
J. Fluid Mech. (2024), vol. 999, A44, doi:10.1017/jfm.2024.721

Effect of rotation on wake vortices in stratified
flow
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Stratified wakes past an isolated conical seamount are simulated at a Froude number of
Fr = 0.15 and Rossby numbers of Ro = 0.15, 0.75 and ∞. The wakes exhibit a Kármán
vortex street, unlike their unstratified, non-rotating counterpart. Vortex structures are
studied in terms of large-scale global modes, as well as spatially localised vortex evolution,
with a focus on rotation effects. The global modes are extracted by spectral proper
orthogonal decomposition (SPOD). For all three studied Ro ranging from mesoscale,
submesoscale and non-rotating cases, the frequency of the SPOD modes at different
heights remains coupled as a global constant. However, the shape of the SPOD modes
changes from slanted ‘tongues’ at zero rotation (Ro = ∞) to tall hill-height columns at
strong rotation (Ro = 0.15). A novel method for vortex centre tracking shows that, in all
three cases, the vortices at different heights advect uniformly at approximately 0.9U∞
beyond the near wake, consistent with the lack of variability of the global modes. Under
system rotation, cyclonic vortices and anticyclonic vortices (AVs) present considerable
asymmetry, especially at Ro = 0.75. The vorticity distribution as well as the stability of
AVs are tracked downstream using statistics conditioned to the identified vortex centres.
At Ro = 0.75, intense AVs with relative vorticity up to ωz/fc = −2.4 (where ωz is the
vertical vorticity and fc is the Coriolis frequency) are seen with small regions of instability
and they maintain large ωz/fc magnitude in the far wake. Recent stability analysis that
accounts for stratification and viscosity is found to improve on earlier criteria and show
that these intense AVs are stable.

Key words: rotating flows, stratified flows, wakes

1. Introduction

The planet that we live on is full of multi-scale eddies, generated by various sources
ranging from uneven thermal energy distribution at the largest scales, wind-driven ocean
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Figure 1. Flow configuration (not to scale). The background density is linearly stratified. The frame is rotating
at a constant angular velocity Ωc = Ω sin ϕ, where Ω is the Earth’s angular velocity and ϕ is the latitude. The
Coriolis frequency, fc = 2Ωc, is negative. Gravity, density stratification and the axis of rotation all point to
negative ẑ.

surface motions, to relatively more localised obstacle-induced flows. The dynamics of
such eddies is greatly enriched by incorporating stratification, rotation and turbulence.
Understanding this dynamics is essential to geophysics. This work will be focused
particularly on the last example – wake eddies generated by obstacles.

In the deep ocean, seamounts and hills are stirring rods; they induce vortical motion,
turbulence and internal gravity waves, which enhance heat and mass transport and
hence crucially impact the ocean state. In the atmosphere, mountains commonly trigger
wakes and waves, and orographic lifting is a source of convective weather, including air
unsteadiness, formation of cumulonimbus clouds and precipitation. Both the ocean and
the atmosphere are stratified, and the scales of motions are large enough to feel the effect
of Earth’s rotation, leading to a distinctive wake dynamics. The understanding of the
wakes behind three-dimensional (3-D) obstacles from a fluid dynamics perspective would
benefit the modelling and prediction of the multi-scale motions of oceanic and atmospheric
bottom boundary flows.

In this study, we consider the wake of a steady uni-directional mean flow (U∞)
perturbed by an isolated conical seamount/hill submerged in the fluid (figure 1). The
background has stable density stratification that is linear so that the buoyancy frequency
N = √−g∂zρ̄/ρ0 is a constant. Here, ρ̄ + ρ0 is the unperturbed background density and
g is the gravitational acceleration. The Coriolis frequency fc = 2Ωc is a negative constant
(Southern hemisphere). A conical obstacle of base diameter D and height h is placed on a
flat bottom wall to represent an idealised isolated hill/seamount.

Two non-dimensional numbers, the vertical Froude number (Fr = U∞/Nh) and the
Rossby number (Ro = U∞/| fc|D) are the main controlling parameters. An additional
(but not independent) non-dimensional number, the Burger number (Bu = N2h2/f 2

c D2 =
(Ro/Fr)2) that characterises the importance of stratification relative to rotation will also
be used. The dynamical significance of the Burger number can also be interpreted as the
normalised Rossby radius of deformation, Ld/D = Nh/fcD = √

Bu.
Stratified hill wakes have been studied extensively through laboratory experiments, field

observations and numerical simulations. Hunt & Snyder (1980) showed experimentally
that, for relatively strong stratification (Fr < 0.4), there is a potential energy barrier below
which the flow does not have sufficient kinetic energy to go over the hill and, instead, flows
around the hill to form a quasi-two-dimensional (Q2-D) Kármán vortex shedding (VS)
pattern. This is a significant qualitative difference between stratified and unstratified flow
past a 3-D obstacle. Without stratification, the flow goes over the obstacle and horseshoe

999 A44-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.721


Effect of rotation on wake vortices in stratified flow

structures are formed (Garcia-Villalba et al. 2009). Castro, Snyder & Marsh (1983) showed
in stratified flow past a finite-span ridge that, as Fr decreases from above to below unity, the
wake behind the hill transitions from a lee-wave-dominated regime to a vortex-dominated
regime, with the latter regime being the focus of this work. They found that at or below
Fr = 0.2 (their figure 7, last row), the modulation of the vortex wake by the lee waves can
be neglected except near the peak of the ridge. Boyer et al. (1987) studied experimentally
the effect of system rotation on stratified hill wakes in the regime of Ro = O(0.1), Fr =
O(0.1)–O(1), equivalently Bu = O(1)–O(10) variation. They found that the VS frequency
is not strongly affected by changing Ro. However, the Reynolds number (ReD < 1200)
was not sufficient for the wake to be turbulent. For non-rotating hill wakes, Vosper et al.
(1999) varied the Froude number and the shape of the wake generator, and found that the
VS frequency is a weak increasing function of Fr, and the St–Fr relationships collapses for
different object shapes if the reference velocity is corrected for blockage. More recently,
Teinturier et al. (2010) and Lazar et al. (2013a) performed laboratory experiments on the
LEGI-Coriolis rotating platform where a cylinder (h/D = 0.1 was small) was towed in
the upper layer of a fluid with two-layer stratification as a simple model of island wakes.
The towing velocity and rotation speed were varied to achieve different combinations of
Ro and Re with constant Re/Ro, e.g. Ro = 1 corresponded to a Reynolds number of Re =
10 000 in Teinturier et al. (2010) and the experiments of Lazar et al. (2013a) considered
Re = 2000–7000. With these laboratory experiments, they were able to investigate the
asymmetry between cyclonic and anticyclonic vortices over a range of Ro.

For rotating stratified hill wakes, numerical studies include the utilisation of the
hydrostatic regional oceanic modelling system (ROMS) (Shchepetkin & McWilliams
2005), such as Dong, McWilliams & Shchepetkin (2007), Perfect, Kumar & Riley (2018),
Perfect (2019), Srinivasan, McWilliams & Jagannathan (2021) and Jagannathan et al.
(2021), and the hydrostatic version of the MIT general circulation model (MIT-GCM)
(Marshall et al. 1997a,b), such as Liu & Chang (2018). Recently, Puthan, Sarkar & Pawlak
(2021) and Puthan, Pawlak & Sarkar (2022a,b) conducted non-hydrostatic large-eddy
simulation (LES) of stratified hill wakes. The focus was on the role of tidal modulation
of a mean current in a regime with strong stratification but weak rotational effects. The
findings included tidal synchronisation (VS at specific tidal subharmonics that depend on
the tidal excursion number), phases with enhanced turbulent dissipation and higher form
drag. A similar numerical procedure will be followed in this work while excluding the
periodic tide and focussing on rotation effects.

In terms of field observations, island wakes have acquired much attention recently and
wakes have been studied near Palau (MacKinnon et al. 2019; Zeiden et al. 2021), the Green
Island off the coast of Taiwan (Chang et al. 2019) and in the lee of Guadalupe (Horvath
et al. 2020), to name a few. A strong sign of a narrowband VS mode stood out from
the broadband turbulence signal, and coherent submesoscale vortices were found in the
wake. Submesoscale vortices are characterised by a Rossby number of order unity, and are
receiving increasing attention (Taylor & Thompson 2023).

In this paper, we present results from seamount/hill wakes at Fr = 0.15 and
three representative Rossby numbers, Ro = 0.15, 0.75, ∞, corresponding to mesoscale,
submesoscale and non-rotating stratified flow regimes, respectively. The conical hill has
h/D = 0.3 and the Reynolds number is Re = 10 000. There is near-wake turbulence but
the focus of this paper will be on characterising coherent wake vortices that emerge further
downstream.

The preceding literature survey raises several scientific issues regarding wakes of
isolated topography in a rotating, stratified fluid. Previous simulations of an obstacle wake
with significant stratification and rotation effects have used the hydrostatic assumption.
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In contrast, our non-hydrostatic model and LES approach (with high resolution as will
be described) enables the capture of 3-D turbulent motions and, additionally, topographic
internal gravity waves. The temporal frequency of VS from a conical obstacle in stratified
flow can depend on the height of measurement at the obstacle in addition to background
stratification and rotation. Current understanding of the VS frequency at a conical obstacle,
which is based on a laboratory study (Boyer et al. 1987) and hydrostatic simulations
(Perfect et al. 2018), as well as the spatial structure of the wake vortices, is incomplete.
With the application of spectral proper orthogonal decomposition (§ 3) to vertical vorticity,
we are able to not only pinpoint the VS frequency and its dependence on Ro (Bu) but
also the spatial organisation of the associated coherent structure. Another question is the
relation with linear stability theory of the stable coherent wake eddies (their vorticity and
radius) that emerge in the simulations from the strongly turbulent near wake. A novel
eddy identification scheme allows statistical measurement, based on a large ensemble
of individual realisations, of the wake-eddy structure and its evolution as a function of
downstream distance (§ 4). Our comparison with stability theory (§ 5) expands on the
important laboratory findings of Lazar et al. (2013a) in various ways: substantially higher
Re = 10 000 at Ro = 0.15 relative to the laboratory value of Re = 1500, the non-uniform
cross-section of a cone instead of a cylinder and a continuous linear stratification instead
of a two-layer stratification.

The rest of the paper is structured as follows: § 2 introduces the numerical methods and
the LES simulations conducted as part of this work; § 3 elucidates the global structures
in the flow that are coherent in space and time via flow visualisations and spectral proper
orthogonal decomposition (SPOD); § 4 presents ensemble-averaged tracks of the centres
of vortices that are obtained by application of a pattern recognition method; § 5 is a
systematic study of the asymmetry between cyclones and anticyclones and the instabilities
of the anticyclones; § 6 concerns the evolution of the mean momentum wake; and, finally,
§ 7 is a summary and discussion of the results.

2. Numerical simulations

The incompressible Navier–Stokes equations are solved in a Cartesian coordinate system
with x, y and z being the streamwise, transverse and vertical directions, as shown in
figure 1. In the momentum equation, density variation appears only in the buoyancy as
per the Boussinesq approximation and system rotation is represented by the Coriolis force.
The non-dimensional governing equations in index notation are as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
− 1

Ro
εij3(uj − U∞δj1) = −∂p∗

∂xi
+ ∂τij

∂xj
− 1

Fr2
D

ρ∗δi3, (2.2)

∂ρ

∂t
+ ∂ρui

∂xi
= ∂Jρ,i

∂xi
, (2.3)

τij = 1
Re

(
1 + νsgs

ν

) (
∂uj

∂xi
+ ∂ui

∂xj

)
, Jρ,i = 1

RePr

(
1 + κsgs

κ

) ∂ρ

∂xi
, (2.4)

where the normalising units for xi, ui, t, p∗ and ρ∗ are D, U∞, D/U∞, ρ0U2∞ and
−∂zρ̄D, respectively. In the above equations, δij is the Kronecker Delta, εijk is the
Levi-Civita symbol and τij is the deviatoric stress tensor. Here, the horizontal Froude
number, FrD = U∞/ND, is related to the vertical Froude number used in this study as
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FrD = (h/D)U∞/Nh = (h/D)Fr = 0.045. The Prandtl number, Pr = ν/κ , which is the
ratio between the molecular viscosity ν and the scalar diffusivity κ , is set to unity.

The total density ρ is decomposed into the reference density ρ0, the linearly varying
background density ρ̄(z) and the density perturbation ρ∗ due to fluid motion

ρ(x, y, z, t) = ρ0 + ρ̄(z) + ρ∗(x, y, z, t). (2.5)

The total pressure is written as

p(x, y, z, t) = p0 + pg( y) + pa(z) + p∗(x, y, z, t), (2.6)

where the reference pressure p0 is a constant, the hydrostatic (ambient) pressure pa has a
vertical gradient that balances the ambient density (ρa = ρ0 + ρ̄(z)) and the geostrophic
pressure pg has a transverse gradient that balances the Coriolis force due to the velocity
U∞ of the free stream. Only the dynamic pressure p∗ appears in the momentum equation
(2.2).

The LES is performed at a moderately high Reynolds number ReD = U∞D/ν = 10 000.
Spatial derivatives are discretised with a second-order central finite difference on a
staggered grid, and the equations are advanced in time using a combined scheme with
third-order Runge–Kutta for the convection terms and Crank–Nicolson for the diffusion
terms. Continuity is enforced by solving the pressure Poisson equation. The obstacle is
represented by an immersed boundary method (Balaras 2004; Yang & Balaras 2006). The
sub-grid-scale (SGS) model is chosen to be the wall-adapted local eddy-viscosity (WALE)
model (Nicoud & Ducros 1999) with the SGS Prandtl number Prsgs = νsgs/κsgs set to
unity, where the SGS viscosity νsgs and diffusivity κsgs represent the modelled effects
on the transport of resolved momentum and scalar by the unresolved scales. For more
numerical details, the reader is referred to Puthan et al. (2020).

The conical obstacle has base diameter D, height h and a slope of approximately 30◦
(28.4◦) such that h/D = 0.3. The slope of approximately 30◦ in this study is steep in the
oceanic context, both dynamically (much larger than typical internal wave propagation
angles) and geometrically (typically, underwater bathymetry has much smaller slope
angle).

The computational domain spans a volume of Lx × Ly × Lz = [−4, 15] × [−4, 4] ×
[0, 4] in units of D and the horizontal resolution of the immersed body and the turbulent
near wake (−1 < x/D < 2) is held constant at (�x, �y) � (0.003D, 0.006D) ≤ (4η, 8η),
with a mild stretching in the streamwise direction. Here, η is the minimum Kolmogorov
length scale at the centreline at different heights. The vertical resolution below z/h = 1.2
is kept at �z = 0.008h � 0.05U∞/N to resolve the length scale for vertical overturning
motion U∞/N.

The inflow condition is a uniform velocity inlet, and the outflow is a Neumann-type
convective outlet. The lateral boundaries are periodic to reduce the blockage effect and
to allow the wake to flap. The top boundary is shear free, and the hill boundary is no
slip for velocity and no flux for density. Sponge layers are placed at the inlet and the
top boundaries to reduce spurious reflected internal wakes. The overall LES setting and
the immersed boundary formulation have been tested and validated against available data
on force coefficients and evolution of wake deficit and turbulence intensity for flow past
various geometries (sphere, disk, cone) in unstratified and stratified environments (Pal
et al. 2016, 2017; Chongsiripinyo & Sarkar 2020; Puthan et al. 2020).

The parameter space explored is shown in table 1. The stratification is held constant at
Fr = 0.15, a typical value for midsize topography in the ocean and the atmosphere, and
is in the ‘flow-around’ regime where coherent wake vortices dominate. Meanwhile, the
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Case Bu Ro Fr (Nx, Ny, Nz) Nt TU∞/D colour code

BuInf ∞ ∞ 0.15 (1536,1280,320) 4000 295 red
Bu25 25 0.75 345 green
Bu1 1 0.15 322 blue

Table 1. Parameters of simulated cases. Here, Nx, Ny, and Nz are the number of grid points in each direction
and Nt is the total number of available snapshots that will be used for all statistics. Also, T is the time span of
the stored data. The aspect ratio of the conical obstacle is h/D = 0.3 for all cases.

rotation Rossby number is varied as Ro = 0.15, 0.75, ∞, to study its effect on the vortex
wake. These three values of Ro correspond to mesoscale, submesoscale and non-rotating
geophysical flows. The induced Burger numbers are Bu = 1, 25, ∞, which will be used to
label different cases.

We compile a time-resolved numerical database that consists of three rotation strengths
and collect the data after statistical stationarity is reached. Each case has Nt = 4000
snapshots that span around 300 convective time units (T = 300D/U∞), which corresponds
to roughly 80 VS periods. Statistics, to be discussed later, are obtained by averaging over
the entire interval, T .

3. Large-scale coherent structures

In geophysical flows, coherent vortical structures are commonly observed. There is no
universal definition of coherent structures, but they are generally strong enough and have
a relatively independent dynamics to distinguish them from the background flow, account
for a significant portion of the fluctuation energy of the system, are spatially organised and
their lifetime is sufficient for them to be dynamically important. The wake eddies of this
paper have the aforementioned features.

Large-scale Kármán vortices, a specific type of coherent structure, are associated with
VS from bluff bodies. In geophysical applications, they are commonly found in flows
impinging on bottom or side topography, e.g. island wakes (Young & Zawislak 2006;
Chang et al. 2019; Horvath et al. 2020), headland wakes (Pawlak et al. 2003) and in
laboratory flows (Hunt & Snyder 1980; Castro et al. 1983; Boyer et al. 1987; Teinturier
et al. 2010), among others. In field observations and laboratory experiments, the features
of the coherent vortices are inferred from single- or multiple-point statistics and flow
visualisations. The data are limited in spatial coverage and resolution.

In what follows, coherent structures will be studied in two ways. First, individual
snapshots in which vortex structures are vividly visible are used for a qualitative overview
of rotation effects (§ 3.1). Second, a more comprehensive quantitative assessment is
obtained by applying SPOD to the time-resolved LES database in table 1 to reveal the
statistical significance of the coherent structures. Section 3.2 reviews the theory and
implementation of SPOD, followed by the analysis of the temporal eigenspectra (§ 3.3)
and spatial modes (§ 3.4).

3.1. Flow visualisations
A first impression of the 3-D spatial organisation of the wake vortices is provided by
the isosurfaces of the vertical component of vorticity (ωz = (∇ × u)z) in figure 2(a–c)
for cases BuInf, Bu25 and Bu1, respectively. At moderately strong stratification
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Figure 2. Visualisation of the isosurfaces of |ωz|D/U∞ = 1.5, 1.0, 3.0 for BuInf, Bu25 and Bu1 (top
to bottom), respectively. Red and blue indicate positive (anticyclonic since fc is negative) and negative
(cyclonic) vorticity, respectively. Note the vertical axis is normalised with the height h of the hill, which is
approximately 0.3 times the base diameter D. The three snapshots (a–c) are taken at time instants tU∞/D =
252.0, 221.6, 152.0, respectively.

(Fr ≤ O(0.1)), vertical overturning motions are suppressed to approximately one order
of magnitude smaller than horizontal flows, with the latter well represented by ωz.

In the near-wake region (x/D < 3), the ωz isosurface is space filling and multiscale,
indicating greater turbulence intensity than further downstream. But after x/D = 3, the
vortices quickly organise into spatially compact coherent structures that persist to
the end of the computational domain with little change. Rotation clearly influences the
shape and size of the structures. For case BuInf in figure 2(a), the structures are slanted
‘tongues’ with horizontal dimensions greater than their height. As the strength of rotation
is increased, the horizontal size shrinks and the height increases as in figure 2(b) for Bu25.
With further increase of rotation, the vortex structures become aligned with the vertical
axis, appearing as tall ‘columns’ that extend from the flat bottom to the hill height, in
figure 2(c).

The wake vortices are composed of cyclones (rotation is in the same direction as that of
the frame) and anticyclones. It is found in figure 2(b,c) that, with the presence of rotation,
the cyclones (negative vortices in blue) are different from anticyclones (positive vortices
in red) with regards to size, shape and vorticity distribution, as will be elaborated in later
sections. In figure 2(c), cyclones are taller and thinner than anticyclones and, as will be
shown, have stronger interior vorticity.

Figure 3(a–c) shows the instantaneous ωz at several heights for all three cases.
In all three cases, a pattern of Q2-D Kármán vortices is distinct in all planes at
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Figure 3. (a–c) Instantaneous and (d) time-averaged ωz at horizontal planes at z/h = 0.75, 0.50, 0.12 (from
top to bottom in each panel). (a,d) Cases BuInf, (b) Bu25, (c) Bu1. In (a–c), the snapshots are taken at
non-dimensional time instants tU∞D = 77.9, 123.9, 63.3 counted after the fully developed state is reached,
respectively.

z/h = 0.12, 0.25, 0.75. The flow is akin to a vortex wake rather than its unstratified
counterpart of a 3-D turbulent wake (Garcia-Villalba et al. 2009).

The mean vertical vorticity (〈ωz〉) of case BuInf is shown in figure 3(d). For the lower
two planes, the mean looks very similar to those obtained in low Reynolds number
2-D cylinder wakes, such as in Barkley (2006) and Mittal (2008), both at ReD = 100.
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Such similarity supports the Q2-D feature of the hill wake at Fr = 0.15. At the same time,
there is a notable difference: the flow in each horizontal place that cuts the hill does not
represent an independent 2-D flow around a cylinder with the local hill diameter. Among
different planes at different heights in figure 3(d), the length of the attached shear layer
(with dark colours), is approximately a constant, regardless of the variation of the local
hill diameter. This is consistent with the fact that the VS frequency is a global constant
which will be discussed in detail in the next section, as the shear layer length is correlated
to the shedding frequency (Williamson & Brown 1998).

In the SPOD analysis of the next section, the vertical vorticity on different horizontal
planes (ωz(x, y, t; z)) is chosen as the quantity of interest since the large-scale wake
structures involve predominantly Q2-D vortical motion (figures 2–3), the shedding and
evolution processes of which are well represented by ωz. Moreover, the focus of this work
is on the influence of increasing rotation strength on the horizontal motions, which tends
to constrain the flow to be around the vertical axis at the large scales and significantly
enhances ωz, as will be shown later. In the rotating cases Bu25 and Bu1, the stability of
the anticyclones will also be studied (§ 5) with ωz being one of the most important metrics,
hence we apply ωz rather than other vortex identification criteria for overall consistency.

As seen in figures 2–3, ωz structures exhibit dissimilar vertical organisation at different
levels of rotation, although Kármán vortices are present in each horizontal plane. Owing
to stratification, a vertical length scale of U∞/N = Frh = 0.15h is introduced to the
flow, and whether vortex structures remain coherent over vertical distances larger than
U∞/N regardless of rotation (suggested affirmatively by figure 2) needs quantitative
investigation. To that end, we perform SPOD on vertically offset horizontal planes at z/h =
0.12, 0.25, 0.50, 0.75 (Nx × Ny × Nz = 1538 × 1280 × 1) and the vertical centre plane at
y = 0 (Nx × Ny × Nz = 1538 × 1 × 320) to allow the choice of different dominant (VS)
frequencies at different heights by the flow and avoid imposing a priori a global frequency.

3.2. Spectral proper orthogonal decomposition and its numerical implementation
Proper orthogonal decomposition (POD) is a matrix-factorisation-based modal
decomposition of complex systems introduced into fluid mechanics by Bakewell & Lumley
(1967) and Lumley (1967, 1970).

Consider a statistically stationary square-integrable multi-variable signal q(x, t) ∈
L2

W (Ω) with zero mean. Here, L2
W is the Hilbert space equipped with a weighted inner

product

(q1, q2)W =
∫
Ω

qH
2 (x)W (x)q1(x) dx, (3.1)

on a bounded domain Ω , and (·)H denotes Hermitian transpose. The weight matrix W is
Hermitian positive–definite and the weighted 2-norm is defined as ‖q1‖W = (q1, q1)

1/2
W .

The symbol 〈·〉E denotes the ensemble average over all realisations, and it is equivalent to
the time average under ergodicity. The goal of POD is to find an empirical function ψ(x)

that solves the optimisation problem

ψ(x) = arg max
‖ψ‖W =1

〈(q,ψ)W 〉E, (3.2)

which defines ψ(x) as the function on which the projection of q(x, t) is maximised in the
sense of the least squares. Since L2

W is an infinite-dimensional space, a practical way to
obtain the empirical function ψ(x) is to approximate it within a finite-dimensional space
spanned by {ψ (i)}M

i=1, where ψ (i) is the ith spatial mode and M is the order of truncation.
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It was shown in Holmes et al. (2012) that the optimisation problem (3.2) can be converted
to a Fredholm eigenvalue problem as

Rψ (i)(x) =
∫
Ω

R(x, x′)W (x′)ψ (i)(x′) dx′ = λ(i)ψ (i)(x), (3.3)

where R is a linear operator and R(x, x′) = 〈q(x)qH(x′)〉E is the two-point correlation
tensor. Since R is Hermitian positive–definite, its eigenvalues λ(i) are real positive that
each represents a fraction of the fluctuation energy, and the eigenvectors {ψ (i)}M

i=1 form an
orthogonal basis under the inner product (3.1).

In the framework of SPOD, the eigenvalue problem (3.3) is cast as

Rψ (i)(x, t) =
∫
Ω

∫ ∞

−∞
R(x, x′, t, t′)W (x′)ψ (i)(x′, t′) dx′ dt′ = λ(i)ψ (i)(x, t), (3.4)

and R(x, x′, t, t′) = 〈q(x, t)qH(x′, t′)〉E is the two-point, two-time correlation tensor. With
time homogeneity, it reduces to R(x, x′, τ ) as a function of τ = t − t′, and is the Fourier
transform pair of the spectral density tensor S(x, x′, f ) = 〈q̂(x, f )q̂H(x′, f )〉E:

R(x, x′, τ ) =
∫ ∞

−∞
S(x, x′, f ) exp(i2πf τ ) df . (3.5)

Hence, φ(i)(x, f ) = ψ (i)(x, t) exp(−i2πf τ ) will be the corresponding eigenmodes of the
following eigenvalue problem:

Sφ(i)(x, f ) =
∫
Ω

S(x, x′, f )W (x′)φ(i)(x′, f ) dx′ = λ(i)( f )φ(i)(x, f ), (3.6)

which will be solved separately for each frequency. Here, q̂(x, f ) denotes the Fourier mode
of q(x, t) at frequency f , and can be represented by the eigenfunctions φ(i)(x, f ) as

q̂(x, f ) =
∞∑

i=1

√
λ(i)( f )φ(i)(x, f ). (3.7)

In the case of SPOD, the weighted inner product in (3.1)–(3.2) will be a space–time
integral

(q1, q2)W =
∫
Ω

∫ ∞

−∞
qH

2 (x, t)W (x)q1(x, t) dx dt. (3.8)

We note that, at the same frequency f , different eigenvectors φ(i)(x, f ),φ( j)(x, f ) are
orthogonal under the spatial inner product (3.1) due to the symmetric positive definiteness
of S(x, x′, f ). But eigenvectors φ(i)(x, f1),φ(i)(x, f2) at the same rank (i) associated with
different frequencies are not necessarily orthogonal under the space-only inner product.

Our numerical implementation is similar to those in Towne, Schmidt & Colonius (2018)
and Schmidt & Colonius (2020). Data are sampled into blocks of sequenced snapshots
(shown below is the lth block)

Q(l) = [q(l)
1 , q(l)

2 , . . . , q(l)
NFFT

] ∈ R
Nd×NFFT , (3.9)

where each column q(l)
i is one snapshot. The total number of snapshots in one block

(ensemble) is NFFT , where fast Fourier transform (FFT) will be performed over each block.
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Effect of rotation on wake vortices in stratified flow

The degree of freedom of one snapshot is Nd = Nx × Ny × Nz × Nvar, where Nvar is the
dimension of the vector q(x, t). In this study, we apply SPOD on the vertical component of
vorticity (ωz, hence Nvar = 1) in horizontal and vertical two-dimensional cross-sections
of the flow (with either Nz = 1 or Ny = 1, respectively).

A discrete Fourier transform (DFT) is performed on each block Q(l) to yield

Q̂(l) = [q̂(l)
1 , q̂(l)

2 , . . . , q̂(l)
NFFT

] ∈ C
Nd×NFFT . (3.10)

Then, the Fourier modes are sorted according to frequency (labelled as the kth discrete
frequency) to form

Q̂k = [q̂(1)
k , q̂(2)

k , . . . , q̂(Nblk)
k ] ∈ C

Nd×Nblk . (3.11)

The sampled spectral density at the kth frequency is then Sk = Q̂kQ̂H
k /(Nblk − 1) and

the discrete form of the eigenvalue problem (3.6) is

SkWΦk = ΦkΛk, (3.12)

with the weight matrix W containing the weights of numerical quadrature at each grid
point. In practice, (3.12) is typically solved with the method of snapshots of Sirovich (1987)
by replacing Φk = Q̂kΨ k such that (3.12) becomes an equivalent eigenvalue problem

1
Nblk − 1

Q̂H
k W Q̂kΨ k = Ψ kΛk, (3.13)

that has a much smaller dimension when Nblk � Nd is true. Hence, the eigenmodes of Sk

are recovered as Φ̃k = Q̂kΨ kΛ
−1/2
k such that the eigenvalue decomposition is

Sk = Φ̃kΛkΦ̃
H
k =

Nblk∑
i=1

λ
(i)
k φ̃

(i)
k (φ̃

(i)
k )H. (3.14)

The physical meaning of the spatial modes Φ̃k(x) can be interpreted as either the
eigenvector of the spectral density tensor Sk or the left singular vector of the Fourier mode
q̂k, at a discrete frequency fk.

The SPOD method takes advantage of extracting spatial modes that evolve at a single
frequency from a time-resolved database, as in table 1. It was applied to analyse stratified
wakes by Nidhan et al. (2020) and Nidhan, Schmidt & Sarkar (2022), who showed that
it can successfully extract the large-scale VS motions and the associated characteristic
frequency. In oceanography applications, Zeiden et al. (2021) applied a similar approach
called empirical orthogonal functions (EOFs) therein to the flow past an island and
successfully separated the vortical modes and the tidal modes. But in their case, the EOFs
are fit to three mooring points instead of the bulk of the flow, hence they are different from
ours where the eigenmodes will be emphasised as global modes.

When converting the time series into Fourier modes in (3.10), Welch’s method (Welch
1967) is used to reduce the variance of the spectrum, with NFFT = 512 snapshots in each
block, and a Hamming window on each block to enforce periodicity. An overlap ratio
of 50 % (Novlp = 256) between two sequential blocks is chosen to offset the effect of
low weights near the edges of the window. We end up with 13 blocks and the ensemble
average will be taken over all blocks to obtain SPOD eigenspectra. The convergence of
the method is checked via reducing the frequency resolution to NFFT = 256, or reducing
the total number of snapshots from Nt = 4000 to 3000, and 2000. A high confidence
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level is obtained for the largest six eigenvalues as well as the sum of all eigenvalues,
at each frequency. This follows the fact that for general eigenvalue-revealing algorithms,
large eigenvalues converge faster. And it is noted that, in the present wakes, converging
high-rank SPOD eigenvalues with much smaller magnitudes is still challenging even with
Nt = 4000 snapshots. In this paper, no particular analysis will be conducted for higher
than the sixth eigenvalue at any frequency.

In this database, a constant maximal Courant–Friedrichs–Lewy (CFL) number is kept
during the simulation, which results in an uneven (but almost uniform) time spacing
of snapshots. To obtain uniformly spaced data for DFT, a piecewise cubic Hermite
interpolation (PCHIP) is performed in time.

3.3. The SPOD eigenspectra and vortex shedding frequencies
Figure 4(a–c) shows the global vertical enstrophy spectra Sωzωz( f ) at different 2-D planes
for BuInf, Bu25 and Bu1, respectively. The spectral density at a discrete frequency fk is
computed by summing over all SPOD eigenvalues at this frequency

Sωzωz( fk) =
Nblk∑

i

λ(i)( fk) = tr(SkW ) =
∫
Ω

S(x, x, fk) dx, (3.15)

and is the spectral density of the area-integrated squared ωz. It is independent of SPOD.
For all three cases and all planes examined, the spectra display strong harmonic spikes,

with the strongest peak defined as the VS frequency ( fVS) in each plane. The VS frequency
is independent of the vertical location of the four horizontal planes, and is also the same
in the central vertical plane, even though performing SPOD on separate planes allows
the freedom of selecting different frequencies. This indicates that, for each case, fVS is
a global constant (for the heights examined), and the VS modes are 3-D global modes.
The VS Strouhal number is StVS = fVSD/U∞ = 0.264, 0.249, 0.266 for BuInf, Bu25 and
Bu1, respectively. It is noted that, since the characteristic frequency of the global mode
( fVS) does not depend on the height or the local hill diameter, normalising it with a
different length scale than the hill base diameter D would just make StVS different by a
scalar multiple. However, as will be discussed later, the numerical values of StVS using
D correspond well to that of VS from a circular cylinder. Also, since D determines the
size of the largest scales in the flow, it is a natural choice for the normalising scale. In the
eigenspectra, the successive peaks are harmonics of the VS frequency at 2StVS, 3StVS and
so on.

Perfect et al. (2018) found that whether the VS frequency is a global constant or
is controlled by the local hill diameter depends on a non-dimensional parameter: the
Burger number (Bu). The Burger number characterises the relative importance of two
counteracting mechanisms for vertical coupling: rotation and stratification. When Bu
is small (rotation is strong), the bulk of the flow adjusts to be around the axis of
rotation quickly, and geostrophic balance is established, where the vertical variation is
minimised. As Bu is increased, the vertical intercommunication is progressively weakened
by stratification. Perfect et al. (2018) use the diameter at half-height to be the characteristic
horizontal scale so that their values of Rossby number (Ro∗) and Burger number (Bu∗)
are related to our values by Ro∗ = 2Ro and Bu∗ = 4Bu. They performed a number of
simulations and found that Bu∗

cri = 5.5, equivalently Bucri = 1.4, is a regime-separation
criterion below which the rotation is strong enough to couple different layers to form
vertically aligned vortices. Also, when Bu∗ > 12, equivalently Bu > 3, they found
stratification to be more prominent so that vortices are shed at different layers relatively
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Figure 4. (a–c) Global power spectra Sωzωz of ωz as a function of Strouhal number (St = f D/U∞). Spectra are
shown at four horizontal planes z/h = 0.12, 0.25, 0.50, 0.75, and the central vertical plane at y = 0. The VS
Strouhal number is marked as StVS as well as the VS harmonics. The values take StVS = 0.264, 0.249 and 0.266
in (a–c), for cases BuInf, Bu25 and Bu1, respectively. (d) Decay of the largest eigenvalue at the VS frequency
fVS and the harmonics (indexed by n = f /fVS) for the horizontal plane z/h = 0.25 (results are similar for other
locations). Colour codes same as in (a–c).

independently. Turning to the present results, in each of the cases at Fr = 0.15 whose Ro
span unity to infinity, the VS frequency is independent of height, indicating a potential
disagreement between Perfect et al. (2018) and our results. On the other hand, for Froude
numbers similar to Fr = 0.15 in Perfect et al. (2018), almost all the cases (see figure 4,
therein) were labelled as ‘vertically coupled shedding’ and had strong rotation with Ro
between 0.025 and 0.25. Only their weakest rotation case with Ro = 0.25 was labelled as
‘vertically decoupled shedding’. It is also worth noting that, in the ROMS simulations,
vertical motions and pressure correlations are quite approximate (especially in the near
wake where VS is accompanied by small-scale turbulence) since the momentum equation
in that direction is reduced to a hydrostatic balance, and the pressure field might play an
important role in coupling VS.

Nevertheless, the fact that the modes extracted by SPOD are global modes, and they
evolve at the same frequency, implies that the large-scale vortices at Fr = 0.15 are
horizontally and vertically coherent, as opposed to the asymptotic limit of vertically
uncoupled layered dynamics in strongly stratified flows. Our findings indicate that the
stratification of Fr = 0.15 is not strong enough to vertically decouple the vortex dynamics
in the wake of the conical seamount, regardless of the presence of rotation, and inclusion
of Fr is necessary in addition to Bu. The pure Burger number criterion has the limitation
that, for instance, with no rotation and small stratification, Bu will be far larger than Bucri
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but the VS frequency can still be a global constant. The Fr that marks the transition from
vertically coupled to decoupled VS in non-rotating hill wakes is subject to future research.

Boyer et al. (1987) studied experimentally the wake behind a conical obstacle in linearly
stratified rotating flows. Their parameters spanned 0.08 < Fr < 0.28, 0.06 < Ro < 0.4
and for three Reynolds numbers ReD = 380, 760, 1140. Based on the measurement on
single horizontal cross-sections, they found the VS Strouhal number to be only a weak
function of both Re and Ro. The robustness of the VS frequency to rotation strength is also
observed numerically in this work, in a similar Fr–Ro regime but at a turbulent Reynolds
number ReD = 10 000. Even though their Strouhal numbers are measured as the vortex
advection velocity divided by the mean separation of two same sign vortices, and were
in the range 0.20 < St < 0.35, our VS Strouhal numbers still present a good quantitative
agreement with theirs. Moreover, we interpret the VS frequency revealed by SPOD as
the characteristic frequency of the most energetic global mode, which also agrees with
single-point frequency measurements in the intermediate wake (x/D > 3, not shown).

The values of StVS for all three cases are close to St = 0.2665, which is the Re →
∞ asymptote of the St–Re relationship in low Reynolds number 2-D cylinder wakes
proposed by Williamson & Brown (1998). Note that their relation St = 0.2665–1.018

√
Re

is given for 50 < ReD < 180, which is before the transition to 3-D wakes. This transition
happens at around Re = 188.5 according to a global Floquet instability of the periodic
wake (Barkley & Henderson 1996). As a result, the St–Re relationship experiences a
discontinuity as a sudden jump of St during this transition (Fey, König & Eckelmann
1998; Williamson & Brown 1998), and the asymptote of St = 0.2665 is not reached in
3-D cylinder wakes. Fey et al. (1998) showed that the maximum VS Strouhal number in a
cylinder wake of about St = 0.21 is reached right before the onset of the Kelvin–Helmholtz
instability in the shear layer. We interpret the observed values of VS frequencies in our hill
wakes as a saturation of the Q2-D VS, which will not be observed in 3-D cylinder wakes
at this Reynolds number and above. This interpretation is consistent with the finding in
Boyer et al. (1987) that the robustness of fVS to rotation rate is not affected by the Reynolds
number, in their low-to-moderate Reynolds number experiments.

The enstrophy distribution among different eigenvalues is an important measure of the
complexity of the system. Figure 5 shows the sum of all eigenvalues, and also the first to
the sixth eigenvalues (from dark to light) according to their absolute value. For frequencies
at or close to the VS frequency and its harmonics, the first eigenvalue accounts for most of
the enstrophy, and is an order of magnitude larger than the second eigenvalue. However, for
larger frequencies (St > 2), the dominance of the leading eigenvalues is lost, as the degree
of freedom for small-scale motions is increased. The significance of low rankness in the
spectra is therefore twofold. There are strong harmonic spikes in the SPOD eigenspectra
in figure 4(a–c), implying that a great portion of enstrophy is contained in the large-scale
VS motions. For the VS shedding frequency and its harmonics, the first two eigenvalues
contribute the most of the enstrophy.

Moreover, the enstrophy distribution among the harmonics is shown in figure 4(d). The
decay of the first eigenvalue λ(1) as a function of the integer harmonic index n = f /fVS is
plotted. Similar to figure 5, one horizontal plane z/h = 0.25 is chosen, but the results are
qualitatively similar for the other three selected horizontal planes. For all three Burger
numbers, λ(1) decays approximately as a power progression as n−3, which is slower
than the geometric decay of distinct POD eigenvalues in 2-D cylinder wakes (Noack
et al. 2003). Nevertheless, higher harmonics contain a progressively smaller amount of
enstrophy. Additionally, by comparing the absolute value of λ(1) in figure 4(d) and

∑
i λ

(i)

in figure 5, it is generally true that vertical enstrophy is increased as the rotation rate
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Figure 5. The SPOD eigenspectra: (a) BuInf, (b) Bu25 and (c) Bu1. Horizontal plane at z/h = 0.25 is shown
(results are similar for other locations). From top to bottom are the summation of all eigenvalues (darkest,
spectral density as in figure 4a–c), and the first to the sixth eigenvalues (from dark to light: i = 1, 2, 3, 4, 5, 6),
as a function of Strouhal number (St = f D/U∞). The difference between the first and the second eigenvalues
is filled with colour.

increases. This is an effect of system rotation that promotes vortical motion around the
rotation axis as will be discussed in more detail in § 5.

In all, the large scales of the vortical motion can be well represented by a few
characteristic frequencies and the associated leading modes. Such low-rank behaviour
suggests the possibility of reduced-order modelling of stratified hill wakes even at large
Reynolds numbers.

3.4. The SPOD eigenfunctions and large-scale global modes
Apart from the temporal characteristics uncovered by SPOD eigenspectra, the SPOD
eigenmodes represent energetic flow structures that are coherent in space and time and,
therefore, dynamically important. The dominant modes in each case are found to be the
VS modes, which are three-dimensionally coherent and characterised by the VS frequency
( fVS) and its superhamonics.

The real parts of the leading SPOD modes (corresponding to the largest eigenvalue at
each frequency) are plotted in figures 6 and 7, for two frequencies fVS and 2fVS and on
various 2-D planes. The eigenfunctions are free up to a scalar multiple and are normalised
by the largest modulus of the spatial mode in the same plane. The interpretation of the
magnitude of the eigenmodes (or the darkness of the colours) as the intensity of the
structures is only meaningful when the comparison is made within the same plane.

For case BuInf (no rotation), the VS mode in figure 6(a) is reminiscent of the marginally
stable global modes found in the linear stability analysis of low Reynolds number cylinder
wakes (Barkley & Henderson 1996; Mittal 2008). However, the phases of the global mode
are different in different planes, with the phases of higher planes leading. This is clearer
in the vertical plane ( y = 0), which shows the tilting and elongation of the structures as
an effect of stratification. Note that the vertical coordinate is normalised by the hill height
h which is approximately 0.3 times the base diameter; in un-normalised coordinates, the
angle of the slanted ‘tongues’ is very shallow. The tilting angle from the horizontal of
the structures in the top panel of figure 6(a) ranges from approximately 8◦ close to the
bottom wall to 2◦ near the top, with an average of approximately 4◦, which is almost
constant during the evolution. Although the VS structures are not vertical, they still evolve
cohesively at fVS and experience little change during the advection. In the later § 4, the lack
of change of the tilting angle will be shown to be a result of a roughly constant advection
velocity of the vortices. A similar slanted mode as in figure 6(a) was found in a stratified
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Figure 6. Leading SPOD eigenmodes corresponding to fVS (a,c) and 2fVS (b,d), for cases BuInf (a,b) and Bu25
(c,d). The plotted quantity is the real part of SPOD eigenfunction on each plane, normalised by the maximum
value in the plane. In each figure, the top plane is the vertical plane, y = 0, and the lower planes are, from the
second row to bottom, horizontal planes at z/h = 0.75, 0.50, 0.12.
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Figure 7. For case Bu1. Caption same as in figure 6.

sphere wake by Chongsiripinyo, Pal & Sarkar (2017) (referred as ‘surfboards’ therein), but
whether it is a common feature of stratified bluff-body wakes is subject to future research.

Moreover, the standing-wave-like spatial modes of fVS in figure 6(a) are symmetric
about y = 0, representing the advection of the perturbation vorticity ω′

z = ωz − 〈ωz〉. The
projection of ω′

z on the fVS mode has a period of TVS and the streamwise wavelength of
the mode is interpreted as the average spacing of the Kármán vortices. The appearance
of the symmetric fVS mode on the antisymmetric mean flow (see figure 3d), in analogy
to low Reynolds number 2-D cylinder wakes (Kumar & Mittal 2006), can be viewed as
an accompaniment to the symmetry-breaking bifurcation from a steady wake to periodic
shedding.

The modes of 2fVS in figure 6(b) are antisymmetric, with a wavelength approximately
half of that in the fVS mode. A result of this reflection antisymmetry is that the
eigenspectrum at the vertical plane (black dashed line in figure 4(a) does not exhibit a
peak at 2fVS, unlike the spectra at horizontal planes. The antisymmetry implies a zero
magnitude of the 2fVS mode at the centreline ( y = 0), hence the top row in figure 4(b)
does not imply any dynamical importance.

The imaginary parts of the eigenmodes are not shown, which are different from the
real parts by a streamwise phase shift of π/2, and are therefore representing the same VS
dynamics. The phase shift between two standing-wave-like eigenmodes with the same
streamwise wavelength (such as the real and imaginary parts of the fVS mode here)
is essential for them to accommodate one travelling-wave-like structure (such as the
advecting VS motion) as noted by Rempfer & Fasel (1994).

For cases Bu25 and Bu1, the reflectional symmetry is broken by the Coriolis force
and, unlike BuInf, the peak at 2fVS is observed in the eigenspectra at the vertical plane
(black dashed lines). The rightward (−y) shift of the vortex wake is consistent with the
direction of the Ekman veering near the bottom by the unbalanced mean pressure gradient.
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This asymmetry can also be found in the SPOD modes in figures 6(c,d) and 7(a,b),
where the cyclones (on the left side of the bulk of the wake, looking from above) are
preferred and amplified, as compared with the anticyclones. However, in the vertical mode
(first row in figure 6c,d), slanted structures are still statistically significant, even though
figure 2(b) shows that, for case Bu25, some anticyclones have already become columnar.
This suggests that the stratification in Bu25 is still dominating, and rotation has not been
able to modify the spatial organisation of the structures. However, the presence of rotation
significantly alters the structure inside the anticyclones, which will be analysed in § 5.

For case Bu1 (strong rotation), the global modes in figure 7(a,b) show excellent vertical
alignment, agreeing with the shed ‘columns’ in figure 2(c). In the vertical plane (see the
first row in figure 7a), both cyclonic and anticyclonic structures extend slightly higher than
the obstacle peak, whereas the structures in cases Bu25 and BuInf are limited to below the
obstacle peak, signifying that the obstacle’s range of influence is vertically increased by
increasing rotation. We note that those ‘columns’ are different from the typical Taylor
column in rotating flow over obstacles. A Taylor column has an infinite height on the top
of a finite object that generates it, whereas the columnar global mode in case Bu1 has
a finite height. In figure 7(a,b) it can be seen that the parts of the global mode near the
hill (0 < x/D < 1) are smaller and slanted, and they eventually become organised into tall
‘columns’ during their advection downstream as rotation is experienced, instead of being
columnar at the generation.

Finally, the relation between the global VS modes found in the present stratified wakes
and the global modes in 2-D Kármán wakes is worth further exploration. The VS modes
observed in each 2-D horizontal plane of the non-rotating case (BuInf, see figures 6–7) are
visually similar to those observed in 2-D Kármán wakes, and the associated VS Strouhal
number (StVS) is close to the Re → ∞ limit of the St–Re relation of 2-D cylinder wakes.
It is worth pointing out that strong stratification is crucial for the similarity between
the present high Reynolds number wakes and 2-D Kármán wakes. Alternating shedding
vortices are not seen at a Reynolds number similar to ReD = 10 000 in unstratified cylinder
wakes (Fey et al. 1998) and stratified sphere wakes at Fr > O(0.5) (Pal et al. 2016), where
the attached shear layer will have lost its stability.

On the other hand, the slanted, forward-tilting vertical structures seen in the y = 0 plane
of BuInf case are suggestive of vertical coherence of horizontal vortical motion, which is
absent for 2-D flows. As a part of the global mode, the VS frequency and spatial mode
in each horizontal plane depends rather on the hill base diameter than on the local hill
diameter at the same height – another difference from typical 2-D Kármán wakes.

The change of the titling angle of the global mode as Ro decreases until the vortex
structures are fully upright at Ro = 0.15 adds an additional aspect – the influence of
rotation. Even though the vertical alignment of the structures is varied, the dominant
modes are still the VS modes with the shedding frequencies being similar in each case,
indicating that the VS motions at present Fr = O(0.1) are relatively robust to rotation.
Slanted vortical structures as in BuInf were also observed in stratified non-rotating wakes
past a sphere by Pal et al. (2016) and Chongsiripinyo et al. (2017). Whether these
structures are common in strongly stratified wakes past a body of revolution with vertically
varying diameter and how these structures are modified by further increase in stratification
deserves future study.

4. Vortex centre tracking and advection velocity

The previous section on coherent structures was a macroscopic view that was enabled by
the extraction of global SPOD modes. In this section, we will take a microscopic (at the
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Figure 8. Visualisation of identified vortex centres, for cases (a) BuInf and (b) Bu1. Circles and triangles
mark the centres of positive and negative vortices, respectively. Shown are the centres identified in a horizontal
plane at z/h = 0.50 (bottom row) and their projection in the vertical central plane at y = 0 (top row). The
snapshots are taken at non-dimensional time instants tU∞D = 44.9, 38.1 counted after the fully developed
state is reached, for (a,b), respectively.

level of individual vortices) view of the cyclonic (negative, note the Southern Hemisphere
setting) and anticyclonic (positive) vortices. To do so, individual vortex centres will be
identified and, by computation of statistics conditioned to them, various properties will
be diagnosed on an ensemble-average basis: vortex advection velocity discussed in this
section and, in § 5, the vorticity distribution inside the vortices and furthermore the
stability of wake vortices as inferred by the application of linear-theory-based stability
criteria of varying complexity.

The advection velocity in turbulent wakes past the near-wake stage can be taken to be
close or equal to the free-stream velocity U∞, e.g. beyond x = 6D in the study by VanDine,
Chongsiripinyo & Sarkar (2018) of non-rotating wakes at Fr ≥ O(1). Whether this
constancy holds everywhere in the flow, and whether there is any asymmetric advection
between the cyclonic and anticyclonic sides, requires clarification for geophysical wakes.

The present time-resolved database enables temporal tracking of the vortices to study
their behaviour during the evolution. We apply a clustering method – mean shift to
extract the vortex centres in horizontal snapshots, and then follow each identified centre
in time. An example of identified vortex centres is illustrated in figure 8. Those centres
are identified in one horizontal plane (z/h = 0.50) which is shown in the bottom row,
and their projection onto the vertical central plane ( y = 0) is shown in the top row.
Symbols represent centres and are superposed on the vorticity field. To avoid the turbulent
near-wake region where the wake vortices have not yet fully formed, the domain of vortex
tracking starts at x/D = 2. The outflow region (13 < x/D < 15) is also not considered for
vortex tracking, to avoid possible errors induced by the convective boundary condition.
The implementation of the method is presented in detail in Appendix A.

An example of the trajectory of vortex centres is shown in figure 9 for case Bu1 at
z/h = 0.50. Each trajectory is a sequence of streamwise locations of vortex centres xc as a
function of time t, and the local trajectory slope gives the local vortex advection velocity. It
can be seen in figure 9 that the local slope is almost a constant throughout the downstream
advection and the xc–t trajectories are very close to straight lines.

In order to estimate the average vortex advection velocity (Uc) using all available data,
a linear fit of each trajectory in the xc–t diagram is performed to obtain the slope, and the
advection velocity at a certain height (z/h) is the ensemble average over all trajectories at
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Figure 9. The xc–t diagram of the trajectories of centres of positive vortices at z/h = 0.50 in case Bu1. Each
black circle marks the instantaneous location xc of a positive vortex centre, at a time t. The red dashed line
has a non-dimensional slope of 0.9, corresponding to a vortex advection velocity of 0.9U∞. For clarity, vortex
centres are plotted every five snapshots.

Location BuInf Bu25 Bu1

(+) (−) (+) (−) (+) (−)

z/h = 0.12 0.877 0.880 0.894 0.888 0.902 0.910
z/h = 0.25 0.889 0.890 0.877 0.885 0.901 0.914
z/h = 0.50 0.868 0.872 0.868 0.889 0.891 0.916

Table 2. Vortex advection velocity (Uc) normalised by U∞. Positive and negative vortices are denoted as ‘+’
and ‘−’, respectively. For all cases, the standard deviation for the advection velocity is less than 5 × 10−3U∞.

the same height. Since the advection velocity changes little as x increases, only trajectories
that last longer than 50 snapshots (around one VS period) are considered to exclude the
momentary tracking of small vortices other than the Kármán vortices. No significant
difference is found in the results by changing this number to 25. In total, more than 80
trajectories are extracted for either positive or negative vortices in each case. The R2

value of the linear regression exceeds 0.999 in all cases except for the positive vortices in
Bu25, which has R2 > 0.99, confirming the excellent constancy of the advection velocity
throughout the investigated domain, x/D = 3 to x/D = 13. Table 2 lists the advection
velocity for all three Burger numbers, for vertical planes z/h = 0.12, 0.25, 0.50.

For BuInf, Uc of positive and negative vortices are practically the same, as expected.
Furthermore, Uc exhibits no significant variation from z/h = 0.12 to z/h = 0.50. In
cases Bu25 and Bu1, anticyclones (positive vorticity) tend to move slower than cyclones
(negative vortices), presumably due to their larger size (see figure 3), and this discrepancy
is more pronounced at higher planes where vorticity is weaker. Among all the cases, Bu1
has the highest advection velocity as well as the smallest vortex sizes. Nevertheless, in
all cases studied here, regardless of the sign of vorticity, location and rotation Rossby
number, the vortex advection velocities are very close, and can be well approximated by a
single value, Uc = 0.9U∞. The near constancy of Uc is consistent with the observation of
the global modes in § 3 that the tilting angles of the structures do not change as they
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Figure 10. Averaged trajectories of identified vortex centres: (a) BuInf, (b) Bu25 and (c) Bu1. Solid lines with
circles and dashed lines with triangles represent positive and negative vortices, respectively. Dark colours are
for a lower plane at z/h = 0.12 and light colours for a higher plane at z/h = 0.50.

evolve downstream. It is worth noting that the present results agree well with the
measurement by Zhou & Antonia (1992) in laminar and turbulent cylinder wakes that
the advection velocity is approximately 0.9U∞.

The lateral motion of the vortices is also of physical and practical importance.
Physically, the lateral movement of the vortices away from the centreline indicates the
expansion of the wake and widening of the associated transport of mass, momentum and
any scalar fields in the flow. Practically, the mean locations of vortex centres and their
variability are instructional to field observations as to where to place measurement stations
and to experiments as to where to probe the flow field. The simple choice of data sampling
on a line at constant y /= 0 is not ideal, as is shown by the curvature of the average path of
vortex centres in figure 10. The average is performed locally in circles of radius D/2 whose
successive centres (x/D = 4, 5, . . . , 12) have an increment of D. Each symbol represents
data from all vortex centres that fall in the range of ±D/2 of the x-coordinate of the
symbol. Solid and dashed lines are the averaged paths of positive and negative vortices,
respectively. Results from two planes at z/h = 0.12, 0.50 are shown.

For case BuInf, the distance between positive and negative vortices slightly increases
as they are advected downstream, as a result of diffusion of wake vorticity and the
expansion of the wake. Taking that as a baseline, increasing rotation can either widen
(Bu25, excluding positive vortices at z/h = 0.50 where dipoles are formed) or narrow
(Bu1) the wake, indicating the nonlinear effect of rotation on wake width growth.

For case Bu1 (figure 10c), the lateral locations of vortex centres are closest to the
centreline, compared with the other two cases, and is consistent with the fact that both
positive and negative vortices are most compact and smallest at the same z/h location
in this case. Moreover, the entire wake characterised by vortex centres is slightly titled
to the right (−y direction), in agreement with the direction of the Ekman veering due to
an unbalanced pressure gradient at the bottom boundary of rotating flows. In terms of the
vertical alignment, the negative vortices are almost aligned perfectly in vertical throughout
the downstream evolution, while positive vortices are not, indicating asymmetry between
their properties which will be studied in detail in the next section.

For case Bu25, the wake is the widest on the left side since the paths of negative vortices
have the largest deviation from the centreline. It is worth mentioning that the light green
solid line (at z/h = 0.50 in Bu25) is special. It represents the path of anticyclonic positive
vortices that, statistically speaking, do not reside on the right side ( y < 0) of the hill as in
a typical vortex street configuration, but deviate to the left side ( y > 0) instead. This is due
to the formation of vortex dipoles (with uneven vorticity) that translate leftward as viewed
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from above, as shown by the visualisation in the middle row of figure 3(b). At Ro = 0.75
(order unity), the shed anticyclonic (positive) vortices are subject to centrifugal-type
instability in the near wake and they are consequently larger and weaker, as will be
shown in the next section. The insufficient strength of the anticyclones makes them more
susceptible to the influence of adjacent cyclones that entrain them to form dipoles. It
is worth emphasising that dipole formation and the resulting leftward deviation of the
anticyclones is statistically significant. Generally, anticyclones are expected on the right
side of the hill, but this is clearly not true at z/h = 0.50 for the submesoscale Bu25 case
with Ro = 0.75.

5. Cyclones and anti-cyclones; marginal instability

In non-rotating unsteady wakes of bluff bodies with a symmetrical cross-section, there
exists no statistical asymmetry in the mean between positive or negative vorticity as the
reflectional symmetry is respected. As a result, in a classic cylinder wake or the present
non-rotating case (case BuInf), the mean vertical vorticity is antisymmetric with respect to
the centreline y = 0 (see figure 3d). However, the Coriolis force that accompanies system
rotation breaks this reflectional symmetry. As the Coriolis frequency ( fc) is negative in
this study, positive vortices (ωz > 0) are anticyclonic vortices (AVs) and vice versa. The
cyclonic vortices (CVs) and AVs present considerable differences in the rotating cases, as
illustrated by the visualisations of figure 3.

This section is arranged as follows: § 5.1 compares the probability distribution function
(p.d.f.) of positive and negative ωz in different cases and examines the systematic
asymmetries and biases that rotation introduces to vorticity; § 5.2 utilises the vortex centres
extracted in the previous section to obtain ensemble-averaged conditional statistics to
characterise how vortex structure depends on rotation; § 5.3 elaborates on the stability
properties of AVs and their implication.

5.1. Probability distribution of vorticity
The p.d.f.s of |ωz| for positive vorticity (solid line) and negative vorticity (dashed line)
are shown separately and on the planes z/h = 0.12 (figure 11a) and 0.50 (figure 11b).
Each p.d.f. is normalised such that the area under each line is equal. In the p.d.f., |ωz|
is normalised with convective units (D and U∞) for consistency between rotating and
non-rotating cases (where fc is zero in BuInf), but the Coriolis frequency (| fc|) will also
be used for normalisation in cases Bu25 and Bu1. For case BuInf, symmetry is achieved
for vorticity of all magnitudes, as expected. Comparing cases Bu25 and Bu1, there is an
increasing asymmetry between the p.d.f. of positive and negative vorticities, as the rotation
strength is increased.

Consider the Bu1 case (blue lines). In plane z/h = 0.12 shown in figure 11(a), there is a
local peak for cyclonic vorticity (negative ωz) and one for anticyclonic vorticity (positive
ωz), both being slightly larger than the system rotation rate and close to 1.1| fc|. In plane
z/h = 0.50 shown in figure 11(b), there is a local peak only for anticyclonic (positive)
vorticity at 0.7| fc|.

For case Bu25, the p.d.f. of cyclonic vorticity at z/h = 0.12 shown in figure 11(a) also
has a peak above | fc| (with peak relative vorticity 3.1| fc|, which is significantly greater
that in case Bu1). On the other hand, anticyclonic vorticity does not show any observable
peak near | fc|.

The local peaks in p.d.f.s are interpreted as the values that are more commonly found
in the flow compared with their neighbours, instead of the most intense ones. In the next
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Figure 11. The p.d.f. of |ωz| at (a) z/h = 0.12, and (b) z/h = 0.50. Solid lines indicate positive vorticity (AVs),
and dashed lines indicate negative vorticity (CVs). Vorticity is presented in convective units and the dotted
vertical reference lines represent the magnitudes of the non-dimensionalised Coriolis frequency | fc|D/U∞,
which equals 1/Ro and takes the value of 4/3 for case Bu25 and 20/3 for case Bu1, respectively.

section, we will show the existence and persistence of intense anticyclones (ωz > | fc|) in
both Bu1 and Bu25 and discuss their stability.

5.2. Vorticity conditioned to individually tracked vortices
The vorticity distribution inside wake vortices is essential to the understanding of their
kinematics, the idealisation and modelling of such vortical wakes and the role of vortex
stability. The previous section on the vorticity p.d.f., while giving an overall statistical view
of cyclonic/anticyclonic vorticity, does not reveal the properties of individual coherent
wake vortices – the focus of this section. The identification of vortex centres in § 4 is
leveraged to quantify the vorticity conditioned to the identified vortex centres and thus
reveal the flow inside and around the vortices. As elaborated below, rotation significantly
impacts the downstream evolution of the vortex-conditioned distribution of ωz and,
notably, the difference between AV and CV is larger for Bu = 25 than for Bu = 1.

Figure 12 shows profiles of the average of ωz(x̃), conditioned to instantaneous individual
vortex centres. Here, (x̃, ỹ) = (x − xc, y − yc) is a new set of horizontal coordinates fixed
to individual vortex centres. Since wakes are spatially developing, the results are presented
at various values of xc to diagnose the downstream evolution of vortex-conditioned
properties. Vortices with centres less than 2D apart are assumed to possess similar
properties and are grouped for a regional average. For example, the group located at
xc/D = 4 represents vortex centres that fall in the section of 3 < x/D < 5 and so forth.
Each vortex centre in the same group is shifted to x̃ = ỹ = 0 before the statistics are
gathered. For each group, more than 2000 vortices are available for the ensemble average.

For case BuInf shown in figure 12(a,b), vorticity profiles are Gaussian-like except close
to the edges. The peak magnitude decays and the width grows as a result of diffusion.
Otherwise, no significant change is present when x increases. In figure 12(a) at z/h = 0.12,
the magnitude of ωz near x/D = ±1 is close to zero – the asymptotic far-field condition
for isolated vortices. However, in figure 12(b) at z/h = 0.50, the vorticity can change sign
when x̃/D varies between 0 and −1, becoming substantially negative for the group xc/D =
4 but less so further downstream. A similar sign change is not observed when x̃ varies
between 0 and 1. As seen in the middle and bottom rows of figure 3(a), wake vortices of
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Figure 12. Conditionally averaged vorticity distribution around vortex centres, ωzD/U∞ for positive vortices
(AVs, solid) and −ωzD/U∞ for negative vortices (CVs, dashed). (a,b) BuInf, (c,d) Bu25 and (e, f ) Bu1.
Horizontal planes shown are at z/h = 0.12 (a,c,e) in the left column and at z/h = 0.50 (b,d, f ) in the right
column. The horizontal dotted lines in (c–f ) indicate the case-dependent absolute magnitude of the Coriolis
frequency (| fc|). In panels (c–f ), the strongest CVs have peak magnitudes of ωz/| fc| = 5.1, 3.0, 2.2, 2.2, and
the strongest AVs have peaks ωz/| fc| = −2.4, −1.2, −1.3, −0.8, respectively.

both signs at z/h = 0.50 are more spatially diffuse than at z/h = 0.12 and are almost side
by side in the region around x/D = 4, making possible the sign change of vorticity.

For case Bu25 shown in figure 12(c,d), CVs and AVs are substantially different. The
CVs are stronger and more compact, while the AVs are weaker and wider. The latter is
likely because of the cyclo-geostrophic instability associated with the AVs upstream before
the conditional statistics are gathered. In figure 12(c), the vorticity distribution for xc/D =
4 displays short-wavelength wiggles and represents active instability of the AVs as can
also be seen in the bottom row of figure 3(b). We emphasise that the short-wavelength
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wiggles are in a profile that is obtained by averaging over an ensemble of approximately
2000 members and are, thus, statistically significant. This is later confirmed in § 5.3, where
the generalised Rayleigh discriminant on the left side of the aforementioned AVs is shown
to lie beyond the stability limit.

Figure 12(d) shows differentiated behaviour between CVs and AVs when the vortex edge
is approached. The conditionally averaged vorticity in AVs (positive ωz) tends to change
sign toward the right end, while that around CVs (negative ωz) changes sign toward the left
end. This indicates a preferred configuration of vortex dipoles with a positive vortex on the
left and a negative vortex on the right, as can also be seen in the middle row of figure 3(b).
At the same time, the dipoles are quite asymmetric; the positive ωz AV is weaker and more
spatially diffuse than its partner, suggesting that the weaker AVs are more susceptible to
the induced motion of the CVs. It is in case Bu25 that the asymmetry between CVs and
AVs is most pronounced. As shown in figure 12(d), the ratio of peak magnitudes between
cyclones and anticyclones is approximately four on average, and increases as downstream
distance is increased. In combination with the fact that the absolute magnitude of the
anticyclones is weak (order D/U∞), they are more easily influenced by adjacent cyclones
during mutual interaction.

Strong rotation favours the formation of coherent vortices. For case Bu1 shown in
figure 12(e, f ), both CVs and AVs are strongest in units of U∞/D in all three cases. In
the plane at z/h = 0.12, both CVs and AVs have magnitude greater than | fc| while only
CVs exceed | fc| in the plane at z/h = 0.50. Moreover, both CVs and AVs undergo little
change in terms of vorticity magnitude and distribution during their advection – a key
difference from the other two Burger numbers. This is in agreement with the mean flow
characteristics to be discussed in § 6 that the streamwise change in the momentum wake
of Bu1 is slower than in the other two cases.

In terms of the strength of the AVs, the vorticity magnitude in the vortex core exceeds
| fc| at all streamwise locations in the plane at z/h = 0.12, in both cases Bu25 and Bu1.
Thus, the absolute vorticity stability criterion is not conclusive to the behaviour of AVs
since, contrary to that stability criterion, AVs with |ωz| > f are found to advect in a stable
manner.

Table 3 summarises the properties of CVs and AVs, in terms of peak intensity and
vortex size. The peak intensity ωz,p is the maximum of ωz of each curve in figure 12, and
the vortex size l0.05 is the horizontal distance within which the magnitude of ωz is greater
than 0.05ωz,p. It can be seen that, at the same spatial location, vortex intensity is generally
higher in Bu1 in convective units (U∞/D). Moreover, the sizes of both CVs and AVs
are consistently smaller in case Bu1. In combination with greater peak vorticity, velocity
gradients are much larger in vortices in case Bu1 than in Bu25. In terms of vorticity in
units of fc, Bu25 stands out with the largest magnitude of ωz/| fc|.

5.3. Stability of anticyclones
Vortex stability is an important question since it is related to the generation of turbulence
and small-scale motions. Here, we assess the ability of various criteria in the literature
to identify the stability characteristics of the advecting wake vortices of the present
simulations. It will be shown that more recent criteria that account for stratification and
viscous dissipation constitute a significant improvement over earlier attempts.

The study of the centrifugal (inertial) instability of swirling flows can be traced back
to Rayleigh (1917), who showed that the flow could become unstable if the squared
angular momentum decreases radially. The Rayleigh criterion is a necessary and sufficient
condition for the instability of inviscid columnar vortices subject to 3-D axisymmetric
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CV AV

case z/h xc/D −ωz,pD/U∞ −ωz,p/| fc| l0.05/D ωz,pD/U∞ ωz,p/| fc| l0.05/D

Bu25 0.12 4 5.1 3.8 1.09 3.2 2.4 1.64
10 6.6 4.9 1.15 2.8 2.1 1.73

0.50 4 4.0 3.0 1.15 1.6 1.2 1.23
10 3.0 2.2 1.02 0.7 0.6 1.45

Bu1 0.12 4 13.5 2.0 0.74 8.7 1.3 0.88
10 13.0 2.0 0.80 8.4 1.3 0.93

0.50 4 15.0 2.3 0.75 5.5 0.8 0.80
10 12.3 1.9 0.82 5.2 0.8 1.04

Table 3. Summary of the properties of CVs and AVs, at two horizontal planes z/h = 0.12, 0.50 and two
streamwise locations of vortex centres xc/D = 4, 10. The peak vertical vorticity ωz,p is given in convective
(U∞/D) as well as rotation ( fc) units. Vortex sizes are characterised by l0.05, which is the diameter at which
the intensity of ωz decays to 0.05ωz,p.

perturbations (Drazin 2002). In a rotating frame, the Rayleigh criterion for inertial
instability is equivalent to the existence of a region with a negative product of Coriolis
frequency and absolute vorticity (Holton 1972)

fc(ωz(r) + fc) < 0, (5.1)

or, in terms of the local Rossby number (note fc can take either sign),

RoL(r) = ωz(r)
fc

< −1. (5.2)

The criterion for inertial instability, (5.1), is widely used and implies that anticyclones with
vorticity magnitude exceeding | fc| are unlikely. However, it assumes a sheared parallel
flow as the base state (Holton 1972). Kloosterziel & Van Heijst (1991) found in their
experiment that CVs could be unstable too, contrary to (5.2). With the inclusion of the
centrifugal term, a generalised Rayleigh discriminant (Kloosterziel & Van Heijst 1991;
Mutabazi, Normand & Wesfreid 1992) for centrifugal instability in rotating vortical flows
was established as

χ(r) = [ωz(r) + fc]
[

2
uθ (r)

r
+ fc

]
< 0, (5.3)

where ωz + fc is interpreted as the absolute vorticity and uθ + fcr/2 as the absolute
velocity. It implies instability when the absolute velocity and absolute vorticity are of
opposite signs. Equation (5.3) assumes a specific form (axisymmetric) of perturbations.
Nevertheless, (5.3) is good enough in many circumstances since axisymmetric
perturbations are, in general, more unstable than non-axisymmetric ones (Billant &
Gallaire 2005).

While the former two criteria (5.1) and (5.3) concern the stability to 2-D perturbations,
the inclusion of effects in the third dimension, such as stable stratification, finite dissipation
and the vertical variation of the vortex base flow, is necessary for actual geophysical
flows and will complicate the determination of stability. With stratification that suppresses
small wavenumbers and finite vertical dissipation that suppresses large wavenumbers, the
range of unstable vertical wavenumbers is reduced and (5.3) overestimates the unstable
region (Lazar, Stegner & Heifetz 2013b). To reduce the predicted unstable region,
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Lazar et al. (2013b) proposed a new criterion for the marginally stable Burger number

√
Buv =

(
3

8|a0|
)3/2 1√

Ek

(|2Rov + 1|)7/4

|Rov| , (5.4)

where

Rov = Vmax

fcrmax
; Buv =

(
Nh

fcrmax

)2

; Ek = ν

| fc|h2 , (5.5a–c)

are the vortex Rossby number, the vortex Burger number and the vertical Ekman number.
Here, Vmax and rmax refer to the peak magnitude of the azimuthal velocity and its location,
respectively. Positive and negative Rov represent cyclones and anticyclones, respectively.
The constant a0 = −2.338 is the first zero of the Airy function. In the parameter space of
Buv–Rov , (5.4) at each constant Ek corresponds to a stability curve that separates regimes
that are stable and unstable to axisymmetric perturbations.

More recently, Yim, Stegner & Billant (2019) pointed out that the most unstable
azimuthal wavenumber of the centrifugal mode is not necessarily m = 0 (axisymmetric),
but depends on Buv and will have an impact on the determination of stability. Accordingly,
they suggested the use of the stability curve given as

√
Buv = 0.23√

Ek

(Rov + 0.3)2
√|Rov|

, (5.6)

which considered the dependence of the most unstable azimuthal wavenumbers on Buv .
It was also found that the stability of AVs is insensitive to the vertical variation of the
initially axisymmetric vortex base flow. In this section, we will compare the absolute
vorticity criterion (5.1), the generalised Rayleigh discriminant (5.3) as well as the new
criteria (5.4) and (5.6), and assess their ability to predict the stability of the wake vortices
in the simulations.

As was shown in figure 12(c,e), anticyclones at z/h = 0.12 are observed to possess
a large region with |ωz| > | fc|, although they advect as stable vortices for a significant
range of downstream evolution distance. Hence, the absolute vorticity condition (5.1) is
not sufficient for instability.

Figure 13 shows the conditionally averaged generalised Rayleigh discriminant χ(x̃) in
(5.3) as a function of streamwise distance from the vortex centre. It can be seen that
the unstable region is reduced significantly compared with (5.1). In case Bu25 and at
z/h = 0.12 (figure 13a), at roughly x/D = 4 (the darkest green line), there is a small
region, located near the left edges of the AVs, that is found to be unstable, but otherwise, all
regions have at least marginally stable χ . Furthermore, the vortices tend to evolve to a more
stable state. For Bu1, the AVs in the z/h = 0.50 plane (figure 13b) have stable discriminant
χ , while the peripheries of the AVs in the plane z/h = 0.12 have marginally unstable χ

which does not experience noticeable change during the advection. The statistics of χ of
the AVs in the plane at z/h = 0.25 are similar to those at z/h = 0.12 and are not shown.
Consistent with the instantaneous snapshots in figure 3 and the statistics in figure 12,
AV instability is only observed for Bu25 at z/h = 0.12, and is captured properly by the
generalised Rayleigh discriminant (5.3). On the other hand, in case Bu1 at z/h = 0.12
(figure 13c), where the discriminant is marginally unstable at the periphery of the vortices,
no actual change to the vorticity profile of the AVs is observed (see figure 12e). Hence,
a sufficient condition for stability requires other considerations, e.g. stratification and
dissipation (Lazar et al. 2013b; Yim et al. 2019).
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Figure 13. Conditionally averaged generalised Rayleigh discriminant χ/f 2
c for AVs in cases Bu25 (a,b) and

Bu1 (c,d). Horizontal planes shown are at z/h = 0.12 (a,c), and at z/h = 0.50 (b,d). Streamwise locations,
x/D = 4, 6, 8 and 10 are shown in dark to light colours. The dashed line in each figure marks the stability
criterion of χ = 0.

Prior to applying (5.4) and (5.6), the vortex sizes and shapes in terms of Vmax and rmax
are required. The radial direction is substituted by the streamwise (x) direction and the
azimuthal velocity component by the spanwise velocity (v). The peak velocity Vmax is
defined as the maximum azimuthal (herein transverse) velocity and the corresponding
peak location rmax is interpreted as vortex radius. It is noted that for both criteria (5.4) and
(5.6) applied here, 2-D vortex profiles subject to 3-D perturbations are assumed, and the
vertical variability of the vortex structure is not considered.

Figure 14(a) shows Vmax and rmax for Bu 25 and Bu1 at various streamwise locations.
It can be seen that, for both Bu1 and Bu25, the vortex radii agree reasonably well with
the radial location of the least stable χ (figure 13), consistent with theoretical analysis
and experimental observation that the edges of vortices are the least stable regions
(Kloosterziel & Van Heijst 1991; Carnevale et al. 1997; Lazar et al. 2013b; Yim, Billant &
Ménesguen 2016). Moreover, AVs in Bu25 have a much larger radii as well as variability
during the evolution, compared with Bu1. The AVs in Bu1, which have greater Vmax (over
twice stronger than Bu25) and smaller vortex radii, have the largest average vorticity.

Figure 14(b) shows the evolution of AVs, on average, in the Buv–Rov parameter space.
The AVs in both Bu25 and Bu1 are characterised by vortex Rossby numbers of O(0.5).
The stability curves (5.4) and (5.6) are also plotted for cases Bu1 and Bu25. The left side
of a stability curve is the stable region, and vice versa. It can be seen that all AVs in both
cases fall on the stable side, and they all tend to evolve to a more stable state (lower |Rov|
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Figure 14. Vortex properties: (a) conditionally averaged maximum azimuthal velocity Vmax and corresponding
location rmax and (b) square root of the vortex Burger number

√
Buv and the vortex Rossby number Rov . Bu25

is shown in green and Bu1 in blue. Colours from dark to light indicate planes at z/h = 0.12, 0.25, 0.50. Each
circle marks one of the locations from x/D = 4, 6, 8, 10. The circles are connected by lines following the order
of x-locations and the last location (x/D = 10) is marked with the largest circle. In (b), dashed lines denote the
stability curves (5.4) by Lazar et al. (2013b) and dotted lines (5.6) by Yim et al. (2019) for cases Bu1 (blue)
and Bu25 (green). The Ekman numbers are Ek = |Ro|/ReD(D/h)2 = 8.33 × 10−4 and 1.67 × 10−4 for cases
Bu25 and Bu1, respectively. The left side of the neutral stability curves is stable.

and further away from the stability limit). The stability results are in agreement with our
observation that there is no apparent sign of instability of AVs except for at z/h = 0.12 in
Bu25, where AVs are still not independently distinguishable from the turbulent near wake.
The more conservative determination of cyclo-geostrophic instability in the present wakes
utilising (5.4) and (5.6) as compared with (5.3) also confirms the point of view in Lazar
et al. (2013b) and Yim et al. (2019) that, in real geophysical environments, stratification
and vertical dissipation will further shrink the range of unstable vertical wavenumbers
from the low- and high-wavenumber end, respectively, and lead to a greater range of
stability.

6. Mean momentum wake

Stratified wakes in engineering applications, e.g. submersibles in the ocean, typically have
Fr ≥ O(1) and negligible rotation effects. Momentum wakes in these applications are
known to have very different properties compared with their unstratified counterparts, e.g.
a buoyancy-induced slowdown in the decay of mean momentum deficit in the so-called
non-equilibrium stage (Spedding 1997; Brucker & Sarkar 2010; Diamessis, Spedding
& Domaradzki 2011; de Stadler & Sarkar 2012). Stratified wakes, which have been
extensively studied for the sphere, have been investigated recently for a blunt body –
a disk (Chongsiripinyo & Sarkar 2020) and a slender body – a 6:1 prolate spheroid
(Ortiz-Tarin, Nidhan & Sarkar 2023). In rotating stratified wakes studied here, with the
presence of coherent wake vortices and cyclo-geostrophic balance, the mean flow is further
influenced, as will be elaborated below. Examination of the momentum deficit profiles of
this section shows enhanced persistence of the wake that has implications in oceanography
and meteorology. For example, even at x = 12D, the wake deficit behind the near-bottom
portion of the hill/seamount is as large as 0.4U∞. Thus, absent other interacting flow
features, bottom roughness or other bathymetry, the wake of a steep 10 km base-diameter
hill would be preserved for 120 km. Also, a steep 3-D topographic feature would lead to
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Figure 15. Time-averaged velocity deficit in the wake for cases BuInf (a,b), Bu25 (c,d) and Bu1 (e, f ).
(a,c,e) show transverse profiles of velocity deficit at z/h = 0.12 and various x/D = 1, 3, 5, 7, 9 (from dark
to light). (b,d, f ) show the streamwise evolution of the centreline ( y = 0) deficit at various elevations,
z/h = 0.12, 0.25, 0.50, 0.75 (from dark to light).

a bottom flow (outside the viscous boundary layer) with significant shear, for instance, a
difference over obstacle height of 0.2 to 0.4 times U∞.

Figure 15(a) shows profiles of mean velocity deficit, Ud( y) = U∞ − 〈U〉( y), at various
streamwise locations in the plane z/h = 0.12 (a,c,e) and figure 15(b) shows the streamwise
evolution of the centreline deficit velocity (U0 = Ud( y = 0)) along various heights
(b,d, f ). The symbol 〈·〉 denotes the time average over the duration of data storage listed in
table 1.

The non-rotating case BuInf (figure 15a) exhibits Ud( y) profiles that are laterally
symmetric. The centreline velocity deficit (U0(x) in figure 15b) initially decreases after
the recirculation bubble but then increases again. This is consistent with the expansion
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and shrinking of the 〈ωz〉( y) width in figure 3(d). In low-Re 2-D cylinder wakes, U0(x)
has a similar non-monotonic behaviour (Kumar & Mittal 2012) and the vorticity profile
width also has a non-monotone variation (Barkley 2006). On the other hand, after
the recirculation zone, U0(x) exhibits monotone decay in 3-D unstratified wakes. This
similarity of the mean deficit between 2-D wakes and non-rotating stratified wakes, where
the third dimension is confined by buoyancy, is intriguing.

In the rotating cases Bu25 and Bu1, the lateral symmetry of the mean wake is lost,
as shown in figure 15(c,e). Rotation at Ro = 0.75 (Bu25) leads to the instability and
diffusivity of AVs (commented on previously) and results in a wider wake compared with
BuInf. However, stronger rotation at Ro = 0.15 (Bu1) creates tall shedding ‘columns’ that
are compact and almost ‘frozen’ during evolution, leading to a narrower wake instead.
Comparing the centreline deficit (figure 15), case Bu1 sustains the highest overall velocity
deficit (roughly above 0.2U∞ at all planes) compared with the other two cases, presumably
due to the lower diffusivity and higher degree of vortex coherence. In the lower portion of
the hill (z/h = 0.12) all three cases exhibit significant U0 ≈ 0.4U∞ showing persistence
of the near-bottom wake in stratified flow, independent of rotation.

7. Concluding remarks

Wake vortices in stratified flows past an isolated bottom obstacle are studied via LES, at
moderately high Reynolds number (ReD = 10 000) and moderately strong stratification
(Fr = 0.15). The rotation Rossby number is varied to include cases representing
non-rotating (Ro = ∞), submesoscale (Ro = 0.75) and mesoscale (Ro = 0.15) wakes,
resulting in Burger numbers of ∞, 25, 1. In all three cases studied, the wakes present
Q2-D Kármán VS in horizontal planes in the core of the wakes, which is a distinct feature
of strongly stratified wakes at Fr < O(0.5).

In non-rotating wakes at low Froude number, as the vertical overturning motions are
constrained, organised motions emerge in the horizontal directions as Kármán vortices
(Pal et al. 2016; Chongsiripinyo et al. 2017). Stratification is crucial to the formation of
the Kármán vortices at moderately high Reynolds numbers. These dominant horizontal
motions were found, instantaneously, to exhibit coherence in the vertical direction as
streamwise-slanted structures.

The vertical coherence of planar Kármán VS is statistically investigated with SPOD,
and the influence of various levels of rotation is included. It is found that, at the present
stratification (Fr = 0.15) and regardless of the rotation strength, the shedding frequency is
a global constant in each case that is independent of height from z/h = 0.12 to z/h = 0.75,
which is the core of the wake away from the bottom boundary and the region influenced
by the lee waves near the top of the hill. This implies that, at the present stratification,
VS frequency can stay coupled vertically, instead of varying as a function of the local
(z-dependent) diameter. The vertical coupling occurs even when rotation is weak compared
with stratification, (e.g. case Bu25) a result that is inconsistent with the result of Perfect
et al. (2018) that vortices are vertically decoupled when Bu∗ > 12 or, converting to our
definition, Bu > 3. However, it is possible that, when stratification is further increased
keeping Bu constant, the VS frequency could vary with elevation, which remains to be
seen in future work.

Regarding the influence of rotation on VS, Boyer et al. (1987) measured the VS
frequency in a single plane as part of their experimental study of the wake behind a conical
obstacle in linearly stratified rotating flows. The frequency showed little variation in their
parametric study that spanned 0.08 < Fr < 0.28, 0.06 < Ro < 0.4 and three Reynolds
numbers ReD = 380, 760, 1140. The present work confirms the lack of rotational influence
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on the VS frequency and adds new information by considering a wider range of rotation
strengths, namely Ro = 0.15, 0.75, ∞, and finding VS to be at a global height-independent
frequency instead of the prior laboratory result at a single height. Moreover, the present
Reynolds number is an order of magnitude larger, implying that the VS frequency is robust
to the perturbation of near-wake turbulence.

On the other hand, the vertical structure of the coherent global modes is significantly
affected by strong rotation. An implication of a global shedding frequency is that the
spatial assemblies of SPOD eigenmodes shown in figures 6–7 are 3-D global modes
that optimally represent the vertical enstrophy of the flow. In the non-rotating case BuInf
(figure 6a,b), VS structures are slanted (yet three-dimensionally coherent) ‘tongues’ that
tilt to the direction of the flow and form a very shallow angle (steeper near the bottom and
shallower above, but at 4◦ on average) with the horizontal. As the rotation increases, the
shape of the global modes changes from slanted ‘tongues’ to upright ‘columns’. However,
once the coherent structures are formed, their shapes are preserved during the downstream
evolution, which is explained by a vortex advection velocity of approximately 0.9U∞ that
is constant at different heights and in all three cases.

It is worth noting that, despite the turbulence in the near wake, the flow exhibits overall
low-rank behaviour globally owing to the emergence of coherent structures. The low
rankness is twofold. First, the enstrophy spectra in figure 4 show dominant spikes at the VS
shedding frequency and its harmonics. Second, the gaps between eigenspectra shown in
figure 5 indicate increasingly lower enstrophy in higher-order modes at each frequency.
That being said, the large scales of the flow can be well described by a finite set of
harmonic modes. This simplicity might encourage future reduced-order modelling of the
coherent motion of wake eddies in similar parameter regimes.

A novel way of tracking vortices automatically in time-resolved snapshots is proposed
and applied to the LES database. Vortex centres (centres of regions of strong ωz) are
extracted with the mean-shift algorithm (Fukunaga & Hostetler 1975; Comaniciu & Meer
2002) in each snapshot on 2-D horizontal planes. Then the history of vortex centres in time
is compiled into graphs that represent evolution trajectories. The tracking of the vortices
has enabled estimation of their advection velocity, quantification of asymmetry between
CVs and AVs and examination of vortex stability properties following their evolution, all
in a statistical sense.

The vortex advection velocity, extracted from the time history of vortex centres, is found
to be near 0.9U∞ in all three Bu cases, which is quite constant vertically as well. The
vertically constant advection velocity explains the preserved vertical orientation of vortex
structures during evolution, in all cases. However, it is slightly uneven between cyclones
and anticyclones in the rotating cases presumably due to their size difference.

Regarding coherent VS structures, the fate of individual vortices is also critical, which
is greatly influenced, either being strengthened or weakened, by background rotation.
When rotation is strong enough (Ro = 0.15, case Bu1), VS structures are vertically
aligned, reminiscent of Taylor columns, and coherence is enhanced. On the other hand,
in conditions favourable for inertial–centrifugal instability, anticyclones could break
into turbulence and hence break down the vertical coherence. The adjustment of ωz
to rotation as well as the cyclo-geostrophic instability of AVs are hence crucial and
analysed by computing the statistics conditioned to the tracked vortex centres. The
conditionally averaged vorticity profiles reveal that dynamical processes during the
downstream advection of the vortices depend substantially on rotation. In case BuInf, the
distribution of ωz is Gaussian-like, with the diffusion-induced downstream increase of
size and decrease of peak vorticity being the major feature. In case Bu25, the asymmetry
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between CVs and AVs is most significant among all three cases. It is worth noting that,
when normalised by fc, it is the submesoscale topography with Bu = 25 and Ro = 0.75
that results in the largest magnitude of |ωz/fc| and not the Bu1 case. But, in convective
units, i.e. |ωzD/U∞|, it is the Bu1 case where CVs and AVs achieve the greatest magnitude
of vorticity due to the enhanced coherence induced by rotation. Also, both AVs and CVs
experience little change during their evolution, implying that the vortices in case Bu1 are
already in a balanced state.

Relatively strong anticyclones (e.g. core relative vorticity ωz/fc � −1.3, −2.4 for Bu1
and Bu25, respectively, at z/h = 0.12) are found stable for a considerable distance of
advection (figure 12c,e). They would be unstable according to the absolute vorticity
criterion (5.1), which implies inertial instability when anticyclonic vorticity is stronger
than the Coriolis frequency (ωz/fc < −1). The inclusion of the centrifugal contribution
is shown to be necessary by examining the generalised Rayleigh criterion (Kloosterziel
& Van Heijst 1991; Mutabazi et al. 1992), which predicts overall stability in the bulk of
the AVs and marginal instabilities at the edges, in agreement with observations of stable
AVs in the wake. Two new recently proposed criteria (Lazar et al. 2013b; Yim et al. 2019)
considering the effects of stratification and vertical dissipation are also tested. Both criteria
are in terms of the marginal stability curves given by (5.4) and (5.6) in the parameter space
of Buv–Rov , where Buv and Rov are the local (vortex) Burger and Rossby numbers specific
to the local vorticity profile. Further restricting the range of unstable vertical wavenumbers
by including stratification and dissipation, the criteria (5.4) and (5.6) both determine the
AVs in the present work as stable, as shown in figure 14(b). The only marginally unstable
wake vortices are found in case Bu25 at z/h = 0.12 (see x/D = 2–3 in the last row of
figures 3(b) and 13(a)), where the left side of the eddies at downstream location x/D ∼ 4
is unstable. Further downstream, the region of instability disappears.

Statistically, when the AVs evolve downstream, they tend to approach a more stable
state characterised by a larger (more stable) χ (figure 13), a smaller vortex Rossby number
Rov (figure 14a) and a greater distance from the marginal stability curve (figure 14b). It
is noted that in the present wakes, AVs are observed to be stable in the streamwise extent
of vortex tracking (after x/D ∼ 3). Since both Rossby numbers studied (0.75 and 0.15)
are smaller than order unity, a Rossby radius of deformation defined as U∞/| fc| = RoD
which can be regarded as a distance required for cyclo-geostrophic adjustment, will be
smaller than 3D downstream. It is possible that at larger Rossby numbers, more unstable
AVs will be observed further than x/D > 3 where the vortex tracking and stability
determination are not obscured by near-wake turbulence. Overall, the downstream stability
of AVs is consistent with the prolonged coherent motions in cases Bu25 and Bu1, and the
applicability of the criteria in Lazar et al. (2013b) and Yim et al. (2019) is demonstrated
in the simulation of geophysical topographic wakes, with a massive ensemble of samples
for statistics.

In terms of future work, it would be useful to study wake vortices in other parameter
regimes with non-hydrostatic simulations. Cases at lower Fr and a wide range of Ro are of
particular interest with respect to the variation of VS frequency. Submesoscale instabilities
at high Ro and high Re are possible and need investigation. Near-wake turbulence and
mixing are also important follow-up topics in the context of the broader theme of ocean
turbulence and mixing. Theoretical global stability analyses of stratified wakes would also
provide a more complete picture.
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Appendix A. A vortex tracking method for time-resolved databases

Mean shift (Fukunaga & Hostetler 1975; Comaniciu & Meer 2002) is a widely used
method for pattern recognition in data analysis. It identifies centroids of condensed data
points and then segments the data according to the centroids they belong to. This method
can be applied to physical science as a means of data clustering, where some shared
properties are expected for data points in the same cluster. It is unsupervised in the sense
that either the number of clusters is required or the shape of clusters is prescribed. The
basic idea is to move a provisional centroid iteratively toward the local maximum of the
population density, hence it is also called a density-based method.

Similar to the implementation in Gong (2015), the mean-shift algorithm is summarised
as follows:

Step 1. Randomly select an initial seed for the ith centroid V(0)
i from all unclustered

points, or use the centroid computed in the nth iteration V(n)
i .

Step 2. Compute the centre of geometry (the so-called mean, denoted as V(n+1)
i ) of the

data points that fall in the open ball B(V(n)
i , rBW), where V(n)

i is the ball centre and rBW is
the radius.

Step 3. If the Euclidean distance |V(n+1)
i − V(n)

i | between V(n+1)
i and V(n)

i is below the
tolerance, accept V(n+1)

i as Vi. Otherwise, use V(n+1)
i as the new seed to restart step 1.

Step 4. Compare the Euclidean distance of the centroid Vi, with all existing centroids
{Vl}i−1

l=1 from previous iterations, and if ∃j, s.t. |Vi − Vj| < 1/2rBW(0 < j < i), merge Vi
and Vj and label their mean as Vj. Run through the distance check in step 4 for Vj in the
set {Vl}i−1

l=1,l /= j.
Step 5. Check if there are unvisited points. If yes, start over from step 1; otherwise,

terminate.
The core steps 2–3 are illustrated in figure 16, where the shift of the mean is indicated by

an arrow. Based on the mean-shift algorithm, the vortex centre identification and tracking
process utilised in this paper is summarised as follows:

(i) Mask the vorticity field. Convert each 2-D vorticity field at a certain height
ωz(x, y, t; z) into a binary field, with ones denoting points with ωz > α (if identifying
positive vortex centres) or ωz < −α (if identifying negative vortex centres), and
zeros denoting the rest. Here, a positive constant α(z) is a threshold individually
selected for each horizontal plane to disconnect vortices from each other. We note
that the hill wake is inhomogeneous in all three spatial directions and a global
constant α does not apply.

(ii) Apply the mean-shift algorithm to identify (usually a handful of in our flow) centres
in each snapshot. Use Vi,k to label the ith vortex centre (1 ≤ i ≤ nmax, where nmax
is the maximum number of centres allowed) in the kth snapshot (1 ≤ k ≤ Nt). The
half-bandwidth rBW(z) needs to be selected as a parameter individually for each
plane, and is chosen to be roughly 1.5 times the radius of a vortex, which is also
smaller than the separation between two same-sign vortices.
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B (Vi
(n), rBW)

B (Vi
(n+1), rBW)

Figure 16. Illustration of the principle of the mean-shift algorithm. Data points are randomised and are for
illustration purposes only. The symbol B(V(n)

i , rBW) denotes an open ball with its centre at V(n)
i and radius

rBW , where V(n)
i is the nth iteration of the ith centroid, and rBW is the half-bandwidth. The centroid V(n+1)

i

represents the geometric centre of all data points enclosed by the ball B(V(n)
i , rBW ) shown in red. The arrow

denotes the shift of the mean (centroid).

(iii) Construct the graphs of vortex centre trajectories, with each centre Vi,k (1 ≤ i ≤
nmax, 1 ≤ k ≤ Nt) being a node. Only the connections (edges) between two nodes
from two consecutive snapshots are considered, with the connection weights being
the Euclidean distance between these two nodes �xc = |xc(Vi,k) − xc(Vj,k+1)|,
where xc stands for the streamwise location of the centre. Two nodes are considered
to belong to the history of the same vortex (and hence belong to the same subgraph)
if �xc < 1.5U∞�t, where �t is the time elapsed between these two snapshots.
All connection weights that do not satisfy this restriction will be set to zero. The
choice of the separation distance 1.5U∞�t is meant to be inclusive since it is
unlikely for the vortex centres to travel much faster than the background flow. On the
other hand, this distance is small enough compared with the distance between two
distinct vortices. After doing so, it is almost ensured that each centre will only have
one forward and one backward connection in time. Each self-connected subgraph
represents a vortex evolution trajectory within the domain.

It is noted that the identification and tracking method described above has limitations,
such as requiring user input of a constant radius of searching, which is a priori knowledge
about the physical system and was chosen to be around 1.5 times the radius of Kármán
vortices in each plane. Hence, this method may not work in more complicated situations
such as in flows that have a wide range of scales of vortices, or in processes involving
vortex merging or splitting where two same-sign vortices can get too close. But for the
present vortex wakes and other similar vortical flows where the organisation and evolution
of vortices is clear, the computer-aided identification and tracking scheme is shown to be
useful and easy to implement. Owing to the continuing advancement of computer power
and experimental techniques, time-resolved databases are becoming more available, where
our snapshot-based tracking method may facilitate the analysis of coherent structures in
other types of flows and will therefore be of broader interest.
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Case Bu Ro Fr (Nx, Ny, Nz) Ly/D Nt TU∞/D

BuInf ∞ ∞ 0.15 (1536,1280,320) [−4, 4] 4000 295
BuInfG (1536,768,320) [−4, 4] 1500 120
BuInfD1 (1536,1152,320) [−6, 6] 1500 122
BuInfD2 (1536,1536,320) [−7.5, 7.5] 1500 116

Table 4. Simulation parameters for grid- and domain-independence study. Case BuInf is the same as the
one in table 1, while the appended ‘G’ denotes grid independence case and ‘D1’, ‘D2’ denote two domain
independence cases. The transverse span of the computational domains is Ly.

Appendix B. Analysis of grid and domain sensitivity

In the numerical simulations of bluff-body wakes, domain confinement in the transverse
direction ( y) has been shown to have an influence on the instability of low Reynolds
number wakes by various approaches. Juniper (2006) performed a linear normal-mode
stability analysis of a top hat velocity profile that mimics the initial 1-D velocity profiles
(U( y)) of a 2-D wake and found that the absolute instability can be over-predicted when
the domain in the transverse direction is confined. Biancofiore, Gallaire & Pasquetti (2011,
2012) conducted numerical simulations and verified, at various Reynolds numbers from
laminar to turbulent, that, when confined by two slip walls, the wake created by a top hat
velocity profile could present different instability modes at different confinement ratios.
For the global mode specifically corresponding to the Kármán VS, Kumar & Mittal (2006)
showed using a biglobal linear stability analysis of the mean flow of a 2-D cylinder wake
that StVS is over-predicted near the onset of Kármán VS (at ReD � 47), which can be
corrected as an effect of blockage that increases the effective Reynolds number.

In the present study, the effect of finite transverse domain is taken into consideration
when conducting the LES. Periodic boundary conditions are used in the transverse
direction, which results in less restriction on the horizontal flapping motion of the wake
than no-penetration walls. We also note that the confinement effect is eased in 3-D wakes
as compared with 2-D wakes. Furthermore, the present wakes are at ReD = 10 000, and
they feature saturated values of StVS in the St–Re correlation of Williamson & Brown
(1998) at the Re → ∞ limit. This fact implies that the StVS has entered a regime with less
sensitivity to the confinement compared with transitional wakes. In simulations BuInf,
Bu25 and Bu1, the highest chance of wake confinement is at the base of the hill where
Ly/D = 8, a value which is shown to result in low confinement by Juniper (2006) and
Biancofiore et al. (2011). Nevertheless, to further evaluate the effects of confinement and
to exclude its influence on the vortex dynamics studied here, three auxiliary simulations at
Fr = 0.15, Ro = ∞, and Re = 10 000 are performed. The sensitivity of the mean velocity
deficit as well as the VS frequency to transverse domain length (Ly) and grid resolution
(�y) is examined.

Table 4 provides the details of the simulations. Case BuInf is the production simulation.
The other three cases are also named BuInf, but with appended ‘G’ and ‘D’ to denote
the purpose of grid- and domain-sensitivity analysis, respectively. In case BuInfG, Ly
is kept the same while �y is doubled (Ny halved). In cases BuInfD1 and BuInfD2, the
y-resolution is similar to BuInfG, but the domain widths are increased to Ly = 12 and
Ly = 15, respectively. For the auxiliary simulations, a period of at least two flow-throughs
is chosen before data are collected to avoid contamination by the initial transient. The time
span for all statistics is about six flow-throughs, as listed in table 4.
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Figure 17. Mean velocity deficit profiles. (a,c) Correspond to z/h = 0.12; (b,d) to z/h = 0.25;
(a,b) correspond to x/D = 1; (c,d) to x/D = 9.

Figure 17 shows the mean velocity deficit at two horizontal planes (z/h = 0.12, 0.25)
and at two streamwise locations (x/D = 1, 9), as functions of y. For streamwise location
x/D = 1 in the near wake, the difference between cases is negligible at the centre of
the wake, and is larger when the lateral edge of the domain is approached. As for the
streamwise location x/D = 9 in the intermediate wake, the centreline velocity deficit
shows a small difference between cases BuInf and BuInfG with a narrower domain, and
the other two, BuInfD1 and BuInfD2, with larger domains. This is due to the growth
of the wake in x direction and the increased influence of transverse confinement as
compared with the wake width. But in all, the wake deficit profiles show little dependence
on the grid resolution, and case BuInfD1 (Ly = 12) is showing a convergence towards
BuInfD2 (Ly = 15), so we conclude that for the accuracy of the wake deficit in the
near-to-intermediate wake, the present simulation (BuInf) is adequate, but the domain
width and the resolution of BuInfD1 can provide a slight improvement. When simulating
the same wakes further downstream, wider domains are necessary.

In addition to the mean statistics, the most important measure of the unsteadiness in the
present wakes is the VS shedding frequency. For cases BuInfG, BuInfD1 and BuInfD2,
StVS is obtained from single-point Fourier spectra. The time series of ωz are obtained from
various downstream locations in the wake (x/D = 2, 4, 6, 8) and at z/h = 0.12, y/D =
0.6. Following a similar procedure of SPOD described in § 3.2, the signal is interpolated
with PCHIP to a uniform time spacing, and chopped into overlapped blocks of length
NFFT = 512. Hamming-windowed FFT is performed on each block and the power spectral
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Figure 18. The power spectral density of ωz at z/h = 0.12, y/D = 0.6 and x/D = 2, 4, 6, 8, for cases
(a) BuInfG, (b) BuInfD1 and (c) BuInfD2. The VS Strouhal numbers in (a–c) are StVS = 0.245, 0.265, 0.252.

density (PSD) is ensemble averaged as in a standard Welch’s method. The sampled PSD
is shown in figure 18.

In the three cases shown in figure 18, the magnitudes of the VS frequency are consistent
with the SPOD leading frequency in BuInf (StVS = 0.264), and the fluctuations are within
the FFT frequency resolution (�St � 0.025 for all cases). The VS frequency in the other
planes (z/h = 0.25, 0.50, 0.75) is the same as in plane z/h = 0.12, for each case (not
shown). It is thus verified that the global VS frequency as well as its vertical coupling
are also not sensitive to the chosen values of Ly and �y.
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