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Abstract. We consider graphs consisting of finitely many internal rays for degenerating
Newton maps and state a convergence result. As an application, we prove that a hyperbolic
component in the moduli space of quartic Newton maps is bounded if and only if every
element has degree 2 on the immediate basin of each root. This provides the first complete
description of bounded hyperbolic components in a complex two-dimensional moduli
space.
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1. Introduction
For d ≥ 2, denote by Ratd the space of rational maps of degree d in one complex variable.
Via parameterizing coefficients, the space Ratd is an open dense subset of the 2d +
1-dimensional complex projective space P2d+1. The boundary ∂Ratd := P2d+1 \ Ratd
consists of so-called degenerate rational maps. A sequence in Ratd is degenerate if its limit
is a degenerate rational map. It is of interest to understand the interplay of dynamics for a
degenerate sequence and its limit. The goal of this paper is to explore this interplay in a
significant slice of Ratd , namely Newton family. We show that under natural assumptions,
the dynamics preserves stably when Newton maps approach to ∂Ratd . Once this result is
at our disposal, we can describe completely the boundedness of hyperbolic components in
the moduli space of quartic Newton maps.

1.1. Statements of main results. For a degree d ≥ 2 complex polynomial P(z) with
simple roots, its Newton map is defined by
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fP (z) = z− P(z)

P ′(z)
.

Denote by NMd the space of degree d Newton maps. Then NMd is a d-dimensional
subspace in Ratd and hence in P2d+1. Let NMd be the closure of NMd in P2d+1. For
f ∈ NMd , denote by f̂ the reduction of f, see §2.1. We are interested in the case where
f̂ has degree at least 2, see Lemma 5.6. Then f̂ is a Newton map for a polynomial with
possible multiple roots. For more details, we refer the reader to [21].

Now consider the basin of roots of f̂ . Let U be a set consisting of finitely many
components of such basins. The boundary of each U ∈ U is locally connected [5, 29].
Provided that f̂ is forward invariant and post-critically finite on

⋃
U∈U U , each U ∈ U

carries landed internal rays I(U ,u)(t) of f̂ for t ∈ R/Z, where u ∈ U is the center of U. Let
� be a (not necessarily connected) graph consisting of finitely many (pre)periodic internal
rays in

⋃
U∈U U , that is,

� :=
⋃

U∈U,t∈TU
I(U ,u)(t),

with TU ⊆ Q for every U ∈ U. Here we allow TU = ∅ for some U ∈ U. The canonical
paradigms of such graphs are the Newton graphs (see §4.1) formulated recently by Drach
et al [4] and the alternative graphs for cubic Newton maps (see §4.2) based on Roesch’s
work in [25].

Let {fn}n≥1 ⊂ NMd be a sequence such that fn converges to f. As we will see in
§3.1, each (U , u) ∈ U has a deformation (Un, un) at fn and the map fn : (Un, un) → C

converges to f̂ : (U , u) → C under the Carathéodory topology in the sense of McMullen
[16, §5.1]. If, in addition, the local degrees degun fn = degu f̂ for every (U , u) ∈ U, we

denote fn
deg−−→ f on U. In this case, the deformation (Un, un) is unique at fn. Moreover, a

Böttcher coordinate of f̂ on U ∈ U naturally deduces a Böttcher coordinate of fn on the
deformation (Un, un) of (U , u), see §3.1. Then we can define the corresponding internal
rays inUn, which either land on ∂Un or terminate at fn-iterated preimages of critical points
in Un, see §3.2. For examples satisfying the above conditions, see Lemma 3.5.

Our first result concerns the perturbations of �.

THEOREM 1.1. Let f ∈ NMd with U, � defined as above. Let {fn}n≥1 ⊂ NMd be a
sequence such that fn

deg−−→ f on U. Suppose that for each U ∈ U and t ∈ TU :
(i) the orbit of the landing point of I(U ,u)(t) is eventually repelling periodic and avoids

the critical points of f̂ ; and
(ii) the corresponding internal ray I(Un,un)(t) lands on ∂Un for all large n.
Then for all large n, the graph

�n :=
⋃

U∈U,t∈TU
I(Un,un)(t)

is homeomorphic to �, and �n converges to �, as n → ∞, in the Hausdorff metric
topology.

Furthermore, if � is f̂ -invariant, then there exist homeomorphisms ϕn : � → �n such
that ϕn ◦ f = fn ◦ ϕn on � for all large n.
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Remark 1.2

(1) In Theorem 1.1, the assumption (i) guarantees that the perturbations of the orbit of the
landing point of I(U ,u)(t) are well controlled, see Proposition 2.4. In Proposition 3.9,
we provide sufficient condition for the assumption (ii).

(2) In the present paper, we mainly use the first part of the conclusion in Theorem 1.1
to classify the bounded hyperbolic components. In the sequel [11], we will apply the
both parts of the conclusion in Theorem 1.1 to characterize the unbounded hyperbolic
components.

The technique of perturbations of internal rays already appear in complex dynamics
for the non-degenerate maps, see e.g. [10, 12, 24]. Theorem 1.1 generalizes it to the
degenerate case within the Newton family. The key point of the proof, differing from the
non-degenerate case, is an elaborate argument to the internal rays landing at holes of f,
where the locally uniform convergence fails.

In principle, our above theorem provides a combinational method to study degenerate
sequences of Newton maps in the parameter space and hence that in moduli space. In a
certain sense it asserts that, under the assumptions, part of the dynamics of the degenerate
map f̂ embeds into the dynamics of non-degenerate maps fn. Thus it allows us to control
the dynamics of fn by that of f̂ .

Now we apply Theorem 1.1 to study the boundedness of hyperbolic components in the
moduli space of quartic Newton maps. Since the point ∞ is the unique repelling fixed
point for Newton maps, the moduli space of degree d Newton maps is defined by

nmd := NMd/Aut(C),

modulo the action by conjugation of the group of affine maps. We mention here that
the space nmd has complex dimension d − 2. Recall that a rational map is hyperbolic
if each critical point converges under iteration to a (super)attracting cycle, equivalently,
it is uniformly expanding in a neighborhood of its Julia set, see [16, §3.4]. The space of
hyperbolic Newton maps descends an open subset in nmd , and each component of this
subset is a hyperbolic component in nmd . Endowing nmd the quotient topology, we say a
hyperbolic component in nmd is bounded if it has compact closure in nmd , and unbounded
otherwise.

A hyperbolic component H ⊂ nmd is of immediate escaping type if each element in H
is the conjugacy class of a Newton map having degree at least 3 in the immediate basin of
some root.

THEOREM 1.3. Let H ⊂ nm4 be a hyperbolic component. Then H is unbounded if and
only if H is of immediate escaping type (see Figure 1).

For the boundedness of hyperbolic components, motivated by a result of Kleinian
groups [28, Theorem 1.2], McMullen [15] conjectures that every hyperbolic component
with Sierpínski Julia set is bounded in the moduli space of degree d rational maps. In his
celebrated work [17, Remark 7.2], Milnor proposed the study of this topic in quadratic
case. If the moduli space has complex dimension at least 2, there are only few already
known results: for a hyperbolic component in the moduli space of bicritical rational maps,
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FIGURE 1. The c-plane for the family of Newton maps fPc for the polynomials Pc(z) = z4/12 − cz3/6 +
(4c − 3)z/12 + (3 − 4c)/12, see [22, Figure 1]. The critical points of fPc are the four roots of Pc(z), 0 and c.
The map fPc has a superattracting 2-cycle 0 → 1 → 0. The letters indicate the types of hyperbolic components,

see §5.1. Our result asserts that the hyperbolic components indicated by A, B, C, or FE1 are bounded in nm4.

if each element possesses two distinct (super)attracting cycles of period at least 2, then it is
bounded, see [6, Theorem 1] and [23, Theorem 1.1]; for quartic Newton maps, the second
author and Pilgrim proved that a hyperbolic component in nm4 is bounded if each element
has two distinct (super)attracting cycles of period at least 2 [22, Main Theorem].

All the previous known bounded hyperbolic components are of so-called type D, that
is, each element has maximal number of (super)attracting cycles. We point out here
that the type-D components are semi-algebraic, but the components of other types are
possible transcendental objects, see [20, Theorem 1 and Conjecture 2]. Our boundedness
result gives the first non-semi-algebraic bounded hyperbolic components in a complex
two-dimensional moduli space. Moreover, it strengthens the result [22, Theorem 1.3].

1.2. Strategy of the proof of Theorem 1.3. One direction of Theorem 1.3 is the result
[22, Theorem 1.4]: if H is of immediate escaping type, then H is unbounded. Now we give
an overview of the proof of the reverse implication. Differing from the analytic argument
in [6] and the arithmetic argument in [22, 23], our argument relies on the combinatorial
properties of Newton maps and applies Theorem 1.1. The proof goes by contradiction as
follows. Suppose H is unbounded and not of immediate escaping type. Then we obtain an
unbounded sequence [fn] ∈ H. Passing to a subsequence, we can assume that [fn] has a
lift fn ∈ NM4 such that fn converges to f ∈ ∂NM4 with reduction f̂ having degree 2 or
3 and no roots of fn collide in C as n → ∞, see Lemma 5.6. It follows that at least one
non-fixed critical point cn of fn diverges to ∞. We derive a contradiction case by case.

Case 1: deg f̂ = 2. In this case, we consider rational internal rays in the immediate
basins of the roots of f̂ and the corresponding perturbations for fn. Theorem 1.1 implies
that deg fn = 2 and hence leads to a contradiction.

Case 2: deg f̂ = 3 and H is of type A, B, C, or D. It turns out that the Newton graphs
of f̂ are disjoint with the unique non-fixed critical point c of f̂ . Applying Theorem 1.1 to
the Newton graphs of f̂ , we bound the immediate basins of the (super)attracting cycles of
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periods at least 2 for fn. We obtain a contradiction by arguing the location of forward orbit
of the critical point cn.

Case 3: deg f̂ = 3 and H is of type FE1 or FE2. In this case, the critical point c could
be an iterated preimage of ∞. Then we can not apply Theorem 1.1 directly to the Newton
graphs as in the previous case. Alternatively, using Rosech’s results in [25] on cut angles,
we construct a natural Jordan curve C consisting of (pre)periodic internal rays of f̂ such
that the orbit of C is away from the critical point c. Then Theorem 1.1 works for the
curve C. Thus, we can continue to analyze the location of the related critical points and
the corresponding Fatou components of fn, and obtain a contradiction.

We remark that our proof of Theorem 1.3 highly relies on the behavior of the critical
point cn for fn, see Lemma 5.3. We do not expect an analogy of such behavior holding for
Newton maps of higher degrees. However, it would be interesting to apply Theorem 1.1 to
investigate the boundedness of hyperbolic components in nmd for d ≥ 5.

1.3. Structure of the paper. This paper is organized as follows. In §2, we introduce
the relevant preliminaries about degenerate rational maps and Newton maps. Section 3
contains the proof of Theorem 1.1. In §4, we investigate some dynamical graphs for Newton
maps, and in §5, we prove Theorem 1.3.

2. Preliminaries
In this section, we give background materials. In §2.1, we provide basic definitions and
properties of degenerate rational maps. Section 2.2 concerns the (degenerate) Newton
maps.

2.1. Degenerate rational maps. As mentioned in §1, the space Ratd is naturally iden-
tified as an open and dense subset of P2d+1. We say each element f ∈ P2d+1 \ Ratd is a
degenerate rational map of degree d. For such f, there exist two homogeneous polynomials
F(X, Y ) and G(X, Y ) of degree d in C[X, Y ] such that f = [F : G] is in homogeneous
coordinates and Hf := gcd[F , G] is a polynomial in C[X, Y ] of degree at least 1. We can
rewrite

f = Hf f̂ ,

where f̂ is a rational map of degree less than d. We say each zero of Hf is a hole of
f and denote Hole(f ) the set of holes of f. Moreover, we call f̂ the reduction of f. For
convenience, if f is a rational map of degree d, we define Hf = 1 and then f̂ = f .

Let {fn}n≥1 be a sequence of rational maps of degree d ≥ 1. We say fn converges
semi-algebraically to a (degenerate) rational map f if the coefficients of fn converge to the
coefficients of f in P2d+1. Compare to the algebraically convergence in [1]. Without special
emphasis, we mean semi-algebraically convergence when we consider convergence for a
sequence in P2d+1. The semi-algebraical convergence implies locally uniform convergence
away from holes.
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LEMMA 2.1. [2, Lemma 4.1] Let {fn}n≥1 be a sequence of degree d ≥ 1 rational maps.
If fn converges to f = Hf f̂ ∈ P2d+1, then fn converges locally uniformly to f̂ outside
Hole(f ).

Suppose that each fn possesses a cycle of fixed period. If the limit of these cycles is
away from the holes of f, Lemma 2.1 immediately implies that this limit is also a cycle
for f̂ . We state as follows and omit the proof.

LEMMA 2.2. Let {fn}n≥1 be a sequence of degree d ≥ 2 rational maps. Suppose that fn
converges to f = Hf f̂ ∈ P2d+1 with deg f̂ ≥ 1. Assume On is a cycle of fn of period
m ≥ 1 and suppose that On converges to O in P1. If O ∩ Hole(f ) = ∅, then O is a cycle
of f̂ of period q with q | m. Furthermore: (1) if On is attracting, then O is non-repelling;
(2) if q < m, then O is parabolic.

If the limit intersects the holes of f, we have the following basins shrinking result.

LEMMA 2.3. [22, Proposition 2.8] Let {fn}n≥1 be a sequence of degree d ≥ 2 rational
maps. Assume that fn converges to f = Hf f̂ ∈ P2d+1. Assume degf̂ ≥ 2 and ∞ ∈
Hole(f ) is a fixed point of f̂ . Let {z(0)n , . . . , z(m−1)

n } be a (super)attracting cycle of fn of
period m ≥ 2, and let U(k)n be the Fatou component containing z(k)n . Suppose z(k)n → z(k)

for k = 0, . . . , m− 1 with z(0) = ∞ and z(i) �= ∞ for some 1 ≤ i ≤ m− 1. Then:
(1) U

(0)
n converges to ∞ in the sense that, for any ε > 0, the componentU(0)n is contained

in the disk {z : ρ(z, ∞) < ε} for all large n, where ρ is the sphere metric; and
(2) there exists a neighborhood V of ∞ such that U(i)n ∩ V = ∅ for all large n.

Now we state a straightforward result about the perturbations of periodic points.

LEMMA 2.4. Let f = Hf f̂ ∈ P2d+1 with deg f̂ ≥ 1. Then the following holds.
(1) For z0 ∈ Ĉ and j ≥ 1, denote zi := f̂ i (z0) for 0 ≤ i ≤ j . Suppose zi avoids the

critical point of f̂ for all 0 ≤ i ≤ j − 1. Let zj (g) be a holomorphic map defined in
a neighborhood of f ∈ P2d+1 with zj (f ) = zj . Then for each 0 ≤ i ≤ j − 1, there
exists a holomorphic map zi(g) defined in a neighborhood of f such that zi(f ) = zi

and ĝj−i (zi(g)) = zj (g). Moreover, if zi avoids the holes of f for all 0 ≤ i ≤ j − 1,
then zi(g) is the unique point near zi such that ĝj−i (zi(g)) = zj (g), which implies
zi(g) = ĝi (z0(g)) for all 0 ≤ i ≤ j − 1.

(2) Let O = {ξ0, . . . , ξk−1} be an attracting (respectively repelling) cycle of f̂ . If
O ∩ Hole(f ) = ∅, then for each g close to f, there exists a unique attracting
(respectively repelling) cycle O(g) := {ξ0(g), . . . , ξk−1(g)} of g such that each
ξi(g) is a holomorphic map near f with ξi(f ) = ξi .

Proof. By pre and post composition of Möbius transformations, we can assume
z0, . . . , zj ∈ C. For g = Hgĝ ∈ P2d+1 close to f, we have deg ĝ ≥ 1. Then for 0 ≤ i ≤
j − 1, the iteration gj−i is well defined, see [2, Lemma 2.2]. Consider the holomorphic
function
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Fi(g, z) := gj−i (z)− zj (g)

on�f ×D(zj ), where�f ⊆ P2d+1 is a neighborhood of f andD(zj ) ⊆ C is a neighbor-
hood of zj . By the assumptions, we have that Fi(f , zi) = 0 and

∂Fi

∂z
|(f ,zi ) = (f̂ j−i )′(zi) �= 0.

Then the implicit function theorem implies there exists a holomorphic function zi(g) near
f such that ĝj−i (zi(g)) = zj (g). If {z0, . . . , zj−1} ∩ Hole(f ) = ∅, the function ĝj−i (z)
is holomorphic in z in a fixed neighborhood of zi for each g close to f. It follows from
Hurwitz’s theorem (see [7]) that gj−i (z)− zj (g) has a unique root near zi for g close to f.
Thus statement (1) follows.

For statement (2), note that the cycle O ∩ Hole(f ) = ∅. Applying the implicit func-
tion theorem on G(g, z) := gk(z)− z, we obtain the expected cycle O(g) of g for g
close to f.

For f = Hf f̂ ∈ P2d+1, assume f̂ has an attracting cycle O and denote 	 the
immediate basin of O. If 	 ∩ Hole(f ) = ∅, Lemma 2.4 implies that for g close to f, the
map ĝ has an attracting cycle O(g). Denote by 	(g) the immediate basin of O(g). Then
we have the following lemma.

LEMMA 2.5. Assume that 	 ∩ Hole(f ) = ∅ and let E ⊂ 	 be any compact set. Then
E ⊆ 	(g) for any g sufficiently close to f.

This above result is well known in the case where f is a rational map of degree d, see
[3, Lemma 6.3]. Our assumption 	 ∩ Hole(f ) = ∅ guarantees that the argument in the
non-degenerate case also works in our case. Here we omit the proof.

2.2. Newton maps. For a degree d ≥ 2 complex polynomial P(z) with simple roots, its
Newton map

fP (z) := z− P(z)

P ′(z)

is a degree d rational map having d superattracting fixed points at the roots of P. The only
other fixed point is at ∞. The holomorphic index formula (see [18, Theorem 12.4]) asserts
that the point ∞ is the unique repelling fixed point of fP . The critical points of fP are the
roots of P and the zeros of P ′′. Moreover, the poles of fp are the zeros of P ′.

Recall that NMd is the space of degree d Newton maps and NMd is the closure of NMd

in P2d+1. Then for each f = Hf f̂ ∈ NMd , there exists a polynomial Q degree at most
d with possible multiple roots such that f̂ is the Newton map of Q. Each root r of Q is a
(super)attracting fixed point of f̂ with multiplier 1 − 1/nr , where nr is the multiplicity of r
as a zero of Q. Moreover, again f̂ has only one more fixed point at ∞, which is repelling. It
follows that each hole of f is either a multiple root of Q or ∞. Furthermore, ∞ ∈ Hole(f )
if and only if deg Q < d. For more details about degenerate Newton maps, we refer the
reader to [21].
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For f = Hf f̂ ∈ NMd with deg f̂ ≥ 2, the Fatou components of f̂ have well-studied
topological structure. By a result of Shishikura [27], all Fatou components of f̂ are simply
connected, and hence the Julia set of f̂ is connected. Moreover, the boundary of each
component of the basins of roots is locally connected, see [5, 29].

3. Proof of Theorem 1.1
The goal of this section is to prove Theorem 1.1. We define Böttcher coordinates on the
deformations in §3.1 and prove the convergence of Böttcher coordinates (Proposition 3.7).
To do that, we introduce the convergence preserving the degrees at centers (Definition 3.3).
In §3.2, we use the Böttcher coordinates on the deformations to define the corresponding
internal rays, and then show a convergence result on these rays (Proposition 3.8). Finally,
we prove Theorem 1.1 in §3.3.

3.1. Perturbation of Böttcher coordinates. Let f = Hf f̂ ∈ NMd with deg f̂ ≥ 2 and
denote by 	

f̂
the union of basins of the roots of f̂ . Let U be a finite subset of components

of	
f̂

such that ifU ∈ U, then f̂ (U) ∈ U. Recall that f̂ is post-critically finite on
⋃
U∈U U

if the critical points in any U ∈ U have finite orbits. For such f̂ and U, one can choose a
system of Böttcher coordinates {φU : U → D}U∈U satisfying

φ
f̂ (U)

◦ f̂ ◦ φ−1
U (z) = zdU, z ∈ D, where dU := deg(f̂ |U),

and u := φ−1
U (0) is called the center of U. Moreover, we have the following proposition.

PROPOSITION 3.1. The set
⋃
U∈U U is disjoint with the holes of f.

Proof. By §2.2, a possible hole of f is either ∞ or a geometrically attracting fixed point
of f̂ . Since f̂ is post-critically finite on

⋃
U∈U U , the conclusion holds.

To abuse notation, we denote the set of pointed sets (U , u) with U ∈ U also by U.
Let {fn}n≥1 be a sequence in NMd such that fn converges to f. By Proposition 3.1 and
Lemma 2.5, for (U , u) ∈ U, the point u belongs to the unique component Un of	fn for all
large n; and combining Proposition 2.4, the component Un contains a preperiodic point un
with the same preperiod and period as that of u such that un → u as n → ∞. We call such
(Un, un) a deformation of (U , u) at fn. Note that such un is not necessarily unique. For
example, if u is a preperiodic critical point, it possibly splits into two preperiodic points of
fn contained in Un.

To the end of this subsection, under natural assumptions, we define a Böttcher
coordinate φUn on the deformations Un of U and show a convergence result of φUn . First,
we consider the convergence of deformations.

Recall the definition of Carathéodory topology on a set of pointed sets and a set of
holomorphic functions respectively, following [16, §5.1]. Let V be a set of open simply
connected pointed sets (V , v) in C. The Carathéodory topology on V is defined by the
following convergence: (Vn, vn) converges to (V , v) if and only if:

(i) vn converges to v;
(ii) for any compact K ⊂ V , we have K ⊂ Vn for all large n; and
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(iii) for any domain W containing v, if W ⊂ Vn for infinitely many n, then W ⊂ V .
Denote G the set of holomorphic functions defined on (V , v) ∈ V. Then the Carathéodory
topology on G is defined as follows. Let g : (V , v) → C and gn : (Vn, vn) → C be
functions in G. We say gn converges to g if: (1) (Vn, vn) converges to (V , v) in V; and
(2) gn converges to g uniformly on any compact subset of V as n → ∞.

PROPOSITION 3.2. Let {fn}n≥1, f = Hf f̂ and U be as above. For any (U , u) ∈ U, the
holomorphic maps fn : (Un, un) → C converge to f̂ : (U , u) → C, where (Un, un) is a
deformation of (U , u) at fn.

Proof. We first show that (Un, un) converge to (U , u). By the definition of (Un, un),
we have un → u as n → ∞. Proposition 3.1 and Lemma 2.5 imply that any compacted
set contained in U is contained in Un for sufficiently large n. Now pick an open and
connected set W ⊂ Un for infinitely many n with u ∈ W . We assume on the contrary
that W �⊂ U . Then W contains a eventually repelling preperiodic point z ∈ ∂U such that
its orbit avoids the critical points and holes of f̂ , since the repelling periodic points are
dense in the boundary of any immediate basin of a root of f̂ , and the critical points and
holes of f̂ are finite. By Proposition 2.4, the point z is perturbed to an eventually repelling
preperiodic point of fn, which also belongs to W for sufficiently large n. It contradicts
that W ⊂ Un. Thus (Un, un) converges to (U , u). The locally uniform convergence of fn
follows immediately from Lemma 2.1. This completes the proof.

For our propose, we use the following definition.

Definition 3.3. Let fn and f be as above. We say fn converges to f preserving the degrees

at the centers, denoted by fn
deg−−→ f , on U if for each (U , u) ∈ U, a deformation (Un, un)

of (U , u) satisfies the local degrees property degu f̂ = degun fn.

If fn
deg−−→ f on U, it follows immediately that any (U , u) ∈ U has a unique deformation

(Un, un). We call such un a center of Un. In this case, set

Un := {(Un, un) : (Un, un) as the deformation of (U , u) ∈ U}.
We mention here that the set Un may contain several distinct centers.

Remark 3.4. If a critical point c of f̂ is contained in the boundaries of distinct (U , u) and
(U ′, u′) in U, it is possible that Un coincides with U ′

n and it contains the critical point of
fn perturbed from c (see Figure 2). In this case, both un and u′

n are centers of Un = U ′
n,

and hence fn is not post-critically finite on the union of Un with (Un, un) ∈ Un.

The following result states a natural sufficient condition for the convergence fn
deg−−→ f ,

which we will use repeatedly in §5. The proof is straightforward, so we omit it.

LEMMA 3.5. Let fn, f, and U be as above. Assume that f̂ has degree 2 on every immediate

basin of roots in U and degree 1 on all other elements in U. Then, fn
deg−−→ f on U.
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(a) (b)

U U cU
u u

u

U

u unun un cn

Un

un

FIGURE 2. (a) The dynamical plane of the Newton map f for the polynomial z3 − 1. The letters indicate Fatou
components U , U ′, U ′′, and U ′′′ with centers u, u′, u′′, and u′′′ respectively. The arcs indicate internal rays. The
critical point c = 0 is contained in ∂U ∩ ∂U ′. (b) The dynamical plane of the Newton map fn for the polynomial
z3 + z/n− 1 with indicated Fatou component Un. The critical point cn ∈ Un. The points un, u′

n, u′′
n, and u′′′

n are
all in Un and centers of Un. The set (Un, un) is the deformation of (U , u); the set (Un, u′

n) is the deformation of
(U ′, u′); the set (Un, u′′

n) is the deformation of (U ′′, u′′); and the set (Un, u′′′
n ) is the deformation of (U ′′′, u′′′).

The corresponding rays in Un either land on ∂Un or terminate at the iterated preimages of cn.

From now on, we assume that fn
deg−−→ f . Since f̂ is post-critically finite on

⋃
U∈U U ,

by Proposition 3.1 and Lemma 2.1, we have the following straightforward result and again
omit the proof.

LEMMA 3.6. If (Un, un) is the deformation of (U , u) ∈ U at fn, then (fn(Un), fn(un)) is
the deformation of (f̂ (U), f̂ (u)).

Lemma 3.6 suggests that for each (Un, un) ∈ Un, we have a Böttcher coordinate φ(Un,un)

near un such that

φ(Un,un)(z)
dU = φ(fn(Un),fn(un)) ◦ fn(z) (3.1)

for z near un, and that

φ′
(Un,un)(un) → φ′

(U ,u)(u) as n → ∞. (3.2)

The map φ(Un,un) extends conformally until meeting an iterated preimage of critical points
of fn. Then there exists a maximum rn ≤ 1 such that ψ(Un,un) := φ−1

(Un,un) : Drn → Un is
well defined.

Denote by ψ(U ,u) the inverse of φ(U ,u). The following result asserts that ψ(Un,un)

converges toψ(U ,u) locally uniformly on D, which is well known in Carathéodory topology,
see e.g. [16, Theorem 5.1].

PROPOSITION 3.7. For (U , u) ∈ U, let (Un, un) ∈ Un be the deformation of (U , u). Then
ψ(Un,un) converges to ψ(U ,u) locally uniformly on D.

3.2. Perturbation of internal rays. In §3.1, we perturb a Böttcher coordinate in (U , u) ∈
U to obtain a Böttcher coordinate φ(Un,un) in (Un, un) ∈ Un. In this subsection, we use the

https://doi.org/10.1017/etds.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.54


Perturbations of graphs for Newton maps 3007

inverse map ψ(Un,un) to define the internal rays in (Un, un) and prove a convergence result
on internal rays.

Now we define internal rays of fn in (Un, un) as follows. For each θ ∈ R/Z, let rθ
be the maximal radius such that ψ(Un,un) extends along (0, rθ )e2πiθ . If rθ < 1, then arc
ψ(Un,un)((0, rθ )e2πiθ ) terminates at an iterated preimage of critical points of fn, and if
rθ = 1, the arc ψ(Un,un)((0, 1)e2πiθ ) accumulates and factually lands on ∂Un. In the latter
case, we call

I(Un,un)(θ) := ψ(Un,un)([0, 1]e2πiθ )

the landed internal ray in (Un, un) of angle θ . Note that fn sends a landed internal ray of
(Un, un) to a landed internal ray of (f (Un), f (un)). Also, since Un may contain more than
one center, it may possess several groups of landed interval rays. In this case, each such
ray starts from a center of Un and rays from distinct groups are disjoint (see Figure 2).

The following result asserts that the internal rays of eventually periodic angles converge.

PROPOSITION 3.8. For (U , u) ∈ U, assume that the internal ray I(U ,u)(θ) of angle θ lands
at an eventually repelling periodic point. For all large n, suppose that I(Un,un)(θ) is a
landed internal ray in (Un, un) ∈ Un. Then I(Un,un)(θ) → I(U ,u)(θ) as n → ∞.

Proof. To ease notation, we write I (θ), In(θ), ψ , and ψn for I(U ,u)(θ), I(Un,un)(θ), ψ(U ,u),
and ψ(Un,un), respectively. Set δ := deg(f̂ |U) and let z0 be the landing point of I (θ). It is
sufficient to show that, given any η > 0, for all large n, we have dH (I (θ), In(θ)) < η,
where dH is the Hausdorff metric.

First assume that I (θ) is periodic of period p ≥ 1. Then u is a super-attracting fixed
point of f̂ . Define

Dε := {z ∈ Ĉ : ρ(z, z0) < ε},
where ρ is the spherical metric. Shrinking ε if necessary, we may assume f̂ |Dε is injective
and Dε ⊆ f̂ p(Dε). We claim that for any sufficiently large n and any component D′

n of
f

−p
n (Dε), eitherD′

n ⊆ Dε orD′
n ⊆ Ĉ \Dε . Indeed, if p > 1, the landing point z0 of I (θ)

is not a hole of f p, see §2.1 and [2, Lemma 2.2]. It follows from Lemma 2.1 that f pn
converges uniformly to f̂ p near z0, and hence f pn |Dε is injective and Dε ⊆ f

p
n (Dε) for

all large n. Then in this case, the claim follows. Now we consider the case where p = 1.
Then z0 = ∞. If z0 = ∞ is not a hole of f, the claim follows by previous argument. If
z0 = ∞ is a hole of f, then fn fails to converge uniformly to f̂ near ∞. In this case,
we prove the claim by contradiction. Suppose that the claim fails. Then there exists a
subsequence, denoted also by {fn}, such that for each fn, there exists a component D′

n of
f−1
n (Dε) with D

′
n ∩ ∂Dε �= ∅. Choose a point wn ∈ D′

n ∩ ∂Dε . Passing to subsequence
if necessary, we may assume wn → w. Then w ∈ ∂Dε . By Lemma 2.1, the sequence fn
converges uniformly to f̂ on ∂Dε . It follows that as n → ∞,

fn(wn) → f̂ (w).

Note that Dε ⊆ f (Dε). Then

f̂ (∂Dε) ∩Dε = ∅.
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We have that f (w) �∈ Dε . However,

fn(wn) ∈ fn(D′
n) = Dε ,

which implies f (w) ∈ Dε . It is a contradiction. Therefore, the claim holds.
Since I (θ) lands at z0, there exists 0 < r < 1 such that

ψ((r , 1)e2πiθ ) ⊆ U ∩Dε .
Pick 0 < s < 1 such that sδ

p
> r . Then the segment ψ([sδ

p
, s]e2πiθ ) ⊆ I (θ) belongs to

U ∩Dε . It follows from Proposition 3.7 that for all large n,

dH (ψn([0, s]e2πiθ ), ψ([0, s]e2πiθ )) < ε. (3.3)

Define

γn,0 : [0, 1] → ψn([sδ
p

, s]e2πiθ )

to be an arc such that γn,0(0) = ψn(s
δpe2πiθ ) and γn,0(1) = ψn(se

2πiθ ). Then,

γn,0([0, 1]) ⊆ Dε ∩ Un.

Note that f pn (γn,0(1)) = γn,0(0). Lift γn,0 to an arc γn,1 based at γn,0(1). Since In(θ) is
landed, inductively we obtain a sequence of arcs γn,k such that γn,k+1 is a lift by fn of γn,k

based at the endpoint of γn,k which is not in γn,k−1.
Now we claim that for sufficiently large n, the arc γn,k ⊂ Dε . We prove the claim by

induction on k. The claim holds for k = 0 by the definition of γn,0. Suppose that for k ≥ 0,
the arc γn,k ⊆ D. Since γn,k+1 is a preimage of γn,k under fn, there exists a componentD′
of f−1

n (Dε) containing γn,k+1. Since the intersection point of γn,k+1 ⊆ D′ and γn,k ⊆ Dε

belongs toDε , it follows that D′ ∩Dε �= ∅. By the previous claim, we haveD′ ⊆ Dε , and
hence γn,k+1 ⊆ Dε , which completes the induction.

Note that for all large n,

In(θ) = ψn([0, s]e2πiθ )
⋃
(∪k≥0γn,k) ∪ {zn},

where zn is the landing point of In(θ). According to the estimate in equation (3.3) and the
fact that γn,k ⊆ Dε , we have

dH (I (θ), In(θ)) < ε.

By choosing ε < η, we prove the proposition under the periodicity assumption.
In the strictly preperiodic case, we set (V , v) := f̂ (U , u) and IV (θ

′) = f̂ (I (θ)).
Let (Vn, vn) be the deformation of (V , v) with fn(Un, un) = (Vn, vn). Induc-
tively, it is sufficient to prove dH (I (θ), In(θ)) < ε under the assumption that
limn→∞ dH (IV (θ

′), IVn(θ ′)) = 0.
Define Dε as above. By Proposition 3.7, there exists 0 < s < 1 such that for all large n,

dH (ψn([0, s]e2πit ), ψ([0, s]e2πit )) < ε and ψn(se2πit ) ∈ Dε .
Set L′

n := ψ(Vn,vn)([s
δ , 1]e2πθ ′

) and L′ := ψ(V ,v)([sδ , 1]e2πθ ′
). Since IVn(θ

′) → IV (θ
′),

L′
n and L′ are contained in f̂ (Dε) for large n. Since In(θ) is a landed internal ray for

all large n, there is a lift Ln of L′
n based at the point ψn(se2πiθ ). Denote by L the lift of
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L′ based at the point ψ(se2πiθ ). Note that in this case, we have z0 �∈ Hole(f ). Then fn
converges uniformly to f̂ on Dε . Thus for sufficiently large n,

f (Dε) ⊂ fn(D2ε).

Hence we have Ln ⊂ D2ε and L ⊆ D2ε . Note I (θ) = ψ([0, s]e2πit ) ∪ L and In(θ) =
ψn([0, s]e2πit ) ∪ Ln. It follows that

dH (I (θ), In(θ)) < 2ε.

Choose ε < η/2. This completes the proof.

3.3. Proof of Theorem 1.1. Now we begin to prove Theorem 1.1 and state a sufficient
condition for the assumption (ii) in Theorem 1.1.

Proof of Theorem 1.1. Under the assumptions (i) and (ii), by Proposition 3.8, we have
that for each (U , u) ∈ U and t × TU , the internal rays I(Un,un)(t) converge to I(U ,u)(t) as
n → ∞. It follows immediately that �n converges to � as n → ∞.

We are going to check that �n is homeomorphic to � for large n. It is sufficient to
show that for any (U , u), (U ′u′) ∈ U and t ∈ TU , t ′ ∈ TU ′ , the rays I(U ,u)(t) and I(U ′,u′)(t ′)
land at a common point only if I(Un,un)(t) and I(U ′

n,u′
n)
(t ′) land at a common point for

all large n. Assume first that this common landing point, denoted by z, is periodic.
If z = ∞, the unique possible hole of f is in the Julia set of f̂ , where we have t = t ′ = 0.
It follows that I(Un,un)(t) and I(U ′

n,u′
n)
(t ′) land at the fixed points of fn in the Julia set,

which can be only ∞. If z �= ∞, the conclusion follows immediately from Lemma 2.4(2)
and Proposition 3.8. In the case where z is preperiodic, we have this result by combining
the periodic case, Lemma 2.4(1), and Proposition 3.8 since the orbit of z avoids the critical
points of f̂ .

Assume now that � is f̂ -invariant. Let I := I(U ,u)(t) be a periodic internal ray in
� of period p. Since In := I(Un,un)(t) is landed by the assumption, the inverse ψ(Un,un)

of the Böttcher coordinate on (Un, un) (defined after Lemma 3.6) can be extended to
[0, 1]e2πit . So we are able to define a homeomorphism ϕn,I : I(U ,u)(t) → I(Un,un)(t) by
ϕn,I := ψ(Un,un) ◦ φ(U ,u)|I . It follows from equation (3.1) that ϕn,I ◦ f̂ p = f

p
n ◦ ϕn,I on I.

If I ′ := I(U ,u)(t
′) is mapped to I by f̂ k , we get a homeomorphism ϕn,I ′ : I ′ → I ′

n :=
I(U ′

n,u′
n)
(t ′) by lifting ϕn,I along the maps f̂ k : I ′ → I and f kn : I ′

n → In. Finally, define
a map ϕn on � such that ϕn|I = ϕn,I on each internal ray I in �. Then ϕn is the desired
homeomorphism from � to �n.

To end this section, we state a sufficient condition to guarantee that assumption (ii) in
Theorem 1.1 holds. Note that for any internal ray I ⊂ �, there exists an smallest integer
kI ≥ 0 such that f̂ kI (I ) is contained in the immediate basin of a root of f̂ .

PROPOSITION 3.9. For any internal ray I ⊂ �, let kI ≥ 0 be as above. Under assumption
(i) in Theorem 1.1, if the perturbation of f̂ kI (I ) at fn is landed for all large n,
then assumption (ii) in Theorem 1.1 holds. In particular, under assumption (i) in
Theorem 1.1, if deg fn|U ′

n
= deg f̂ |U ′ for all immediate basins U ′ ∈ U, then assumption

(ii) in Theorem 1.1 holds.
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Proof. Consider an internal ray I ⊂ � and it’s perturbation In ⊂ �n. Let U ∈ U be the
component such that I ⊂ U , and let Un be the deformation of U at fn. We show In lands
on ∂Un. If U is the immediate basin of a root of f̂ , the conclusion follows immediately
since in this case, kI = 0.

Now we consider the case where U is not the immediate basin of a root of f̂ . We set
V = f̂ (U) and I ′ = f̂ (I ). By an induction argument, it suffices to show In lands on ∂Un
under the assumption that I ′

n lands on ∂Vn, where I ′
n is the perturbation of I ′ and Vn is the

deformation of V at fn. Fix notation as in the proof of Proposition 3.8. Since the orbit of
the landing point of the internal ray I avoids the critical points of f̂ , we can apply a similar
argument in Proposition 3.8 and obtain that

In = I(Un,un)(t) = ψ(Un,un)([0, s]e2πit ) ∪ Ln,

where Ln is a lift of ψ(Vn,vn)([s
δ , 1]e2πit ′) based at ψ(Un,un)(se

2πit ). Note that

ψ(Vn,vn)(e
2πit ′) ∈ ∂Vn.

It follows that In land on ∂Un.

If deg fn|U ′
n

= deg f̂ |U ′ for all immediate basins U ′ ∈ U, since fn
deg−−→ f and f̂ is

post-critically finite on U ′, it follows that for the center u′
n of U ′

n, the degrees degu′
n
fn =

deg fn|U ′
n
. Hence u′

n is the unique critical point of fn. It follows that all internal rays in U ′
n

are landed. Thus the conclusion follows.

4. Invariant graphs for Newton maps
In this section, we introduce suitable dynamical graphs of Newton maps for later use to
prove Theorem 1.3. In §4.1, we recall the Newton graphs given by Drach et al [4]. In §4.2,
we first state Roesch’s result on cut angles and then construct invariant graphs differing
from the Newton graphs for cubic Newton maps. In §4.3, we generalize Roesch’s cut angles
result to quartic Newton maps.

4.1. Newton graphs. Let f ∈ NMd with d ≥ 2. Recall that 	f is the union of basins
of its roots. Assume that f is post-critically finite on 	f . The dynamics of f can be
characterized by an invariant graph that is the so-called Newton graph. Such a graph was
first constructed in [4] and then applied to study the dynamics of corresponding maps, see
[5, 8, 9, 14, 13, 29]. In this subsection, we state briefly the construction of Newton graphs
and list some properties.

Let r be a root of f and denote by 	f (r) its immediate attracting basin. The fixed
internal rays in 	f (r) land at fixed points in ∂	f (r). Since the only Julia fixed point of
f is at ∞, all fixed internal rays in 	f have a common landing point at ∞. We denote by
�0 the union of all fixed internal rays in 	f together with ∞. Then f (�0) = �0. For any
m ≥ 0, denote by �m the connected component of f−m(�0) that contains ∞. Following
[4], we call �m the Newton graph of f at level m. The vertex set of �n consists of iterated
preimages of fixed points of f contained in �n.

A crucial property for Newton graphs is the following.
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LEMMA 4.1. [4, Theorem 3.4] There exists M ≥ 0 such that the Newton graph �M

contains all poles of f . Hence �m+1 = f−1(�m) and �m ⊆ �m+1 for any m ≥ M .

The Newton graphs induce naturally a puzzle structure for f on Ĉ. Let �f denote the
Newton graph of f with the least level such that �f contains all poles and all critical
points that map to fixed points under iteration. Set X0 the complement of the union of the
disks {z ∈ U : φU(z) < 1/2} for all connected components U of 	f with U ∩�f �= ∅,
where φU is the Böttcher coordinate on U. Define G0 := (�f ∩X0) ∪ ∂X0. Then G0 is a
finite graph consisting of segments of internal rays and equipotential lines in 	f . For each
m ≥ 0, we defineXm := f−m(X0) andGm := f−m(G0). Then eachXm is connected and
the interior int(Xm) contains the Julia set Jf of f . For each m ≥ 0, the closures of the
components of Xm \Gm are called puzzle pieces of level m. It follows that the puzzle
pieces of different levels have a nested structure. For each z ∈ Jf , denote Em(z) the union
of puzzle pieces of level m which contains z. Then z ∈ int(Em(z)). Moreover, Em(z) are
puzzle pieces for all m if and only if z is not an iterated preimage of ∞.

PROPOSITION 4.2. [5, Corollary 1.2] and [29, Theorem 1.1] If z is on the boundary of a
component of 	f , then ⋂

m≥0

Em(z) = {z}.

In particular, the boundary of any component of basins of the roots is locally connected.

4.2. An alternative graph for cubic Newton maps. In this subsection, we focus on the
case where f ∈ NM3. Except for some special cases, we construct an invariant graph away
from the unique non-fixed critical point. Our graph is based on Roesch’s work in [25, §3]
and differs from the Newton graphs introduced above.

Let r1, r2, and r3 be the roots of f and let 	1, 	2, and 	3 be the corresponding
immediate basins respectively. Note that f has another critical point denoted by c. In this
subsection, we always assume c �∈ 	1 ∪	2 ∪	3 and c is not a pole, that is, f (c) �= ∞.

Under the assumptions, we have that f has two distinct poles, denoted by ξ1 and ξ2.
An orientation argument implies that ∂	1, ∂	2, and ∂	3 cannot intersect at a common
pole. By counting the preimages of 	i basins, we have that there is a unique pole at which
exactly two ∂	i basins intersect. Up to reindexing, we can assume ξ1 ∈ ∂	1 ∩ ∂	2. It
follows that ξ2 ∈ ∂	3 and ξ2 �∈ ∂	1 ∪ ∂	2.

For i = 1, 2, and 3, denote by Ii(θ) the internal ray in 	i of angle θ ∈ R/Z. Following
Roesch [25], we say an angle θ is a cut angle in	1 if there exists θ ′ ∈ R/Z such that I1(θ)

and I2(θ
′) land at a common point. It turns out that θ is a cut angle in 	1 if and only if

1 − θ is a cut angle in 	2. For the basin 	3, the only cut angle is 0. Let� be the set of cut
angles in 	1. It follows immediately that 0, 1/2 ∈ �. Label 	1 such that 	3 and I	1(θ)

are in the same complementary component of the curve

γ (0, 1/2) := I1(0) ∪ I1(1/2) ∪ I2(0) ∪ I2(1/2) (4.1)

for any θ ∈ (0, 1/2), and define

α := inf{θ : θ ∈ �},
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1−2θ

1

1−2θ

1−θ
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2θ

2θ

θ

ξ2ξ

FIGURE 3. The dynamical plane of the Newton map for the polynomial z3/3 − z2/2 + 1. The curve γ (0, 1/2)
consists of the internal rays I1(0), I1(

1
2 ), I2(0), and I2(

1
2 ). The angle θ �∈ � but 2θ ∈ �. A curve in Lemma

4.3(5) consists of indicated internal rays except those in γ (0, 1/2). In this section, we continue to use this example
in the subsequent figures.

where inf is obtained under the order by identifying R/Z with (0, 1]. In fact, the local
connectivity of ∂	1 and ∂	2 implies that α ∈ �.

Now we summarize the properties of the cut angles for later use. We use the following
notation. Let 	(1)i be the preimage of 	i disjoint from 	i . Then c �∈ 	(1)i . For j ≥ 1, if
	
(j)
i is a domain such that f j : 	(j)i → 	i is a homeomorphism, then an internal ray Ii(θ)

in 	i deduces an internal ray I (j)i (θ) in 	(j)i satisfying I (j)i (θ) = f−j (Ii(θ)).

LEMMA 4.3. [25, §3] Fix the notation as above. The following statements hold.
(1) If the orbit of a rational angle θ is contained in [α, 1], then θ ∈ �.
(2) The angle 0 < α < 1/2. Furthermore, the periodic angles 1 − 1/(2n − 1) belong to

� for all large n.
(3) Assume 0 < θ < 1/2 with 2θ ∈ �. Then θ + 1/2 ∈ �. Furthermore, if θ ∈ �, then

I
(1)
1 (2θ) and I (1)2 (1 − 2θ) land at a common point; if θ �∈ �, then I1(θ) and I (1)2 (1 −

2θ) land at a common point, as well as I2(1 − θ) and I (1)1 (2θ). The two landing
points are distinct.

(4) The curve γ (0, 1/2) defined in equation (4.1) separates 	3 and 	(1)3 .
(5) Let 0 < θ < 1/2 with 2θ ∈ �. If θ �∈ �, then the curve

I1(1/2) ∪ I1(θ) ∪ I (1)2 (1−2θ) ∪ I (1)2 (0) ∪ I (1)1 (0) ∪ I (1)1 (2θ) ∪ I2(1−θ) ∪ I2(1/2)

separates c and ∞.

Figure 3 provides an example to illuminate the curves in the above lemma.
Let γ (0, 1/2) be as in equation (4.1). Then the complement of γ (0, 1/2) in Ĉ contains

two components. Denote by D the one that is disjoint with 	3. It follows from Lemma
4.3(4) that 	(1)3 ⊂ D.

By Lemma 4.3(2), we can choose a rational angle θ ∈ (0, 1/2) satisfying:
(i) θ �∈ �, but 2θ ∈ �;
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1−2θ

2θ

c

1−θ

θ

1ξ2ξ

W−

W

W

D

+

FIGURE 4. The curve L consists of the indicated internal rays except I1(1/2) and I2(1/2). The boundary of D
consists of I1(0), I1(1/2), I2(1/2), and I2(0).

(ii) there exists k ≥ 1 such that η := 2kθ ∈ (1/2, 1); and
(iii) the orbit of the landing point of I1(θ) avoids c and ∞.
Define

L := I3(0) ∪ I3(1/2) ∪ I1(0) ∪ I1(θ) ∪ I2(0) ∪ I2(1 − θ)

∪ I (1)2 (1 − 2θ) ∪ I (1)2 (0) ∪ I (1)1 (0) ∪ I (1)1 (2θ).

Then Lemma 4.3(3) implies that L is a connected graph. Moreover, Ĉ \ L has three
components. We label W the one disjoint with 	3. In the remaining two components,
we label W− the one intersecting with 	1 and label W+ the one intersecting with 	2 (see
Figure 4). By Lemma 4.3(5), it immediately follows that D ∪	(1)3 ⊆ W and c ∈ W \D.
In particular, ξ1 ∈ W . Moreover, we have I3(3/4) ⊆ W− and I3(1/4) ⊆ W+.

Now consider the components of f−1(	
(1)
1 ) and f−1(	

(1)
2 ). Note that f−1(	

(1)
2 )

has a component whose boundary contains the landing point of I1((1 + θ)/2). Since
I1((1 + θ)/2) ⊂ D, this component is also contained in D. Hence it does not contain c
since c ∈ W \D. Note that the landing points of I3(1/4) and I3(3/4) are contained in
the boundaries of the two remaining components of f−1(	

(1)
2 ) respectively. We denote

by 	(2)2 the component whose boundary contains the landing point of I3(3/4). Then
I
(2)
2 (0) and I3(3/4) land at a common point. Moreover, 	(2)2 ⊂ W− since I3(3/4) ⊆ W−.

It follows that c �∈ 	(2)2 . By Lemma 4.3(3), we have I1(θ) and I (1)2 (1 − 2θ) land at a
common point. It follows that I1(θ/2) and I (2)2 (1 − 2θ) land at a common point since
I1(θ/2) ⊆ W−. Similarly, denote by 	(2)1 the component of f−1(	

(1)
1 ) contained in W+.

Then c �∈ 	(2)1 . Moreover, I (2)1 (0) and I3(1/4) land at a common point, as well as I (2)1 (2θ)
and I2(1 − θ/2). Define the Jordan curve

C := I3(1/4) ∪ I3(3/4) ∪ I (2)2 (0) ∪ I (2)2 (1 − 2θ) ∪ I1(θ/2) ∪ I1(η) (4.2)

∪ I2(1 − η) ∪ I2(1 − θ/2) ∪ I (2)1 (2θ) ∪ I (2)1 (0).

See Figure 5 for an illustration for the curve C.
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1−2θ

c

1−θ /2

1−η

η

2θ

θ /2

2ξ 1ξ

FIGURE 5. The curve C consists of the indicated internal rays. For this θ , we have η = 2θ .

We show that the critical point c is not in the iterations of C and separated by C from ∞.
More precisely, we have the following lemma.

LEMMA 4.4. Let C be as above. Then the following statements hold.
(1) The orbit of any Julia point in C is disjoint with the critical points of f.
(2) Denote V the bounded component of Ĉ \ C. Then

	
(1)
1 ∪	(1)2 ∪	(1)3 ∪ {ξ1, ξ2, c} ⊂ V .

Proof. The Julia points in C are the landing points of I3(1/4), I3(3/4), I1(θ/2), I1(η),
and I2(1 − θ/2). By the choice of θ , the orbits of the landing points of I1(θ/2), I1(η), and
I2(1 − θ/2) are away from c. Since

c ∈ W \ {∞, ξ2} ⊆ Ĉ \	3,

it follows that c �∈ ∂	3, and hence the orbits of the landing points of I3(1/4) and I3(3/4)
are disjoint with c. Then statement (1) holds.

Statement (2) follows immediately from the construction of C and Lemma 4.3
(4), (5).

Since θ is rational, there is a positive integer k > 1 such that the graph

G :=
k⋃
j=0

f j (C)

is invariant. Lemma 4.4 immediately implies that c �∈ G. Moreover, obviously our graph
G is distinct from the Newton graphs of f.

4.3. Cut angles for quartic Newton maps. In this subsection, we generalize part of
results in [25, §3] from the cubic case to a quartic case. Throughout this subsection, we
assume that f ∈ NM4 has degree 2 in the immediate basin of each root.
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Let r1, r2, r3, and r4 be the roots of f and denote by 	1, 	2, 	3, and 	4 the
corresponding immediate basins. Then there exist 1 ≤ i < j ≤ 4 such that ∂	i ∩ ∂	j
contains a pole. Hence the internal rays Ii(1/2) and Ij (1/2) land at a common point. We
say that f is of separable type if there exist 1 ≤ i < j ≤ 4 such that Ii(1/2) and Ij (1/2)
land at a common pole and each component of Ĉ \ γ (0, 1/2) contains a pole of f, where

γ (0, 1/2) := Ii(0) ∪ Ii(1/2) ∪ Ij (0) ∪ Ij (1/2).
If f is not of separable type, we can choose 1 ≤ i < j ≤ 4 such that Ii(1/2) and Ij (1/2)

land at a common pole, but a component D of Ĉ \ γ (0, 1/2) does not contain a pole of f.
Relabeling the roots of f, we set i = 1 and j = 2. Furthermore, we can set I1(θ) ∈ D if and
only if θ ∈ (1/2, 1). Hence I2(θ

′) ∈ D if and only if θ ′ ∈ (0, 1/2). We now consider the
cut angles in 	1. An angle θ ∈ R/Z is a cut angle in 	1 if there exists θ ′ ∈ R/Z such that
I1(θ) and I2(θ

′) land at a common point. If θ is a cut angle in 	1, then the corresponding
θ ′ = 1 − θ . Denote � the set of all cut angles in 	1 and set

α := inf{θ : θ ∈ �},
where inf is obtained under the order by identifying R/Z with (0, 1]. Since Ĉ \D contains
	3 ∪	4, it follows that α > 0. By the local connectivity of ∂	1 and ∂	2, we have α ∈ �
and � is a closed set in R/Z.

Now we state some properties of the cut angles. Since we are interested in hyperbolic
maps, see §5, we further assume that f is hyperbolic in the following result.

PROPOSITION 4.5. Let f be hyperbolic and not of separable type. With the above notation,
the following statements hold.
(1) For any θ ∈ �, (θ + 1)/2 ∈ �.
(2) Let θ be a periodic angle. If the orbit of θ belongs to (α, 1), then θ ∈ �.
(3) The angles α ∈ (0, 1/2) and there exist periodic angles in (α, 1/2) ∩�.

Proof. For statement (1), since (θ + 1)/2 > 1/2, the internal rays I1((θ + 1)/2) ⊆ D.
Suppose (θ + 1)/2 �∈ �. Since f (I1((θ + 1)/2)) = I1(θ) and θ ∈ �, there exists a com-
ponent 	(1)2 of f−1(	2) disjoint with 	2 such that 	(1)2 contains the landing point of
I1((θ + 1)/2). Note that f is hyperbolic and hence the landing point of I2(1/2) is not a
critical point. It follows that 	(1)2 ⊆ D. Hence D contains a pole of f. It contradicts the
choice of D.

To prove statement (2), let p be the period of the angle θ . Under the assumptions of f,
the unique fixed angle is 0. It follows that p > 1. Define

γ (0, α) := I1(0) ∪ I1(α) ∪ I2(0) ∪ I2(1 − α).

Since α ≤ 1/2, there exists a component of Ĉ \ γ (0, α) containing D. Denote this
component by W. It follows that the only possible pole of f contained in W is the common
landing point of I1(1/2) and I2(1/2). Hence the only component of f−1(	1) (respectively
f−1(	2)) intersecting with W is 	1 (respectively 	2) itself.

For each 0 ≤ i ≤ p, denote zi the landing point of I1(2iθ) and bywi the landing point of
I2(2i (1 − θ)) = I2(1 − 2iθ). Since θ is p-periodic, the points z0, . . . , zp−1 (respectively
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w0, . . . , wp−1) are pairwise disjoint and z0 = zp (respectively w0 = wp). Moreover, the
assumption of θ implies that z0, . . . , zp−1, w0, . . . , wp−1 ∈ W . Suppose θ �∈ �. Then
z0 �= w0. As � is closed, we can choose an arc �0 in W \ {I1(t) ∪ I2(1 − t) : t ∈ �}
joining the points z0 = zp and w0 = wp such that �0 is disjoint with 	1 ∪	2. Let �1

be the lift of �0 based at zp−1. By the choice of �0, we have

�1 ⊂ W \ {I1(t) ∪ I2(1 − t) : t ∈ �}

and

�1 ∩ (	1 ∪	2) = ∅.

Note that the endpoint of �1 is on the boundary of a preimage of 	2. By the previous
paragraph, this preimage is 	2 itself. Note also that wp−1 is the unique preimage of wp
on ∂	2 such that wp−1 and zp−1 are in the same component of W \ (I1(1/2) ∪ I2(1/2)).
Hence the endpoint of �1 is wp−1.

Inductively, for each m ≥ 1, we get an arc �mp ⊆ W joining z0 and w0 which is a lift
of �0 by f pm. Choose �0 such that it does not intersect the closure of the forward orbits of
the critical points of f. Since f is hyperbolic, it is uniformly expanding near its Julia set. It
follows that the length of �mp converges to 0 as m → ∞. Then z0 = w0, a contradiction.
Hence θ ∈ � and statement (2) follows.

Now we prove statement (3). Note that α ∈ (0, 1/2]. Suppose, on the contrary, that
α = 1/2. According to statement (1), the angles 1 − 1/2n ∈ � for all n ≥ 1. Choose an
angle η ∈ � close to 1 and define

γ (0, η) := I1(0) ∪ I1(η) ∪ I2(1 − η) ∪ I2(0).

Let Dη be a component of Ĉ \ γ (0, η) contained in D. We can choose η sufficiently close
to 1 such that Dη contains no critical values of f. Since α = 1/2, then I1(η/2) and I2(1 −
η/2) land at distinct points. Denote by 	(1)1 the component of f−1(	1) such that I2(1 −
η/2) and I (1)1 (η) land at a common point and denote	(1)2 the component of f−1(	2) such
that I1(η/2) and I (1)2 (1 − η) land at a common point. Since f is hyperbolic, its Julia set
contains no critical points. It follows that there exists a component D′

η of f−1(Dη) whose
boundary contains the arc

I1(1/2) ∪ I2(1/2) ∪ I1(η/2) ∪ I2(1 − η/2) ∪ I (1)2 (1 − η) ∪ I (1)1 (η).

Note that the two arcs I1(η/2) ∪ I (1)2 (1 − η) and I2(1 − η/2) ∪ I (1)1 (η) are disjoint and
mapped to the same arc I1(η) ∪ I2(1 − η) under f. Then the proper map f : D′

η → Dη has
degree at least 2. It implies that D′

η contains at least one critical point. Hence Dη contains
a critical value. It contradicts the choice of Dη.

For the second part of statement (3), let θn := 1 − 1/(2n − 1). Then θn is periodic with
period n. If 0 ≤ i < n− 1, we have

2iθn = 1 − 2i/(2n − 1) ∈ (1/2, 1).
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For i = n− 1, we have

2n−1θn = 1
2

(
1 − 1

2n − 1

)
∈ (0, 1/2).

Since α < 1/2, it follows that 2n−1θn ∈ (α, 1) for sufficiently large n. Then θn ∈ � by
statement (2), and hence 2n−1θn is as required.

5. The boundedness of hyperbolic components
In this section, we aim to prove Theorem 1.3. In §5.1, we classify the hyperbolic
components into several types and state known boundedness results. Section 5.2 contains
two key lemmas for the proof of Theorem 1.3: one concerns the orbit of a critical point
and the limit of an attracting cycle; the other one concerns the combinatorial property of
the limit function. Then we prove Theorem 1.3 in §5.3.

5.1. Classification of hyperbolic components and known results. Let f ∈ NM4 be the
Newton map of the quartic polynomial P. Then the finite fixed points of f are the zeros
of P, and the critical points of f are the zeros of P and zeros of P ′′. Hence zeros of
P are the superattracting fixed points of f. We call any other (super)attracting cycles
of f a free (super)attracting cycle. Then any free (super)attracting cycle has period at
least 2. Moreover, we say a critical point c of f is additional if P ′′(c) = 0. Hence f
has two additional critical points, counted with multiplicity. According to the orbits of
the additional critical points, the hyperbolic components in the moduli space nm4 :=
NM4/Aut(C) belong to the following seven types, see [22]. The same classification is
also for hyperbolic components in NM4.

Type A. Adjacent critical points. The two additional critical points belong to the same
component of the immediate basin of a free (super)attracting cycle.

Type B. Bitransitive. Each of the two additional critical points belongs to the immediate
basin of a free (super)attracting period cycle, with two distinct components.

Type C. Capture. Only one additional critical point belongs to the immediate basin of
a free (super)attracting cycle, but the orbit of the other additional critical point eventually
lies in this immediate basin.

Type D. Disjoint (super)attracting orbits. The two additional critical points belong to
the immediate basins of two distinct free (super)attracting cycles.

Type IE. Immediate escape. Some additional critical point in the immediate basin of a
root.

Type FE1. One future escape. Only one additional critical point in the basin (but not
immediate basin) of a root, while the other additional critical point is in the immediate
basin of a free (super)attracting cycle.

Type FE2. Two future escapes. The two additional critical points belong to the basins
(but not immediate basins) of one or two roots.

The above classification is an analogy of that for quadratic rational maps [17] and for
cubic polynomials [19].
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Recall that a hyperbolic component in nm4 is bounded if it has a compact closure
in nm4. Since the type-D hyperbolic components have semi-algebraic boundaries, an
arithmetic argument shows that such components are bounded.

PROPOSITION 5.1. [22, Main Theorem] The hyperbolic components of type D in nm4 are
bounded.

In contrast, all hyperbolic components of type IE are unbounded.

PROPOSITION 5.2. [22, Theorem 1.4] Let H ⊂ nm4 be a hyperbolic component. If H is
of type IE, then H is unbounded in nm4.

In the remainder of this section, we give more bounded hyperbolic components in nm4.
In fact, we show the condition in Proposition 5.2 is also necessary.

5.2. Key lemmas. To prove Theorem 1.3, we need two key lemmas.
Let {fn} ⊂ NM4 be a sequence converging to f = Hf f̂ ∈ NM4 such that Hole(f ) =

{∞} and deg f̂ = 3. Then fn has a unique additional critical point cn converging to ∞ as
n → ∞. We suppose that all maps fn are in a same hyperbolic component in NM4 and
assume that fn has an attracting cycle On = {w(0)n , . . . , w(m−1)

n } of period m ≥ 2. Our
first lemma states the orbit of cn and the limit of On.

LEMMA 5.3. Let fn, f , cn, and On be as above. Then the following statements hold.
(1) Given any k ≥ 0 and small ε > 0, the points cn, fn(cn), . . . , f kn (cn) are in the

ε-neighborhood of ∞ for all large n.
(2) Suppose On converges to O as n → ∞. Then O �= {∞}.
(3) If ∞ ∈ O, then cn is not in the immediate basin of On.

Proof. Denote by r1,n, r2,n, r3,n, and r4,n the roots of fn. Since Hole(f ) = {∞} and
deg f̂ = 3, we may assume r4,n → ∞, as n → ∞, and for 1 ≤ i ≤ 3, the point ri,n is
outside the ε-neighborhood of ∞ for all large n. Define Mn(z) := r4,nz and let gn :=
M−1
n ◦ fn ◦Mn. Then gn ∈ NM4 with roots at r1,n/r4,n, r2,n/r4,n, r3,n/r4,n, and 1. Let

g = Hgĝ be the degenerate Newton map of the polynomial z3(z− 1). Then gn converges
locally uniformly to ĝ away from Hole(g) = {0}. Note that ĝ has a critical point at
c̃ = 1/2 and c̃ is attracted to the attracting fixed point 0. Given any k ≥ 0, the point c̃
is not in Hole(gk) = ⋃k−1

i=0 ĝ
−i (0). It follows that there exists ε0 = ε0(k) > 0 such that

|ĝj (c̃)| > ε0 for all 0 ≤ j ≤ k. By Lemma 2.1, we have |gjn(c̃n)| > ε0 for all large n. Note
that for the maps fn, we have f jn (cn) = Mn(g

j
n(c̃n)). It follows that |f jn (cn)| > r4,nε0 for

all 0 ≤ j ≤ k. Thus, statement (1) follows.
For statement (2), suppose in contrast that O = {∞}. Then all w(0)i s converge to ∞.

In the following argument, we may pass to subsequences if necessary to obtain limits.
Relabeling the indices, we may assume w(i)n /w

(0)
n does not converge to 0 for all 0 ≤ i ≤

m− 1. Write Ln(z) = w
(0)
n z. Then

O′
n := {1, w(1)n /w(0)n , . . . , w(m−1)

n /w(0)n }
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is an attracting cycle of hn := L−1
n ◦ fn ◦ Ln ∈ NM4. Denote by O′ the limit of O′

n.
Then 0 �∈ O′. Assume that hn → h = Hhĥ ∈ NM4. Note that Hole(h) ⊂ {0, ∞} and
1 ≤ deg ĥ ≤ 2.

If deg ĥ = 1, then at least three roots of hn collide to 0 as n → ∞ and the remaining
root either collides to 0 or diverges to ∞. For otherwise, ĥ would have degree 2. It follows
that ĥ(z) = 3z/4 or h(z) = 2z/3. Thus, ĥ has an attracting fixed point at 0 and a repelling
fixed point at ∞. Moreover, Hole(hj ) = Hole(h) ⊂ {0, ∞} for all j ≥ 1. It follows that
O′ ∩ Hole(h) = ∅. Then by Lemma 2.2, the set O′ is a non-repelling cycle of ĥ. Note
1 ∈ O′ is not a fixed point of ĥ. It is a contradiction since all the periodic points of ĥ are
fixed points.

If deg ĥ = 2, then Hole(h) = {0}. Moreover, ĥ has an attracting fixed point at 0, a
superattracting fixed point at the limit r of r(n)4 /w

(0)
n , and a repelling fixed point at ∞.

Since 0 �∈ O′, then O′ ∩ Hole(h) = ∅. By Lemma 2.2, the set O′ is a non-repelling cycle
of ĥ of period at least 2. It follows that ĥ has at least three non-repelling cycles: two
(super)attracting fixed points 0 and r, and one non-repelling cycle O′. It contradicts the
Fatou–Shishikura inequality (see [26]) which asserts that f̂ has at most two non-repelling
cycles. Therefore, we have O �= {∞} and the conclusion follows.

Now we prove statement (3). For 0 ≤ j ≤ m− 1, denote by U(w
(j)
n ) the Fatou

component of fn containing w(j)n . Suppose in contrast that cn ∈ ⋃m−1
j=0 U(w

(j)
n ). Then

cn ∈ U(w(j0)
n ) for some 0 ≤ j0 ≤ m− 1. By relabeling the index, we can assume that

j0 = 0. If w(0)n → ∞, by statement (2), there exists 1 ≤ j ≤ m− 1 such that w(j)n �→ ∞.
It follows from Lemma 2.3 that the basin U(w(j)n ) stays outside a neighborhood of ∞ for
all large n. Since f jn (cn) ∈ U(w(j)n ), statement (1) implies that cn �→ ∞. If w(0)n �→ ∞,
some w(�)n with 1 ≤ � ≤ m− 1 must converge to ∞ since ∞ ∈ O. Again by Lemma 2.3,
the basin U(w(0)n ) stays outside a neighborhood of ∞ for all large n. Hence cn �→ ∞. It
contradicts the assumption that cn → ∞. Hence cn �∈ ⋃m−1

j=0 U(w
(j)
n ).

COROLLARY 5.4. Let fn, f , cn, On, and O be as in Lemma 5.3 and let H̃ ⊂ NM4 be the
hyperbolic component containing fns. Assume H̃ is of type A, B, C, or D. If cn is in the
basin of On, then ∞ �∈ O.

Proof. If H̃ is of type A, B, or D, then cn is in the immediate basin of On. By
Lemma 5.3(3), it follows that O ⊆ C. If H is of type C, suppose ∞ ∈ O. By Lemma
5.3(2), there exist periodic pointsw(i)n andw(j)n in On such thatw(i)n → ∞ butw(j)n �→ ∞.
It follows from Lemma 2.3 that the basin U(w(j)n ) stays outside a neighborhood of ∞ for
all large n. Moreover, by Lemma 5.3(3), the critical point cn is not in the immediate basin
of On. Then there exists k, independent of n, such that f kn (cn) ∈ U(w(j)n ). It contradicts
Lemma 5.3(1). Hence ∞ �∈ O.

Recall from §4.3 that a quartic Newton map f ∈ NM4 is of separable type if f has two
distinct immediate basins 	i and 	j of roots such that the corresponding internal rays
Ii(1/2) ∈ 	i and Ij (1/2) ∈ 	j land at a pole and the curve Ii(0) ∪ Ii(1/2) ∪ Ij (1/2) ∪
Ij (0) separates the remaining poles of f. We say a hyperbolic component H of nm4 is of
separable type if each element in H is of separable type; equivalently, there is an element
of separable type in H. Otherwise, we say H is of inseparable type.
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Our next key lemma asserts that a non-type-IE hyperbolic component is of inseparable
type under an extra assumption on its lift.

LEMMA 5.5. Let H ⊂ nm4 be a non-type-IE hyperbolic component and let H̃ ⊂ NM4 be a
lift of H. Suppose there exists a sequence {fn} ⊂ H̃ such that fn converges to f = Hf f̂ ∈
NM4 with Hole(f ) = {∞} and deg(f̂ ) = 3. Then H is of inseparable type. Moreover, all
poles of f̂ are simple.

Proof. By the assumptions, f̂ has three roots, denoted by r1, r2, and r3 respectively.
Let 	1, 	2, and 	3 be the corresponding immediate basins. Moreover, since H is of
non-type IE, the map f̂ has a unique critical point c with c �∈ ⋃3

i=1 	i . By Lemma 3.5,
we have fn

deg−−→ f̂ on {	1, 	2, 	3}. Relabeling r1, r2, and r3, we may assume that there
exists a pole of f̂ in the intersection ∂	1 ∩ ∂	2. For 1 ≤ i ≤ 3, denote by (	i,n, ri,n) the
deformation of (	i , ri) at fn. Then each ri,n is a root of fn and ∂	1,n ∩ ∂	2,n contains a
pole of fn. Let r4,n be the remaining root of fn. Then r4,n → ∞, as n → ∞. Denote 	4,n

its immediate basin.
In contrast, we assume H is of separable type. Consider the internal rays in 	1,n and

	2,n. Set

γn(0, 1/2) := I1,n(0) ∪ I1,n(1/2) ∪ I2,n(0) ∪ I2,n(1/2).

Then each component of Ĉ \ γn(0, 1/2) contains a pole of fn, and hence contains 	3,n or
	4,n. We denote Dn the one containing 	4,n, and assume that I1,n(θ) ⊆ Dn if and only if
θ ∈ (1/2, 1).

Since 	4,n ⊂ Dn, there exists a minimal k ≥ 2 such that the landing point zn of
I2,n(1/2k) is not in ∂	1,n. Let 	(1)1,n be the component of f−1

n (	1,n) such that zn ∈
∂	

(1)
1,n. Then 	(1)1,n �= 	1,n and 	(1)1,n ⊆ Dn. Note that 	(1)1,n contains no critical points. For

otherwise, ∂	(1)1,n and hence Dn would contain two poles of fn, which is impossible. Then

∂	
(1)
1,n contains a unique pole of fn, which coincides with the one on ∂	4,n. Set I (1)1,n (t) the

internal ray in 	(1)1,n landing at zn. By Proposition 3.8, the landing point zn of I2,n(1/2k)
converges to the landing point z of I2(1/2k). Note that the pole of fn in ∂	1,n ∩ ∂	2,n

(respectively ∂	3,n) converges to the pole of f̂ in ∂	1 ∩ ∂	2 (respectively ∂	3). Thus,
the pole of fn in ∂	4,n ∩ ∂	(1)1,n converges to ∞ as n → ∞. For otherwise, these poles

converge to poles of f̂ , contradicting deg f̂ = 3. Similarly, the center of	(1)1,n converges to

∞. Then, passing to subsequences if necessary, we have that the arcs I (1)1,n (t) converge to a
continuum � containing ∞ and z.

Recall that ψ(1)1,n : D → 	
(1)
1,n and ψ1,n : D → 	1,n are the inverses of the Böttcher

coordinates on 	(1)1,n and 	1,n, respectively. Let q be any point in � \ {∞}. There exists

qn ∈ I (1)1,n (t)with qn → q. We write qn = ψ
(1)
1,n(sne

2πit ). Since q �= ∞, we have fn(qn) →
f̂ (q). Note that

fn(qn) = fn ◦ ψ(1)1,n(sne
2πit ) = ψ1,n(sne

2πit ) ∈ I1,n(t).
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Since I1,n(t) → I1(t), the point f̂ (q) belongs to I1(t). We claim in fact that f̂ (q) ∈ ∂	1.
Otherwise, q belongs to either 	1 or the other component 	(1)1 of f̂−1(	1). Note that
	
(1)
1 ∩Dn = ∅ for large n. By Lemma 2.5, we have qn �∈ 	(1)1,n. It is a contradiction. By this

claim, any point in � \ {∞} maps under f̂ to the landing point of I1(t). It is impossible.
Thus, H is of inseparable type.

Now we show all poles of f̂ are simple. Let� be the set of angles θ such that I1,n(θ) and
I2,n(1 − θ) land at a common point. Since H is of inseparable type, by Proposition 4.5(3),
there exists a periodic angle θ ∈ � ∩ (0, 1/2). According to Proposition 3.8, the internal
rays I1(θ) and I2(1 − θ) land at a common point. This implies c cannot be a pole of f̂ ,
since otherwise c is a common point of ∂	i , i = 1, 2, 3, impossible.

5.3. Proof of Theorem 1.3. To prove Theorem 1.3, we first state the following lift result.

LEMMA 5.6. For d ≥ 3, let [gn] ∈ nmd be a sequence such that [gn] → ∞. Then there
exists a sequence fni ∈ NMd such that [fni ] = [gni ] and fni converges to f = Hf f̂ ∈
∂NMd with Hole(f ) = {∞} and deg f̂ ≥ 2. Moreover, if all [gn] terms are contained in a
same hyperbolic component in nmd , then fni terms are contained in the same hyperbolic
component in NMd .

Proof. Since [gn] → ∞, there exists a subsequence gni such that gni converges to an
element in ∂NMd . We first normalize the roots of gni by affine maps to obtain a sequence
g̃ni ∈ NMd such that 0 and 1 are two roots of g̃ni . Note [g̃ni ] = [gni ]. It follows that
[g̃ni ] → ∞ and hence {g̃ni } contains a subsequence converging to an element in ∂NMd .
We also denote this subsequence by {g̃ni }. We can further assume all roots of g̃ni converge
in Ĉ. Denote r1,ni , . . . , rd,ni the roots of g̃ni . Choose 1 ≤ m0 < m1 ≤ d such that

|rm0,ni − rm1,ni | = O(|r�,ni − rk,ni |)

for all 1 ≤ � < k ≤ d with r�,ni �→ ∞ and rk,ni �→ ∞, as ni → ∞. Define

Mni (z) := z− rm1,ni
rm0,ni − rm1,ni

and set fni := Mni ◦ g̃ni ◦M−1
ni

. Then fni has roots at 0, 1 and no roots colliding in C.
Then the sequence fni is the desired sequence.

The remaining part of the lemma follows from the connectedness of the quotient group
Aut(C).

Proof of Theorem 1.3. By Proposition 5.2, it suffices to show that if H ⊂ nm4 is not of
type IE, then H is bounded in nm4. The proof goes by contradiction.

Suppose H is unbounded. Let {[fn]}n≥0 be a degenerated sequence in H. Passing to a
subsequence, by Lemma 5.6, we can assume that all fn belong to a hyperbolic component
in NM4, and fn converges to f = Hf f̂ ∈ NM4 with Hole(f ) = {∞} and deg f̂ = 2 or 3.
We deduce the contradiction case by case.
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Case 1: deg f̂ = 2. Let (	1, r1) and (	2, r2) be the immediate basins of roots of f̂ . By

Lemma 3.5, we have that fn
deg−−→ f on {	1, 	2}. Denote (	1,n, r1,n) and (	2,n, r1,n) the

deformations of (	1, r1) and (	2, r2) at fn respectively. In this case, the Julia set of f̂ is

J
f̂

= ∂	1 = ∂	2,

which is a Jordan curve and contains no critical points. Given any rational angle θ , the
internal rays I1(θ) and I2(1 − θ) land at a common point. By Theorem 1.1, for all large n,
the internal rays I1,n(θ) and I2,n(1 − θ) land at a common point. Since all fn belong to the
same hyperbolic component, we get that the internal rays I1,0(t) and I2,0(1 − t) of f0 land
together for all t ∈ Q. Then the boundaries ∂	1,0 and ∂	2,0 coincide. It follows that f0 is
conjugate to z �→ z2, which is a contradiction.

Case 2: deg f̂ = 3. In this case, f̂ ∈ NM3. Moreover, the unique additional critical
point c of f̂ is not in the immediate basins of the roots of f̂ . For otherwise, fn would
possess an additional critical point in the immediate basin of some root, which is a
contradiction.

Let cn be the additional critical point of fn such that cn converges to ∞. Now we proceed
our argument according to the type of H.

Case 2(i): H is of type A,B,C, or D. Let On be the free (super)attracting cycle of fn such
that cn is in the basin of On. Denote by O the limit of On. By Corollary 5.4, we have that
O ⊆ C. Then by Lemma 2.2, the set O is a non-repelling cycle of f̂ of period at least 2. It
follows that the critical point c is not an iterated preimage of ∞ under f̂ . Moreover, f̂ is
post-critically finite on 	

f̂
.

Consider the Newton graph�m(f̂ ) of f̂ at level m. Applying Proposition 4.2 to z = ∞,
for a sufficiently large m, we obtain a Jordan curve γ ⊆ �m(f̂ ) such that the orbit O is
contained in the bounded component of Ĉ \ γ . Let U be the collection of components of

	
f̂

intersecting �m(f̂ ). Then f̂ (U) ∈ U for U ∈ U. By Lemma 3.5, we have that fn
deg−−→

f on U.
Set δ := dH (∞, γ ). By Theorem 1.1, the curve γ is perturbed to a Jordan curve γn ⊆

�m(fn) such that On is contained in the bounded component of Ĉ \ γn and dH (γn, γ ) <
δ/3 for all large n. Since the immediate basin of On is disjoint with �m(fn) for all n, it is
contained in the bounded component of Ĉ \ γn.

If H is of type A, B, or D, then the critical point cn is in the immediate basin of On. The
above argument immediately implies that the distance between cn and ∞ is at least δ/3, a
contradiction to cn → ∞.

If H is of type C, since the critical point cn converges to ∞, the above argument implies
that cn is not in the immediate basins of On. In this case, there exists k > 0 such that f kn (cn)
belongs to the immediate basin of On for all n, which stays outside the δ/3 neighborhood
of ∞. It contradicts Lemma 5.3(1).

Case 2(ii): H is of type FE1 or FE2. First, differing from Case 2(i), the additional
critical point of f̂ may be an iterated preimage of ∞. So the assumptions of Theorem 1.1
may fail for the Newton graphs of f̂ . Alternatively, we apply Theorem 1.1 to the Jordan
curve C constructed in §4.2 in the following argument.
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By Lemma 5.5, the additional critical point c of f̂ is not a pole. We can thus use the
results in §4.2. Inheriting the notation in §4.2, by Lemma 4.4, we obtain a Jordan curve
C consisting of some internal rays in 	1, 	2, 	3, 	(2)1 , and 	(2)2 such that the orbits of
the landing points of these rays are disjoint with the critical points of f̂ and the bounded
component of Ĉ \ C contains 	(1)1 , 	(1)2 , 	(1)3 , c, and the poles of f̂ .

Set

U := {	1, 	2, 	3, 	(1)1 , 	(1)2 , 	(2)1 , 	(2)2 }.

Then f̂ (U) ∈ U for U ∈ U. Moreover, by Lemma 3.5, we have that fn
deg−−→ f on U. By

applying Theorem 1.1 to C, for all large n, we obtain a Jordan curve Cn consisting of internal
rays of fn in	1,n ∪	2,n ∪	3,n ∪	(2)1,n ∪	(2)2,n with the same angles as those of f̂ in	1 ∪
	2 ∪	3 ∪	(2)1 ∪	(2)2 . Then the bounded component of Ĉ \ Cn contains	(1)1,n, 	(1)2,n, 	(1)3,n,
two poles of fn, and the closures of the two preimages of	4,n disjoint with	4,n. Moreover,
the unbounded component of Ĉ \ Cn contains 	4,n.

For the additional critical point cn of fn with cn → ∞, we claim that there exists a
minimal integer k ≥ 1 such that

f kn (cn) ∈ 	1,n ∪	2,n ∪	3,n ∪	4,n.

To prove this claim, it suffices to consider the case where fn has a free (super)attracting
cycle On. Suppose On converges to O. If ∞ ∈ O, the claim follows from Lemma 5.3(3).
If O ⊆ C, by Lemma 2.2, the set O is the non-repelling cycle of f̂ of period at least 2. It
follows that f̂ j (c) �= ∞ for all j ≥ 0. Moreover, f̂ is post-critically finite in the basins of
the roots. With the same argument in Case 2(i), we obtain that the immediate basin of On

is disjoint with a fixed neighborhood of ∞. Hence the claim follows since cn → ∞.
We also claim that ∂U(f in(cn)) ∩ ∂	4,n �= ∅ for all 0 ≤ i ≤ k − 1. By Lemma 5.3(1),

for each 0 ≤ i ≤ k − 1 and all large n, the Fatou component U(f in(cn)) containing f in(cn)
is not contained in the bounded domain of Ĉ \ Cn. Furthermore, none of these Fatou
components intersect Cn. Indeed, if U(f in(cn)) intersects Cn for some 0 ≤ i ≤ k − 1, then
U(f in(cn)) coincides with either 	(2)1,n or 	(2)2,n. It then follows that U(f i+1

n (cn)) coincides

with either	(1)1,n or	(1)2,n. Note	(1)1,n and	(1)2,n are both in the bounded component of Ĉ \ Cn.
It contradicts Lemma 5.3(1). Therefore, for 0 ≤ i ≤ k − 1, the component U(f in(cn)) is
contained in the unbounded component of Ĉ \ Cn.

By previous argument, the closure of any non-fixed preimage of 	1,n, 	2,n, 	3,n, or
	4,n either belongs to the bounded component of Ĉ \ Cn or intersects with ∂	4,n at a pole.
Then

∂U(f k−1
n (cn)) ∩ ∂	4,n �= ∅.

Note that 	4,n is the unique component of f−1
n (	4,n) contained in the unbounded

component of Ĉ \ Cn. Since each U(f in(cn)) is in the unbounded component of Ĉ \ Cn,
then for all 0 ≤ i ≤ k − 1,

∂U(f in(cn)) ∩ ∂	4,n �= ∅.

The claim is proved.
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FIGURE 6. Sketch of the proof in Case 2(ii).

Moreover, we claim in fact that k ≥ 2. Indeed, if k = 1, then the Fatou componentU(cn)
contains two poles of fn. Note that a bounded component of Ĉ \ Cn contains two poles of
fn and its complement contains the other pole. We then get a contradiction since U(cn) is
contained in the unbounded component of Ĉ \ Cn.

Note that all fn are in the same hyperbolic component, then all quantities defined for
fn and properties satisfied by fn for n large also hold for f0. We deduce the contradiction
by f0. Suppose ∂U(f0(c0)) intersects ∂	4,0 at the landing point of I4,0(θ). Since U(c0)

contains a critical point and is contained in the unbounded component of Ĉ \ C0, the
intersection ∂U(c0) ∩ ∂	4,0 contains the landing points of I4,0(θ/2) and I4,0((1 + θ)/2).
We consider an arc γ1 ⊂ U(c0) joining these two landing points and avoiding the orbits
of critical points of f0. Let γ2 be the lift of γ1 based at the landing point of I4,0(θ/22).
Since γ1 does not intersect with C0, the endpoint of γ2 belongs to ∂	4,0. Note also that the
preimages of γ1(1) on ∂	4,0 are the landing points of the internal rays in 	4,0 of angles
(1 + θ)/4 or (3 + θ)/4. Since (1 + θ)/4 ∈ (θ/2, (1 + θ)/2), it follows that the endpoint
of γ2 is the landing point of I4,0((3 + θ)/4).

Inductively, for every m ≥ 1, define γm+1 to be the lift of γm based at the landing
point of I4,0(θ/2m+1). Then the endpoint of γm+1 is the landing point of I4,0(1 − (1 −
θ)/2m+1). Note that for large m, each γm is an arc joining two points of ∂	4,0 in
different components of ∂	4,0 \ (I4,0(0) ∪ I4,0(1/2)) near ∞. Moreover, the intersection
of γm and 	1,0 ∪	2,0 ∪	3,0 ∪	4,0 is the endpoint of γm. It follows that the length
of γm has a positive infinitum as m → ∞. However, since f0 is uniformly expanding
near the Julia set, the length of γm decreases to 0 as m → ∞. It is a contradiction (see
Figure 6).

Acknowledgements. We thank Kevin Pilgrim for fruitful discussion and useful comments
on an early draft. This work was discussed when Y.G. and H.N. visited the Indiana
University Bloomington (IUB) in summer 2019. We are grateful to the Department of
Mathematics at IUB for its hospitality. Y.G. is partially supported by NSFC grants no.
11871354, no. 12131016. We thank the referee for invaluable comments.

https://doi.org/10.1017/etds.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.54


Perturbations of graphs for Newton maps 3025

REFERENCES

[1] X. Buff and L. Tan. Dynamical convergence and polynomial vector fields. J. Differential Geom. 77 (2007),
1–41.

[2] L. DeMarco. Iteration at the boundary of the space of rational maps. Duke Math. J. 130 (2005), 169–197.
[3] A. Douady. Does a Julia set depend continuously on the polynomial? Complex Dynamical Systems

(Cincinnati, OH, 1994) (Proceedings of Symposia in Applied Mathematics, 49). Ed. R. Devaney. American
Mathematical Society, Providence, RI, 1994, pp. 91–138.

[4] K. Drach, Y. Mikukich, J. Rückert and D. Schleicher. A combinatorial classification of postcritically fixed
Newton maps. Ergod. Th. & Dynam. Sys. 39 (2019), 2983–3014.

[5] K. Drach and D. Schleicher. Rigidity of Newton dynamics. Adv. Math. 408 (2022), 108591.
[6] A. L. Epstein. Bounded hyperbolic components of quadratic rational maps. Ergod. Th. & Dynam. Sys. 20

(2000), 727–748.
[7] T. W. Gamelin. Complex Analysis (Undergraduate Texts in Mathematics). Springer-Verlag, New York, 2001.
[8] Y. Gao. Density of hyperbolicity of real Newton maps. Preprint, 2019, arXiv:1906.03556.
[9] Y. Gao. On the core entropy of Newton maps. Sci. China Math., to appear.
[10] Y. Gao and T. Giulio. The core entropy for polynomials of higher degree. J. Eur. Math. Soc. (JEMS),

published online first 2021.
[11] Y. Gao and H. Nie. Perturbations of graphs for Newton maps II: unbounded hyperbolic components,

in preparation.
[12] L. Goldberg and J. Milnor. Fixed point portraits of polynomial maps, Part II: fixed point portraits. Exp.

Math. 26 (1993), 51–98.
[13] R. Lodge, Y. Mikulich and D. Schleicher. Combinatorial properties of Newton maps. Indiana Univ. Math.

J. 70 (2021), 1833–1867.
[14] R. Lodge, Y. Mikulich and D. Schleicher. A classification of postcritically finite Newton maps. In the

Tradition of Thurston. Vol. II. Eds. K. Ohshika and A. Papadopoulos. Springer, Cham, 2022.
[15] C. McMullen. Automorphisms of rational maps. Holomorphic Functions and Moduli, Volume I (Berkeley,

CA, 1986) (Mathematical Sciences Research Institute Publications, 10). Eds. D. Drasin, C. J. Earle, F. W.
Gehring, I. Kra and A. Marden. Springer, New York, 1988, pp. 31–60.

[16] C. T. McMullen. Complex Dynamics and Renormalization (Annals of Mathematics Studies, 135). Princeton
University Press, Princeton, NJ, 1994.

[17] J. Milnor. Geometry and dynamics of quadratic rational maps. Exp. Math. 2 (1993), 37–83, with an appendix
by the author and Lei Tan.

[18] J. Milnor. Dynamics in One Complex Variable (Annals of Mathematics Studies, 160), 3rd edn. Princeton
University Press, Princeton, NJ, 2006.

[19] J. Milnor. Cubic polynomial maps with periodic critical orbit. I. Complex Dynamics. Ed. D. Schleicher.
A K Peters, Wellesley, MA, 2009, pp. 333–411.

[20] J. Milnor. Hyperbolic component boundaries. http://www.math.stonybrook.edu/ jack/HCBkoreaPrint.pdf.
[21] H. Nie. Iteration at the boundary of Newton maps. PhD Thesis, Indiana University, ProQuest LLC, Ann

Arbor, MI, 2018.
[22] H. Nie and K. M. Pilgrim. Boundedness of hyperbolic components of Newton maps. Israel J. Math. 238

(2020), 837–869.
[23] H. Nie and K. M. Pilgrim. Bounded hyperbolic components of bicritical rational maps. J. Mod. Dyn.,

to appear.
[24] P. Roesch. Holomorphic motions and puzzles (following M. Shishikura). The Mandelbrot Set, Theme and

Variations (London Mathematical Society Lecture Note Series, 274). Ed. L. Tan. Cambridge University
Press, Cambridge, 2000, pp. 117–132.

[25] P. Roesch. On local connectivity for the Julia set of rational maps: Newton’s famous example. Ann. of Math.
(2) 168 (2008), 127–174.

[26] M. Shishikura. On the quasiconformal surgery of rational functions. Ann. Sci. Éc. Norm. Supér. (4) 20
(1987), 1–29.

[27] M. Shishikura. The connectivity of the Julia set and fixed points. Complex Dynamics. Ed. D. Schleicher.
A K Peters, Wellesley, MA, 2009, pp. 257–276.

[28] W. P. Thurston. Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds. Ann. of
Math. (2) 124 (1986), pp. 203–246.

[29] X. Wang, Y. Yin and J. Zeng. Dynamics of newton maps. Ergod. Th. & Dynam. Sys.
doi:10.1017/etds.2021.168. Published online 15 February 2022.

https://doi.org/10.1017/etds.2022.54 Published online by Cambridge University Press

https://arxiv.org/abs/1906.03556
http://www.math.stonybrook.edu/%20jack/HCBkoreaPrint.pdf
http://dx.doi.org/10.1017/etds.2021.168
https://doi.org/10.1017/etds.2022.54

	1 Introduction
	1.1 Statements of main results
	1.2 Strategy of the proof of Theorem theorem21.3
	1.3 Structure of the paper

	2 Preliminaries
	2.1 Degenerate rational maps
	2.2 Newton maps

	3 Proof of Theorem theorem11.1
	3.1 Perturbation of Böttcher coordinates
	3.2 Perturbation of internal rays
	3.3 Proof of Theorem theorem11.1

	4 Invariant graphs for Newton maps
	4.1 Newton graphs
	4.2 An alternative graph for cubic Newton maps
	4.3 Cut angles for quartic Newton maps

	5 The boundedness of hyperbolic components
	5.1 Classification of hyperbolic components and known results
	5.2 Key lemmas
	5.3 Proof of Theorem theorem21.3

	Acknowledgements
	References

