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SUMMARY

Largemalaria epidemics in the East African highlands during themid and late 1990s kindled a stream of research on the role
that global warming might have on malaria transmission. Most of the inferences using temporal information have been
derived from a malaria incidence time series from Kericho. Here, we report a detailed analysis of 5 monthly time series,
between 15 and 41 years long, fromWest Kenya encompassing an altitudinal gradient along Lake Victoria basin. We found
decreasing, but heterogeneous, malaria trends since the late 1980s at low altitudes (<1600m), and the early 2000s at high
altitudes (>1600m). Regime shifts were present in 3 of the series and were synchronous in the 2 time series from high
altitudes. At low altitude, regime shifts were associated with a shift from increasing to decreasing malaria transmission, as
well as a decrease in variability. At higher altitudes, regime shifts reflected an increase in malaria transmission variability.
The heterogeneity in malaria trends probably reflects the multitude of factors that can drive malaria transmission and
highlights the need for both spatially and temporally fine-grained data tomake sound inferences about the impacts of climate
change and control/elimination interventions on malaria transmission.

Key words: time series, breakpoint, Plasmodium, Kericho, Kapsabet, Kisii, Kisumu, Maseno, Kendu Bay, climate change,
seasonal autoregressive.

INTRODUCTION

Large malaria epidemics in the East African high-
lands during the mid and late 1990s triggered a
number of inquiries into the role that global warming
might have on malaria transmission. Several authors
proposed that spread of malaria into areas that rarely
saw malaria transmission could be related to the
impacts that small increases in temperature have
on Plasmodium spp. development inside vectors
(Lindsay and Birley, 1996; Patz and Olson, 2006).
Traditionally considered a ‘malaria-free’ oasis inside
a desert of high malaria transmission, the East
African highlands are of special interest because of
their geographical location (Lindsay and Martens,
1998). In particular, the role that climate change
could have played on exacerbated malaria records
in this area over recent years has been the
focus of intensive research and debate (Chaves and
Koenraadt, 2010).

Studies from highland areas in Ethiopia, Tanzania,
Kenya and Uganda have robustly shown signatures
of climatic covariates on malaria time series (Abeku
et al. 2004; Chaves and Koenraadt, 2010;
Teklehaimanot et al. 2004; Zhou et al. 2004). A
great deal of attention has been given to whether
oscillations in the time series were intrinsically
generated i.e., by the cyclic nature of immunity in
growing populations (Hay et al. 2000), or were
induced by exogenous factors (Pascual et al. 2008;
Childs and Boots, 2010) and drug resistance (Artzy-
Randrup et al. 2010). In addition, some studies have
claimed to show that trends in temperature have
driven the surge observed in transmission over recent
years (Alonso et al. 2011). However, little attention
has been given to the homogeneity/heterogeneity in
transmission trends across the East African high-
lands, especially as revealed by time series analysis. In
fact, most time series analyses have been exclusively
focused on a time series fromKericho in Kenya (Hay
et al. 2000; Hay et al. 2002a; Shanks et al. 2000, 2002,
2005; Pascual et al. 2008; Artzy-Randrup et al. 2010;
Childs and Boots, 2010; Alonso et al. 2011). Several
cross-sectional studies that examined transmission
patterns across altitudinal gradients in the East
African highlands reported an overall decrease in
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transmission with altitude (Bødker et al. 2003, 2006;
Drakeley et al. 2005). Similar studies looking at
several time series have tended to use coarsely grained
data, for example, records from districts (Abeku et al.
2004; Teklehaimanot et al. 2004), hospital time series
from distant locations (Zhou et al. 2004) or have
mixed inpatient data, i.e., virulent cases admitted to a
hospital, with outpatient data, i.e., febrile cases that
visit the hospital but require no further attention in a
hospital and not parasitologically confirmed (Zhou
et al. 2004; Pascual and Bouma, 2009). Others have
focused on showing the signatures of large-scale
climatic phenomena such as the Indian Ocean Dipole
(IOD) Mode on malaria transmission (Hashizume
et al. 2009). However, further inquiries into the
homogeneity of these trends, for example, whether
the incidence is similarly increased or decreased
through time, or is dependent on the existence and
synchronicity of regime shifts, i.e., whether similar
abrupt changes on the average and the variability of
malaria incidence have been simultaneously observed
in East Africa, has been out of the research agenda.
Here, we employ 5 time series from hospitals in the

Lake Victoria basin region of Western Kenya, an
area with well-defined and regionally homogeneous
seasonal climatic patterns (Anyah and Semazzi, 2004;
Anyah et al. 2006), and ask whether these time series
show similar regime shifts. We also ask whether
increasing transmission trends reported for Kericho
(Shanks et al. 2000) are common to the whole Lake
Victoria basin. We found that regime shifts, when
present, were asynchronous along the altitude range
but synchronous at high altitude. Trends in the time
series also changed with altitude. At low altitudes,
i.e., below 1500m, malaria incidence began to
decrease in the late 1980s. By contrast, the variability
and average of malaria transmission either kept
constant or increased at higher altitudes, above
1600m, especially during the 1990s, and began to
decrease in the early 2000s. Finally, our results
highlight the need for both spatially and temporally
fine-grained data to make sound inferences about the
impacts of climate change and control/elimination
interventions on malaria transmission.

MATERIALS AND METHODS

Data

Figure 1A shows the location of our study sites within
Lake Victoria basin and the elevation range that
they span. Time series data used in our study are
monthly records of inpatients diagnosed with malaria
in Maseno (Fig. 1B), Kendu Bay (Fig. 1C), Kisii
(Fig. 1D), Kapsabet (Fig. 1E), Kericho (Fig. 1F).
Figure 1 also shows monthly rainfall records for
Kisumu (Fig. 1G), Kisii (Fig. 1H), Kapsabet
(Fig. 1I), Kericho (Fig. 1J) and the dipole mode
index (DMI, Fig. 1K) and El Niño 3 (ENSO,

Fig. 1L). The 5 malaria time series are monthly
counts of inpatients admitted into the hospitals
because of high fever and other clinical malaria
symptoms. In Kericho, all malaria cases where
confirmed by blood-slide examination (bse) (Hay
et al. 2000; Shanks et al. 2000, 2002, 2005). In the
other 4 sites (Maseno, Kendu Bay, Kisii and
Kapsabet) we collected the data from books with
malaria-diagnosed inpatient records. Unfortunately,
these books did not indicate whether all recorded
malaria cases were confirmed by bse. We were
informed by staff members from each hospital that
cases were often confirmed by bse, but hospital staff
members were unable to guarantee a confirmation of
all cases by such amethod. However, in each hospital,
staff members indicated that, to the best of their
knowledge and experience, criteria for hospitalization
of diagnosed malaria cases have been consistent
through the years presented in this study. In
summary, we selected these study sites because we
were informed that no seasonal or secular changes in
malaria diagnosis have occurred over the studied
periods. In fact, with the exception of Maseno
(Fig. 1B), our data did not include missing obser-
vations. We also focused on the analysis of cases from
all ages to make sound comparisons with previous
studies looking at trends, which have been based on a
similar set of cases (Hay et al. 2000; Shanks et al.
2000; Abeku et al. 2004; Teklehaimanot et al. 2004;
Zhou et al. 2004; Pascual et al. 2008; Pascual and
Bouma, 2009; Artzy-Randrup et al. 2010; Childs and
Boots, 2010; Alonso et al. 2011). In the analysis we do
not include data for population growth because of the
technical difficulties to estimate hospital catchment
population, which will be the most desirable denomi-
nator to study impacts of population growth on these
time series. Although in some instances such growth
has been equated to the population growth of the
geopolitical subdivisions containing the studied
hospitals (Hay et al. 2002a) in the setting of our
study this procedure is unreliable because of changes
in geopolitical subdivisions of Kenya containing
these hospitals, which increases the likelihood of
heterogeneous trends in population growth because
of differences in the counted populations (Lewontin
and Levins, 1989). Also, this information is not a
requisite for non-stationary time series analysis,
especially when time series trends are the subject of
study (Shumway and Stoffer, 2000).
In our analyses we used rainfall data from

Kisumu as a proxy for rainfall in Maseno and
Kendu Bay, given the close geographical proximity,
<35 km, and similar altitude. DMI is an index for
the IOD, defined as the difference in sea surface
temperatures (SST) anomalies between western
(10°S–10°N, 50°–70°E) and eastern (10°S–0°,
90°–110°E) tropical Indian Ocean (Saji et al. 1999).
The DMI data were obtained from Japan Agency for
Marine-Earth Science and Technology, JAMSTEC,
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(www.jamstec.go.jp/frcgc/research/d1/iod/). The
strength of the El Niño Southern Oscillation
(ENSO) was measured by SST anomalies in El

Niño 3 area (150°–90°W, 5°S–5°N) of the Pacific
Ocean, using data from the United States National
Oceanic and Atmospheric Administration (NOAA)

Fig. 1. Data. (A) Hospital locations. Clinical records of malaria infections for: (B) Maseno (May 1935, November 2009,
0°00′15″S, 34°36′16″E, Altitude=1500m); (C) Kendu Bay (January 1980, November 2006, 0°24′05″S, 34°39′56″E,
Altitude=1240m); (D) Kisii (January 1986, December 2000, 0°40′S, 34°46′E, Altitude=1670m); (E) Kapsabet
(January 1980, December 1999, 0°12′N, 35°06′E, Altitude=2000m); (F) Kericho (April 1965, November 2006,
0°23′55″N, 35°15′30″E, Altitude=2000m). Rainfall in: (G) Kisumu (January 1980, December 2006, 0°6′S 34°45′E
Atltitude=1131m); (H) Kisii (January, 1986, December 2000); (I) Kapsabet (January 1980, December 2000);
(J) Kericho (January 1966, December 2006). (K) Dipole mode index (January 1966, December 2008) and (L) Niño 3
index (January 1966, December 2008). In panel (A), elevation is measured in meters, m, and indicated by grey. Location
color indicates the data available at each site; blue (rainfall); green (disease) and red (disease and rainfall). In panel
(B) Blue indicates inputed values (see methods for details).
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Climate Prediction Center (www.cpc.ncep.noaa.
gov).

Time series analysis for breakpoints and regime shifts in
the time domain

Exploratory analysis. To explore the dynamics of the
time series, we performed an exploratory time series
analysis, by examining the autocorrelation function
of the malaria inpatient time series (Shumway and
Stoffer, 2000). This inspection showed that most
malaria time series (yt) were first order seasonal
autoregressive processes where observations are
correlated at both short (1 month) and seasonal
time lags (12 months). Thus, we fitted the data to the
following seasonal autoregressive null model:

yt = μ+ ϕ1 yt−1 − μ
( )+ ϕ12 yt−12 − μ

( )

+ ϕ1ϕ12 yt−13 − μ
( )+ αTrend+ εt (1)

For Kisii and Kericho, the time series were better
described by a second order autoregressive process:

yt = μ+ ϕ1 yt−1 − μ
( )+ ϕ2 yt−2 − μ

( )+ αTrend+ εt

(2)
Inmodels (1) and (2) μ is the average value of the time
series, Trend, a non-linear trend estimated with
Loess, is included to account for the non-stationarity
in the data which, in this case, is the changing mean
through time (Chaves and Pascual, 2006). Loess is a
non-parametric regression method based on the local
fit of polynomials to data which get linked to obtain a
smooth function which captures non-linear trends in
time series data (Shumway and Stoffer, 2000). The
error was assumed to be independent and normally
distributed: ε *N(0,σ2). We used models (1) and (2)
to pre-whiten the time series of the following
climatic covariates: Rainfall, ENSO, and DMI. Pre-
whitening is a process that rules out spurious
correlation between two time series, by removing
(filtering) any common structure between the two
studied time series (Chaves and Pascual, 2006).
Residuals of the model presented in (1) and the pre-
whitened residuals of the climatic covariateswereused
to compute cross-correlation functions of the number
of inpatients with each one of the climatic covariates.

Breakpoints and regime shifts. Data in Fig. 1 suggest
the occurrence of secular changes in malaria inci-
dence for the studied period. To test the significance
of those apparent changes, and to determine the exact
temporal localization of the changes (i.e., breakpoint,
the time of an abrupt change indicating a regime
shift) we used generalized fluctuation tests for the
malaria incidence time series. This technique fits a
parametric model to the data and derives an empirical
fluctuation process (EFP). Briefly, an empirical
fluctuation process depicts residual fluctuation from
the studied data. This information can be used to

detect unusual changes in, the variability or mean
dynamics of, a time series by comparing the un-
explained variability of the time series with the
fluctuation of a Gaussian random process (Ploberger
et al. 1989). We estimated EFPs that captured
changes in the parameter estimates, where structural
changes (i.e., regime shifts) in the time series under
study can be observed in time (Ploberger et al. 1989;
Chaves et al. 2008). We estimated the EFP using
models that were selected in the absence of break-
points. We also estimated an EFP for each rainfall
time series to investigate possible impacts of regime
shifts in covariates as cause of regime shifts in the
malaria time series. We did not estimate EFPs for
DMI and ENSO since it is well known that most of
their variability is interannual (Saji et al. 1999; Saji
and Yamagata, 2003).

Models to illustrate incidence changes associated with
regime shifts. Based on the cross-correlation func-
tions we built models with covariates at lags that had
significant cross-correlations and considered the
trends obtained with Loess. For the time series in
which regime shifts were identified, we further
estimated split trends by using the Loess method
on the time series split at their breakpoints. We also
fitted the best models that we obtained to the split
series around the breakpoint. We studied changes on
the magnitude of the climatic forcing by the
covariates on the malaria time series by comparing
the regression coefficients for the model fitted to the
different segments of the split time series (Chaves
et al. 2008). We selected the models using the Akaike
Information Criterion (AIC), a metric that selects
models based on the number of parameters and
likelihood in order to avoid over-parameterized
models (Shumway and Stoffer, 2000). Finally, in all
cases, assumptions about model error were verified
using standard procedures for time series analysis
(Shumway and Stoffer, 2000).

RESULTS

All the time series that we studied had a marked
seasonality, and their autocorrelation profiles corre-
spond to those of seasonal autoregressive processes
(Fig. 2A, E, I, M and Q). Also all the time series were
significantly led (having significant cross-correlation
at a positive lag) by rainfall (Fig. 2B, F, J, N and Q).
With the exception of Maseno (Fig. 2C) and
Kapsabet (Fig. 2O), all time series were significantly
led by DMI, dipole mode index (Fig. 2G, K, S).
ENSO (El Niño 3) significantly led the malaria time
series of Kisii (Fig. 2H) and Kericho (Fig. 2 T), but
was uncorrelatedwithmalaria dynamics at the other 3
locations (Fig. 2D, 2L, 2P). The regime shift analysis
showed that the malaria time series for Maseno
(Fig. 3A), Kisii (Fig. 3C) and Kericho (Fig. 3E) had
breakpoints. In contrast Kendu Bay (Fig. 3B) and
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Fig. 2. Autocorrelation (ACF) and cross-correlation functions (CCF) (A) Maseno malaria ACF; (B) Maseno malaria and
Kisumu rainfall CCF; (C) Maseno malaria and Dipole mode index, DMI, CCF; (D) Maseno malaria and the Niño 3
index, ENSO; (E) Kendu Bay malaria ACF; (F) Kendu Bay malaria and Kisumu rainfall CCF; (G) Kendu Bay malaria
and DMI CCF; (H) Kendu Bay and ENSO CCF; (I) Kisii malaria ACF; (J) Kisii malaria and rainfall CCF; (K) Kisii
malaria and DMI CCF; (L) Kisii malaria and ENSO CCC; (M) Kapsabet malaria ACF; (N) Kapsabet and rainfall
CCF; (O) Kapsabet malaria and DMI CCF; (P) Kapsabet malaria and ENSO CCF; (Q) Kericho malaria ACF;
(R) Kericho malaria and rainfall CCF; (S) Kericho malaria and DMI CCF; (T) Kericho malaria and ENSO CCF. In
the x axis of all plots lag=1 means 12 months, dashed lines indicate the 95% confidence limits within which the ACFs
and CCFs are not different from what is expected by random.
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Kapsabet (Fig. 3D) had no breakpoints. None of the
rainfall time series showed any breakpoints (Fig. 3F,
G, H, I).
Seasonal autoregressive models confirmed the

association between malaria incidence and rainfall

observed in the cross-correlation analysis (Table 1).
Figure 4 shows that for Maseno (Fig. 4A) and Kendu
Bay (Fig. 4D) malaria incidence began a decreasing
trend in the late 1980s. By contrast, inKisii (Fig. 4B),
Kericho (Fig. 4C) and Kapsabet (Fig. 4D) increasing
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Fig. 3. Breakpoints for malaria incidence and rainfall time series. (A) Empirical fluctuation process, EFP, for Maseno
malaria time series, as a seasonal autoregressive process with a non-linear trend, the dashed line indicates the most likely
breakpoint, May 1989 (RE=1·80, P<0·01); (B) EFP for Kendu Bay malaria time series as a seasonal autoregressive
process with a non-linear trend, no indications of breakpoints (RE=1·67, P>0·05); (C) EFP for Kisii as a first order
seasonal second order autoregressive process with a non-linear trend, the dashed line indicates the most likely
breakpoint, January 1998 (RE=1·66, P<0·047); (D) EFP for Kapsabet, as a seasonal autoregressive process with a
non-linear trend, no indications of breakpoints, (RE=1·60, P>0·05); (E) EFP for Kericho as a first order seasonal
second-order autoregressive process with a non-linear trend, the dashed line indicates the most likely breakpoint, June
1997(RE=2·93, P<10−7); (F) Empirical fluctuation process, EFP, for Kisumu rainfall (RE=1·06, P<0·21); (G) EFP
Kisii rainfall (RE=0·73, P<0·66); (H) EFP Kapsabet rainfall (RE=0·80, P<0·54); (I) EFP Kericho (RE=0·64,
P<0·80). In all panels when values exceed the outer solid lines is an indication of a regime shift. In all panels the outer
lines correspond to the extreme values expected if changes in the coefficients are driven by a random walk.
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trends in malaria transmission were observed in the
mid and late 1990s and these trends began to decrease
in the early 2000s (Fig. 4B, C andD). In general, split
trends showed similar patterns to contiguous trends
(Fig. 4A, B, C). However, it is important to note that
in Kisii, the second half of the split trend gave too
much importance to a few observations (Fig. 4B). In
all the best models (Table 1) normality and homo-
kedasticity tests confirmed that the error was normal,
independent and identically distributed, thus confi-
rming the validity of our analyses.

Regarding the influence of climatic covariates, with
the exception of Kendu Bay and Kapsabet where
rainfall had both positive and negative impacts on
malaria incidence, rainfall significantly increased
monthly malaria incidence (Table 2). The process
of model selection showed that for those time series
that were associated with both El Niño 3 and DMI,
the latter was the best predictor (Table 1). Increases
in DMI were positively associated with increases
in malaria incidence. In Maseno and Kericho the

inclusion of the breakpoints and splits trends
maximized the likelihood of the models (Table 1).
In Kisii only the inclusion of the breakpoint
improved model fit (Table 1), probably because of
the irregular second half of the split time series
(Fig. 4B). Finally, Maseno and Kericho show
opposits patterns regarding the variability associated
with their regime shifts. In Maseno, the variability
measured model standard deviation (σ̂, Table 2)
decreased after the breakpoint, while in Kisii and
Kericho it increased.

DISCUSSION

The possible association between changes in high-
land malaria transmission patterns and global warm-
ing has motivated a heated debate (Chaves and
Koenraadt, 2010). From positions that claim to
have explained malaria trends as a direct product of
temperature trends (Alonso et al. 2011) to positions
that neglect the known impacts that changing

Table 1. Model Selection

(Time series indicates the malaria time series, autoregressive components indicate the number of ordinary and seasonal
autoregressive components respectively. Covariates indicate the different covariates with the respective lag, in months,
within parenthesis: Trend is the non-linear trend obtained using loess, Rainfall, the local rainfall (in Maseno and Kendu
Bay, rainfall from Kisumu was used as a proxy); ENSO, the Niño 3 index, and DMI, the dipole mode index. Breakpoint
indicates whether a breakpoint was considered (Y) or not (N) and AIC indicates the Akaike Information criterion,
highlighted values show the best models (minimum AIC).)

Time
Series

Autoregressive
components

Autoregressive
components
(Seasonal) Covariates Breakpoint AIC

Maseno 1 1 Trend N 3069·2
1 1 Split Trend N 3056·6
1 1 Trend, Rainfall(3) N 3063·1
1 1 Split Trend, Rainfall(3) N 3050·3
1 1 Trend, Rainfall(3) Y 3024·4
1 1 Split Trend, Rainfall(3) Y 3018·8

Kendu Bay 1 1 Trend N 3226·7
1 1 Trend, Rainfall(0), Rainfall(3), ENSO(22),

DMI(35)
N 3213·0

1 1 Trend, Rainfall(0), Rainfall(3), DMI(35) N 3211·0
Kisii 2 1 Trend N 2685

2 0 Trend N 2685
2 0 Split Trend N 2719·4
2 0 Trend, Rainfall(2), DMI(2) N 2668·4
2 0 Split Trend, Rainfall(2), DMI(2) N 2674·8
2 0 Trend, Rainfall(2), DMI(2) Y 2613·5
2 0 Split Trend, Rainfall(2), DMI(2) Y 2613·5

Kapsabet 1 1 Trend N 2963·1
1 0 Trend N 2961·1
1 0 Trend, Rainfall(2), Rainfall(6) N 2943·7

Kericho 2 1 Trend N 4551·1
2 0 Trend N 4549·4
2 0 Split Trend N 4538·7
2 0 Trend, Rainfall(3), ENSO(2), DMI(1) N 4543·2
2 0 Split Trend, Rainfall(3), ENSO(2), DMI(1) N 4511·5
2 0 Trend, Rainfall(3), DMI(1) N 4542·33
2 0 Split Trend, Rainfall(3), DMI(1) N 4509·55
2 0 Trend, Rainfall(3), DMI(1) Y 4482·88
2 0 Split Trend, Rainfall(3), DMI(1) Y 4432·4
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environments have on organisms (Reiter, 2008),
efforts to understand the linkages between malaria
transmission and climate change have lacked robust-
ness in the validation of inferences with independent
observations (Levins, 2006). This is illustrated by the
many studies that have exclusively focused on
Kericho (Hay et al. 2000; Shanks et al. 2005;
Pascual et al. 2008; Artzy-Randrup et al. 2010;
Childs and Boots, 2010; Alonso et al. 2011).
Here, we have taken a different approach and

studied 5 time series from Lake Victoria basin, an
area with common regional rainfall patterns (Anyah
and Semazzi, 2004; Anyah et al. 2006) and a
homogeneous signature of global climatic phenom-
ena like the IOD (Saji et al. 1999; Saji and Yamagata,
2003). With the 5 time series we attempted to

characterize patterns of malaria incidence. However,
extending the analysis to 5 sites had the cost of
uncertainty about homogeneity in data quality,
especially when compared with Kericho, which is
assumed to have less uncertainty in the parasitologi-
cal confirmation of cases (Hay et al. 2000, 2002a;
Shanks et al. 2000, 2002, 2005). Nevertheless, we
consider the data are comparable because of their
common attributes: (i) all time series only consider
the most severe (or virulent in a wider biological
sense) malaria cases, those requiring admission to the
hospital (inpatient data); (ii) in all cases the first line
of diagnosis was merely clinical (passive detection);
(iii) malaria is the most likely disease to produce
morbidity with severe malaria symptoms in the area
(Menge et al. 2008; Feikin et al. 2010); (iv) there were
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no systematic changes in the implementation of
malaria confirmation i.e., we have no reason to
suspect any seasonal, or secular, change in diagnostic
criteria at each site. Obviously, these biases on the
data limits the inferences to severe cases, which most
likely underestimate disease transmission as shown
by highly standardized blood-slide examination
(Molineaux et al. 1980) and molecular diagnostic
techniques (Ofulla et al. 2005;Menge et al. 2008), not
to mention the likelihood of inaccuracy that could
emerge from stressed staff dealing with epidemics at
resource limited health facilities. However, since the
type of cases studied over time were homogeneous,
there is no threat to comparison validity over time,
because the data fits the standards for a sound analysis
of trends (Shumway and Stoffer, 2000).

Our results show that malaria incidence in Lake
Victoria basin displayed trends that are similar over
given altitudinal ranges. At altitudes below 1600m,
we found that malaria trends began to decrease in the
late 1980s. In contrast, at higher altitudes, above
1600m, we found that malaria increased in the mid
and late 1990s, confirming a pattern noticed in East
Africa that linked unexpectedly high levels of malaria
transmission associated with IOD and ENSO
(Hashizume et al. 2009; Lindblade et al. 1999,
2001; Zhou et al. 2004). In this context, population
growth is indirectly associated with malaria emer-
gence in the African highlands because of its impact
on land use change, and subsequent changes in the
ecology of living organisms involved in malaria
transmission (Lindblade et al. 2000). Montane

Table 2. Parameter estimates

(Time series indicates the malaria time series. Parameter indicates the predictor for which the parameter was estimated:
Mean is the mean value of the series, AR and SAR are, respectively, ordinary and seasonal autoregressive predictors, Trend
is the non-linear trend obtained with loess, Rainfall is the local rainfall (Kisumu rainfall for Maseno and Kendu Bay). The
value inside the parenthesis indicates the lag of the covariates (in months). No shift presents estimates for models without
breakpoints. Before and After present, respectively, estimates before and after the breakpoints. P (<0·05) indicates the
significance of each parameter in the models N (no shift)/ B (before breakpoint)/ A (after breakpoint).)

Time Series Parameter (Lag) No Shift Before After P (<0·05)

Maseno μ̂ Mean(-) 71·95±3·97 74·80±11·43 72·14±4·06 N/B/A
ϕ1 AR(1) 0·51±0·05 0·53±0·09 0·44±0·06 N/B/A
ϕ12 SAR(12) 0·27±0·05 0·36±0·11 0·25±0·06 N/B/A
α̂ Split Trend(-) 1·03±0·11 0·99±0·25 1·03±0·15 N/B/A
β̂ Rainfall(3) 0·046±0·016 0·13±0·04 0·019±0·015 N/B
σ̂ — 26·25 31·41 21·43 —

Kendu Bay μ̂ Mean(-) 167·75±6·83 — — N
ϕ1 AR(1) 0·64±0·04 — — N
ϕ12 SAR(12) 0·21±0·06 — — N
α̂ Trend(-) 1·02±0·08 — — N
β̂1 Rainfall(0) −0·048±0·020 — — N

β̂2 Rainfall(3) 0·045±0·020 — — N
γ̂ DMI(35) 11·51±3·95 — — N
σ̂ — 33·45 — — —

Kisii* μ̂ Mean(-) 787·19±53·64 763·37±57·39 569·57±210·13 N/B/A
ϕ1 AR(1) 0·77±0·07 0·60±0·10 0·82±0·16 N/B/A
ϕ12 AR(2) −0·36±0·07 −0·06±0·10 −0·47±0·19 N/A
α̂ Trend(-) 1·16±0·28 0·86±0·30 3·28±1·14 N/B/A
β̂ Rainfall(2) 1·47±0·37 1·69±0·37 0·79±1·20 N/B
γ̂ DMI(2) 117·17±47·88 8·08±44·82 657·33±159·19 N/A
σ̂ — 417·95 313·29 502·6 —

Kapsabet μ̂ Mean(-) 158·86±26·18 — — N
ϕ1 AR(1) 0·43±0·06 — — N
α̂ Trend(-) 0·99±0·20 — — N
β̂1 Rainfall(2) 0·38±0·12 — — N

β̂2 Rainfall(6) −0·40±0·12 — — N
σ̂ — 127·10 — — —

Kericho μ̂ Mean(-) 28·63±1·66 31·70±2·49 29·68± 5·13 N/B/A
ϕ1 AR(1) 0·66±0·04 0·67±0·06 0·85±0·08 N/B/A
ϕ2 AR(2) −0·32±0·04 −0·10±0·07 −0·46±0·09 N /A
α̂ Split Trend(-) 1·01±0·08 1·47±0·16 0·71±0·19 N/B/A
β̂ Rainfall (3) 0·026±0·012 0·025±0·012 0·024±0·028 N/B
γ̂ DMI(1) 3·26±1·76 5·77±2·25 4·20±5·55 B
σ̂ — 24·20 20·12 29·86 —

* These are the parameters for the model with a contiguous trend (see Table 1 and Results).
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rainforests used to cover the highlands surrounding
Lake Victoria, while the lowlands in the lake basin
were less forested. Now the highland forests have
mostly disappeared, and locals are still clearing the
last patches of forest that remained in the valley
bottoms (Verschuren et al. 2002), mainly for the
purposes of self-subsistence agriculture (Ernst et al.
2009). In addition, population growth in this region,
with a long history of unequal access to land derived
from colonial plundering (Prothero, 1965; Chaves
and Koenraadt, 2010), also forces locals to migrate
to valley bottoms where they are likely exposed to
a large number of vectors and high malaria trans-
mission (Munyekenye et al. 2005). Thus, the indirect
impacts of population growth, which are ultimately
expressed in diverse degrees of land transformation
and human movement, make our analysis robust
to the lack of explicit consideration of population
growth data. Moreover, regulation of malaria trans-
mission, which is best described by frequency
dependent models (Hay et al. 2000; Pascual et al.
2008; Chaves et al. 2009; Alonso et al. 2011), implies
that population growth plays a relatively minor role
on the dynamics of transmission (McCallum et al.
2001). In fact, several studies have shown that there is
not a direct mapping between population growth
and trends in malaria transmission, both in this
area (Hay et al. 2002a,b; Pascual et al. 2008;
Alonso et al. 2011) and outside Africa (Chaves
et al. 2009). On the other hand, frequency dependent
transmission models are sensitive to conditions of
population immunity, which is indeed reduced
in highland populations, when compared to low-
land populations (John et al. 2002), as product
of a decreased exposure to malaria infection
(Drakeley et al. 2005).
The late 1990s malaria epidemics in lake Victoria

basin, above 1600m, were so large that they sig-
nificantly increased the variance of the time series;
probably explaining the occurrence of breakpoints
in Kisii and Kericho in 1997/1998. One hypothesis
that could explain the synchrony in the breakpoints,
which requires further testing in the field, is the
synchronization of mosquito populations and sub-
sequent malaria transmission triggered by rainfall.
Previous studies have shown that catching adult
Anopheles gambiae mosquitoes, the main malaria
vector in East Africa highlands, is extremely difficult
(Koenraadt et al. 2006). Even so, vector densities
have been shown to significantly increase following
rainfall (Minakawa et al. 2002, 2005b, 2006), even if
prolonged rainfall can wash away mosquito larvae
(Paaijmans et al. 2007). Occasional floods and rainfall
runoff create numerous stagnant water pools in valley
bottoms that are poorly drained. If riparian forests
are cleared, these stagnant water pools become
suitable breeding sites for major malaria vectors
that mainly inhabit small sun-lit water pools, An.
gambiae and An. arabiensis (Gimnig et al. 2001;

Minakawa et al. 2005a). Besides its direct impact on
mosquito density, rainfall also determines a series
of wetness indices that are major risk factors for
malaria infection in western Kenya (Cohen et al.
2010), probably by enhancing mosquito movement
across the landscape, a pattern common among
several mosquito genera, including Anopheles
(Silver, 2008). Thus, to explain the heterogeneity in
malaria transmission trends, we consider that finely
grained landscape transformation, in synergy with
increased rainfall associated with IOD (Hashizume
et al. 2009), probably were major drivers of the large
epidemics above 1600m.
Regarding the decreasing malaria trends, the

mechanism driving changes at low and high altitudes
seems to be different. At low altitude, below 1600m,
malaria trends began to decrease before the 1990s,
and could likely reflect self-regulation of trans-
mission, either by immunity development (Hay
et al. 2000; Pascual et al. 2008), or the more general
reduced inflow of susceptible individuals, i.e., im-
mune adults and well protected children, as observed
outside Africa (Chaves et al. 2008, 2009, 2011;
Kaneko et al. 1998, 2000). At high altitude
(>1600m), large-scale malaria control interventions
with insecticide treated bednets could have driven
both the reduction of malaria transmission and
mosquito population size (Lindblade et al. 2004)
and a shift of dominant vector species, from An.
gambiae to An. arabiensis (Bayoh et al. 2010). In fact,
the interruption of malaria transmission has been
documented in highland sites near the locations
we studied (John et al. 2009; Zhou et al. 2011).
More, generally differences in malaria incidence
trends can reflect a myriad of historic changes in
East Africa. From demographic changes to land use
changes (Lindblade et al. 2000; Lindsay and
Martens, 1998), drug resistance (Shanks et al.
2005), and global warming (Alonso et al. 2011)
differences in malaria trends ultimately link the
sensitivity of malaria transmission to its context
(Chaves and Koenraadt, 2010). Finally, the scarcity
of contextual information and long-term malaria
records necessary to robustly determine the drivers
behind malaria transmission trends highlight the
need for surveillance and for climatic and demo-
graphic systems able to record high quality data.
These data are necessary to understand heterogene-
ities in malaria transmission across spatial scales and
to make sound inferences about the impacts of
climate change and control/elimination interventions
on malaria transmission.
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