on L𝑒 (G, 𝐹)>0.

We point out that the restriction on the prime ℓ made for simplification in Theorem A only concerns
the condition on isomorphisms of character triples and hence does not affect Theorem B. In Theorem
5.11, we also give a (perhaps less explicit) version of Theorem B for nonsimple algebraic groups. As
before, this result provides an adaptation of Dade’s Conjecture to the framework of Deligne–Lusztig
theory for the unipotent characters of finite reductive groups and gives new evidence in favour of [57,
Conjecture C]. The necessity for the introduction of the corrective term k𝑑

c,u (𝐵) in the equality of
Theorem B can be understood as an analogue to the exclusion of the case of blocks with central defect
in the statement of Dade’s Conjecture or, depending on the formulation under consideration, of the
case where 𝑑 = 0. We refer the reader to the more detailed discussion given in the paragraph following
Definition 5.2.

The result obtained in Theorem B is related to a principle introduced and advocated by Broué, Fong
and Srinivasan according to which the theories developed by Brauer and Lusztig should agree when
considering finite reductive groups. Following these ideas, Broué suggested a statement, known to the
public as the AMIDRUNK Conjecture, which embodies the work of Alperin, McKay, Isaacs, Dade,
Robinson, Uno, Navarro and Knörr (see, for instance, [6]). This statement also hints at the presence of
derived equivalences of block algebras in the spirit of Broué’s Abelian Defect Group Conjecture from
[5]. More recently, Broué posed a question of a similar nature that further considers the generic nature
of unipotent characters (see the end of [7]). Our Theorem B provides evidence for the validity of these
remarkable conjectures.

It is particularly interesting to notice that, to the author’s knowledge, Theorem B cannot be obtained
directly using techniques available at the present time but only as a consequence of the existence of
G𝐹 -block isomorphisms of character triples as those considered in Theorem A. In fact, while Deligne–
Lusztig theory allows us to control the representation theory of finite reductive groups, it is not sufficient
to control the representation theory of e-chain stabilisers G𝐹

𝜎 . However, observe that the stabiliser
G𝐹

𝜎 contains the finite reductive group L(𝜎)𝐹 as a normal subgroup. Therefore, we can first use
Deligne–Lusztig theory to study the characters of L(𝜎)𝐹 and then apply Clifford theory via G𝐹 -block
isomorphisms of character triples to control the characters of G𝐹

𝜎 (see Proposition 4.5 and Proposition
5.7 for further details).

In order to achieve the latter step, we need to make Deligne–Lusztig theory and, more precisely,
e-Harish-Chandra theory for unipotent characters compatible with G𝐹 -block isomorphisms of character
triples. This ideas was first suggested by the author in [57, Parametrisation B] and further studied in [54].
Our next result, which is a key ingredient in the proofs of Theorem A and Theorem B, establishes this
conjectured parametrisation in the unipotent case under the assumption specified above. This can also
be seen as an extension of the parametrisation introduced by Broué, Malle and Michel in [9, Theorem
3.2 (2)] to the language of G𝐹 -block isomorphisms of character triples.

Theorem C. Suppose that G is a simple, simply connected group of type A, B or C and consider an odd
prime ℓ. For every unipotent e-cuspidal pair (L, 𝜆) of the group (G, 𝐹), there exists an AutF (G𝐹 )(L,𝜆) -
equivariant bijection
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ΩG
(L,𝜆) : E

(
G𝐹 , (L, 𝜆)

)
→ Irr

(
NG(L)𝐹

�� 𝜆)
that preserves the ℓ-defect of characters and such that(

𝑋𝜒,G𝐹 , 𝜒
)
∼G𝐹

(
N𝑋𝜒 (L),NG(L)𝐹 ,ΩG

(L,𝜆) (𝜒)
)

for every 𝜒 ∈ E (G𝐹 , (L, 𝜆)) and where 𝑋 := G𝐹
� AutF (G𝐹 ).

The proof of Theorem C, and therefore of Theorem A and Theorem B, partially relies on certain
conditions on the extendibility of characters of e-split Levi subgroups that were first introduced to settle
the inductive conditions for the McKay Conjecture and the Alperin–McKay Conjecture and then further
studied in the context of Parametrisation B of [57] (see the exact statement given in [54, Definition 5.2]).
These conditions were obtain, under certain assumptions, for groups of type A, B and C in the papers
[11], [13] and [12], respectively. Nonetheless, a version of these results is expected to hold in general
and hence we believe that the above theorems, obtained here for types A, B and C with respect to an
odd prime ℓ, will extend to the general case as well and with respect to any good prime.

1.1. Structure of the paper

The paper is organised as follows. In Section 2, we introduce the necessary notation and recall the main
definitions and results used throughout the paper. Furthermore, in Section 2.4 we introduce the notion of
pseudo-unipotent character (see Definition 2.2) and prove a result on the regularity of blocks covering
those containing such characters. Next, in Section 3, we start working towards a proof of Theorem C.
First, in Section 3.1, we consider certain equivariance properties that can be established in the presence
of extendibility conditions for characters of e-split Levi subgroups. Here, we also present a candidate for
the bijection ΩG

(L,𝜆) required by Theorem C. Next, in Section 3.2, we construct the required G𝐹 -block
isomorphisms of character triples. Using these results, we can then prove Theorem C in Section 3.3.
The following step is to extend the parametrisation of unipotent e-Harish-Chandra series in the group G,
as given by Theorem C, to a parametrisation of pseudo-unipotent e-Harish-Chandra series in F-stable
Levi subgroups K of (G, 𝐹). This is done in Theorem 4.4. Once this is established, in Section 4.2, we
exploit the theory of G𝐹 -block isomorphisms to obtain bijections above e-Harish-Chandra series that
are required to control the representation theory of the e-chain stabilisers G𝐹

𝜎 . A more detailed analysis
of the characters of G𝐹

𝜎 is carried out in Section 5.1. In particular, we obtain a parametrisation of the
character sets Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) in Proposition 5.7. Finally, in Section 5.2 and Section 5.3, we apply
these results to prove Theorem A and Theorem B, respectively.

2. Notation and background material

2.1. Characters and blocks of finite groups

We recall some standard notation from representation theory of finite groups as can be found in [32]
and [46], for instance. Let Irr(𝐺) be the set of ordinary irreducible characters. If 𝑁 �𝐺 and 𝜗 ∈ Irr(𝑁),
then we denote by Irr(𝐺 | 𝜗) the set of irreducible characters of G that lie above 𝜗. More generally, if S
is a subset of irreducible characters of N, then we denote by Irr(𝐺 | S) the union of the sets Irr(𝐺 | 𝜗)
for 𝜗 ∈ S , that is, the set of irreducible characters of G that lie above some character in the set S .

Next, we denote by 𝐺𝜗 the stabiliser of the irreducible character 𝜗 ∈ Irr(𝑁) under the conjugacy
action of G and say that 𝜗 is G-invariant if 𝐺 = 𝐺𝜗 . In this case, we say that (𝐺, 𝑁, 𝜗) is a character
triple. These objects provide important information in the study of Clifford theory and play a crucial
role in many aspects of the local-global conjectures. Of paramount importance is the introduction of
certain binary relations on the set of character triples. We refer the reader to [47, Chapter 5 and 10]
and [65] for a more detailed introduction to these ideas and for the necessary background on projective
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representations. The binary relation considered here was introduced in [64, Definition 3.6] and is known
as N-block isomorphism of character triples, denoted by∼𝑁 . This equivalence relation has further been
studied in [52].

In order to construct N-block isomorphisms of character triples, it is often useful to prove certain
results on the extendibility of characters. Here, we introduce the notion of maximal extendibility (see
[40, Definition 3.5]) that will be considered in the following sections. Let 𝑁 � 𝐺 be finite groups, and
consider S a subset of irreducible characters of N. Then, we say that maximal extendibility holds for the
set S with respect to the inclusion 𝑁 � 𝐺 if every character 𝜗 ∈ S extends to its stabiliser 𝐺𝜗 . More
precisely, we can specify an extension map

Λ : S →
∐

𝑁 ≤𝐻 ≤𝐺

Irr(𝐻) (2.1)

that sends each character 𝜗 ∈ S to an extension Λ(𝜗) of 𝜗 to the stabiliser 𝐺𝜗 .
Next, we consider modular representation theory with respect to a fixed prime number ℓ. For

𝜒 ∈ Irr(𝐺), there exist unique nonnegative integers 𝑑 (𝜒), called the ℓ-defect of 𝜒, such that ℓ𝑑 (𝜒) =
|𝐺 |ℓ/𝜒(1)ℓ and where for an integer n we denote by 𝑛ℓ the largest power of ℓ that divides n. For any
𝑑 ≥ 0, let Irr𝑑 (𝐺) be the set of irreducible characters 𝜒 of G that satisfy 𝑑 (𝜒) = 𝑑 and denote by k𝑑 (𝐺)
its cardinality. Associated to the prime ℓ, we also have the set of Brauer ℓ-blocks of G. Each block is
uniquely determined by the central functions 𝜆𝐵 (see [46, p. 49]). For every 𝜒 ∈ Irr(𝐺), we denote by
bl(𝜒) the unique block that satisfies 𝜒 ∈ Irr(bl(𝜒)). Furthermore, if 𝐻 ≤ 𝐺 and b is a block of H, then
𝑏𝐺 denotes the block of G obtained via Brauer’s induction (when it is defined). If B is a block of G and
𝑑 ≥ 0, then let Irr𝑑 (𝐵) be the set of irreducible characters belonging to the block B and having defect
d. The cardinality of Irr𝑑 (𝐵) is denoted by k𝑑 (𝐵).

We conclude this introductory section with an analogue of [32, Problem 5.3] for blocks that will be
used in the sequel.

Lemma 2.1. Let 𝐻 ≤ 𝐺 be finite groups and consider blocks b of H and B of G. If 𝜁 is a linear character
of G, then:

(i) there are blocks 𝑏 · 𝜁𝐻 of H and 𝐵 · 𝜁 of G satisfying

Irr(𝑏 · 𝜁𝐻 ) = {𝜓𝜁𝐻 | 𝜓 ∈ Irr(𝑏)} and Irr(𝐵 · 𝜁) = {𝜒𝜁 | 𝜒 ∈ Irr(𝐵)};

(ii) If 𝑏𝐺 = 𝐵, then (𝑏 · 𝜁𝐻 )𝐺 = 𝐵 · 𝜁 .

Proof. The first point is [51, Lemma 2.1]. Denote by R the ring of algebraic integers in C and by R
its quotient modulo a fixed maximal ideal M of R containing ℓR. Let 𝑔 ∈ 𝐺 and denote by ℭ𝔩𝐺 (𝑔)
the G-conjugacy class of g and by ℭ𝔩𝐺 (𝑔)+ the corresponding conjugacy class sum in the group
algebra over R. Since the intersection ℭ𝔩𝐺 (𝑔) ∩ 𝐻 is a union of H-conjugacy classes, we can find
ℎ1, . . . , ℎ𝑛 ∈ ℭ𝔩𝐺 (𝑔) ∩ 𝐻 such that

ℭ𝔩𝐺 (𝑔) ∩ 𝐻 =
𝑛∐
𝑖=1

ℭ𝔩𝐻 (ℎ𝑖)

and where n is zero if ℭ𝔩𝐺 (𝑔) ∩ 𝐻 is empty. In particular, observe that 𝜁 (ℎ𝑖) = 𝜁 (𝑔) since 𝜁 is a class
function of G. Notice also that 𝜁 is a group homomorphism. Now, using the notation of [46, p.87] and
recalling for a block B its central character is denoted by 𝜆𝐵, we obtain
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𝜆𝐵 ·𝜁
(
ℭ𝔩𝐺 (𝑔)+

)
= 𝜆𝐵

(
ℭ𝔩𝐺 (𝑔)+

)
𝜁 (𝑔)

= 𝜆𝐺𝑏
(
ℭ𝔩𝐺 (𝑔)+

)
𝜁 (𝑔)

=
𝑛∑
𝑖=1
𝜆𝑏

(
ℭ𝔩𝐻 (ℎ𝑖)

+
)
𝜁 (𝑔)

=
𝑛∑
𝑖=1
𝜆𝑏

(
ℭ𝔩𝐻 (ℎ𝑖)

+
)
𝜁𝐻 (ℎ𝑖)

=
𝑛∑
𝑖=1
𝜆𝑏 ·𝜁𝐻

(
ℭ𝔩𝐻 (ℎ𝑖)

+
)
= 𝜆𝐺𝑏 ·𝜁𝐻

(
ℭ𝔩𝐺 (𝑔)+

)
,

where for every algebraic integer 𝛼 ∈ R we denote by 𝛼 its reduction modulo M. This shows that
𝐵 · 𝜁 = (𝑏 · 𝜁𝐻 )𝐺 and we are done. �

2.2. Finite reductive groups and unipotent characters

Let G be a connected reductive group defined over an algebraic closure of a field of positive characteristic
p different from ℓ, and consider a Frobenius endomorphism 𝐹 : G → G associated with an F𝑞-structure
for a power q of p. The set of F𝑞-rational points on the variety G is denoted by G𝐹 and is called a finite
reductive group. By abuse of notation, we also refer to the pair (G, 𝐹) as a finite reductive group. In this
paper, we say that the algebraic group G is simply connected, if its derived subgroup [G,G] is simply
connected.

Let L be a Levi subgroup of a parabolic subgroup P of G, and assume that L (but not necessarily P)
is F-stable. Using ℓ-adic cohomology, Deligne–Lusztig [24] and Lusztig [37] defined a Z-linear map

RG
L≤P : ZIrr

(
L𝐹

)
→ ZIrr

(
G𝐹

)
with adjoint

∗RG
L≤P : ZIrr

(
G𝐹

)
→ ZIrr

(
L𝐹

)
.

The exact definition can be found in [17, Section 8.3]. These maps are known to be independent of
the choice of the parabolic subgroup P in almost all cases (see [3] and [66]) and, in particular, in
those considered in this paper. Therefore, we will always omit P and denote RG

L≤P simply by RG
L . Next,

using Deligne–Lusztig induction we define the unipotent characters of G𝐹 . These are the irreducible
characters 𝜒 of G𝐹 that appear as an irreducible constituent of the virtual character RG

T (1T) for some
F-stable maximal torus T of G. The set of unipotent characters of G𝐹 is denoted by Uch(G𝐹 ) and its
cardinality by ku (G𝐹 ). Similarly, if B is a block of G𝐹 and d a nonnegative integer, then k𝑑

u (𝐵) denotes
the cardinality of the intersection Uch(G𝐹 ) ∩ Irr𝑑 (𝐵).

2.3. e-Harish-Chandra theory for unipotent characters

Denote by e the multiplicative order of q modulo ℓ, if ℓ is odd, or modulo 4, if ℓ = 2. In this section, we
collect the main results of e-Harish-Chandra theory for unipotent characters. This was first introduced
by Fong and Srinivasan [28] for classical groups and then further developed by Broué, Malle and Michel
[9] for unipotent characters. The compatibility of this theory with Brauer ℓ-blocks was first described
by Fong and Srinivasan for classical groups [27], [29] and then completed by Broué, Malle and Michel
for large primes [9], by Cabanes and Enguehard for all good primes [15] and by Enguehard for the
remaining bad primes [26]. These results also provide a description of the characters belonging to
unipotent blocks (see [15, Theorem (iii)]). Another description of these characters was provided by the
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author in [57] under certain restrictions on the prime ℓ (see also [57, Remark 4.14] for a comparison
between the two descriptions). We refer the reader to the monographs [17] and [30] for a more complete
account of e-Harish-Chandra theory and to the papers [16] and [34] for results on nonunipotent blocks.

The theory of Φ𝑒-subgroups that constitutes the foundation of e-Harish-Chandra theory was intro-
duced in [8]. Following their terminology, we say that an F-stable torus S of G is a Φ𝑒-torus if its order
polynomial 𝑃(S,𝐹 ) is a power of the e-th cyclotomic polynomial, that is, if 𝑃(S,𝐹 ) = Φ𝑛

𝑒 for some integer
n and where Φ𝑒 denotes the e-th cyclotomic polynomial (see [17, Definition 13.3]). Then, we say that a
Levi subgroup L of G is an e-split Levi subgroup if there exists a Φ𝑒-torus S such that L = CG(S). More
precisely, we say that L is an e-split Levi subgroup of (G, 𝐹) to emphasise the role of the Frobenius
endomorphism F. Observe that, for any F-stable torus T, there exists a unique maximal Φ𝑒-torus of T
denoted by TΦ𝑒 (see [17, Proposition 13.5]). Then, it can be shown that an F-stable Levi subgroup L of
G is e-split if and only if L = CG(Z◦(L)Φ𝑒 ) (see, for instance, [30, Proposition 3.5.5]).

Next, recall that (L, 𝜆) is an e-cuspidal pair of (G, 𝐹) if L is an e-split Levi subgroup of (G, 𝐹)
and 𝜆 ∈ Irr(L𝐹 ) satisfies ∗RL

M(𝜆) = 0 for every e-split Levi subgroup M < L. A character 𝜆 with the
property above is said to be an e-cuspidal character of L𝐹 . If in addition the character 𝜆 is unipotent,
then we say that (L, 𝜆) is a unipotent e-cuspidal pair and that 𝜆 is a unipotent e-cuspidal character.
We denote by CPu(G, 𝐹) the set of unipotent e-cuspidal pairs of (G, 𝐹) and by kc,u (G𝐹 ) the number
of unipotent e-cuspidal characters of G𝐹 . Moreover, we define the e-Harish-Chandra series associated
to the e-cuspidal pair (L, 𝜆) to be the set of irreducible constituents of the virtual character RG

L (𝜆),
denoted by E (G𝐹 , (L, 𝜆)). As before, when 𝜆 is unipotent we say that E (G𝐹 , (L, 𝜆)) is a unipotent
e-Harish-Chandra series.

Unipotent characters were parametrised by Broué, Malle and Michel [9, Theorem 3.2] by using
e-Harish-Chandra theory. Their description can be divided into two parts. First, each unipotent character
lies in a unique e-Harish-Chandra series, that is,

Uch
(
G𝐹

)
=

∐
(L,𝜆)

E
(
G𝐹 , (L, 𝜆)

)

where (L, 𝜆) runs over a set of representatives for the action of G𝐹 on the set of unipotent e-cuspidal
pairs of (G, 𝐹) as explained in [9, Theorem 3.2 (1)]. This is a well-known fact and will be used
throughout the paper without further reference. As a consequence of the partition above, it now remains
to parametrise the unipotent e-Harish-Chandra series. If (L, 𝜆) is a unipotent e-cuspidal pair, we denote
by 𝑊G (L, 𝜆)𝐹 := NG (L)𝐹𝜆 /L𝐹 the corresponding relative Weyl group. Then, [9, Theorem 3.2 (2)]
parametrises the characters in an e-Harish-Chandra series in terms of the characters in the relative Weyl
group by showing the existence of a bijection

Irr
(
𝑊G (L, 𝜆)𝐹

)
→ E (G𝐹 , (L, 𝜆)). (2.2)

In Section 3, we reformulate (2.2) in order to obtain Theorem C.
Unipotent e-Harish-Chandra series are also used to parametrise the so-called unipotent blocks, that

is, those blocks that contain unipotent characters. This was proved in [15] (see also [9] for the case of
large primes). More precisely, if ℓ is odd and good for G, with ℓ ≠ 3 if 3D4 is an irreducible rational
component of (G, 𝐹), then for every ℓ-block B of G𝐹 there exists a unipotent e-cuspidal pair (L, 𝜆),
with (L, 𝜆) unique up to G𝐹 -conjugation such that all the irreducible constituents of RG

L (𝜆) belongs to
the block B. In this case, we write 𝐵 = 𝑏G𝐹 (L, 𝜆) and we also have

Uch(G𝐹 ) ∩ Irr (𝑏G𝐹 (L, 𝜆)) = E (G𝐹 , (L, 𝜆)).

Moreover, [15, Proposition 3.3 (ii) and Proposition 4.2] imply that bl(𝜆)G𝐹
= 𝐵.
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2.4. Pseudo-unipotent characters

We denote by (G∗, 𝐹∗) a group in duality with (G, 𝐹) with respect to a choice of an F-stable maximal
torus T of G and an 𝐹∗-stable maximal torus T∗ of G∗. If 𝜏 : Gsc → [G,G] is a simply connected
covering (see [30, Remark 1.5.13]), then there exists an isomorphisms between the abelian groups

Z(G∗)
𝐹 ∗

→ Irr
(
G𝐹/𝜏(Gsc)

𝐹
)

𝑧 ↦→ 𝑧G

according to [17, (8.19)]. Notice that, if L is an F-stable Levi subgroup of G, then its dual L∗ is an 𝐹∗-
stable Levi subgroup of G∗ and we have Z(G∗)𝐹

∗
≤ Z(L∗)𝐹

∗ . In particular, every element 𝑧 ∈ Z(G∗)𝐹
∗

defines a linear characters of 𝑧L and restriction of characters yields the equality

(𝑧G)L𝐹 = 𝑧L.

In the next definition, we consider characters that are obtained by multiplying these linear characters
with unipotent characters.
Definition 2.2. Let (K, 𝐹) be a finite reductive group, and consider a Levi subgroup of L ≤ K
and an irreducible character 𝜃 ∈ Irr(L𝐹 ). We say that 𝜃 is (K, 𝐹)-pseudo-unipotent if there exists
an element 𝑧 ∈ Z(K∗)𝐹

∗ such that 𝜃𝑧L is unipotent. Moreover, for every unipotent character 𝜆 ∈

Uch(L𝐹 ), we denote by psK(𝜆) the set of (K, 𝐹)-pseudo-unipotent characters of L𝐹 of the form 𝜆𝑧L
for some 𝑧 ∈ Z(K∗)𝐹

∗ . Moreover, we denote by psK(L𝐹 ) the set of all (K, 𝐹)-pseudo unipotent
characters of L𝐹 . When the group K coincides with L, we denote the set of characters psL(L𝐹 ) simply
by ps(L𝐹 ).

In accordance with the terminology introduced above, we say that an e-Harish-Chandra series of
(K, 𝐹) is pseudo-unipotent if it is of the form E (K𝐹 , (L, 𝜈)) for some 𝜈 ∈ psK(𝜆) and where (L, 𝜆) is a
unipotent e-cuspidal pair of (K, 𝐹). In this case, we also say that (L, 𝜈) is a pseudo-unipotent e-cuspidal
pair. We define the union of all the series associated to characters in psK(𝜆) by E (K𝐹 , (L, psK(𝜆))).
Since

RK
L (𝜆𝑧L) = RK

L (𝜆)𝑧K

for every 𝑧 ∈ Z(K∗)𝐹
∗ by [17, (8.20)], we deduce that the elements of the pseudo-unipotent e-Harish-

Chandra series E (K𝐹 , (L, 𝜆𝑧)) are exactly the irreducible characters of the form 𝜑𝑧K for some unipo-
tent character 𝜑 ∈ E (K𝐹 , (L, 𝜆)). Moreover, we point out that 𝜆 is the unique unipotent character
in the set psK(𝜆) according to [17, Proposition 8.26]. Similarly, the unipotent characters in the set
E (K𝐹 , (L, psK(𝜆))) are those in the series E (K𝐹 , (L, 𝜆)).

Our next lemma shows that blocks covering pseudo-unipotent characters are regular as defined in
[46, p.210].
Lemma 2.3. Let L be an F-stable Levi subgroup of G, and suppose that ℓ is odd and good for G.
Furthermore, suppose that ℓ ≠ 3 if (G, 𝐹) has an irreducible rational component of type 3D4. For every
L𝐹 ≤ 𝐻 ≤ NG (L)𝐹 and every character 𝜗 ∈ Irr(𝐻) lying above some pseudo-unipotent character in
ps(L𝐹 ), the block bl(𝜗) is L𝐹 -regular. In particular, the Brauer induced block bl(𝜗)𝐻 is defined and is
the unique block of H covering bl(𝜗).
Proof. Let 𝜑 ∈ Uch(L𝐹 ) and 𝑧 ∈ Z(L∗)𝐹

∗ such that 𝜑𝑧L lies below the character 𝜗 and choose a
unipotent e-cuspidal pair (M, 𝜇) of L such that 𝜑 ∈ E (L𝐹 , (M, 𝜇)). In particular, bl(𝜑) = 𝑏L𝐹 (M, 𝜇)
according to [15]. If𝑄 := Z(M)𝐹ℓ , then M𝐹 = CG𝐹 (𝑄) according to [15, Proposition 3.3 (ii)]. Moreover,
observe that [15, Proposition 4.2] implies that bl(𝜑) = 𝑏L𝐹 (M, 𝜇) = bl(𝜇)L𝐹 while [51, Lemma 2.1]
implies that bl(𝜑) and bl(𝜑𝑧L) have the same defect groups. Now, applying [46, Lemma 4.13 and
Theorem 9.26], we can find defect groups 𝐷𝜗 , 𝐷𝜑 and 𝐷𝜇 of bl(𝜗), bl(𝜑) and bl(𝜇) respectively with
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the property that 𝐷𝜇 ≤ 𝐷𝜑 ≤ 𝐷𝜗 . Since 𝑄 ≤ Oℓ (M𝐹 ) ≤ 𝐷𝜇 by [46, Theorem 4.8], we deduce that
𝑄 ≤ 𝐷𝜗 and hence C𝐻 (𝐷𝜗) ≤ C𝐻 (𝑄) = M𝐹 ≤ L𝐹 . By [46, Lemma 9.20], we conclude that the
block bl(𝜗) is L𝐹 -regular. The second part of the lemma now follows from [46, Theorem 9.19]. �

3. Compatibility with isomorphisms of character triples

The aim of this section is to show how the bijection (2.2) can be made compatible with isomorphisms of
character triples and with the action of automorphisms. This property was first suggested by the author in
[57, Parametrisation B] and further studied in [54]. Our Theorem C gives a solution of this conjectured
result for unipotent e-Harish-Chandra series and groups of type A, B and C. Before proceeding further,
we show how the parametrisation (2.2) can be reformulated in a more convenient form. For this, let
(L, 𝜆) be a unipotent e-cuspidal pair of (G, 𝐹) and assume that 𝜆 is an extension of 𝜆 to the stabiliser
NG (L)𝐹𝜆 . Then, by applying Gallagher’s theorem [32, Corollary 6.17] and the Clifford correspondence
[32, Theorem 6.11] we obtain a bijection

Irr
(
𝑊G(L, 𝜆)𝐹

)
→ Irr

(
NG(L)𝐹

�� 𝜆)
𝜂 ↦→

(
𝜆𝜂

)NG (L)𝐹
,

and therefore, (2.2) holds if and only if there exists a bijection

E (G𝐹 , (L, 𝜆)) → Irr
(
NG(L)𝐹

�� 𝜆) . (3.1)

This new reformulation will allow us to introduce the aforementioned compatibility with isomorphisms
of character triple isomorphisms.

3.1. Equivariance and maximal extendibility

In this section, we consider some equivariance properties for the parametrisation (3.1) which are related
to maximal extendibility (see (2.1)) of unipotent characters.

As in the previous sections, consider a connected reductive group G with a Frobenius endomorphism
𝐹 : G → G defining an F𝑞-structure on G. We denote by AutF (G𝐹 ) the set of those automorphisms of
G𝐹 obtained by restricting some bijective morphism of algebraic groups 𝜎 : G → G that commutes
with F to the set of F𝑞-rational points G𝐹 . Notice that the restriction of such a morphism 𝜎 to G𝐹 ,
which by abuse of notation we denote again by 𝜎, is an automorphism of the finite group G𝐹 . We refer
the reader to [18, Section 2.4] for further details. In particular, observe that any morphism 𝜎 with the
properties above is determined by its restriction to G𝐹 up to a power of F (this follows from [31, Lemma
2.5.7]) and hence it follows that AutF(G𝐹 ) acts on the set of F-stable closed connected subgroups of G.
Then, given an F-stable closed connected subgroup H of G, we can define the set AutF (G𝐹 )H consisting
of those automorphisms 𝜎 as above that stabilise the algebraic group H.

Now, let ℓ be a prime number not dividing q and denote by e the order of q modulo ℓ or q modulo
4 if ℓ = 2. In order to control the action of automorphisms on unipotent e-Harish-Chandra series, we
exploit a result of Cabanes and Späth. More precisely, in [18, Theorem 3.4] it was shown that the
parametrisation given by Broué, Malle and Michel in [9, Theorem 3.2 (2)] commutes with the action of
those automorphisms in the set AutF (G𝐹 ). Notice that the statement of [18, Theorem 3.4] only considers
unipotent e-cuspidal pairs (L, 𝜆), where L is a minimal e-split Levi subgroup (which is enough for
the purpose of dealing with the McKay Conjecture). However, their proof works for the general case
as well.

Proposition 3.1. For every unipotent e-cuspidal pair (L, 𝜆) of the group (G, 𝐹), there exists an
AutF(G𝐹 )(L,𝜆) -equivariant bijection
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𝐼G
(L,𝜆) : Irr

(
𝑊G (L, 𝜆)𝐹

)
→ E

(
G𝐹 , (L, 𝜆)

)
such that

𝐼G
(L,𝜆) (𝜂) (1)ℓ =

��G𝐹 : NG(L, 𝜆)𝐹
��
ℓ · 𝜆(1)ℓ · 𝜂(1)ℓ

for every 𝜂 ∈ Irr(𝑊G (L, 𝜆)𝐹 ).

Proof. This follows from the proof of [18, Theorem 3.4]. See also [54, Theorem 3.4]. �

As explained at the beginning of this section, if 𝜆 extends to the stabiliser NG(L)𝐹𝜆 , then we can
use the bijection (2.2) to obtain (3.1). A similar argument can be used to include the equivariance
property described above and obtain an equivariant version of (3.1). Observe that, by the discussion on
automorphisms above, it follows that the group AutF(G𝐹 ) acts on the set of e-cuspidal pairs (L, 𝜆), and
therefore, we can define the stabiliser AutF (G𝐹 )(L,𝜆) . Furthermore, recall that we denote by 𝑑 (𝜒) the
ℓ-defect of an irreducible character 𝜒.

Corollary 3.2. Let (L, 𝜆) be a unipotent e-cuspidal pair of (G, 𝐹), and suppose that 𝜆 has an extension
𝜆� ∈ Irr(NG (L)𝐹𝜆 ). Then there exists a bijection

ΩG
(L,𝜆) : E

(
G𝐹 , (L, 𝜆)

)
→ Irr

(
NG(L)𝐹

�� 𝜆)
such that

𝑑 (𝜒) = 𝑑
(
ΩG

(L,𝜆) (𝜒)
)

for every 𝜒 ∈ E (G𝐹 , (L, 𝜆)). Furthermore, the bijection ΩG
(L,𝜆) is AutF(G𝐹 )(L,𝜆) -equivariant whenever

the extension 𝜆� is AutF (G𝐹 )(L,𝜆) -invariant.

Proof. Consider the bijection 𝐼G
(L,𝜆) given by Proposition 3.1, and define the map

ΩG
(L,𝜆) : E

(
G𝐹 , (L, 𝜆)

)
→ Irr

(
NG(L)𝐹

�� 𝜆)
𝐼G
(L,𝜆) (𝜂) ↦→

(
𝜆�𝜂

)NG (L)𝐹

for every 𝜂 ∈ Irr(𝑊G(L, 𝜆)𝐹 ) and where 𝜆� is the extension of 𝜆 to NG(L)𝐹𝜆 given in the statement.
This is a well defined bijection by the Clifford correspondence [32, Theorem 6.11] and Gallagher’s
theorem [32, Corollary 6.17]. Moreover, for every 𝛼 ∈ AutF (G𝐹 ) such that (L, 𝜆)𝛼 = (L, 𝜆) and every
𝜂 ∈ Irr(𝑊G(L, 𝜆)𝐹 ) we have ( (

𝜆�𝜂
)NG (L)𝐹

)𝛼
=
( (
𝜆�𝜂

)𝛼)NG (L)𝐹

=
(
𝜆�𝜂𝛼

)NG (L)𝐹

whenever 𝛼 stabilises 𝜆�. On the other hand,

𝐼G
(L,𝜆) (𝜂)

𝛼 = 𝐼G
(L,𝜆) (𝜂

𝛼)

by Proposition 3.1 and hence we conclude that ΩG
(L,𝜆) is AutF (G𝐹 )(L,𝜆) -equivariant provided that 𝜆�

is AutF (G𝐹 )(L,𝜆) -invariant. Furthermore, if we consider 𝜂 ∈ Irr(𝑊G (L, 𝜆)𝐹 ) and define the characters
𝜒 := 𝐼G

(L,𝜆) (𝜂) and 𝜓 := (𝜆�𝜂)NG (L)𝐹 , then the degree formula from Proposition 3.1 implies that
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ℓ𝑑 (𝜒) =

��G𝐹
��
ℓ

𝜒(1)ℓ
=

��NG(L, 𝜆)𝐹
��
ℓ

𝜆(1)ℓ · 𝜂(1)ℓ
=

��NG(L)𝐹
��
ℓ

𝜓(1)ℓ
= ℓ𝑑 (𝜓)

and hence we deduce that 𝑑 (𝜒) = 𝑑 (𝜓) as required. �

Next, we consider a regular embedding G ≤ G̃ as defined in [17, (15.1)]. Then, G̃ is a connected
reductive group with connected centre and whose derived subgroup coincides with that of G, that is,
[G̃, G̃] = [G,G]. In particular, observe that G̃ = Z(G̃)G, that G is normal in G̃ and that the quotient
G̃/G is an abelian group. For every Levi subgroup L of G, and recalling that Levi subgroups are exactly
the centralisers of tori, we deduce that L̃ := Z(G̃)L is a Levi subgroup of G̃ and that L ≤ L̃ is again a
regular embedding. Notice also that NG̃(L) = NG̃(L̃). These observations will be used throughout this
paper without further reference.

We also recall that, according to [25, Proposition 13.20], restriction of characters yields a bijection
between the unipotent characters of G̃𝐹 and those of G𝐹 . In particular, every unipotent character of
G𝐹 is G̃𝐹 -invariant. Using this observation, we can compare the relative Weyl groups in G̃𝐹 with
those in G𝐹 .

Lemma 3.3. Let (L, 𝜆)be a unipotent e-cuspidal pair of (G, 𝐹), set L̃ = LZ(G̃) and denote by 𝜆 the
unipotent extension of 𝜆 to L̃𝐹 . Then, NG̃ (L)

𝐹
𝜆 = NG̃ (L)

𝐹
𝜆

, and we have an isomorphism𝑊G̃(L̃, 𝜆)
𝐹 �

𝑊G (L, 𝜆)𝐹 .

Proof. Since 𝜆 extends 𝜆, it is clear that the stabiliser NG̃(L)
𝐹
𝜆

is contained in NG̃(L)
𝐹
𝜆 . On the other

hand, let 𝑥 ∈ NG̃(L)
𝐹
𝜆 and observe that 𝜆𝑥 is a unipotent character of L̃𝐹 that restricts to 𝜆𝑥 = 𝜆. Then,

[25, Proposition 13.20] implies that 𝜆𝑥 = 𝜆, and therefore, 𝑥 ∈ NG̃(L)
𝐹
𝜆

. From this, we also conclude that
NG̃ (L)

𝐹
𝜆

= L̃𝐹NG (L)𝐹𝜆 and therefore that𝑊G̃ (L̃, 𝜆)
𝐹 � 𝑊G(L, 𝜆)𝐹 recalling that NG̃(L) = NG̃(L̃). �

As a consequence of the lemma above, we show that when 𝜆 extends to its stabiliser NG(L)𝐹𝜆 , then
every irreducible character of NG (L) that lies above 𝜆 is NG̃(L)

𝐹 -invariant and extends to NG̃(L)
𝐹 =

NG̃ (L̃)
𝐹 .

Corollary 3.4. Let (L, 𝜆) be a unipotent e-cuspidal pair of (G, 𝐹), and suppose that 𝜆 has an extension
𝜆� ∈ Irr(NG (L)𝐹𝜆 ). Then every character of NG (L)𝐹 lying above 𝜆 extends to NG̃(L)

𝐹 .

Proof. Let 𝜆 be the unipotent extension of 𝜆 to L̃𝐹 , and recall that NG̃(L)
𝐹
𝜆 = NG̃(L)

𝐹
𝜆

according to
Lemma 3.3. Then, applying [62, Lemma 4.1 (a)] we deduce that there exists an extension 𝜆� of 𝜆�
to NG̃ (L)

𝐹
𝜆 that also extends 𝜆. Consider now an irreducible character 𝜓 of NG (L)𝐹 lying above 𝜆.

By Gallagher’s theorem [32, Corollary 6.17] and the Clifford correspondence [32, Theorem 6.11], it
follows that there exists an irreducible character 𝜂 of the relative Weyl group 𝑊G(L, 𝜆)𝐹 such that 𝜓
is induced from the irreducible character 𝜓0 := 𝜂𝜆� of NG(L)𝐹𝜆 . Moreover, by using Lemma 3.3, we
have𝑊G̃ (L̃, 𝜆)

𝐹 � 𝑊G(L, 𝜆)𝐹 . Then, 𝜂, viewed as a character of NG(L)𝐹𝜆 , admits an extension, say 𝜂,
to NG̃ (L)

𝐹
𝜆 . Now, define 𝜓0 := 𝜂𝜆� and observe that 𝜓0 lies above 𝜆. By the Clifford correspondence,

it follows that the character 𝜓 of NG̃(L)
𝐹 induced from 𝜓0 is irreducible and therefore, applying [32,

Problem 5.2], we conclude that 𝜓 extends 𝜓. The proof is now complete. �

We can now construct a parametrisation of unipotent e-Harish-Chandra series in the group G̃𝐹 which
agrees with the bijection ΩG

(L,𝜆) from Corollary 3.2 via restriction of characters.

Proposition 3.5. Let (L, 𝜆) be a unipotent e-cuspidal pair of (G, 𝐹), and suppose that 𝜆 has an extension
𝜆� ∈ Irr(NG (L)𝐹𝜆 ). If 𝜆 is the unipotent extension of 𝜆 to L̃𝐹 , then there exists a bijection Ω̃G̃

(L̃,𝜆)
making

the following diagram commute
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E
(
G̃𝐹 , (L̃, 𝜆)

)
Irr

(
NG̃(L)

𝐹
��� 𝜆)

E
(
G𝐹 , (L, 𝜆)

)
Irr

(
NG(L)𝐹

�� 𝜆)
Ω̃G̃

(L̃,𝜆)

ResG̃𝐹

G𝐹 Res
NG̃ (L)𝐹

NG (L)𝐹

ΩG
(L,𝜆)

and where ΩG
(L,𝜆) is the bijection given by Corollary 3.2.

Proof. First, observe that 𝜆 has a unique unipotent extension 𝜆 to L̃𝐹 according to [25, Proposi-
tion 13.20]. Moreover, restriction from G̃𝐹 to G𝐹 induces a bijection from the set E (G̃𝐹 , (L̃, 𝜆)) to
E (G𝐹 , (L, 𝜆)) according to [15, Proposition 3.1]. Consider a character 𝜓 ∈ Irr(NG(L)𝐹 ) lying above 𝜆
and observe that 𝜓 admits an extension 𝜓0 ∈ Irr(NG̃ (L)

𝐹 ) by Corollary 3.4. Let 𝜆0 be an irreducible
constituent of the restriction 𝜓0,L̃𝐹 , and notice that 𝜆0 is an extension of 𝜆 since L̃𝐹/L𝐹 is abelian. Now,
Gallagher’s theorem [32, Corollary 6.17] implies that there exists a linear character 𝜈 ∈ Irr(L̃𝐹/L𝐹 )

such that 𝜆0𝜈 = 𝜆. Since NG̃ (L)
𝐹/NG (L)𝐹 � L̃𝐹/L𝐹 , we can identify 𝜈 with a character of NG̃ (L)

𝐹 .
Then, it follows that the character 𝜓 := 𝜓0𝜈 is an extension of 𝜓 to NG̃ (L)

𝐹 lying above 𝜆. Then the
assignment 𝜓 ↦→ 𝜓 defines a bijection between Irr(NG (L)𝐹 | 𝜆) and Irr(NG̃ (L)

𝐹 | 𝜆) whose inverse is
given by restriction of characters. We can now define

Ω̃G̃
(L̃,𝜆)

( 𝜒̃) := 𝜓

for every 𝜒̃ ∈ E (G̃𝐹 , (L̃, 𝜆)) and 𝜓 ∈ Irr(NG̃(L)
𝐹 | 𝜆) whenever ΩG

(L,𝜆) ( 𝜒̃G𝐹 ) = 𝜓NG (L)𝐹 . �

3.2. Construction of G𝐹 -block isomorphisms of character triples

For the rest of this section, we assume that G is simple, simply connected and of type A, B or C.
We now give a more explicit construction of the group of automorphisms AutF(G𝐹 ). Fix a maximally

split torus T0 contained in an F-stable Borel subgroup B0 of G. This choice corresponds to a set of graph
automorphisms 𝛾 : G → G and a field endomorphism 𝐹0 : G → G. More precisely, if we consider the
set of simple roots Δ ⊆ Φ(G,T0) corresponding to the choice T0 ⊆ B0, then we have an automorphism
𝛾 : G → G given by 𝛾(𝑥𝛼 (𝑡)) := 𝑥𝛾 (𝛼) (𝑡) for every 𝑡 ∈ Ga and 𝛼 ∈ ±Δ and where 𝛾 is a symmetry
of the Dynkin diagram of Δ , while 𝐹0 (𝑥𝛼 (𝑡)) := 𝑥𝛼 (𝑡 𝑝) for every 𝑡 ∈ Ga and 𝛼 ∈ Φ(G,T0). Here, we
denote by 𝑥𝛼 : Ga → G the homomorphism corresponding to 𝛼 ∈ Φ(G,T0). We define the subgroup
A of AutF (G𝐹 ) generated by the graph and field automorphisms described above.

In addition, we choose our regular embedding G ≤ G̃ to be defined in such a way that the graph and
field automorphisms extend to G̃ (see, for instance, [40, Section 2B]). In particular, the group A acts
via automorphisms on G̃𝐹 and we can form the external semidirect product G̃𝐹

�A which acts on G𝐹 .
It turns out that G̃𝐹

�A and AutF(G𝐹 ) induce the same set of automorphisms on the finite group G𝐹

(see, for instance, [31, Section 2.5]).
Throughout this section, we consider a fixed unipotent e-cuspidal pair (L, 𝜆) of (G, 𝐹) and a unipotent

extension 𝜆 of 𝜆 to L̃𝐹 (whose existence is ensured by [25, Proposition 13.20]) where, as always, we
define L̃ := LZ(G̃). In the next lemma, we show that the hypothesis of Corollary 3.2 is satisfied under
our assumptions.

Lemma 3.6. There exists an extension 𝜆� of 𝜆 to NG(L)𝐹𝜆 that is (G̃𝐹A)(L,𝜆) -invariant.

Proof. Using [13, Theorem 4.3 (i)], [11, Theorem 1.2 (a)] and the results of [12], we obtain an extension
𝜆� of 𝜆 to the stabiliser NG (L)𝐹𝜆 which is (G𝐹A)(L,𝜆) -invariant. Since (G̃𝐹A)(L,𝜆) = L̃𝐹 (G𝐹A)(L,𝜆) ,
it suffices to show that 𝜆� is L̃𝐹 -invariant. However, the latter assertion follows immediately from the
fact that 𝜆� extends to NG̃(L)

𝐹
𝜆 according to Lemma 3.3 and [62, Lemma 4.1 (a)]. �
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As an immediate consequence of the lemma above, we deduce that every character of NG(L)𝐹 lying
above 𝜆 extends to NG̃(L)

𝐹 . This can be considered as a local analogue of [25, Proposition 13.20].

Lemma 3.7. Every irreducible character of NG(L)𝐹 lying above 𝜆 extends to NG̃ (L)
𝐹 .

Proof. This follows from Corollary 3.4 whose hypothesis is satisfied by Lemma 3.6. �

We point out that, under our assumptions, every irreducible character of NG(L)𝐹 lying above 𝜆
extends to its stabiliser in NG̃ (L)

𝐹 because the quotient NG̃(L)
𝐹/NG(L)𝐹 is cyclic according to [30,

Proposition 1.7.5]. However, in the lemma above we are also showing, using independent methods, that
each such character is NG̃(L)

𝐹 -invariant.
Using Lemma 3.6, we can define bijections Ω := ΩG

(L,𝜆) and Ω̃G̃
(L̃,𝜆)

as described in Corollary 3.2 and
Proposition 3.5 respectively. In what follows, we consider the sets of characters G := E (G𝐹 , (L, 𝜆)),
L := Irr(NG(L)𝐹 | 𝜆), G̃ := E (G̃𝐹 , (L̃, 𝜆)) and L̃ := Irr(NG̃ (L)

𝐹 | 𝜆). Our next aim is to show that the
parametrisation Ω is compatible with G𝐹 -block isomorphisms of character triples. We start by checking
the group theoretic properties required for the existence of such isomorphisms (see [64, Remark 3.7 (i)]).

Lemma 3.8. For every 𝜒 ∈ G and 𝜓 := Ω(𝜒) ∈ L, we have (G̃𝐹A)L,𝜒 = (G̃𝐹A)L,𝜓 and G̃𝐹A𝜒 =
G𝐹 (G̃𝐹A)L,𝜓.

Proof. We argue as in the proof of [57, Lemma 4.2]. To start, we observe that because the map Ω is
(G̃𝐹A)(L,𝜆) -equivariant it follows that (G̃𝐹A)(L,𝜆) ,𝜒 = (G̃𝐹A)(L,𝜆) ,𝜓 . Set𝑈 := (G̃𝐹A)L, and consider
the stabilisers 𝑈𝜒 and 𝑈𝜓 . First, consider 𝑥 ∈ 𝑈𝜒 and observe that according to [9, Theorem 3.2 (1)]
there exists 𝑦 ∈ NG(L)𝐹 such that (L, 𝜆)𝑥𝑦 = (L, 𝜆). In particular, 𝑥𝑦 ∈ (G̃𝐹A)(L,𝜆) ,𝜒 = (G̃𝐹A)(L,𝜆) ,𝜓
and hence 𝑥 ∈ 𝑈𝜓 since 𝜓𝑦 = 𝜓. This shows that 𝑈𝜒 ≤ 𝑈𝜓 . On the other hand, suppose that 𝑥 ∈ 𝑈𝜓).
By Clifford’s theorem, there exists 𝑦 ∈ NG (L)𝐹 such that 𝜆𝑥𝑦 = 𝜆 and so 𝑥𝑦 ∈ (G̃𝐹A)(L,𝜆) ,𝜓 =
(G̃𝐹A)(L,𝜆) ,𝜒. Since 𝜒𝑦 = 𝜒, we deduce that 𝑥 ∈ 𝑈𝜒 and hence 𝑈𝜒 = 𝑈𝜓 . To conclude, it is enough
to show that G̃𝐹A𝜒 = G𝐹𝑈𝜒. First, notice that G𝐹𝑈𝜒 ≤ G̃𝐹A𝜒 since 𝜒 is G̃𝐹 -invariant. On the other
hand, for 𝑥 ∈ G̃𝐹A𝜒 we know that (L, 𝜆)𝑥 is G𝐹 -conjugate to (L, 𝜆) thanks to [9, Theorem 3.2 (1)].
Therefore, we obtain 𝑥 ∈ G𝐹𝑈𝜒, and as explained above this concludes the proof. �

We now apply Lemma 3.8 to show that the map Ω̃ satisfies some useful equivariance properties.
Before doing so, we need to introduce some notation. For this purpose, consider a pair (G∗, 𝐹∗) dual to
(G, 𝐹) and a pair (G̃∗, 𝐹∗) dual to (G̃, 𝐹). Let 𝑖∗ : G̃∗ → G∗ be the surjection induced by duality from
the inclusion G ≤ G̃, and observe that Ker(𝑖∗) = Z(G̃∗) since G is simply connected (see [17, Section
15.1]). As shown in [17, (15.2)], there exists an isomorphism

Ker(𝑖∗)𝐹 → Irr
(
G̃𝐹/G𝐹

)
(3.2)

𝑧 ↦→ 𝑧̂G̃.

Furthermore, if L is an F-stable Levi subgroup of G and 𝑧 ∈ Ker(𝑖∗), then we define 𝑧̂L̃ to be the
restriction of 𝑧̂G̃ to L̃𝐹 and 𝑧̂NG̃ (L) to be the restriction of 𝑧̂G̃ to NG̃ (L)

𝐹 . We set K := Ker(𝑖∗) and
obtain an action of the group K on the characters of G̃𝐹 , L̃𝐹 and NG̃(L)

𝐹 as defined in [54, Definition
2.1]. Moreover, we consider the external semidirect product (G̃𝐹A) � K given by defining 𝑧𝑥 as the
unique element of K corresponding to the character ( 𝑧̂G̃)

𝑥 of the quotient G̃𝐹/G𝐹 via the isomorphism
specified in (3.2), whenever 𝑥 ∈ G̃𝐹A and 𝑧 ∈ K. Then, for every F-stable Levi subgroup L of G,
we obtain an action of (G̃𝐹A)L � K on the irreducible characters of L̃𝐹 and NG̃(L)

𝐹 . We denote by
((G̃𝐹A)L � K)𝜆 the stabiliser of 𝜆 ∈ Irr(L̃𝐹 ). In particular, it follows that ((G̃𝐹A)L � K)𝜆 acts on the
sets of characters G̃ and L̃. Next, we show that the bijection Ω̃ is compatible with this action.

Lemma 3.9. The bijection Ω̃ is (NG̃(L)
𝐹 (G̃𝐹A)(L,𝜆) �K)𝜆-equivariant.
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Proof. Let 𝜒̃ ∈ G̃ and 𝜓 ∈ L̃. By the definition of Ω̃, we have Ω̃( 𝜒̃) = 𝜓 if and only if Ω(𝜒) = 𝜓, where
𝜒 := 𝜒̃G𝐹 and 𝜓 := 𝜓NG (L)𝐹 . Now, if we consider 𝑔 ∈ NG̃(L)

𝐹 , 𝑥 ∈ (G̃𝐹A)(L,𝜆) and 𝑧 ∈ K such that
(𝑔𝑥, 𝑧) stabilises 𝜆, then we obtain

Ω̃
(
𝜒̃ (𝑔𝑥,𝑧)

)
= 𝜓 (𝑔𝑥,𝑧)

if and only if

Ω
((
𝜒̃ (𝑔𝑥,𝑧)

)
G𝐹

)
=
(
𝜓 (𝑔𝑥,𝑧)

)
NG (L)𝐹

. (3.3)

However, since the restriction of 𝜒̃ (𝑔𝑥,𝑧) to G𝐹 coincides with 𝜒𝑥 and the restriction of 𝜓 (𝑔𝑥,𝑧) to
NG (L)𝐹 coincides with 𝜓𝑥 , we deduce that the equality in (3.3) holds by the equivariance properties of
Ω as described in Corollary 3.2. �

One of the main ingredients for the construction of the projective representations needed to obtain G𝐹 -
block isomorphisms of character triples is given by the following two lemmas on maximal extendibility.

Lemma 3.10. Maximal extendibility holds for G with respect to G𝐹 � G𝐹A, that is, every character
𝜒 ∈ G extends to G𝐹A𝜒.

Proof. If G is of type B or C, then the result follows from [32, Corollary 11.22] since A is cyclic. Then,
we can assume that G is of type A in which case the result follows from [19, Theorem 4.1] (see also
[38, Theorem 2.4]). �

The local version of the lemma above is a consequence of the results obtained in [13].

Lemma 3.11. Maximal extendibility holds for L with respect to NG(L)𝐹 � (G𝐹A)L, that is, every
character 𝜓 ∈ L extends to (G𝐹A)L,𝜓.

Proof. As in the proof of Lemma 3.10, it is enough to prove the result in the case where G is of type
A. In fact, if G is of type B or C, then the quotient (G𝐹A)(L,𝜓) /NG(L)𝐹 is cyclic because it is a
subquotient of A. Now, if G is of type A the result follows from [13, Theorem 1.2]. �

Finally, we can start constructing isomorphisms of character triples for the bijection Ω. As a first step,
we obtain a weaker isomorphism, known as G𝐹 -central isomorphism of character triples and denoted
by ∼𝑐

G𝐹 , whose requirements are given by [64, Remark 3.7 (i)-(iii)] and replacing the condition on
defect groups by imposing that C𝐺 (𝑁) ≤ 𝐻1 ∩ 𝐻2 with the notations used there. We refer the reader to
[53, Definition 3.3.4] for a precise definition.

Proposition 3.12. For every 𝜒 ∈ G and 𝜓 := Ω(𝜒) ∈ L, we have(
G̃𝐹A𝜒,G𝐹 , 𝜒

)
∼𝑐

G𝐹

(
(G̃𝐹A)L,𝜓 ,NG(L)𝐹 , 𝜓

)
.

Proof. First, notice that (G̃𝐹A)𝜒 = G̃𝐹A𝜒 since 𝜒 is G̃𝐹 -invariant. We start by constructing projective
representations associated with 𝜒 and 𝜓. According to Proposition 3.5, we can find a unipotent extension
𝜒̃ ∈ G̃ of 𝜒 to G̃𝐹 . Furthermore, by Lemma 3.10, there exists an extension 𝜒′ of 𝜒 to G𝐹A𝜒. Let D̃glo be
a representation of G̃𝐹 affording 𝜒̃ and D′

glo a representation of G𝐹A𝜒 affording 𝜒′. Now, [63, Lemma
2.11] implies that

Pglo :
(
G̃𝐹A

)
𝜒
→ GL𝜒 (1) (C)

defined by Pglo(𝑥1𝑥2) := D̃glo(𝑥1)D′
glo(𝑥2) for every 𝑥1 ∈ G̃𝐹 and 𝑥2 ∈ G𝐹A𝜒 is a projective repre-

sentation associated with 𝜒. Next, observe that 𝜓 := Ω̃( 𝜒̃) ∈ L̃ is an extension of 𝜓 to NG̃(L)
𝐹 , and
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consider an extension 𝜓 ′ of 𝜓 to (G𝐹A)L,𝜓 given by Lemma 3.11. Let D̃loc be a representation of
NG̃ (L)

𝐹 affording 𝜓 and D′
loc a representation of (G𝐹A)L,𝜓 affording 𝜓 ′. Once again, [63, Lemma

2.11] shows that the map

Ploc :
(
G̃𝐹A

)
L,𝜓

→ GL𝜓 (1) (C)

given by Ploc(𝑥1𝑥2) := D̃loc(𝑥1)D′
loc(𝑥2) for every 𝑥1 ∈ NG̃ (L)

𝐹 and 𝑥2 ∈ (G𝐹A)L,𝜓 is a projective
representation associated with 𝜓. We denote by 𝛼glo and 𝛼loc the factor set of Pglo and Ploc, respectively.
As explained in the proof of [54, Theorem 4.3], in order to prove that 𝛼glo coincides with 𝛼loc via the
isomorphism G̃𝐹A𝜒/G𝐹 � (G̃𝐹A)L,𝜓/NG(L)𝐹 , it suffices to show that

(𝜇
glo
𝑥 )NG̃ (L)𝐹 = 𝜇loc

𝑥 (3.4)

for every 𝑥 ∈ (G𝐹A)L,𝜒 and where 𝜇glo
𝑥 ∈ Irr(G̃𝐹/G𝐹 ) and 𝜇loc

𝑥 ∈ Irr(NG̃(L)
𝐹/NG (L)𝐹 ) are deter-

mined by Gallagher’s theorem (see [32, Corollary 6.17]) via the equalities 𝜒̃ = 𝜇glo
𝑥 𝜒̃𝑥 and 𝜓 = 𝜇loc

𝑥 𝜓
𝑥

respectively. Because (G𝐹A)L,𝜒 = NG(L)𝐹 (G𝐹A)(L,𝜆) ,𝜒, we may assume that x stabilises 𝜆. Let 𝑧 ∈ K
such that 𝜇glo

𝑥 = 𝑧G̃, and observe that (𝑥, 𝑧) is an element of (G𝐹A)(L,𝜆) ,𝜒 � K that stabilises 𝜒̃. Then,
applying [9, Theorem 3.2 (1)], we deduce that 𝜆 and 𝜆 (𝑥,𝑧) are NG̃(L)

𝐹 -conjugate and we may choose
𝑔 ∈ NG̃(L)

𝐹 such that 𝜆 = (𝜆 (𝑥,𝑧) )𝑔 = 𝜆 (𝑥𝑔,𝑧) . In other words,

(𝑥𝑔, 𝑧) ∈
(
NG̃(L)

𝐹 (G̃𝐹A)(L,𝜆) �K
)
𝜆

and thus Lemma 3.9 implies that the equality 𝜒̃ = 𝜒̃ (𝑥𝑔,𝑧) holds if and only if 𝜓 = 𝜓 (𝑥𝑔,𝑧) . From this,
we immediately deduce the equality required in (3.4).

Next, denote by 𝜁glo and 𝜁loc the scalar functions associated toPglo andPloc, respectively. To conclude
the proof, it remains to show that the central functions 𝜁glo and 𝜁loc coincide on C

(G̃𝐹A)𝜒
(G𝐹 ) = Z(G̃𝐹 ).

As in the proof of [54, Theorem 4.3], it is enough to show that the restrictions of 𝜒̃ and 𝜓 to Z(G̃𝐹 )

are multiples of a common irreducible constituent. This follows from the fact that unipotent characters
contain the center in their kernel. In fact, on one hand, 1Z(G̃𝐹 )

is the unique irreducible constituent of
𝜒̃Z(G̃𝐹 )

because 𝜒̃ is unipotent. On the other hand, 𝜓 lies above 𝜆 and, since Z(G̃𝐹 ) ≤ Z(L̃𝐹 ) and 𝜆 is
unipotent, we deduce that 1Z(G̃𝐹 )

is the unique irreducible constituent of 𝜓Z(G̃𝐹 )
. This completes the

proof. �

We conclude this section by verifying the remaining condition [64, Remark 3.7 (iv)] and obtain the
required G𝐹 -block isomorphisms of character triples for the map Ω.

Proposition 3.13. If the prime ℓ is odd, then we have(
G̃𝐹A𝜒,G𝐹 , 𝜒

)
∼G𝐹

(
(G̃𝐹A)L,𝜓,NG(L)𝐹 , 𝜓

)
for every 𝜒 ∈ G and where 𝜓 := Ω(𝜒).

Proof. By Proposition 3.12, it is enough to check the block theoretic requirement given by [64, Re-
mark 3.7 (ii) and (iv)]. First, observe that under our assumption [15, Proposition 3.3 (ii)] shows that
L𝐹 = CG𝐹 (𝐸) where 𝐸 := Z(L)𝐹ℓ . In particular, N𝐽 (L) = N𝐽 (𝐸) for every G𝐹 ≤ 𝐽 ≤ G̃𝐹 . Further-
more, for every block 𝐶0 of N𝐽 (L) and every defect group D of 𝐶0, we have 𝐸 ≤ Oℓ (N𝐽 (L)) ≤ 𝐷 and
hence CG̃𝐹 (𝐷) ≤ NG̃ (L)

𝐹 . Now, [36, Theorem B] implies that for every block C of NG̃(L)
𝐹 covering

𝐶0, the induced blocks 𝐵 := 𝐶G̃𝐹 and 𝐵0 := 𝐶𝐽
0 are well defined and B covers 𝐵0.
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Let 𝜒̃ ∈ G̃ be an extension of 𝜒, and set 𝜓 := Ω̃( 𝜒̃). By Lemma 2.3, the block of 𝐶 of 𝜓 coincides
with the induced block bl(𝜆)NG̃ (L)𝐹 . Furthermore, by [15, Proposition 4.2] we know that the block 𝐵 of
𝜒̃ coincides with 𝑏G̃𝐹 (L̃, 𝜆) = bl(𝜆)G̃𝐹 . Then, by the transitivity of block induction we get 𝐵 = 𝐶G̃𝐹 .
Consider now G𝐹 ≤ 𝐽 ≤ G̃𝐹 as in the previous paragraph and notice that bl( 𝜒̃𝐽 ) is the unique block
of J covered by 𝐵. Now, since bl(𝜓N𝐽 (L) ) is covered by 𝐶, we deduce that bl(𝜓N𝐽 (L) )

𝐽 is covered by 𝐵
and therefore

bl( 𝜒̃𝐽 ) = bl
(
𝜓N𝐽 (L)

) 𝐽
. (3.5)

As explained in the proof of [54, Theorem 4.8], we can now use (3.5) together with Proposition 3.12 to
conclude the proof via an application of [64, Theorem 4.1 (i)]. �

3.3. Proof of Theorem C

Proof of Theorem C. The hypothesis of Corollary 3.2 is satisfied under our restrictions on G according
to Lemma 3.6, and therefore, we obtain an AutF (G𝐹 )(L,𝜆) -equivariant bijection

ΩG
(L,𝜆) : E

(
G𝐹 , (L, 𝜆)

)
→ Irr

(
NG(L)𝐹

�� 𝜆)
that, furthermore, preserves the ℓ-defect of characters. Next, observe that the groups G̃𝐹A and 𝑋 :=
G𝐹
� AutF (G𝐹 ) induce the same automorphisms on G𝐹 according to the description given in [31,

Section 2.5]. Then, by applying [64, Theorem 5.3] and Proposition 3.13, we conclude that(
𝑋𝜒,G𝐹 , 𝜒

)
∼G𝐹

(
N𝑋 (L)𝜓 ,NG(L)𝐹 , 𝜓

)
for every 𝜒 ∈ E (G𝐹 , (L, 𝜆)) and where 𝜓 := ΩG

(L,𝜆) (𝜒) and the proof is now complete. �

4. Consequences of Theorem C

In this section, we collect some consequences of Theorem C. First, we extend the parametrisation
obtained in Theorem C from unipotent e-Harish-Chandra series of the simple group G to pseudo-
unipotent (see Definition 2.2) e-Harish-Chandra series of the Levi subgroups of G. More precisely,
for every F-stable Levi subgroup K of G, we construct a parametrisation of the e-Harish-Chandra
series associated to e-cuspidal pairs of the form (L, 𝜆) for some (K, 𝐹)-pseudo-unipotent character
𝜆 ∈ psK(L𝐹 ). In a second step, we construct character bijections above this parametrisation by exploiting
results on isomorphisms of character triples (see Corollary 4.6). This will allow us to control the
characters of e-chain stabilisers lying above pseudo-unipotent characters (see Proposition 5.7).

4.1. Parametrisation of pseudo-unipotent characters of Levi subgroups

In this section, we assume that G is a simply connected reductive group whose irreducible components
are of type A, B or C. Recall that, by abuse of terminology, we say that G is simply connected if so is
its derived subgroup [G,G] (a semisimple group). Furthermore, we assume that the prime ℓ is odd.

Let K be an F-stable Levi subgroup of G, and set K0 := [K,K]. Observe that since the group G is
simply connected, the subgroup K0 is also simply connected according to [41, Proposition 12.14]. In
addition, under our assumption on the type of G, we deduce that the simple components of K0 can only
be of some of the types A, B or C.

Proposition 4.1. For every unipotent e-cuspidal pair (L0, 𝜆0) of (K0, 𝐹), there exists a defect preserving
AutF(K𝐹

0 )(L0 ,𝜆0) -equivariant bijection
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ΩK0
(L0 ,𝜆0)

: E
(
K𝐹

0 , (L0, 𝜆0)
)
→ Irr

(
NK0 (L0)

𝐹
��𝜆0

)
such that (

𝑌𝜗 ,K𝐹
0 , 𝜗

)
∼K𝐹

0

(
N𝑌𝜗 (L0),NK0 (L0)

𝐹 ,ΩK0
(L0 ,𝜆0)

(𝜗)
)

for every 𝜗 ∈ E (K𝐹
0 , (L0, 𝜆0)) and where 𝑌 := K𝐹

0 � AutF (K𝐹
0 ).

Proof. Notice that K0 is the direct product of simple algebraic groups K1, . . . ,K𝑛 and that the action
of F permutes the simple components K𝑖 . Denote the direct product of the simple components in each
F-orbit by H 𝑗 for 𝑗 = 1, . . . , 𝑡. The (H 𝑗 , 𝐹) are the irreducible rational components of (K0, 𝐹), and
we have K𝐹

0 = H𝐹
1 × · · · × H𝐹

𝑡 . Similarly, if we define the intersections M 𝑗 := L0 ∩ H 𝑗 , then we
have a decomposition L𝐹

0 = M𝐹
1 × · · · × M𝐹

𝑡 . In particular, we can write 𝜆0 = 𝜇1 × · · · × 𝜇𝑡 with
𝜇 𝑗 ∈ Irr(M𝐹

𝑗 ). In this case, notice that (M 𝑗 , 𝜇 𝑗 ) is a unipotent e-cuspidal pair of (H 𝑗 , 𝐹). Next, suppose
that H 𝑗 = H 𝑗 ,1 × · · · × H 𝑗 ,𝑚 𝑗 , and observe that H𝐹

𝑗 � H𝐹𝑚𝑗

𝑗 ,1 . By the discussion at the beginning of this
section, we know that H 𝑗 ,1 is a simple, simply connected group of type A, B or C and hence it satisfies
the assumptions of Theorem C. Then, via the isomorphism H𝐹

𝑗 � H𝐹𝑚𝑗

𝑗 ,1 , we obtain an AutF(H𝐹
𝑗 )(M 𝑗 ,𝜇 𝑗 ) -

equivariant bijection

Ω
H 𝑗

(M 𝑗 ,𝜇 𝑗 )
: E

(
H𝐹

𝑗 , (M 𝑗 , 𝜇 𝑗 )
)
→ Irr

(
NH 𝑗 (M 𝑗 )

𝐹
��𝜇 𝑗

)
that preserves the defect of characters and such that(

𝑌 𝑗 ,𝜗 ,H𝐹
𝑗 , 𝜗

)
∼H𝐹

𝑗

(
N𝑌𝑗,𝜗 (M 𝑗 ),NH 𝑗 (M 𝑗 )

𝐹 ,Ω
H 𝑗

(M 𝑗 ,𝜇 𝑗 )
(𝜗)

)
(4.1)

for every 𝜗 ∈ E (H𝐹
𝑗 , (M 𝑗 , 𝜇 𝑗 )) and where 𝑌 𝑗 := H𝐹

𝑗 � AutF (H𝐹
𝑗 ). Since the characters in the

sets E (K𝐹
0 , (L0, 𝜆0)) and Irr(NK0 (L0)

𝐹 | 𝜆0) are products of characters belonging to the sets
E (H𝐹

𝑗 , (M 𝑗 , 𝜇 𝑗 )) and Irr(NH 𝑗 (M 𝑗 )
𝐹 | 𝜇 𝑗 ), respectively, we obtain a bijection

ΩK0
(L0 ,𝜆0)

: E
(
K𝐹

0 , (L0, 𝜆0)
)
→ Irr

(
NK0 (L0)

𝐹
��𝜆0

)
by setting

ΩK0
(L0 ,𝜆0)

(𝜗1 × · · · × 𝜗𝑡 ) := ΩH1
(M1 ,𝜇1)

(𝜗1) × · · · ×ΩH𝑡

(M𝑡 ,𝜇𝑡 )
(𝜗𝑡 )

for every 𝜗 𝑗 ∈ E (H𝐹
𝑗 , (M 𝑗 , 𝜇 𝑗 )). Finally, arguing as in the proof of [57, Proposition 6.5], we deduce

that the bijection ΩK0
(L0 ,𝜆0)

preserves the defect of characters, is AutF (K𝐹
0 )(L0 ,𝜆0) -equivariant, and, using

(4.1), it induces the K𝐹
0 -block isomorphisms of character triples required in the statement. �

In our next result, we replace the automorphism group 𝑌 := K𝐹
0 � AutF (K𝐹

0 ) with the group of
automorphisms of G𝐹 stabilising K, that is, 𝑋 := (G𝐹

�AutF (G𝐹 ))K. To do so, we apply the so-called
Butterfly Theorem [64, Theorem 5.3] which basically states that, for any finite group G, the notion of
G-block isomorphism of character triples only depends on the automorphisms induced on G.

Corollary 4.2. If (L0, 𝜆0) is a unipotent e-cuspidal pair of (K0, 𝐹), then the map ΩK0
(L0 ,𝜆0)

given by
Proposition 4.1 is AutF (G𝐹 )K, (L0 ,𝜆0) -equivariant and satisfies(

𝑋𝜗 ,K𝐹
0 , 𝜗

)
∼K𝐹

0

(
N𝑋𝜗 (L0),NK0 (L0)

𝐹 ,ΩK0
(L0 ,𝜆0)

(𝜗)
)

(4.2)

for every 𝜗 ∈ E (K𝐹
0 , (L0, 𝜆0)) and where 𝑋 := (G𝐹

� AutF(G𝐹 ))K.
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Proof. First, observe that AutF (G𝐹 )K is contained in AutF(K𝐹
0 ) because K0 is an F-stable charac-

teristic subgroup of K. In particular, we deduce that the map ΩK0
(L0 ,𝜆0)

is equivariant with respect to
the action of AutF (G𝐹 )K, (L0 ,𝜆0) . Next, to obtain (4.2), we apply [64, Lemma 3.8 and Theorem 5.3]
to the isomorphism of character triples given by Proposition 4.1 as explained in the proof of [57,
Corollary 6.8]. �

The notion of isomorphism of character triples, introduced by Isaacs, plays a fundamental role in
representation theory of finite groups and in the study of the local-global conjectures. One of the
most important consequences of the existence of isomorphisms of character triples is the possibility
to lift character bijections. For instance, the main result of [48] shows how to apply this technique to
construct bijections above characters of height zero in the context of the Alperin–McKay Conjecture [48,
Theorem B]. The main consequence of this result, which follows from an argument introduced by Murai
[45], is a reduction theorem for the celebrated Brauer’s Height Zero Conjecture [48, Theorem A]. This
strategy ultimately lead to the solution of Brauer’s conjecture (see [39] and [60]). For other applications
of isomorphisms of character triples, see [42, Proposition 1.1], [43], [49], [52], [55], [59], [61] and [68].

In our next result, we exploit this idea in order to lift the bijections given by Proposition 4.1 to the
Levi subgroup K. Consequently, we extend the parametrisation of unipotent e-Harish-Chandra series
given by Theorem C for the simple group G to a parametrisation of e-Harish-Chandra series associated
to (K, 𝐹)-pseudo-unipotent characters for every F-stable Levi subgroup K of G. First, we need a
preliminary lemma.
Lemma 4.3. Let (L, 𝜆) be a unipotent e-cuspidal pair of (K, 𝐹), and define the normaliser 𝑋 := (G𝐹

�

AutF(G𝐹 ))K. If K𝐹 ≤ 𝐻 ≤ NG (L)𝐹 and Q is an ℓ-radical subgroup of N𝐻 (L), then C𝑋 (𝑄) ≤ N𝑋 (L).
Proof. Let 𝐸 := Z(L)𝐹ℓ , and observe that L = C◦

G (𝐸) according to [15, Proposition 3.3 (ii)]. Now,
since Oℓ (N𝐻 (L)) is the smallest ℓ-radical subgroup of N𝐻 (L) [21, Proposition 1.4], we deduce that
𝐸 ≤ Oℓ (N𝐻 (L)) ≤ 𝑄, and it follows that C𝑋 (𝑄) ≤ C𝑋 (𝐸) ≤ N𝑋 (L) as wanted. �

Theorem 4.4. Suppose that G is a simply connected group whose irreducible components are of type
A, B or C, and assume that ℓ is odd. For every F-stable Levi subgroup K ≤ G and every unipotent
e-cuspidal pair (L, 𝜆) of (K, 𝐹), there exists a defect preserving AutF (G𝐹 )K, (L,𝜆) -equivariant bijection

ΩK
(L,𝜆) : E

(
K𝐹 , (L, psK(𝜆))

)
→ Irr

(
NK(L)𝐹

�� psK(𝜆)
)

such that (
𝑋𝜒,K𝐹 , 𝜒

)
∼K𝐹

(
N𝑋𝜒 (L),NK(L)𝐹 ,ΩK

(L,𝜆) (𝜒)
)

for every 𝜒 ∈ E (K𝐹 , (L, psK(𝜆))) and where 𝑋 := (G𝐹
� AutF(G𝐹 ))K.

Proof. Recall that K0 = [K,K], and define L0 := L ∩ K0 and 𝜆0 the restriction of 𝜆 to L𝐹
0 . Observe

that (L0, 𝜆0) is a unipotent e-cuspidal pair of (K0, 𝐹). Let 𝑧 ∈ Z(K∗)𝐹
∗ , and consider a character 𝜒

belonging to E (K𝐹 , (L, 𝜆𝑧L)). Since the restriction of 𝜆𝑧L to L𝐹
0 coincides with 𝜆0, [30, Corollary

3.3.25] implies that 𝜒 lies above some character in E (K𝐹
0 (L0, 𝜆0)). On the other hand, assume that

𝜒 ∈ Irr(K𝐹 ) lies above 𝜒0 ∈ E (K𝐹
0 , (L0, 𝜆0)). By [15, Proposition 3.1], the character 𝜒0 has an

extension 𝜒′ ∈ E (K𝐹 , (L, 𝜆)) and hence, using Gallagher’s theorem [32, Corollary 6.17] and [17,
(8.19)], we can find 𝑧 ∈ Z(K∗)𝐹

∗ such that 𝜒 = 𝜒′𝑧K. Since 𝜒′𝑧K is a character of E (K𝐹 , (L, 𝜆𝑧L))
according to [17, (8.20)], we conclude that

E
(
K𝐹 , (L, psK(𝜆))

)
= Irr

(
K𝐹

��� E (K𝐹
0 , (L0, 𝜆0)

))
. (4.3)

Next, suppose that 𝜓 ∈ Irr(NK (L)𝐹 | 𝜆𝑧L). In this case, 𝜓 lies above the restriction of 𝜆𝑧L to L𝐹
0 which

coincides with 𝜆0. In particular, there exists some 𝜑 ∈ Irr(NK0 (L0)
𝐹 | 𝜆0) such that 𝜓 lies above 𝜑. On
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the other, if 𝜒 lies above such a character 𝜑 ∈ Irr(NK0 (L0)
𝐹 | 𝜆0), then it lies above 𝜆0, and therefore,

we can find 𝑧 ∈ Z(K∗)𝐹
∗ such that 𝜓 ∈ Irr(NK (L)𝐹 | 𝜆𝑧L). This shows that

Irr
(
NK (L)𝐹

�� psK(𝜆)
)
= Irr

(
NK(L)𝐹

��� Irr
(
NK0 (L0)

𝐹
�� 𝜆0

))
. (4.4)

Finally, consider the map ΩK0
(L0 ,𝜆0)

given by Proposition 4.1. Then, the result follows from (4.3) and
(4.4) by applying [57, Proposition 6.1 and Remark 6.2] as explained in the proof of [57, Corollary
6.10] and using the K𝐹 -block isomorphisms of character triples obtained in Corollary 4.2. Here, we
consider 𝐴 := G𝐹

� AutF (G𝐹 ), 𝐴0 := N𝐴(L), 𝐾 := K𝐹
0 , 𝐾0 = NK0 (L)𝐹 = NK0 (L0)

𝐹 , 𝐺 := G𝐹 ,
𝑋 := (G𝐹

�AutF(G𝐹 ))K, S := E (K𝐹
0 , (L0, 𝜆0)), S0 := Irr(NK0 (L0)

𝐹 | 𝜆0),𝑉 := (G𝐹
�AutF (G𝐹 ))K,S

and 𝑈 := (G𝐹
� AutF(G𝐹 ))K,L,𝜆0 . Observe that the condition on defect groups required by [57,

Proposition 6.1] is satisfied by Lemma 4.3. �

4.2. Above e-Harish-Chandra series

We now further extend Theorem C by lifting the character bijections from Theorem 4.4 with respect to
normal inclusions.

Proposition 4.5. Consider the setup of Theorem 4.4, and let K𝐹 ≤ 𝐻 ≤ NG(K)𝐹 . Then, there exists a
defect preserving AutF (G𝐹 )𝐻,K, (L,𝜆) -equivariant bijection

ΩK,𝐻
(L,𝜆) : Irr

(
𝐻
���E (K𝐹 , (L, psK(𝜆))

))
→ Irr

(
N𝐻 (L)

��psK(𝜆)
)

such that (
N𝑋 (𝐻)𝜒, 𝐻, 𝜒

)
∼𝐻

(
N𝑋 (𝐻,L)𝜒,N𝐻 (L), 𝜓

)
for every 𝜒 ∈ Irr(𝐻 | E (K𝐹 , (L, psK (𝜆)))) and where 𝑋 := (G𝐹

� AutF (G𝐹 ))K.

Proof. We apply [57, Proposition 6.1] to the bijection given by Theorem 4.4. We consider the choices
𝐴 := G𝐹

� AutF (G𝐹 ), 𝐺 := G𝐹 , 𝐾 := K𝐹 , 𝐴0 := N𝐴(L), 𝑋 := N𝐴(K), S := E (K𝐹 , (L, psK (𝜆))),
S0 := Irr(NK(L)𝐹 | psK(𝜆)), 𝑈 := 𝑋0,𝜆, 𝑉 := 𝑋S and 𝐽 := 𝐻. Notice that the conditions (i)-(iii) of
[57, Proposition 6.1] are satisfied by [9, Theorem 3.2 (1)]. Furthermore, the requirements about defect
groups are satisfied by Lemma 4.3. Therefore, as explained in [57, Proposition 6.11], we obtain the
claimed result by applying [57, Proposition 6.1 and Remark 6.2]. �

Before proceeding further, we point out an interesting analogy with another important character
correspondence. The Glauberman correspondence plays a fundamental role in the study of the local-
global counting conjectures and lies at the heart of most reduction theorems. In its most basic form, it
states that for every finite ℓ-group L acting on a finite ℓ′-group K, there exists a bijection

𝑓𝐿 : Irr𝐿 (𝐾) → Irr(N𝐾 (𝐿))

between the set of L-invariant characters of K and the characters of the normaliser N𝐾 (𝐿) (see, for
instance, [47, Section 2.3]). A deep result due to Dade [20], and recently reproved by Turull [67], shows
that, if K and L are subgroups of a finite group G and 𝐾𝐿 ≤ 𝐻 ≤ 𝐾N𝐺 (𝐿), then the Glauberman
correspondence 𝑓𝐿 can be lifted to a character correspondence for H, that is, there exists a bijection

𝑓 𝐻𝐿 : Irr (𝐻 | 𝜒) → Irr (N𝐻 (𝐿) | 𝑓𝐿 (𝜒)) (4.5)

for every 𝜒 ∈ Irr𝐿 (𝐾). On the other hand, the parametrisation of unipotent e-Harish-Chandra series
obtained by Broué, Malle and Michel [9, Theorem 3.2] lies at the centre of the proofs of the local-
global counting conjectures for finite reductive groups. It is interesting to note that our methods yield
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a character bijection above e-Harish-Chandra series which is analogous to (4.5) in the context of the
Glauberman correspondence. This is an immediate consequence of Proposition 4.5.
Corollary 4.6. Consider the setup of Theorem 4.4, and let K𝐹 ≤ 𝐻 ≤ NG(K)𝐹 . Then, there exists a
bijection

Ψ𝐻
𝜒 : Irr (𝐻 | 𝜒) → Irr

(
N𝐻 (L)

��� ΩK
(L,𝜆) (𝜒)

)
for every 𝜒 ∈ E (K𝐹 , (L, psK(𝜆))).
Proof. This follows immediately from the proof of Proposition 4.5 by following the construction made
in [57, Proposition 6.1]. �

5. Towards Theorem A and Theorem B

Finally, we apply the results obtained in the previous sections to prove Theorem A which is our main
result. Then, we obtain Theorem B as a corollary by applying the e-Harish-Chandra theory for unipotent
characters developed by Broué, Malle and Michel [9] and by Cabanes and Enguehard [15]. Before doing
so, we introduce the relevant notation and prove some preliminary results.

5.1. Preliminaries on e-chains

Our first aim is to define e-local structures for finite reductive groups that play a role analogous to that
of ℓ-chains in the context of Dade’s Conjecture and the Character Triple Conjecture. The connection
between the set of e-chains and that of ℓ-chains has already been studied in [57, Section 7.2]. These
results provide a way to obtain Dade’s Conjecture and the Character Triple Conjecture as a consequence
of [57, Conjecture C and Conjecture D]. The possibility to use different types of chains is crucial in
the study of Dade’s Conjecture and has been introduced by Knörr and Robinson [35]. Their results
were insipred by previous studies conducted by many authors including Brown [14] and Quillen [50]
who analysed the homotopy theory of associated simplicial complexes. As in the previous section, we
assume that G is a simply connected reductive group whose irreducible components are of type A, B or
C and that ℓ is an odd prime.
Definition 5.1. We denote by L𝑒 (G, 𝐹) the set of e-chains of the finite reductive group (G, 𝐹), that is,
chains of the form

𝜎 = {G = L0 > L1 > · · · > L𝑛},

where n is a nonnegative integer and each L𝑖 is an e-split Levi subgroup of (G, 𝐹). We denote by
|𝜎 | := 𝑛 the length of the e-chain 𝜎 and by L(𝜎) its last term. Furthermore, we define L𝑒 (G, 𝐹)>0 to
be the set of e-chains having length strictly larger than 0.

Observe that the notion of length defined above induces a partition of the set L𝑒 (G, 𝐹) into
e-chains of even and odd length. More precisely, we denote by L𝑒 (G, 𝐹)± the subset of those e-chains
𝜎 ∈ L𝑒 (G, 𝐹) that satisfy (−1) |𝜎 | = ±1.

In what follows, given an e-chain 𝜎 and an e-split Levi subgroup M of (L(𝜎), 𝐹), we denote by
𝜎 + M the e-chain obtained by adding M at the end of 𝜎. We also allow the possibility that M = L(𝜎),
in which case we define 𝜎 + L(𝜎) := 𝜎. Vice versa, we denote by 𝜎 − L(𝜎) the e-chain obtained by
removing the last term L(𝜎) from 𝜎. Here, we use the convention that 𝜎0 −L(𝜎0) = 𝜎0 = 𝜎0 +G where
𝜎0 = {G} is the trivial e-chain.

Next, consider the action of G𝐹 on the set of e-chains L𝑒 (G, 𝐹) induced by conjugation: for every
𝑔 ∈ G𝐹 and 𝜎 = {L𝑖}𝑖 , we define

𝜎𝑔 :=
{
G = L0 > L𝑔

1 > · · · > L𝑔
𝑛

}
.
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It follows from this definition that the stabiliser G𝐹
𝜎 coincides with the intersection of the normalisers

NG (L𝑖)
𝐹 for 𝑖 = 1, . . . , 𝑛. Similarly, we can define an action of AutF(G𝐹 ) on L𝑒 (G, 𝐹) and give an

analogous description of the chain stabilisers AutF (G𝐹 )𝜎 . In particular, notice that the last term of the
chain satisfies L(𝜎)𝐹 �G𝐹

𝜎 . Using this observation, we can use the results of Section 4.2 to control the
characters of G𝐹

𝜎 that lie above pseudo-unipotent series of L(𝜎).

Definition 5.2. For every e-chain 𝜎 ∈ L𝑒 (G, 𝐹), we denote by CPu (𝜎) the set of unipotent e-cuspidal
pairs (M, 𝜇) ∈ CPu (L(𝜎), 𝐹) that satisfy M < G. Furthermore, for any such pair (M, 𝜇) ∈ CPu(𝜎),
we define the character set

Irrps(G𝐹
𝜎 , (M, 𝜇)) :=

⎧⎪⎪⎨⎪⎪⎩
Irr

(
G𝐹

𝜎

��� E (L(𝜎)𝐹 ,
(
M, psL(𝜎) (𝜇)

)))
L(𝜎) > M

Irr
(
G𝐹

𝜎

��� E (L(𝜎)𝐹 ,
(
M, psL(𝜎−L(𝜎)) (𝜇)

)))
L(𝜎) = M.

The need to distinguish the cases in the above definition will become apparent in the proofs of
Proposition 5.7 and Theorem 5.10 below. Observe that in the definition above, we are excluding the
degenerate case where G = L(𝜎) = M. To understand the reason why we are excluding this case, we
can consider an analogy with Dade’s Conjecture. For every finite group G, recall that k(𝐺) denotes
the number of its irreducible characters and that, for any nonnegative integer d, the symbol k𝑑 (𝐺)
denotes the number of those irreducible characters of ℓ-defect d. The local-global counting conjectures
provide a way to determine the global invariants k𝑑 (𝐺) in terms of ℓ-local structures. This idea was
made precise by Isaacs and Navarro [33]. According to their definitions, the block-free version of
Dade’s Conjecture can be stated by saying that the functions k𝑑 are chain local for every 𝑑 > 0.
Consequently, and because a sum of chain local functions is chain local, we deduce that the difference
k− k0 =

∑
𝑑>0 k𝑑 is (conjecturally) a chain local function. On the other hand, using the fact that groups

admitting a character of ℓ-defect zero have trivial ℓ-core, it is easy to see that k0 is not chain local. The
exclusion of the case G = L(𝜎) = M can be explained by interpreting these observations in the context
of unipotent characters. Recall that ku(G𝐹 ) and kc,u (G𝐹 ) denote the number of unipotent characters of
G𝐹 and unipotent e-cuspidal characters of G𝐹 respectively. If ℓ does not divide the order of Z(G𝐹 ),
then [15] implies that the unipotent e-cuspidal characters of G𝐹 have ℓ-defect zero. Therefore, as in
the case of Dade’s Conjecture, the global invariant we want to determine e-locally is the difference
ku (G𝐹 ) − kc,u (G𝐹 ). Finally, notice that kc,u (G𝐹 ) is exactly the number of unipotent e-cuspidal pairs
(M, 𝜇) of L(𝜎) satisfying G = L(𝜎) = M.

In the following lemma, we show that if the set Irrps (G𝐹
𝜎 , (M, 𝜇)) is nonempty then (M, 𝜇) is uniquely

defined up to G𝐹
𝜎-conjugation.

Lemma 5.3. Let 𝜎 ∈ L𝑒 (G, 𝐹) and consider two unipotent e-cuspidal pairs (M, 𝜇) and (K, 𝜅) in
CPu (𝜎). If the sets Irrps(G𝐹

𝜎 , (M, 𝜇)) and Irrps (G𝐹
𝜎 , (K, 𝜅)) have nontrivial intersection, then (M, 𝜇)

and (K, 𝜅) are G𝐹
𝜎-conjugate.

Proof. Suppose that 𝜗 is a character belonging to both character sets Irrps (G𝐹
𝜎 , (M, 𝜇)) and

Irrps (G𝐹
𝜎 , (K, 𝜅)). If we set L := L(𝜎), then we can find elements 𝑠, 𝑡 ∈ Z(L∗)𝐹

∗ and irreducible
characters 𝜑 ∈ E (L𝐹 , (M, 𝜇)) and 𝜓 ∈ E (L𝐹 , (K, 𝜅)) such that 𝜗 lies above 𝜑𝑠L and 𝜓𝑡L. By Clifford’s
theorem, we deduce that 𝜑𝑠L = (𝜓𝑡L)

𝑔 for some 𝑔 ∈ G𝐹
𝜎 . Furthermore, since 𝑠 is a linear character, we

obtain that 𝜑 = 𝜓𝑔 (𝑡L)
𝑔 (𝑠L)

−1. Since both 𝜑 and 𝜓𝑔 are unipotent characters of L𝐹 , using [17, Propo-
sition 8.26] we deduce that (𝑡L)𝑔 (𝑠L)

−1 = 1L, and therefore, 𝜑 = 𝜓𝑔. But then, [9, Theorem 3.2(1)]
shows that (M, 𝜇) and (K, 𝜅)𝑔 are L𝐹 -conjugate and the result follows. �

Next, we describe the block theory associated to characters in the sets introduced in Definition 5.2.

Lemma 5.4. Let 𝜎 ∈ L𝑒 (G, 𝐹), and consider a unipotent e-cuspidal pair (M, 𝜇) belonging to CPu (𝜎)
and a character 𝜗 ∈ Irrps (G𝐹

𝜎 , (M, 𝜇)). Recall that ℓ is odd. Then:
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(i) the block bl(𝜗) is L(𝜎)𝐹 -regular;
(ii) if 𝜗 lies above a given 𝜑𝑧L(𝜎) ∈ E (L(𝜎)𝐹 , (M, 𝜇𝑧M)) for some 𝑧 ∈ Z(L(𝜎)∗)𝐹

∗ , then we have

bl(𝜑𝑧L(𝜎) ) = bl(𝜇𝑧M)L(𝜎)𝐹 and bl(𝜗) = bl(𝜑𝑧L(𝜎) )
G𝐹

𝜎 = bl(𝜇𝑧M)G𝐹
𝜎

(iii) the induced block bl(𝜗)G𝐹 is defined.

Proof. The first point follows from Lemma 2.3 by choosing L = L(𝜎) and 𝐻 = G𝐹
𝜎 . Furthermore,

in the second case of Definition 5.2 observe that L(𝜎) ≤ L(𝜎 − L(𝜎)) from which it follows that
Z(L(𝜎 − L(𝜎))∗) ≤ Z(L(𝜎)∗). Therefore, we can always find 𝜑 and z as in the statement of (ii). Since
𝜑 is an irreducible constituent of the virtual character RL(𝜎)

M (𝜇), it follows from [15, Proposition 4.2]
(whose assumptions are satisfied by [15, Proposition 3.3 (ii)]) that bl(𝜑) = 𝑏L(𝜎)𝐹 (M, 𝜇) = bl(𝜇)L(𝜎)𝐹 .
Then, since 𝑧M is the restriction of the linear character 𝑧L(𝜎) to M𝐹 , we deduce from Lemma 2.1 that

bl(𝜑𝑧L(𝜎) ) = bl(𝜇𝑧M)L(𝜎)𝐹 .

Now, [46, Theorem 9.19] implies that

bl(𝜗) = bl
(
𝜑𝑧L(𝜎)

)G𝐹
𝜎

and the second point follows by the transitivity of block induction. Finally, set𝑄 := Z(M)𝐹ℓ and observe
that 𝑄CG𝐹 (𝑄) = M𝐹 ≤ NG𝐹 (𝑄) by [15, Proposition 3.3(ii)]. Then, [46, Theorem 4.14] implies that
bl(𝜇𝑧M)G𝐹 is defined and so is bl(𝜗)G𝐹 by (ii) and transitivity of block induction. This concludes the
proof. �

Using the lemma above, we can now define the following character set. This yields the e-local object
through which we can determine the number of (pseudo-)unipotent characters in a given block B of G𝐹

and with a given defect 𝑑 ≥ 0 (see Section 5.3).

Definition 5.5. Let B be a block of G𝐹 and d a nonnegative integer. For every e-chain 𝜎 ∈ L𝑒 (G, 𝐹)
and unipotent e-cuspidal pair (M, 𝜇) ∈ CPu(𝜎), we define the character set

Irr𝑑ps (𝐵𝜎 , (M, 𝜇)) :=
{
𝜗 ∈ Irrps

(
G𝐹

𝜎 , (M, 𝜇)
) ��� 𝑑 (𝜗) = 𝑑, bl(𝜗)G𝐹

= 𝐵
}
,

where bl(𝜗)G𝐹 is defined according to Lemma 5.4 (iii). Furthermore, we denote the cardinality of this
set by

k𝑑
ps (𝐵𝜎 , (M, 𝜇)) :=

��Irr𝑑ps(𝐵𝜎 , (M, 𝜇))
��.

In the following remark, we explain that the character sets defined above might be nonempty even if
B is not a unipotent block.

Remark 5.6. Let 𝜎 be an e-chain of (G, 𝐹), and suppose that (M, 𝜇) is a unipotent e-cuspidal pair such
that M < L(𝜎). If ℓ is odd and good for G, then [15, Proposition 3.3 (ii)] implies that M𝐹 = CG𝐹 (𝑄) for
𝑄 := Z(M)𝐹ℓ . Next, assume that Z(L(𝜎)∗)𝐹

∗ is not an ℓ-group and fix an ℓ′-element 𝑧 ∈ Z(L(𝜎)∗)𝐹
∗ .

We choose an irreducible character 𝜗 of G𝐹
𝜎 lying above some character of E (L(𝜎)𝐹 , (M, 𝜇𝑧M)) and

define 𝑑 := 𝑑 (𝜗) and 𝐵 = bl(𝜗)G𝐹 . By the above choices, we know that (M, 𝜇𝑧M) is an e-cuspidal
pair of (G, 𝐹), where the character 𝜇𝑧̂M lies in the Lusztig series E (M𝐹 , [𝑧]) with z of order prime
to ℓ. Since bl(𝜇𝑧M)G𝐹

= 𝐵 according to Lemma 5.4, we conclude that the irreducible constituents of
RG

M (𝜇𝑧M) belong to the block B as a consequence of [16, Theorem] (to use this result, we further assume
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that ℓ ≥ 5 with ℓ ≥ 7 if G has a component of type E8). Then, applying [10] it follows that the block B
is not unipotent. On the other hand, the character 𝜗 belongs to the set Irr𝑑ps (𝐵𝜎 , (M, 𝜇)).

We now show that Proposition 4.5 can be used to parametrise the character sets from Definition 5.5.

Proposition 5.7. Suppose that G is a simply connected group whose irreducible components are of type
A, B or C, and assume that ℓ is odd. Let B be a block of G𝐹 and d a nonnegative integer. If𝜎 ∈ L𝑒 (G, 𝐹)
and (M, 𝜇) is a unipotent e-cuspidal pair inCPu (𝜎), then there exists an AutF (G𝐹 )𝐵,𝜎, (M,𝜇) -equivariant
bijection

Ω𝐵,𝑑
𝜎, (M,𝜇)

: Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) → Irr𝑑ps (𝐵𝜎+M, (M, 𝜇))

such that (
𝑋𝜎,𝜗 ,G𝐹

𝜎 , 𝜗
)
∼G𝐹

𝜎

(
𝑋𝜎+M,𝜗 ,G𝐹

𝜎+M,Ω
𝐵,𝑑
𝜎, (M,𝜇)

(𝜗)
)

for every 𝜗 ∈ Irr𝑑ps (𝐵𝜎 , (M, 𝜇)) and where 𝑋 := G𝐹
� AutF (G𝐹 ).

Proof. First, observe that if M coincides with the last term L(𝜎) of the chain𝜎, then we have𝜎+M = 𝜎
which implies Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) = Irr𝑑ps (𝐵𝜎+M, (M, 𝜇)). In this case, the result holds by defining
Ω𝐵,𝑑

𝜎, (M,𝜇)
as the identity. Therefore, we can assume that M < L(𝜎) and define 𝜌 := 𝜎 + M. Now,

according to the first case in Definition 5.2 we have

Irrps

(
G𝐹

𝜎 , (M, 𝜇)
)
= Irr

(
G𝐹

𝜎

��� E (L(𝜎)𝐹 , (M, psL(𝜎) (𝜇))
))
. (5.1)

On the other hand, noticing that M coincides with the last term L(𝜌) of the chain 𝜌 and that
𝜌 − L(𝜌) = 𝜎, we obtain the equality E (L(𝜌)𝐹 , (M, psL(𝜌−L(𝜌)) (𝜇))) = psL(𝜎) (𝜇). Then, observing
that G𝐹

𝜌 = NG𝐹
𝜎
(M), we can apply the second case of Definition 5.2 to obtain the equality

Irrps

(
G𝐹

𝜌 , (M, 𝜇)
)
= Irr

(
NG𝐹

𝜎
(M)

��� psL(𝜎) (𝜇))
)
. (5.2)

Next, we apply Proposition 4.5 by choosing the groups in that statement to be 𝐻 = G𝐹
𝜎 , K = L(𝜎) and

(L, 𝜆) = (M, 𝜇). By (5.1) and (5.2), there exists an AutF(G𝐹 )𝜎, (M,𝜇) -equivariant bijection

ΩL(𝜎) ,G𝐹
𝜎

(M,𝜇)
: Irrps (G𝐹

𝜎 , (M, 𝜇)) → Irrps (G𝐹
𝜌 , (M, 𝜇)). (5.3)

Moreover, using the H-block isomorphisms given by Proposition 4.5 together with [64, Lemma 3.8 (b)],
we deduce that (

𝑋𝜎,𝜗 ,G𝐹
𝜎 , 𝜗

)
∼G𝐹

𝜎

(
𝑋𝜌,𝜗 ,G𝐹

𝜌 ,Ω
L(𝜎) ,G𝐹

𝜎

(M,𝜇)
(𝜗)

)
(5.4)

for every 𝜗 ∈ Irr𝑑ps (G𝐹
𝜎 , (M, 𝜇)). To conclude, observe first that ΩL(𝜎) ,G𝐹

𝜎

(M,𝜇)
sends characters of defect d

to characters of defect d. Moreover, by the transitivity of block induction and using (5.4), we deduce that

bl(𝜗)G𝐹
= bl

(
ΩL(𝜎) ,G𝐹

𝜎

(M,𝜇)
(𝜗)

)G𝐹

.

This shows that the bijection from (5.3) sends characters in the set Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) to characters in
the set Irr𝑑ps(𝐵𝜎+M, (M, 𝜇)), and therefore, it restricts to a bijection, denoted by Ω𝐵,𝑑

𝜎, (M,𝜇)
, satisfying the

properties required in the statement. This completes the proof. �

https://doi.org/10.1017/fms.2024.78 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.78


24 D. Rossi

We conclude this section with a remark on the isomorphisms of character triples obtained in
Proposition 5.7.

Remark 5.8. If in addition ℓ is good for G and does not divide |Z(G)𝐹 : Z◦(G)𝐹 |, then every e-split
Levi subgroup L of G satisfies L = C◦

G(Z(L)𝐹ℓ ) according to [17, Proposition 13.19]. This fact can
be used to show that the G𝐹

𝜎-block isomorphisms of character triples given by Proposition 5.7 can be
extended to G𝐹 -block isomorphisms of character triples. First, we claim that

CG𝐹𝑋𝜎,𝜗
(𝐷) ≤ 𝑋𝜎,𝜗 (5.5)

for every irreducible character 𝜗 of G𝐹
𝜎 and every ℓ-radical subgroup D of G𝐹

𝜎+M. Define𝑄𝑖 := Z◦(L𝑖)
𝐹
ℓ

for every e-split Levi subgroup L𝑖 appearing in the chain 𝜎. Then, using the fact that D is ℓ-radical,
we obtain the inclusions 𝑄𝑖 ≤ Oℓ (G𝐹

𝜎) ≤ 𝐷. Therefore, every element 𝑥 ∈ G𝐹 𝑋𝜎,𝜗 that centralises D
centralises also each 𝑄𝑖 and hence normalises each L𝑖 . It follows that

CG𝐹𝑋𝜎,𝜗
(𝐷) ≤ (G𝐹 𝑋𝜎,𝜗)𝜎 = 𝑋𝜎,𝜗

as required by (5.5). We can now apply [52, Lemma 2.11] to the G𝐹
𝜎-block isomorphisms given by

Proposition 5.7 to show that(
𝑋𝜎,𝜗 ,G𝐹

𝜎 , 𝜗
)
∼G𝐹

(
𝑋𝜎+M,𝜗 ,G𝐹

𝜎+M,Ω
𝐵,𝑑
𝜎, (M,𝜇)

(𝜗)
)

for every 𝜗 ∈ Irr𝑑ps(𝐵𝜎 , (M, 𝜇)).

5.2. Proof of Theorem A

We are finally ready to prove our main theorem which provides a bijection for unipotent characters in the
spirit of the Character Triple Conjecture [64, Conjecture 6.3]. In this section, we prove a slightly stronger
result that provides further information on the type of e-chains and isomorphisms of character triples. In
the following definition we introduce the analogue of the set C𝑑 (𝐵)± considered in the Character Triple
Conjecture as defined in [64, p. 1097].

Definition 5.9. Let B be a block of G𝐹 and consider a nonnegative integer d. We define the set

L𝑑
u (𝐵)± =

{
(𝜎,M, 𝜇, 𝜗)

�� 𝜎 ∈ L𝑒 (G, 𝐹)±, (M, 𝜇) ∈ CPu (𝜎), 𝜗 ∈ Irr𝑑ps (𝐵𝜎 , (M, 𝜇))
}
.

The conjugacy action of G𝐹 induces an action of G𝐹 on L𝑑
u (𝐵)± which is defined by setting

(𝜎,M, 𝜇, 𝜗)𝑔 := (𝜎𝑔,M𝑔, 𝜇𝑔, 𝜗𝑔) for every element 𝑔 ∈ G𝐹 and (𝜎,M, 𝜇, 𝜗) ∈ L𝑑
u (𝐵)±. We de-

note by L𝑑
u (𝐵)±/G𝐹 the corresponding set of G𝐹 -orbits of tuples. Moreover, for every such orbit 𝜔,

we denote by 𝜔• the corresponding G𝐹 -orbit of pairs (𝜎, 𝜗) such that (𝜎,M, 𝜇, 𝜗) ∈ 𝜔 for some
(M, 𝜇) ∈ CPu(𝜎). In other words, if we indicate by (𝜎,M, 𝜇, 𝜗) the G𝐹 -orbit of (𝜎,M, 𝜇, 𝜗), then
(𝜎,M, 𝜇, 𝜗)

•
is the G𝐹 -orbit of the pairs (𝜎𝑔, 𝜗𝑔).

Similarly, if AutF (G𝐹 )𝐵 denotes the set of those automorphisms 𝛼 ∈ AutF(G𝐹 ) that stabilise B, then
we can define (𝜎,M, 𝜇, 𝜗)𝛼 := (𝜎𝛼,M𝛼, 𝜇𝛼, 𝜗𝛼) for every𝛼 ∈ AutF (G𝐹 )𝐵 and (𝜎,M, 𝜇, 𝜗) ∈ L𝑑

u (𝐵).
In this way, we obtain an action of the group AutF(G𝐹 )𝐵 on the set L𝑑

u (𝐵)± and on the corresponding
set of orbits L𝑑

u (𝐵)±/G𝐹 .

Theorem 5.10. Suppose that G is a simply connected group whose irreducible components are of type
A, B or C, and assume that ℓ is odd. For every block B of G𝐹 and every nonnegative integer d, there
exists an AutF(G𝐹 )𝐵-equivariant bijection

Λ : L𝑑
u (𝐵)+/G𝐹 → L𝑑

u (𝐵)−/G𝐹 .

https://doi.org/10.1017/fms.2024.78 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.78


Forum of Mathematics, Sigma 25

Moreover, for every 𝜔 ∈ L𝑑
u (𝐵)+/G𝐹 , any (𝜎, 𝜗) ∈ 𝜔• and any (𝜌, 𝜒) ∈ Λ(𝜔)•, we have

|𝜎 | = |𝜌 | ± 1

and (
𝑋𝜎,𝜗 ,G𝐹

𝜎 , 𝜗
)
∼𝐽

(
𝑋𝜌,𝜒,G𝐹

𝜌 , 𝜒
)

with 𝐽 = G𝐹
𝜎 , if |𝜎 | = |𝜌 | − 1, or 𝐽 = G𝐹

𝜌 , if |𝜎 | = |𝜌 | + 1, and where 𝑋 := G𝐹
� AutF (G𝐹 ).

Proof. Define 𝐴 := AutF (G𝐹 ), and observe that 𝑋 = G𝐹
� 𝐴. In a first step, we construct an equivariant

bijection between triples of the form (𝜎,M, 𝜇). More precisely, let S denote the set of such triples
(𝜎,M, 𝜇) with 𝜎 ∈ L𝑒 (G, 𝐹) and (M, 𝜇) ∈ CPu (𝜎). We define a map

Δ : S → S

by setting

Δ ((𝜎,M, 𝜇)) :=

{
(𝜎 + M,M, 𝜇), L(𝜎) > M
(𝜎 − M,M, 𝜇), L(𝜎) = M.

Notice that, from the definition above it follows that the map Δ is A-equivariant and satisfies Δ2 = Id.
Therefore, observing that |𝜎 ± M| = |𝜎 | ± 1, we conclude that Δ restricts to an A-equivariant bijection

Δ : S+ → S−,

where S± denotes the set of those triples (𝜎,M, 𝜇) of S that satisfy 𝜎 ∈ L𝑒 (G, 𝐹)±. Furthermore,
notice once again that if Δ ((𝜎,M, 𝜇)) = (𝜌,K, 𝜅), then

|𝜎 | = |𝜌 | ± 1. (5.6)

Now, fix an 𝐴𝐵-transversal T+ in S+ and observe that the image of T+ under the map Δ , denoted by
T−, is an 𝐴𝐵-transversal in S− because of the equivariance property of Δ . Consider (𝜎,M, 𝜇) ∈ T+,
and write Δ ((𝜎,M, 𝜇)) = (𝜌,M, 𝜇). In what follows, we may assume without loss of generality that
L(𝜎) > M and that 𝜌 = 𝜎 + M, otherwise we repeat the arguments verbatim by replacing (𝜎,M, 𝜇)
with (𝜌,M, 𝜇). By Proposition 5.7, we obtain an 𝐴𝐵,𝜎, (M,𝜇) -equivariant bijection

Ω𝐵,𝑑
𝜎, (M,𝜇)

: Irr𝑑ps(𝐵𝜎 , (M, 𝜇)) → Irr𝑑ps
(
𝐵𝜌, (M, 𝜇)

)
such that (

𝑋𝜎,𝜗 ,G𝐹
𝜎 , 𝜗

)
∼G𝐹

𝜎

(
𝑋𝜌,𝜒,G𝐹

𝜌 , 𝜒
)

(5.7)

for every 𝜗 ∈ Irr𝑑ps (𝐵𝜎 , (M, 𝜇)) and where 𝜒 is the image of 𝜗. Consequently, if U (𝜎,M,𝜇)
+ is an

𝐴𝐵, (𝜎,M,𝜇) -transversal in the character set Irr𝑑ps (𝐵𝜎 , (M, 𝜇)), then its image, denoted by U (𝜌,M,𝜇)
− ,

under the bijection above is an 𝐴𝐵, (𝜌,M,𝜇) -transversal in the set Irr𝑑ps (𝐵𝜌, (M, 𝜇)) because 𝐴𝐵, (𝜎,M,𝜇) =
𝐴𝐵, (𝜌,M,𝜇) .

Now, by the discussion in the previous paragraph and using Lemma 5.3, we conclude that the sets of
G𝐹 -orbits

L+ :=
{
(𝜎,M, 𝜇, 𝜗)

��� (𝜎,M, 𝜇) ∈ T+, 𝜗 ∈ U (𝜎,M,𝜇)
+

}
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and

L− :=
{
(𝜌,M, 𝜇, 𝜒)

��� (𝜌,M, 𝜇) ∈ T−, 𝜒 ∈ U (𝜌,M,𝜇)
−

}
are 𝐴𝐵-transversals in the sets L𝑑

u (𝐵)+/G𝐹 and L𝑑
u (𝐵)−/G𝐹 respectively. Finally, we can define the

bijection Λ by setting

Λ
(
(𝜎,M, 𝜇, 𝜗)

𝑥
)

:= (𝜌,M, 𝜇, 𝜒)
𝑥

for every 𝑥 ∈ 𝐴𝐵 and every (𝜎,M, 𝜇, 𝜗) ∈ L+ and (𝜌,M, 𝜇, 𝜒) ∈ L− satisfying the equality
Δ (𝜎,M, 𝜇) = (𝜌,M, 𝜇) and such that

𝜒 =

⎧⎪⎪⎨⎪⎪⎩
Ω𝐵,𝑑

𝜎, (M,𝜇)
(𝜗), 𝜌 = 𝜎 + M(

Ω𝐵,𝑑
𝜌, (M,𝜇)

)−1
(𝜗), 𝜌 = 𝜎 − M.

Using (5.6) and (5.7) together with the definition of Λ, we conclude that the properties required in the
statement are satisfied and the proof is now complete. �

Now, as a consequence of Theorem 5.10 and Remark 5.8, we can finally prove Theorem A.

Proof of Theorem A. We assume now that ℓ does not divide |Z(G)𝐹 : Z◦(G)𝐹 |. Consider the bijection
Λ from Theorem 5.10, and choose 𝜔 ∈ L𝑑

u (𝐵)+/G𝐹 , (𝜎, 𝜗) ∈ 𝜔• and (𝜌, 𝜒) ∈ Λ(𝜔)•. Then, we have(
𝑋𝜎,𝜗 ,G𝐹

𝜎 , 𝜗
)
∼𝐽

(
𝑋𝜌,𝜒,G𝐹

𝜌 , 𝜒
)

with 𝐽 = G𝐹
𝜎 , if |𝜎 | = |𝜌 | − 1, or 𝐽 = G𝐹

𝜌 , if |𝜎 | = |𝜌 | + 1. In both cases, applying Remark 5.8, we
deduce that (

𝑋𝜎,𝜗 ,G𝐹
𝜎 , 𝜗

)
∼G𝐹

(
𝑋𝜌,𝜒,G𝐹

𝜌 , 𝜒
)

as required by Theorem A. �

5.3. Proof of Theorem B

Our final goal is to obtain a counting argument for unipotent characters as a consequence of Theorem
5.10. Recall that Dade’s Conjecture provides a way to determine the number of characters in a given
ℓ-block B and with a given defect d in terms of ℓ-local structures. Theorem B provides an adaptation of
this idea to the unipotent characters of finite reductive groups by means of e-local structures compatible
with e-Harish-Chandra theory (see Definition 5.5). For every 𝜎 ∈ L𝑒 (G, 𝐹), we define

k𝑑
u (𝐵𝜎) :=

∑
(M,𝜇)

k𝑑
ps (𝐵𝜎 , (M, 𝜇)), (5.8)

where (M, 𝜇) runs over a set of representatives for the action of G𝐹
𝜎 on CPu(𝜎). First, we show a direct

consequence of Theorem 5.10.

Theorem 5.11. Suppose that G is a simply connected group whose irreducible components are of type
A, B or C, and assume that ℓ is odd. For every block B of G𝐹 and every nonnegative integer d, we have∑

𝜎

(−1) |𝜎 |k𝑑
u (𝐵𝜎) = 0,

where 𝜎 runs over a set of representatives for the action of G𝐹 on L𝑒 (G, 𝐹).
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Proof. We determine the cardinality of the sets of G𝐹 -orbits L𝑑
u (𝐵)±/G𝐹 . By applying Lemma 5.3, we

obtain ��L𝑑
u (𝐵)±/G𝐹

�� = ∑
𝜎, (M,𝜇)

k𝑑
ps (𝐵𝜎 , (M, 𝜇)) =

∑
𝜎

k𝑑
u (𝐵𝜎), (5.9)

where 𝜎 runs over a set of representatives for the action of G𝐹 on L𝑒 (G, 𝐹)± and (M, 𝜇) runs over a set
of representatives for the action of G𝐹

𝜎 on CPu(𝜎). Since the sets L𝑑
u (𝐵)+/G𝐹 and L𝑑

u (𝐵)−/G𝐹 have
the same cardinality by Theorem 5.10, the equality in (5.9) implies that

0 =
��L𝑑

u (𝐵)+/G𝐹
�� − ��L𝑑

u (𝐵)−/G𝐹
�� = ∑

𝜎

(−1) |𝜎 |k𝑑
u (𝐵𝜎),

where now 𝜎 runs over a set of representatives for the action of G𝐹 on L𝑒 (G, 𝐹) as claimed in the
statement. �

Before proving Theorem B, recall that k𝑑
u (𝐵) and k𝑑

c,u (𝐵) denote the number of irreducible characters
belonging to the block B and with defect d that are unipotent and unipotent e-cuspidal, respectively.

Proof of Theorem B. Let L± be a fixed set of representatives for the action of G𝐹 on L𝑒 (G, 𝐹)±. We
want isolate the contribution given by the trivial chain 𝜎0 := {G} ∈ L𝑒 (G, 𝐹)+ to the sum in (5.9).
Since G is simple and simply connected, we deduce that Z(G∗)𝐹

∗ is trivial and hence, recalling that
L(𝜎0) = G, we obtain psL(𝜎) (𝜇) = {𝜇} for every (M, 𝜇) ∈ CPu(𝜎0). Consequently, using Definition
5.2 and Definition 5.5, we deduce that

k𝑑
u (𝐵𝜎0) =

∑
(M,𝜇)

k𝑑
ps (𝐵𝜎0 , (M, 𝜇)) (5.10)

=
∑
(M,𝜇)

��Irr𝑑 (𝐵) ∩ E (G𝐹 , (M, 𝜇))
��

= k𝑑
u (𝐵) − k𝑑

c,u (𝐵),

where the last equality follows from [9, Theorem 3.2 (1)] since each (M, 𝜇) ∈ CPu(𝜎0) satisfies
M < G = L(𝜎0). Next, Theorem 5.10 implies that L𝑑

u (𝐵)+/G𝐹 and L𝑑
u (𝐵)−/G𝐹 have the same

cardinality, and therefore, we conclude from (5.9) and (5.10) that

k𝑑
u (𝐵) − k𝑑

c,u (𝐵) +
∑
𝜎∈L+
𝜎≠𝜎0

k𝑑
u (𝐵𝜎) =

∑
𝜎∈L+

k𝑑
u (𝐵𝜎) =

∑
𝜎∈L−

k𝑑
u (𝐵𝜎). (5.11)

Finally, noticing that (−1) |𝜎 |+1 = ∓1 for every 𝜎 ∈ L±, we can rewrite (5.11) as

k𝑑
u (𝐵) − k𝑑

c,u (𝐵) =
∑

𝜎∈L−∪L+
𝜎≠𝜎0

(−1) |𝜎 |+1k𝑑
u (𝐵𝜎)

which is exactly the equality in the statement of Theorem B. �
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