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On combinatorics of the Arthur trace
formula, convex polytopes, and toric
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Abstract. We explicate the combinatorial/geometric ingredients of Arthur’s proof of the conver-
gence and polynomiality, in a truncation parameter, of his noninvariant trace formula. Starting with
a fan in a real, finite dimensional, vector space and a collection of functions, one for each cone in the
fan, we introduce a combinatorial truncated function with respect to a polytope normal to the fan
and prove the analogues of Arthur’s results on the convergence and polynomiality of the integral of
this truncated function over the vector space. The convergence statements clarify the important role
of certain combinatorial subsets that appear in Arthur’s work and provide a crucial partition that
amounts to a so-called nearest face partition. The polynomiality statements can be thought of as far
reaching extensions of the Ehrhart polynomial. Our proof of polynomiality relies on the Lawrence–
Varchenko conical decomposition and readily implies an extension of the well-known combinatorial
lemma of Langlands. The Khovanskii–Pukhlikov virtual polytopes are an important ingredient here.
Finally, we give some geometric interpretations of our combinatorial truncation on toric varieties as
a measure and a Lefschetz number.

1 Introduction

The Arthur Trace Formula (ATF) is a vast generalization of the Selberg Trace Formula
to arbitrary rank reductive groups. The first incarnation of ATF, the noninvariant
trace formula, relies on two crucial ingredients: the integral of a truncated kernel (of a
compactly supported test function) is absolutely convergent, and the integral depends
polynomially on the truncation parameter (which he has to assume is sufficiently
regular). The purpose of this work is to prove two general, purely combinatorial,
statements about polytopes, one on convergence and the other on polynomiality of
certain integrals. These statements essentially capture, and generalize, the combinato-
rial aspects of Arthur’s corresponding results (cf. [Ar78, Ar81]), isolating them from
the analytic aspects that use reduction theory and other techniques. The long-term
hope for our project, of which this work is a first step, is to aim at applications of the
ATF to more general test functions [FL11, FL16, FLM11, Hoff08].
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We also give interpretations of our combinatorial results in terms of the geometry
of toric varieties. We hope the present paper would shed light on the combinatorics
behind ATF and its similarity with certain concepts appearing in toric geometry. The
connection between polyhedral combinatorics appearing in Arthur’s trace formula
and in toric varieties is not quite transparent yet. In this regard, we mention the articles
of Kottwitz [Kot05] and Finis and Lapid [FL11], which may be relevant.

We now briefly recall the trace formula before explaining a summary of our results
and proofs.

1.1 Arthur’s noninvariant trace formula

For a finite group G, the character of a representation of G (or any conjugation invari-
ant function on G for that matter) can be written uniquely as a linear combination of
characteristic functions of different conjugacy classes, as well as, a linear combination
of traces of irreducible representations. The equality of these two decompositions
is a special case of the Frobenius Reciprocity, which plays an important role in
representation theory of finite groups. This is the prototype of many trace formulas
in representation theory.

Arthur gave a far reaching trace formula for arbitrary reductive groups defined over
number fields. A main problem is that in this generality, the integral representing the
trace diverges. Arthur introduces an operation of truncation to modify this integral so
that it becomes convergent.

The (noninvariant) ATF is an equality of two distributions:

Jgeom( f ) = Jspec( f ), f ∈ C∞c (G(A)1).(1.1)

Here, G is a connected reductive linear algebraic group defined over Q (or any
number field) whose ring of adeles we denote by A and G(A)1 consists of those
x ∈ G(A) satisfying ∣χ(x)∣A = 1 for all rational characters χ of G. Both the geometric
and the spectral distributions on the two sides of (1.1) are equal to the integral over
G(Q)/G(A)1 of a modified kernel kT(x) = kT(x , f ) at a certain value T = T0 of a
suitably regular truncation parameter T belonging to the positive Weyl chamber of
G with respect to a fixed minimal parabolic subgroup. The space G(Q)/G(A)1 is in
general finite volume (with respect to the Haar measure on G), but only compact
when G has no proper parabolic subgroups. While the trace formula in the case of
compact quotient was well understood, already the development of the trace formula
in the case of SL(2,Z)/SL(2,R) led Selberg to his celebrated Selberg Trace Formula.
However, Arthur realized that the presence of proper parabolic subgroups in a more
general group G makes the integral of the kernel function divergent. As a result, he
introduced the modified kernel kT(x). Two major properties of the modified kernel
(see [Ar78, Ar81]) are the following:
(1) ∫

G(Q)/G(A)1
∣kT(x)∣ dx < ∞ for suitably regular truncation parameter T.

(2) The function T ↦ JT( f ) = ∫
G(Q)/G(A)1

kT(x) dx is a polynomial function of T.

As the truncation parameter T goes further away from the origin, the integral of kT(x)
gets closer to the (divergent) integral representing the trace. Among other things,
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the proofs involve quite intricate combinatorics of convex polytopes and convex cones.
Expanding the modified kernel geometrically (via conjugacy classes) and spectrally
(via automorphic representations) then provides the two sides of (the truncated
analogue of) the identity (1.1).

In the function field case, one also has an analogue of the ATF and the truncation
parameter T. In particular, we mention the work of Laumon [Lau96, Lau97] where he
develops the trace formula for certain class of test functions for which the modified
kernel kT(⋅) turns out to be equal to the usual kernel k(⋅). This makes the question
of polynomiality obvious since the resulting polynomials would simply be constant.
However, the convergence question still remains and indeed a similar argument as
Arthur’s in the number field case applies.

1.2 Main results

We introduce a notion of combinatorial truncation and prove two main results on its
convergence and polynomiality. The idea for our results is to start with a complex-
valued function on a finite dimensional real vector space whose integral over the
vector space is possibly divergent. We then “truncate” this function by subtracting
some other functions around some neighborhoods of infinity to arrive at a “truncated
function” whose integral over the vector space is absolutely convergent. The “neigh-
borhoods of infinity” are with respect to a toric compactification of V (in the sense
of Sections 5.1 and 5.3) whose data are encoded in a polytope and its normal fan. We
then prove that the integral of the truncated function, as a function of the polytope, is
indeed a polynomial function.

To explain our results, we introduce some notation and refer to Sections 2.1 and 2.2
for further details on convex cones and polytopes. We first explain our convergence
results.

Let V ≅ Rn be an n-dimensional real vector space. We fix an inner product ⟨⋅, ⋅⟩ on
V and use it to identify V with its dual V∗. Fix a full dimensional, complete, simplicial
fan Σ in V and fix a polytope Δ ∈ P(Σ), the set of polytopes with normal fan Σ (see
Figure 1). There is a one-to-one correspondence between the cones in Σ and the faces
of Δ. For σ ∈ Σ, we let T−Δ,σ denote the outward-looking tangent cone of Δ at the face
corresponding to σ (see Section 2.2 and Figures 3 and 4).

Suppose a function K0 ∶ V → C is given with ∫V K0(x) dx possibly divergent.
In fact, let K0 be a member of a collection of functions Kσ ∶ V → C, one for each
σ ∈ Σ. We will assume that Kσ is invariant in the direction of Span(σ), i.e., Kσ(x + y) =
Kσ(x) for x ∈ V and y ∈ Span(σ).

Associated with the collection (Kσ)σ∈Σ and the polytope Δ, we define the truncated
function

kΔ(x) = ∑
σ∈Σ

(−1)dim σ Kσ(x)1T−Δ,σ(x) ,(1.2)

where 1 denotes the characteristic function. We think of kΔ(x) as a “truncation” of K0
by means of the polytope Δ and the functions Kσ for nonzero cones σ ∈ Σ.
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Figure 1: (Left) A complete simplicial fan in V = R2 ; we have labeled three cones in the fan.
(Right) A polygon normal to the fan and regions obtained by drawing the outward face cones;
the function kΔ in the shaded region is given by K0 − K1 − K2 + K12 .

Figure 2: Illustration of the truncated function kΔ for when Δ is a line segment.

Figure 3: Inward and outward tangent cones at a vertex (left inward, right outward).

Note that the function kΔ(x) and K0(x) coincide for x ∈ Δ. In fact, if all the Kσ are
identically equal to 1, by the classical Brianchon–Gram theorem (cf. Theorem 2.6), the
function kΔ(x) coincides with the characteristic function of Δ (see Section 1.4).

One of our main results gives a sufficient condition for kΔ(x) to be absolutely
integrable on V (see Theorem 3.4 and also Theorem 3.5).
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Figure 4: Inward and outward tangent cones at an edge (left inward, right outward).

For σ2 ⪯ σ1 in Σ, let

Kσ1 ,σ2(x) = ∑
σ2⪯τ⪯σ1

(−1)dim τKτ(x).

Also, let polyhedral regions Rσ2
σ1

and Sσ2
σ1

be as in Definition 3.2, i.e., Sσ2
σ1

is the cone in
Span(σ1) defined via the edge vectors and facet normals of σ1 and σ2 as in Definition
3.2(a) (or equivalently (3.10)) and Rσ2

σ1
= Qσ1 + Sσ2

σ1
, where Qσ1 is the face of Δ associated

with the cone σ ∈ Σ.

Convergence Assume that the fan Σ above is acute (cf. Definition 3.1). With the
notation as above, suppose for any σ2 ⪯ σ1, the function Kσ1 ,σ2 is rapidly decreasing on
the shifted neighborhoods of Sσ1

σ2
. (See Theorem 3.5 for the precise definition.) Then for

any polytope Δ ∈ P(Σ), the integral

JΣ(Δ) = ∫
V

kΔ(x) dx

is absolutely convergent.

We note that the conditions on Kσ1 ,σ2 in the theorem are “local” with respect to
the fan Σ in the sense that for each σ ∈ Σ, we only need to check a condition about
σ and the functions Kτ , τ ⪯ σ (and independent of other cones in the fan and their
associated functions).

We also remark that the assumption that the fan Σ is acute is crucial; without it,
the convergence result may fail as we show in Example 3.6 where we consider obtuse
cones.

Next, we discuss our result on polynomiality. The set P(Σ) of polytopes with
normal fan Σ is closed under multiplication by positive scalars and the Minkowski
sum. Hence, it makes sense to talk about a polynomial function on P(Σ). In fact, if
Σ(1) denotes the set of one-dimensional cones in Σ, then a polytope Δ ∈ P(Σ) has a
unique representation as

Δ = {x ∈ V ∶ ⟨x , vρ⟩ ⩾ aρ ,∀ρ ∈ Σ(1)},

where vρ denotes the unit vector along ρ. The numbers (aρ)ρ∈Σ(1) are called the
support numbers of Δ and can be considered as coordinates on P(Σ) (see Section 2.3).
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Our main polynomiality result (cf. Theorem 4.1) states that the integral of kΔ(x)
depends polynomially on Δ ∈ P(Σ).

Polynomiality The function

Δ ↦ JΣ(Δ)

is a polynomial on P(Σ), i.e., a polynomial in the support numbers of Δ.

We remark that if all the Kσ are identically equal to 1, then JΣ(Δ) coincides with
the volume of Δ. Thus, our Polynomiality Theorem is a vast generalization of the
classical fact that Δ ↦ vol(Δ) is a polynomial function. The assumption that each
Kσ is invariant in the direction of Span(σ) is obviously crucial in the proof of the
Polynomiality Theorem. For example, one can consider examples where Kσ are not
necessarily constant, but rather they are asymptotic to a constant in the direction of
Span(σ). Then one can still have convergence of JΣ(Δ) by our more general Theorem
3.4 on convergence, while JΣ(Δ) would clearly not be a polynomial function.

The strategy to prove our Convergence Theorem is as follows. Recall that the
truncated function kΔ(x) in (1.2) is defined as an alternating sum over various
outward tangent cones T−Δ,σ . In Lemma 3.3, we prove a certain double partition of
the tangent cones T−Δ,σ in terms of certain natural subsets that appear, associated
with pairs of cones in Σ, with the smaller cone being a face of σ and the large one
having σ as a face. In the double partition, the inner partition essentially amounts to
the special case where σ is a full dimensional cone in Σ, whereas the outer partition
amounts to a “nearest face partition” (cf. Section 2.4). This allows us to repackage the
various terms appearing in kΔ into a sum of certain alternating sums Kσ1 ,σ2 associated
with pairs of cones σ2 ⪯ σ1 in Σ. As a result, we reduce the question of the absolute
convergence of the integral of kΔ(x) over V to that of absolute convergence of Kσ1 ,σ2

on the sets we obtain out of the partition. This already gives our first, and more general,
convergence result (cf. Theorem 3.4). We then go on to show that the two conditions
in the above convergence theorem guarantee the convergence of the integral of Kσ1 ,σ2

on the required sets.
The regions we mentioned above seem to show up naturally in any treatment of

convergence results, including Arthur’s original proof of convergence of his (non-
invariant) trace formula. When σ1 is full dimensional (corresponding to a maximal
parabolic subgroup in Arthur’s setting) and σ2 is the origin, the region simply becomes
the cone σ1 shifted to the vertex of Δ corresponding to σ1. When σ2 is a nonzero face
of σ1, then the region is again another cone shifted to the vertex. This type of cone is
precisely what Arthur has, for example, in [Ar05, Figure 8.5]. For more general σ1, the
regions are a sum (as a set) of a compact face of Δ and a somewhat simpler cone. For
example, when dim V = 2, these regions look like stripes.

A key step in the proof of the Polynomiality Theorem is Lemma 4.6, which is a
statement concerning the polytope Δ and a cone σ ∈ Σ. As far as we know, this lemma
is new and does not appear in Arthur’s work. It simplifies and streamlines some of
the combinatorial arguments in [Ar78, Ar81]. As a special case when Δ = {0}, Lemma
4.6 also implies the Langlands combinatorial lemma (see [Ar05, equations (8.10) and
(8.11)], [GKM97, Appendix]).
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When σ is full dimensional and the vertex of Δ corresponding to σ lies in σ , Lemma
4.6 gives a decomposition of the characteristic function of the polytope Δ ∩ σ in terms
of certain cones with apexes at the vertices of this polytope. We obtain Lemma 4.6 as a
corollary of the Lawrence–Varchenko conical decomposition of a polytope (Theorem
2.8). In fact, we need a more general version of this decomposition that applies to
virtual polytopes (Theorem 2.10). The arguments in this section rely on some key
concepts and results from [KP93a, KP93b] (which we review in Section 2.6). We
would like to point out that the proof of polynomiality shows that JΣ(Δ) is a linear
combination of volumes of certain virtual polytopes ΓΔ,σ , σ ∈ Σ.

In the interest of making the connections with poset theory and Möbius inversion
more transparent, we show that the Langlands combinatorial lemma can be inter-
preted as a formula for the inverse of a certain element in the incidence algebra of
the poset of faces of a polyhedral cone (see Corollary 4.7).

Finally, we point out that Arthur’s truncation parameter T determines a polytope
which is the convex hull of the Weyl group orbit of T. Thus, Arthur’s combinatorics is
concerned with Weyl group invariant polytopes with a vertex in each Weyl chamber.
In this paper, we generalize the combinatorics to arbitrary simple polytopes.

It follows from the proof of polynomiality that

JΣ(0) = ∑
σ2⪯σ2 ,dim σ1=n

∫
Sσ2

σ1

Kσ1 ,σ2(x)dx ,

and that, in the case of a Weyl fan Σ and a Weyl group invariant Δ, the top degree
homogeneous part of the polynomial JΣ(Δ) is a constant multiple of the volume of Δ.

1.3 The simplest example

Let Σ be the complete fan in V = R consisting of the origin σ0 = {0}, the negative half-
line σ−, and the positive half-line σ+. Let Δ ⊂ V∗ ≅ V = R be the line segment [a, b].
Let K0, K−, and K+ be functions on V corresponding to σ0, σ−, and σ+, respectively.
From definition, one computes that the truncated function kΔ(x) is given by (see
Figure 2).

kΔ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K0 − K−, x < a,
K0 , a ≤ x ≤ b,
K0 − K+, x > b.

The assumption in Theorem 4.1 that Kσ is constant along Span(σ) implies that K−
and K+ are constant functions. Moreover, the condition that ∫

V
kΔ(x)dx is absolutely

convergent means that ∣K0(x) − K−∣ and ∣K0(x) − K+∣ are integrable. We have

JΣ(Δ) = ∫
R

kΔ(x) dx = ∫
0

−∞
(K0(x) − K−) dx + ∫

∞

0
(K0(x) − K+) dx

+ ∫
0

a
K− dx + ∫

b

0
K+ dx .

Note that ∫
0
−∞(K0(x) − K−) dx and ∫

∞
0 (K0(x) − K+) dx are constants independent

of a and b (whose sum we denote by the constant c) and K− and K+ are constants.
Hence, JΣ(Δ) = c + (−a)K− + b K+, a polynomial of degree 1 in a and b.
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It is easy to see that if K+ or K− is not a constant function, then the resulting JΣ(a, b)
may not be a polynomial in a and b. For example let K0 = K+ = K− = ex . Then K0 −
K+ = K0 − K+− = 0, so the conditions of convergence are satisfied, and, in fact, we
have JΣ(a, b) = ∫

b
a ex dx = eb − ea , which is clearly not a polynomial in a and b.

1.4 Another simple example: Brianchon–Gram

If Kσ ≡ 1 for all the cones σ , then kΔ becomes the characteristic function of the
polytope Δ by the Brianchon–Gram theorem (cf. Theorem 2.6), and, as we mentioned
earlier, our polynomiality result recovers the fact that the volume function Δ ↦ vol(Δ)
is a polynomial function. See Example 4.3 for details.

1.5 Discrete versions of the results

Replacing integration with summation, we obtain discrete versions of the above
theorems. Given free abelian groups M and N of rank n with a perfect Z-pairing to
identify them, we let V = NR = N ⊗Z R and V∗ = MR = M ⊗Z R. Then V and V∗ are
a pair of dual n-dimensional real vector spaces as above.

We take a fan Σ in V = NR which is rational, i.e., all its cones are generated by
rational vectors with respect to N ⊂ NR. We denote by P(Σ, M) the set of polytopes
with normal fan Σ whose vertices lie in M. It is closed under the Minkowski sum. The
discrete version of our convergence and polynomiality results (cf. Theorems 3.8 and
4.2) are as follows.

Convergence, discrete version With notation as above, suppose that for any σ2 ⪯ σ1 in
Σ, the function Kσ1 ,σ2 is rapidly decreasing on any shifted neighborhood of the cone Sσ1

σ2
.

Then for any polytope Δ ∈ P(Σ, M), the series

SΣ(Δ, M) = ∑
x∈M

kΔ(x)dx

is absolutely convergent.

Polynomiality, discrete version The function

Δ ↦ SΣ(Δ, M)
is a polynomial on P(Σ, M).

We remark that if Kσ ≡ 1 for all nonzero cones σ in Σ, then SΣ(Δ, M) coincides
with the number of lattice points in Δ. Thus, the above theorem is a far reaching
generalization of the classical fact that Δ ↦ ∣Δ ∩ M∣ is a polynomial function (Ehrhart
polynomial; see Theorem 2.2). It is interesting to explore whether some well-known
polynomials appearing in combinatorics and representation theory, e.g., in the theory
of symmetric polynomials, are instances of the polynomial JΣ(Δ) or SΣ(Δ, M).

1.6 Relation with toric varieties

Convex lattice polytopes are well studied in combinatorial algebraic geometry in
relation to the geometry of toric varieties. In particular, there is a dictionary between
algebraic geometric notions on toric varieties and convex geometric notions about
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lattice polytopes (see [CLS11, Fu93]). For example, the Riemann–Roch theorem for
toric varieties gives beautiful formulas relating the number of lattice points in a
polytope and its volume as well as volumes of its faces (see [[BV97], KP93a, KP93b]).

A complete (rational) fan Σ in NR determines a complete toric variety XΣ over C.
It is an equivariant compactification of the algebraic torus TN ≅ (C∗)n . The polytope
Δ ∈ P(Σ) determines a TN -linearized ample line bundle LΔ on XΣ (see Section 5).

In Section 5.2, we recall the well-known fact that the Brianchon–Gram theorem
can be regarded as the computation of the equivariant Euler characteristic of an ample
toric line bundle.

In Section 6, we give two interpretations of the function kΔ(x) in terms of the
toric variety XΣ . In Section 6.1, we interpret it as a “truncated” measure on the
toric variety XΣ obtained by truncating a measure ω0 on the open torus orbit X0 ⊂
XΣ using the measures ωσ on the torus orbits Oσ ⊂ XΣ (at infinity). Each tangent
cone T−Δ,σ determines an open neighborhood ŨΔ,σ of the torus orbit closure Oσ .
The interpretation of the tangent cones T−Δ,σ as neighborhoods ŨΔ,σ justifies the
assumption that the fan is acute: under the acute assumption, the neighborhood ŨΔ,σ
contains the orbit closure Oσ .

In Section 6.2, we observe that computation of equivariant Euler characteristic of
an ample toric line bundle has uncanny resemblances to the definition of truncated
function kΔ(x) and hence to Arthur’s construction of the modified kernel kT(x).
This leads to an interpretation of our combinatorial truncation as a Lefschetz number
for computing the trace of the induced linear map of a morphism on the sheaf
cohomologies of a toric variety.

We point out that the similarity between the definition of kT(x) and the
Brianchon–Gram theorem about polytopes has been observed by Casselman in
[Cass04].

The polynomiality of the number of lattice points in a polytope is related to the
polynomiality of the Euler characteristic which is an immediate consequence of the
Riemann–Roch theorem. From this point of view, it is probable that our Polynomiality
Theorem (Theorem 4.2) is a special case of a more general Riemann–Roch-type
theorem.

1.7 Relation with Arthur’s work

As we mentioned above, Arthur’s development of his noninvariant trace formula is
based on the two crucial results that the integral of kT(x) = kT(x , f ) on G(Q)/G(A)1

is absolutely convergent for T ∈ a+P sufficiently regular and f ∈ C∞c (G(A)1) and it is
a polynomial of T. We recall that

kT(x , f ) = ∑
P
(−1)dim(AP/AG) ∑

δ∈P(Q)/G(Q)
KP (δx , δx) τ̂P (HP(δx) − T) .(1.3)

Here, the outer sum is over the standard parabolic subgroups P of G (containing a fixed
minimal parabolic subgroup P0), HP ∶ G(A) �→ aP is the Harish–Chandra map, and
τ̂P(⋅) is the characteristic function of {t ∈ aP ∶ ϖ(t) > 0, ϖ ∈ Δ̂P}, where Δ̂P consists
of weights ϖα for simple roots α corresponding to P. (We refer to [Ar05] for any
unexplained notation.)
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If we take Σ to be the Weyl fan of the group G, then the parabolic subgroups
of G correspond to the cones in Σ and the choice of a minimal parabolic subgroup
corresponds to a choice of a full dimensional cone in Σ with the standard parabolic
subgroups corresponding to the faces of this full dimensional cone. The other cones
in Σ then correspond to the Weyl conjugates of the standard parabolic subgroups, and
this correspondence between cones and parabolic subgroups is order reversing with
respect to inclusion.

The Weyl fan Σ is a full dimensional, complete, simplicial fan that satisfies the acute
assumption. The toric variety XΣ of the fan Σ is a compactification of an algebraic
torus by adding strata (orbits) at infinity for each cone σ ∈ Σ. The combinatorial
truncation is an alternating sum of the Kσ times the characteristic functions of certain
neighborhoods of the strata at infinity.

Similarly, one has a compactification (Mumford’s toroidal compactification) of a
reductive group G by adding strata XP at infinity corresponding to rational parabolic
subgroups P (see [KKMS73, Chapter IV, Section 1]). Arthur’s truncation can be
interpreted as an alternating sum of the KP times characteristic functions of certain
neighborhoods of the strata XP at infinity.

The similarity between (1.2) and (1.3) is clear. This suggests that there is a corre-
sponding family of functions (Kσ)σ∈Σ defined using the KP functions. We believe that
our combinatorial arguments, or a variant thereof, can be used to give convergence
and polynomiality results of Arthur as follows. One would use the analytic arguments
already in Arthur’s work to verify the assumptions of (the variant of) our convergence
and polynomiality theorems. As a consequence, one would recover Arthur’s results
making the combinatorial/geometric ingredients of his proofs more streamlined, at
least in our view.

We expect that one can extend the geometric interpretations of truncation (e.g., as
a Lefschetz number) in Section 6 to Arthur’s setup by replacing the toric variety XΣ
by Mumford’s toroidal compactification of a reductive algebraic group G. We hope to
write the details, using Reduction Theory, in our next paper on this subject.

2 Preliminaries

We review some basic notions from the theory of polyhedral cones and fix some
notations along the way. We refer to [CLS11, Section 1.2] for further details.

2.1 Cones and fans

Let V be a finite dimensional real vector space of dimension n, and let V∗ denote its
dual. Recall that a (closed convex) polyhedral cone in V is a set of the form

σ = Cone(W) = { ∑
w∈W

aww ∶ aw ⩾ 0} ⊆ V

with W a finite subset of V. Equivalently, there is a finite subset B of V∗ such that

σ = ⋂
b∈B

{x ∈ V ∶ b(x) ⩾ 0} .
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We say that σ is generated by W. Also, we write Cone(∅) = {0}. The dimension of σ
is the dimension of its linear span. The dual cone σ∨ is defined as

σ∨ ∶= {y ∈ V∗ ∶ y(x) ⩾ 0 for all x ∈ σ} .

Dual cones enjoy the property that if σ is a polyhedral cone in V, then σ∨ is a
polyhedral cone in V∗ and σ∨∨ = σ .

For a face τ of σ (denoted τ ⪯ σ), define its dual face

τ∗ = {y ∈ σ∨ ∶ y(x) = 0 for all x ∈ τ}
= σ∨ ∩ τ⊥ .

Then τ∗ is a face of σ∨, τ∗∗ = τ, τ ↔ τ∗ is an inclusion-reversing bijection between
faces of σ and those of σ∨, and dim τ + dim τ∗ = n. One-dimensional cones, i.e., half-
lines, are called rays. A face τ of σ is called a facet if dim τ = dim σ − 1, and its linear
span is referred to as a wall of σ . An edge is a face of dimension 1.

Define the relative interior σ○ of σ to be the interior of σ in its span. One then
checks that x ∈ σ○ if and only if y(x) > 0 for all y ∈ σ∨/σ⊥. A polyhedral cone σ in V is
strongly convex if the origin is a face. This is the case if and only if σ contains no positive
dimensional subspace of V if and only if σ ∩ (−σ) = {0} if and only if dim σ∨ = n. A
strongly convex polyhedral cone σ ⊆ V is called simplicial if it is generated by linearly
independent vectors. We note that the dual of a simplicial cone of maximal dimension
is again simplicial.

For y ∈ V∗, we set

Hy ∶= {x ∈ V ∶ y(x) = 0} ⊆ V

and define the closed (resp. open) spaces

H+y ∶= {x ∈ V ∶ y(x) ⩾ 0} ⊆ V and H−y ∶= {x ∈ V ∶ y(x) < 0} ⊆ V .

When y /= 0, Hy is a hyperplane and H+y and H−y are half-spaces in V. When y = 0, we
have Hy = H+y = V while H−y is empty. If σ ⊆ H+y for y /= 0, we say Hy is a supporting
hyperplane and H+y (resp. H−y ) is an inward (resp. outward) supporting half-space of σ .
(When y = 0, we automatically have σ ⊆ H+0 = H0 = V .) Note that Hy is a supporting
hyperplane of σ if and only if y ∈ σ∨/{0}. If y1 , y2 , . . . , yr generate σ∨, then σ = H+y1

∩
⋯∩ H+yr

. Thus, every polyhedral cone is an intersection of finitely many closed half-
spaces.

A fan Σ in V is a finite collection of cones σ ⊆ V satisfying the following three
properties: (a) every σ ∈ Σ is a strongly convex polyhedral cone, (b) for all σ ∈ Σ, each
face of σ also belongs to Σ, and (c) for all σ1 , σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face
of each. The set of r-dimensional cones of Σ is denoted by Σ(r). The support of Σ is
defined by

∣Σ∣ ∶= ⋃
σ∈Σ

σ ⊆ V .

If ∣Σ∣ = V , then Σ is called a complete fan. A simplicial fan is a fan all whose cones are
simplicial. Every fan can be refined into a simplicial fan.
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Finally, for σ ∈ Σ, we let Σ/σ denote the fan in V/ Span(σ) consisting of all the
images of the cones σ ′ ⪰ σ . If we fix an inner product on V, then V/ Span(σ) can be
identified with σ⊥ and Σ/σ consists of projections of σ ′ ⪰ σ onto σ⊥.

2.2 Polytopes

A polytope is a set in V∗ of the form

P = Conv(S) = {∑
u∈S

λuu ∶ λu ⩾ 0, ∑
u∈S

λu = 1} ,

where S is a finite subset of V∗. We say P is the convex hull of S. The dimension, dim P,
of a polytope P is the dimension of the smallest affine subspace of V∗ containing P.
Given x ∈ V/{0} and r ∈ R, we have the affine hyperplane

Hx ,r ∶= {y ∈ V∗ ∶ y(x) = r}

and the closed (resp. open) half-spaces

H+x ,r ∶= {y ∈ V∗ ∶ y(x) ⩾ r} and H−x ,r ∶= {y ∈ V∗ ∶ y(x) < r} .

A subset Q ⊆ P is a face of P, denoted by Q ⪯ P, if there is x ∈ V/{0} and there is r ∈ R
with

Q = Hx ,r ∩ P and P ⊆ H+x ,r .

We then say that Hx ,r is a supporting affine hyperplane. The polytope P is regarded as
a face of itself and faces of P of dimensions 0, 1, and (dim P − 1) are called vertices,
edges, and facets, respectively.

A polytope P ⊆ V∗ can be written as a finite intersection of closed half-spaces, and
an intersection

P =
s
⋂
i=1

H+x i ,r i

is a polytope provided that it is bounded. In general, an intersection of finitely many
closed half-spaces is called a polyhedron and could be unbounded. When dim P =
dim V∗ (i.e., full dimensional polytope) for each facet F, we have a unique supporting
affine hyperplane and the corresponding closed half-space given by

HF = Hu+F ,aF = {y ∈ V∗ ∶ y(u+F) = aF}

and

H+F = H+u+F ,aF
= {y ∈ V∗ ∶ y(u+F) ⩾ aF} ,

where (u+F , aF) ∈ V ×R is unique up to multiplication by a positive real number. We
call u+F an inward-pointing facet normal of the facet F. Hence,

P = ⋂
F facet

H+F = {y ∈ V∗ ∶ y(u+F) ⩾ aF for all proper facets F ≺ P} .(2.1)
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This is the so-called facet representation of P. We also have a similar representa-
tion with outward-pointing facet normals u−F = −u+F . When the facet normals u±F are
assumed to be unit vectors, we may call the aF the support numbers of P.

Let Q be a face of P and define the inward (resp. outward) tangent cone T+P ,Q (resp.
T−P ,Q ) via

T+P ,Q ∶= {y ∈ V∗ ∶ y(u+F) ⩾ aF for all facets F ⊃ Q} ,(2.2)

resp. T−P ,Q ∶= {y ∈ V∗ ∶ y(u+F) < aF for all facets F ⊃ Q}(2.3)

= {y ∈ V∗ ∶ y(u−F) > aF for all facets F ⊃ Q} .

See Figures 3 and 4 for illustrations of inward and outward tangent cones of a
quadrilateral at a vertex and at an edge, respectively.

A polytope P ⊆ V∗ of dimension d is called a d-simplex (or just a simplex) if it has
d + 1 vertices, simplicial if every facet is a simplex, and simple if every vertex is the
intersection of precisely d facets.

Given a polytope P = Conv(S), its multiple rP = Conv(rS) is also a polytope
for any r ⩾ 0. The Minkowski sum P1 + P2 = {y1 + y2 ∶ y i ∈ Pi} of two polytopes
P1 = Conv(S1) and P2 = Conv(S2) is again a polytope, and we have the distribu-
tive law rP + sP = (r + s)P. The set P(V∗) of polytopes in V∗ together with the
Minkowski sum is a cancellative semigroup. The following theorem is originally due
to Minkowski.

Theorem 2.1 (Volume polynomial) The map P ↦ voln(P) is a polynomial function on
P(V∗) in the following sense: let P1 , . . . , Pr be polytopes in V∗. For any λ1 , . . . , λr ⩾ 0,
we can form the polytope ∑i λ i Pi . Then the function (λ1 , . . . , λr) ↦ voln(∑i λ i Pi) is
the restriction of a homogeneous polynomial on Rr to the positive orthant Rr

⩾0.

There is also a discrete analogue of Theorem 2.1 which is harder and more subtle to
prove. It is a generalization of the notion of the Ehrhart polynomial. Let M ≅ Zn be a
full rank lattice in V∗ ≅ Rn . Let P(M) denote the collection of lattice polytopes with
respect to M, that is, all polytopes in V∗ whose vertices belong to M. The set P(M) is
closed under the Minkowski sum and multiplication by positive integers.

Theorem 2.2 (Ehrhart polynomial) The map P ↦ ∣P ∩ M∣ is a polynomial map on
P(M).

More generally, the polynomiality property holds for any valuation (also called
finitely additive measure). A function Φ ∶ P(M) → R⩾0 is called a valuation if for all
P1 , P2 ∈ P(M), the following hold:
(1) Φ is monotone with respect to inclusion, i.e., Φ(P1) ≤ Φ(P2) provided that

P1 ⊂ P2.
(2) Φ(P1 ∪ P2) = Φ(P1) + Φ(P2) − Φ(P1 ∩ P2).
We say Φ is Zn-invariant if Φ(m + P) = Φ(P) for all P ∈ P(M) and m ∈ M. The
following is a beautiful result of McMullen [Mc77]. It generalizes Theorem 2.2.

Theorem 2.3 Let Φ be a Zn-invariant valuation on P(M). Then Φ is a polynomial
function.
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Figure 5: A polygon and its normal fan. Note that in our convention, we use outward facet
normals to define the cones in the normal fan.

Remark 2.4 When Φ(P) = ∣P ∩ M∣, one recovers Theorem 2.2. Fix a point a ∈
V∗. Theorem 2.3, in particular, implies that the function defined by Φa(P) = ∣P ∩
(a + M)∣ is also a polynomial.

2.3 Normal fan

For Q ⪯ P, let

σQ ∶= Cone (u−F ∶ facets F ⊃ Q) .

Given a full dimensional polytope P ⊆ V∗, the cones σQ fit together to form the normal
fan of P in V given by

ΣP = {σQ ∶ Q ⪯ P} .

Note that we have used outward facet normals u−F to define the normal fan (see
Figure 5). (Some authors use inward facet normals u+F instead.)

LetP(Σ) be the collection of all convex polytopes whose normal fan is Σ. This set is
closed under the Minkowski sum of polytopes and multiplication by positive scalars.
For P ∈ P(Σ), we have an inclusion-reversing bijection

Q = Qσ ←→ σ = σQ(2.4)
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between the set of faces of P and the set of cones in the normal fan Σ. In particular,
the facets F of P correspond to rays ρ ∈ Σ(1). For a ray ρ ∈ Σ(1), we set aρ = aF , where
F is the facet corresponding to ρ and aF are the support numbers of P (see (2.1)). The
map P ↦ (aρ)ρ∈Σ(1) gives an embedding of P(Σ) into Rs , where s = ∣Σ(1)∣. The image
is a full dimensional (open) convex polyhedral cone.

Let P be a full dimensional polytope with normal fan ΣP . Let Q ⪯ P be a face with
corresponding cone σQ ∈ ΣP . Then the normal fan ΣQ (of the polytope Q) is the fan
ΣP/σQ (defined at the end of Section 2.1). It consists of the images of the cones σ ′ ⪰ σQ
in the quotient vector space V/ Span(σQ).

2.4 Nearest face partition

Fix an inner product ⟨⋅, ⋅⟩ on V. Let P ⊂ V be a convex polyhedron. To P, we can
associate a partition of V into polyhedral regions V Q

P as follows. For each face
Q ⪯ P, let

V Q
P = {x ∈ V ∶ the minimum distance from x to P is attained

at a point in the relative interior of Q} .

The following is straightforward to verify.

Proposition 2.5 (1) For each face Q ⪯ P, the set V Q
P is a polyhedron.

(2) We have a disjoint union

V = ⊔
Q⪯P

V Q
P .

We can modify the V Q
P to obtain a slightly different partition {W Q

P ∶ Q ⪯ P}. For
each face Q ⪯ P, let

W Q
P = V Q

P /( ⋃
Q′≩Q

V Q′
P ),

where V Q
P denotes the closure of V Q

P . The polyhedra W Q
P and V Q

P have the same
relative interior, but they are different on the boundary.

We refer to both {V Q
P ∶ Q ⪯ P} and {W Q

P ∶ Q ⪯ P} as the nearest face partition of
V with respect to the polyhedron P (see Figure 6). We note that if, in particular, P = σ
is a cone (with apex at the origin), then the closure of the parts in the partition with
respect to σ in fact form a complete fan in V. In practice, we will also use the nearest
face partition to partition a polyhedron inside V.

2.5 Conical decomposition theorems

We end this section by recalling two beautiful formulas which represent the character-
istic function of a polytope as an alternating sum of characteristic functions of cones.
For a nice overview of these decompositions and related topics, we refer the reader to
[BHS09].
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Figure 6: Nearest face partition for a polygon illustrating polyhedral regions V Q
P and W Q

P
corresponding to an edge Q.

2.5.1 Brianchon–Gram theorem

The first conical decomposition theorem we discuss is the Brianchon–Gram theorem.
It is named after Brianchon and Gram who independently proved the n = 3 case in 1837
and 1874, respectively ([B37, G1874]). It is the mother of all cone decompositions! See
[Hass05, Section 1.1] and the references therein. Also, see [Ag06].

Theorem 2.6 (Brianchon–Gram) Let P be a polytope in V∗. We have the following
equality, where 1 denotes characteristic function:

1P = ∑
Q⪯P

(−1)dim Q 1T+P ,Q
.(2.5)

Proof For a point y ∈ P, the right-hand side computes the Euler characteristic of P
and hence is equal to 1 since P is contractible. For y ∉ P, we have to subtract the Euler
characteristic of the subcomplex that is visible from y which is again contractible. ∎

Alternatively, one can formulate Brianchon–Gram in terms of outward-looking
tangent cones.

Theorem 2.7 (Brianchon–Gram, alternative version) Let P be a polytope in V∗. We
have the following equality:

1P = ∑
Q⪯P

(−1)n−dim Q 1T−P ,Q
.(2.6)

The above version of the Brianchon–Gram formula looks similar to Arthur’s
definition of the modified kernel kT(x), as was observed in [Cass04]. See Figures 7
and 8 for illustrations of (2.5) and (2.6).

2.5.2 Lawrence–Varchenko theorem

The second conical decomposition due to Lawrence [Law91] and Varchenko [Vr87]
represents the characteristic function of a polytope as an alternating sum of char-
acteristic functions of certain cones associated with vertices of the polytope. It is a
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Figure 7: Illustration of the Brianchon–Gram theorem (inward-looking tangent cones) for a
triangle.

Figure 8: Illustration of the Brianchon–Gram theorem (alternative version, outward-looking
tangent cones) for a triangle.

predecessor to the work of Khovanskii and Pukhlikov [KP93a, KP93b] and Brion
and Vergne [Br88, BV97]. It is related to Morse theory on polytopes as well as
equivariant cohomology of toric varieties. The Lawrence–Varchenko theorem follows
immediately from Khovanskii–Pukhlikov results as well (see [KP93b, Section 3.2]).

Let P ⊂ V be a simple polytope, and let v be a vertex of P. Let w1 , . . . wr be edge
vectors of P at the vertex v. Fix a dual vector ξ ∈ V∗ such that ⟨w i , ξ⟩ ≠ 0, for all i. We
define vectors w′1 , . . . , w′r as follows:

w′i =
⎧⎪⎪⎨⎪⎪⎩

w i , if ⟨w i , ξ⟩ > 0,
−w i , otherwise.

Finally, define the polarized tangent cone T ξ
P ,v with apex at v by

T ξ
P ,v = {

r
∑
i=1

λ iw′i ∶
λ i ⩾ 0 if w′i = w i
λ i > 0 if w′i = −w i

} .
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Figure 9: Illustration of the Lawrence–Varchenko theorem for a quadrangle.

Theorem 2.8 (Lawrence–Varchenko) With notation as above, we have the following:

1P = ∑
v
(−1)nv 1T ξ

P ,v
,(2.7)

where the sum is over all the vertices v of P, and nv = ∣{i ∶ w′i = −w i}∣.

See Figure 9 for an illustration of (2.7).

2.6 Khovanskii–Pukhlikov virtual polytopes and convex chains

This is a summary of some ideas and results from [KP93a, KP93b] that we will need
later. As before, V ≅ Rn denotes an n-dimensional real vector space.

Recall thatP(V∗) denotes the set of polytopes in the dual space V∗. The setP(V∗)
is equipped with the operations of Minkowski sum and multiplication by positive
scalars. One knows that P(V∗) together with the Minkowski sum is a cancellative
semigroup and hence it can be extended to a real vector space V(V∗) consisting
of formal differences P1 − P2, Pi ∈ P(V∗), where for polytopes P1 , P2 , P′1 , P′2, we have
P1 − P2 = P′1 − P′2 if and only if P1 + P′2 = P′1 + P2.

Definition 2.1 (Virtual polytope) The elements of V(V∗) are called virtual polytopes
(see [KP93a]).

We note that V(V∗) is an infinite dimensional vector space.
Let Σ be a complete fan in V. Recall that P(Σ) denotes the set of all polytopes

in V∗ whose normal fan is Σ. The set P(Σ) is closed under the Minkowski sum
and multiplication by positive scalars. We denote by V(Σ) the subspace of V(V∗)
spanned by P(Σ). The elements of V(Σ) are called virtual polytopes with normal fan
Σ. Generalizing the facet representation of a polytope P ∈ P(Σ), i.e., representation
as an intersection of half-spaces H+u+ρ ,aρ

, ρ ∈ Σ(1), each virtual polytope in V(Σ) is
represented by a collection of oriented hyperplanes Huρ ,aρ , ρ ∈ Σ(1). Note that any
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Figure 10: A usual quadrangle with its normal fan.

choice of the support numbers aρ yields a virtual polytope (even if the intersection
of the corresponding half-spaces is empty). See Figures 10 and 11 for illustrations of a
usual and virtual quadrangle with the same normal fan.

Remark 2.9 The notion of volume of a polytope extends to virtual polytopes via
Theorem 2.1. For a virtual polytope P ∈ V(V∗), we defined voln(P) to be the value
of the volume polynomial at P. Similarly, the notion of the number of lattice points
in a polytope extends to virtual polytopes as well. Let M ⊂ V∗ be a full rank lattice.
Let V(M) denote the collection of lattice virtual polytopes with respect to M, i.e., all
virtual polytopes whose vertices are in M. In other words, V(M) is the subgroup
of V(V∗) generated by lattice polytopes in P(M). By Theorem 2.2, there exists a
(unique) polynomial F on V(V∗) such that for any lattice polytope P ∈ P(V∗), we
have F(P) = ∣P ∩ M∣. For a virtual lattice polytope P ∈ V(M), we define the number
of lattice points in P to be F(P). The same applies to any valuation on the space
of polytopes (see [KP93a]; see also Theorem 2.3 and the paragraph before it for the
definition of a valuation).

Each polytope P ∈ P(V∗) is determined by its characteristic function 1P ∶ V∗ →
{0, 1}. We would like to extend the assignment P ↦ 1P to virtual polytopes. The natural
extension of the set of characteristic functions of convex polytopes (to a vector space)
is the set of convex chains (defined by Khovanskii and Pukhlikov).

Definition 2.2 (Convex chain) A convex chain Z is a finite linear combination
(with real coefficients) of characteristic functions of convex polytopes in V∗, that is,
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Figure 11: A virtual quadrangle with the same normal fan.

Z = ∑i λ i 1Δ i , where the Δ i are convex polytopes in V∗ and λ i ∈ R. We denote the set
of convex chains by Z(V∗). It is an infinite dimensional vector space with addition
and scalar multiplication of functions.

Moreover, in general, one can consider the characteristic functions of convex
polyhedral cones.

Definition 2.3 (Conical convex chain) A conical convex chain C is a finite linear
combination (with real coefficients) of characteristic functions of shifted convex cones
in V∗, that is, C = ∑i λ i 1a i+C i , where the C i are convex polyhedral cones in V∗ (with
apex at the origin), a i ∈ V∗, and λ i ∈ R. We denote the set of convex conical chains by
CZ(V∗).

A remarkable construction in [KP93a] is a “convolution” operation ∗ on Z(V∗)
which makes it a commutative algebra (together with addition and scalar multiplica-
tion of functions). It has the property that for any two polytopes P1 and P2, we have

1P1 ∗ 1P2 = 1P1+P2 .

In particular, the identity element for the ∗ operation is 1{0}, the characteristic
function of the origin.

For a polytope P, it is shown in [KP93a] that the inverse (with respect to ∗) of 1P
is the convex chain (−1)dim P1P○ , where P○ denotes the relative interior of P. In other
words,

1P ∗ (−1)dim P1P○ = 1{0} .
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Figure 12: Illustration of the Lawrence–Varchenko theorem for a virtual quadrangle.

One verifies that

(−1)dim P1P○ = ∑
Q⪯P

(−1)dim Q 1Q ,

and hence (−1)dim P1P○ is indeed a convex chain. It follows that

ι ∶ P1 − P2 ↦ 1P1 ∗ (−1)dim P2 1P○2 = ∑
Q⪯P2

(−1)dim Q 1P1+Q(2.8)

defines a natural embedding of the group of virtual polytopes (with the Minkowski
sum) into the semigroup of convex chains (with convolution ∗). We refer to the right-
hand side of (2.8) as the convex chain associated with the characteristic function of the
virtual polytope P1 − P2. In fact, it is shown in [KP93a] that the image of ι coincides
with the set of ∗-invertible convex chains.

We can talk about vertices of a virtual polytope. For a virtual polytope P ∈ V(Σ),
the vertices are in one-to-one correspondence with the full dimensional cones in Σ.
Similarly, the notion of a tangent cone of a polytope extends to virtual polytopes. The
tangent cones of P ∈ V(Σ) are in one-to-one correspondence with σ ∈ Σ.

There is a generalization of the Brianchon–Gram theorem to convex chains (see
[KP93a, Section 4, Proposition 2]). The Lawrence–Varchenko theorem also extends
to simple virtual polytopes.

Theorem 2.10 (Lawrence–Varchenko for virtual polytopes) Let P be a virtual poly-
tope in V∗, and let π ∶ V∗ → R be the corresponding convex chain. Then

π = ∑
v
(−1)nv 1T ξ

P ,v
,(2.9)

where the sum is over all the vertices v of P and T ξ
P ,v and nv are as in Theorem 2.8.

See Figure 12 for an illustration of (2.9).
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2.7 Incidence algebra of a poset and Möbius inversion

For a nice reference about incidence algebra and Möbius inversion, see [St12, Sections
3.6 and 3.7]. Let P be a finite poset with partial order ≺. Let R be a commutative ring
with 1 which we take as the ring of scalars. Let P̃ = {(τ, σ) ∶ τ ⪯ σ} ⊂ P ×P be the
collection of all intervals in P. Let I(P) = {F ∶ P̃→ R} be the set of functions from P̃

to R. Clearly, I = I(P) is an abelian group with addition of functions. One defines a
convolution operation ∗ on I as follows. For F , G ∈ I define F ∗ G ∈ I by

(F ∗ G)(τ, σ) = ∑
τ⪯τ′⪯σ

F(τ, τ′)G(τ′ , σ).

It can be verified that (I,+, ∗) is an algebra over R, called incidence algebra of the poset
P. In general, I(P) is not commutative.

The identity (for the convolution operation ∗) is the function δ defined by

δ(τ, σ) =
⎧⎪⎪⎨⎪⎪⎩

1, τ = σ ,
0, τ ≠ σ .

A distinguished element of the incidence algebra is the constant function ζ(τ, σ) =
1, for any interval τ ⪯ σ . The Möbius inversion formula states that the function ζ
is invertible and its inverse is the Möbius function μ. For the general poset P, the
Möbius function is constructed/defined inductively, but in specific examples, it can be
defined/computed explicitly.

Example 2.11 (Poset of subsets of a finite set) Let P be the poset of all subset of
{1, . . . , d} ordered by inclusion. It can be shown that the Möbius function in this case
is given by

μ(I, J) = (−1)∣I∣−∣J∣, J ⊂ I,

and the Möbius inversion formula recovers the inclusion–exclusion principle.

The following is the main example of a poset that we will be concerned with in the
paper.

Example 2.12 (Poset of faces of a convex polyhedral cone) Let P be the poset of all
faces of a given convex polyhedral cone C ⊂ Rn . If σ is simplicial of dimension d, then
this poset is the same as the poset of all subsets of {1, . . . , d} above. It can be shown
that the Möbius function in this case is given by

μ(τ, σ) = (−1)dim σ−dim τ , τ ⪯ σ .

3 Convergence

In this section, we give some combinatorial/geometric results that contain the com-
binatorial ingredients of Arthur’s result on the convergence and polynomiality (in
a truncation parameter T) of the truncated trace JT( f ) in his noninvariant trace
formula. See [Ar78, Section 7] and [Ar81, Section 2] as well as the survey [Ar05,
Sections 8 and 9].
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We continue to denote the n-dimensional real vector space we fixed in Section 2
by V. We choose an inner product ⟨⋅, ⋅⟩ on V and use it to identify V with its dual.
Our results in this section depend on the choice of this inner product. In particular,
we view the dual cone σ∨ as a subset of V itself,

σ∨ ∶= {x ∈ V ∶ ⟨x , y⟩ ⩾ 0, for all y ∈ σ} .

Our starting point is a full dimensional, complete, simplicial fan Σ in V. Let
Δ ∈ P(Σ) be a convex polytope whose normal fan is Σ. Suppose that we are given
a collection of continuous functions

Kσ ∶ V �→ C, σ ∈ Σ.(3.1)

To these data, we associate the truncated function kΔ ∶ V �→ C defined by

kΔ(x) = ∑
σ∈Σ

(−1)dim σ Kσ(x) 1T−Δ,σ
(x),(3.2)

where T−Δ,σ = T−Δ,Qσ
is the outward tangent cone, as in (2.3), of the face Qσ of Δ that

stands in bijection with σ as in (2.4). The main result of this section is to prove that
if the functions Kσ satisfy certain assumptions, then the integral of kΔ over V is
absolutely convergent. In particular, these assumptions hold when the functions Kσ
satisfy certain growth conditions as we explain below. The latter is the setting in which
ATF appears.

For a cone σ ∈ Σ, let W(σ) = {w i ∈ V ∶ i ∈ I} be a set of unit edge vectors of σ . We
also let B(σ) = {b i ∈ V ∶ i ∈ I}denote the set of unit, inward, facet normals in Span(σ)
to the facets of σ . Note that the b i form a basis of Span(σ) dual to the w i , i.e.,

⟨w i , b j⟩ = δ i , j , i , j ∈ I.

When σ is full dimensional, B(σ) is the set of edge vectors of the dual cone σ∨.

Definition 3.1 (Acute cone and acute fan) We say that a convex cone σ in V is acute
if σ ⊆ σ∨. We call the fan Σ acute if all its cones are acute.

Notice that our definition of acute allows for right angles. We also remark that the
notion of acute depends on the inner product we have chosen in V. Indeed, the acute
assumption will be crucial for the convergence results below to hold as Example 3.6
shows.

Observe that

σ is acute ⇐⇒ ⟨w i , w j⟩ ⩾ 0, i , j ∈ I.(3.3)

It follows from Definition 3.1 that if σ is acute, then for x ∈ Span(σ),

⟨x , b i⟩ > 0 for all i ∈ I @⇒ ⟨x , w i⟩ > 0 for all i ∈ I.(3.4)

Next, fix a pair of cones σ2 ⪯ σ1 in Σ. Write W(σ1) = {w i ∈ V ∶ i ∈ I1} and B(σ1) =
{b i ∈ V ∶ i ∈ I1} as above. Then W(σ2) = {w i ∶ i ∈ I2} for some I2 ⊆ I1 and the set
{b j ∶ j ∈ I1/I2} consists of vectors normal to σ2. (However, B(σ2) is not {b j ∶ j ∈ I2}
as the latter depends on σ1.)

Define

Cσ1 = C0
σ1
∶= {x ∈ Span(σ1) ∶ ⟨x , b j⟩ > 0, for all j ∈ I1} ,(3.5)
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and similarly, define

Ĉσ1 = Ĉ0
σ1
∶= {x ∈ Span(σ1) ∶ ⟨x , w i⟩ > 0, for all i ∈ I1} .(3.6)

More generally, we define

Cσ2
σ1
∶= {x ∈ Span(σ1) ∶ ⟨x , b j⟩ > 0, for all j ∈ I1/I2} ,(3.7)

and

Ĉσ2
σ1
∶= {x ∈ Span(σ1) ∶ ⟨x , w i⟩ > 0, for all i ∈ I1/I2} .(3.8)

Next, we define the following subsets of V which play a crucial role in our results.

Definition 3.2 Let Σ be a full dimensional, complete, simplicial, acute fan in V.
Assume that σ2 ⪯ σ1 are two cones in Σ with unit edge vectors indexed by I2 ⊂ I1 as
above.
(a) Define Sσ2

σ1
to be the set of x ∈ Span(σ1) ∩ σ∨1 such that the face of σ1 that is nearest

to x is the cone generated by {w i ∶ i ∈ I1/I2}. Also, let 1Sσ2
σ1

denote its characteristic
function. (See Section 2.4.)

(b) Define the “shifted” subset

Rσ2
σ1
∶= Qσ1 + Sσ2

σ1
= {x0 + x ∈ V ∶ x0 ∈ Qσ1 and x ∈ Sσ2

σ1
} .(3.9)

We also note that while the subsets Sσ2
σ1

may have smaller dimensions, the subsets
Rσ2

σ1
, when nonempty, are always full dimensional because the dimension of Qσ1 (as an

affine space) and that of Sσ2
σ1

add up to n = dim V .
As Lemma 3.1 below shows, the Sσ2

σ1
are the analogues of the subsets appearing in

[Ar78, Lemma 6.1], which also appear to play a similar crucial role in Arthur’s results
on convergence and polynomiality.

Lemma 3.1 With σ2 ⪯ σ1 in Σ, the vectors w i and b i , and I2 ⊂ I1 as above, we have

Sσ2
σ1
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∈ Span(σ1) ∶
⟨x , b j⟩ > 0, j ∈ I1/I2
⟨x , b j⟩ ⩽ 0, j ∈ I2
⟨x , w i⟩ > 0, i ∈ I1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.(3.10)

Proof Write τ = Cone (w i ∶ i ∈ I1/I2). Fix x ∈ Span(σ1) ∩ σ∨1 . Now, x belongs to Sσ2
σ1

if and only if among all the faces of σ1 the face τ is the unique face that is nearest to
x. Note that the distances to the faces of σ1 are controlled by the normal vectors b j
and for τ to be the unique nearest face, we must have ⟨x , b j⟩ > 0 for j ∈ I1/I2 while
⟨x , b j⟩ ⩽ 0 for j ∈ I2. This implies that x ∈ Sσ2

σ1
satisfies the first two sets of inequalities

on the right-hand side of (3.10). Also, x satisfies the third set of inequalities on the
right-hand side of (3.10) by (3.4) because x ∈ σ∨1 , a cone whose edge vectors are the
b i ’s.

Next, assume that x belongs to the right-hand side of (3.10). The first two sets of
inequalities imply that σ2 is the unique nearest face of σ1 to x and the third set of
inequalities means that x ∈ σ∨1 . ∎
Remark 3.2 Even though we start with simplicial cones σ2 ⪯ σ1, the cone Sσ2

σ1
may

not be simplicial. As an example, consider V = R3, and let w1 = e1 , w2 = e2, and w3 =
e1 + e2 + e3. Take σ2 = Cone(w3) ⪯ σ1 = Cone(w1 , w2 , w3). We then have b1 = e1 − e3 ,
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b2 = e2 − e3, and b3 = e3. A simple calculation then shows that Sσ2
σ1
=

Cone(w1 , w2 , b1 , b2), which is not simplicial.

The following is a type of double nearest face partition that will help us prove our
convergence results.

Lemma 3.3 Let Σ be a full dimensional, complete, simplicial fan in V which is assumed
to be acute. Let Δ ∈ P(Σ) be a convex polytope whose normal fan is Σ. Then, for any
σ ∈ Σ, the outward tangent cone T−Δ,σ has the partition

T−Δ,σ = ⊔
{σ1∈Σ ∶ σ⪯σ1}

⊔
{σ2∈Σ∶σ2⪯σ}

Rσ2
σ1

.(3.11)

Proof Consider the inner disjoint union in (3.11) first. Fix σ1 in Σ with σ ⪯ σ1.
Write W(σ1) = {w i ∈ V ∶ i ∈ I1}, and assume that I2 ⊆ I ⊆ I1 are such that W(σ) =
{w i ∈ V ∶ i ∈ I} and similarly for W(σ2). Also, write B(σ1) = {b j ∈ V ∶ j ∈ I1}. Notice
that b j is normal to σ for j ∈ I1/I and b j is normal to σ2 for j ∈ I1/I2.

Simply considering all the subsets of I, we see that

Aσ
σ1
∶= ⊔

σ2 ∶σ2⪯σ⪯σ1

Rσ2
σ1
= {x ∈ V ∶ ⟨x − q, b i⟩ > 0, i ∈ I1/I,

⟨x − q, w i⟩ > 0, i ∈ I1 , for some q ∈ Qσ1} .

This is because, for q ∈ Qσ1 , the set q + Sσ2
σ1

is, by (3.10), given by

⟨x − q, b i⟩ > 0, i ∈ I1/I2 = (I1/I) ⊔ (I/I2),
⟨x − q, b i⟩ ⩽ 0, i ∈ I2 ,
⟨x − q, w i⟩ > 0, i ∈ I1 .

In the disjoint union over all subsets I2 of I corresponding to the faces σ2 of σ , the
first set of inequalities for i ∈ I1/I are common for all the subsets I2 and the remaining
inequalities along with the second set of inequalities cover all possible signs for ⟨x −
q, b i⟩ for all i ∈ I. Moreover, we have ⟨x − q, w i⟩ > 0 for i ∈ I1. This proves our claim
about the inner union and, in fact, already proves the lemma for the case when σ is
full dimensional since we only have the inner union in that case.

Next, we consider the outer union. The assertion of the lemma now amounts to a
nearest face partition. The set T−Δ,σ consists of x ∈ V satisfying ⟨x − q, w i⟩ > 0, i ∈ I for
every q ∈ Qσ . Fix one such x. There is a unique face Qσ1 of Δ with σ ⪯ σ1 such that the
distance from x to Qσ1 is smallest among all the faces contained in Qσ . Note that the
distances are controlled by the normal vectors b j and for the smallest distance to occur
for the face Qσ1 of Qσ , we must have ⟨x − q, b j⟩ > 0 for j ∈ I1/I and ⟨x − q, b j⟩ ⩽ 0 for
j ∈ I0/I1 for any I0 ⊃ I with σ0 ∈ Σ for some q ∈ Qσ1 . Therefore, among the Aσ

σ ′1
with

σ ⪯ σ ′1 , only Aσ
σ1

contains x. Hence, (3.11) holds. ∎
Let us also fix the following notation. For σ2 ⪯ σ1 in Σ, define the functions

Kσ1 ,σ2(x) = ∑
{τ∈Σ ∶ σ2⪯τ⪯σ1}

(−1)dim(τ)Kτ(x), x ∈ V .(3.12)

We are now prepared to state our first convergence result.

Theorem 3.4 (Absolute convergence) Let Σ be a full dimensional, complete, simplicial
fan in V which is assumed to be acute. Let Δ ∈ P(Σ) be a simple full dimensional polytope
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in V whose normal fan is Σ. Suppose that a collection of functions (Kσ)σ∈Σ is given as
in (3.1) and kΔ is defined as in (3.2).

For each pair σ2 ⪯ σ1 in Σ, assume that the function Kσ1 ,σ2 is absolutely integrable on
the set Rσ2

σ1
. Then

JΣ(Δ) ∶= ∫
V

kΔ(x) dx(3.13)

is absolutely convergent. Recall that Rσ2
σ1

is defined by (3.9) and Kσ1 ,σ2 by (3.12).

Proof Recall that kΔ(x) is defined in terms of outward tangent cones T−Δ,σ . It follows
from Lemma 3.3 that

kΔ(x) = ∑
σ∈Σ

(−1)dim(σ)Kσ(x) 1T−Δ,σ
(x)

= ∑
σ∈Σ

(−1)dim(σ)Kσ(x)( ∑
σ1 ∶σ⪯σ1

∑
σ2 ∶σ2⪯σ

1Rσ2
σ1
(x))

= ∑
σ2⪯σ1

Kσ1 ,σ2(x)1Rσ2
σ1
(x).

Hence,

∫
V

∣kΔ(x)∣ dx ⩽ ∑
{σ1 ,σ2∈Σ ∶ σ2⪯σ1}

∫
Rσ2

σ1

∣Kσ1 ,σ2(x)∣ dx ,

and each of the integrals on the right-hand side is finite by assumption. Therefore, the
integral on the left-hand side is finite. ∎

A special case of Theorem 3.4 is particularly suitable for applications to Arthur’s
non-invariant trace formula. To state it, we review the following standard notions of
growth.

Let σ be a cone in V. A function K ∶ V → C is said to be of order N in σ if there is
a constant C = CK ,N such that

∣K(x)∣ ≤ C ∣x∣N

for x in σ with ∣x∣ sufficiently large. In other words, K(x) = O(∣x∣N) as x tends to ∞
in σ . We say K is rapidly decreasing on σ if, for every N > 0, we have K(x) = O(∣x∣−N)
as x tends to ∞ in σ .

Theorem 3.5 Let Σ be a full dimensional, complete, simplicial fan in V which is
assumed to be acute, and let (Kσ)σ∈Σ be a collection of continuous functions as in (3.1).
Assume that the following two assumptions are satisfied:
(i) For all σ ∈ Σ, the function Kσ is constant in the direction of Span(σ) (i.e., a function

on σ⊥).
(ii) For all pairs of cones σ2 ⪯ σ1 in Σ with the subset Sσ2

σ1
nonempty, the function Kσ1 ,σ2 is

of order N = −(n1 + ε) for some ε > 0 in every shifted neighborhood B(y, δ) + Sσ2
σ1

for all y ∈ V where B(y, δ) is a (small) ball in V of positive radius δ around y, and
n1 = dim σ1. In particular, this condition is satisfied if Kσ1 ,σ2 is rapidly decreasing
on the shifted neighborhoods.

Then, for Δ ∈ P(Σ), the integral (3.13) defining JΣ(Δ) converges absolutely.
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Proof By Theorem 3.4, it is enough to prove that the two assumptions in the
statement imply that

∫
Rσ2

σ1

∣Kσ1 ,σ2(x)∣ dx < ∞

for all pairs σ2 ⪯ σ1 in Σ.
We may replace the domain of integration by its closure. Also, recall that the closure

of Rσ2
σ1

is equal to closure of Qσ1 , which is compact, plus the closure of Sσ2
σ1

, which can
be given by making all the inequalities in (3.10) nonstrict. Note that Sσ2

σ1
is a cone, even

though it may be nonsimplicial.
To estimate the integral above, we apply Fubini’s theorem to break the integral as

three iterated integrals: an integral over Qσ1 , an integral over A = σ⊥2 ∩ Span(σ1), and
a third integral in the direction of σ2.

Note that Span(σ2) does not intersect Sσ2
σ1

because, for any x ∈ Span(σ2), the third
set of inequalities in (3.1) for i ∈ I2 and (3.4) imply that x cannot satisfy the second
set of inequalities in (3.1). This observation and our first assumption imply that the
contribution of the integral over σ2 is bounded, up to a constant, by the product of the
integrand with ∣x∣n2 , where n2 = dim σ2. Hence, the integral above is bounded, up to
a constant, by

∫
Qσ1

∫
A

∣Kσ1 ,σ2(x)∣ ∣x∣n2 dx .

Next, using the second assumption and the fact that Qσ1 is compact, we may cover the
domain of integration by a finite number of shifted neighborhoods. Therefore, up to
a constant, the integral over A, which is a cone of dimension n1 − n2, is bounded by

∫
A

∣x∣N+n2 dx .

The volume element on A involves ∣x∣dim A−1 and dim A = n1 − n2 which implies that
the original integral is convergent if N + n2 + (n1 − n2 − 1) + 1 = −ε < 0 which is clear.
This proves the theorem. ∎

We will give several examples of the convergence theorems later in Section 4. At the
moment, we mention the following example, which shows that the acute assumption
in our convergence results is crucial.

Example 3.6 Consider the complete fan Σ in V = R2 pictured in Figure 13. In
addition to zero, Σ contains three one-dimensional cones σx , σy , and σz , as well as
three two-dimensional cones σx y , σxz , and σyz . Also, let Δ be a polytope whose normal
fan is Σ as indicated.

For convenience, let us write z = x + y. Define the collection of functions (Kσ)σ∈Σ
as follows.
• Kx y = Kxz = Kyz = 1.
• Kx = Kx(y) = 1 + e−∣y∣; Ky = Ky(x) = 1 + e−∣x ∣; Kz = Kz(x , y) = 1 + e−∣z∣.
• K0 = K0(x , y) = e−∣z∣ + e−∣x ∣ + e−∣y∣.
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Figure 13: An example of an obtuse fan, it is the normal fan of a right triangle.

Figure 14: The regions Rσ2
σ1 and their corresponding Kσ1 ,σ2 functions.

In Figure 14, we have indicated all the nonempty Rσ2
σ1

. The truncated function kΔ is
the sum of the functions in the various regions indicated. A simple calculation shows
that there are four regions where the integral of ∣kΔ ∣ is divergent. These regions are
precisely those that are not of the form Rσ2

σ1
in this example, whereas on the other

regions, the hypotheses of Theorem 3.5 clearly hold. As it is evident from this example,
the crucial Lemma 3.3 fails, which leads to the failure of Theorem 3.5 without the acute
assumption.
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We also prove the following lemma for later use in Section 4. Let τ be a cone
in Σ. Recall from Section 2.3 that Σ/τ denotes the fan consisting of all the images
of the cones σ ⪰ τ in the quotient vector space V/ Span(τ) ≅ τ⊥. For σ ⪰ τ, let us
denote the image of σ in V/ Span(τ) by σ̄ . Note that by assumption, for any σ ⪰ τ,
the function Kσ is constant along Span(τ) and hence induces a well-defined function
K̄σ̄ on V/ Span(τ).

Lemma 3.7 Suppose the conditions in Theorem 3.5 for convergence are satisfied for the
Kσ , σ ∈ Σ. Then, for any τ ∈ Σ, these conditions are also satisfied for the K̄σ̄ , σ̄ ∈ Σ/τ,
and hence JΣ/τ(0) is convergent as well.

Proof This is an immediate corollary of the following two observations. Let τ ⪯ σ2 ⪯
σ1. Then we have that (1) the cone Sσ̄1

σ̄2
(as in the proof of Theorem 3.4) coincides with

the image of Sσ1
σ2

in V/ Span(τ) and (2) the function Kσ̄1 , σ̄2 (as in the statement of
Theorem 3.4) is rapidly decreasing on a shifted neighborhood Sσ̄1

σ̄2
because Kσ1 ,σ2 is

rapidly decreasing on a shifted neighborhood of Sσ1
σ2

. ∎
Finally, we give a discrete version of Theorem 3.5. As usual, let N and M be dual

lattices, and let V = NR = N ⊗R and V∗ = MR = M ⊗R be the corresponding vector
spaces, respectively. We fix a perfect pairing N × N → Z and use it to identify N and
M as well as NR and MR.

Theorem 3.8 With the notations and assumptions as in Theorem 3.5, the sum

SΣ(Δ, M) = ∑
m∈M

kΔ(m)

is absolutely convergent.

Proof In the proof of Theorem 3.5, replace all integrals ∫
A

f (x)dx with sums

∑
m∈A∩M

f (m). ∎

We should note that the discrete analogue of Lemma 3.7 also holds with the same
proof.

4 Polynomiality

In this section, we prove the following theorems.

Theorem 4.1 (Polynomiality) Let Σ be a full dimensional, complete, simplicial fan in
V which is assumed to be acute. Let (Kσ)σ∈Σ be a collection of continuous functions
satisfying the assumptions (i) and (ii) in Theorem 3.5. Then

JΣ(Δ) = ∫
V

kΔ(x)dx

is a polynomial function on P(Σ), i.e., a polynomial in the support numbers of Δ.

We also prove a discrete version of the above polynomiality result. Let N and M
be dual lattices with V = NR and V∗ = MR the corresponding vector spaces. We fix
a perfect Z-pairing N × N → Z and use it to identify N and M. Recall that P(Σ, M)
denotes the collection of polytopes with normal fan Σ whose vertices lie in M.
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Theorem 4.2 Let the notations and assumptions be as in Theorem 4.1. Then

SΣ(Δ) = ∑
m∈M

kΔ(m)

is a polynomial function on P(Σ, M).

A key step in the proof of Theorem 4.1 is a combinatorial lemma (Lemma 4.6)
which we deduce as a corollary of the Lawrence–Varchenko conical decomposition
(Theorem 2.10). The notion of a virtual polytope naturally appears here (see Section
2.6). The proof of Theorem 4.2 is a slight modification of the proof of Theorem 4.1. We
give the proofs in Section 4.2 below after some preparation. Let us give some examples
first.

Example 4.3 (Brianchon–Gram) Let Σ be a simplicial fan in V with Δ ∈ P(Σ) a
polytope normal to Σ. Let Kσ ≡ 1 and ∀σ ∈ Σ. The combinatorial truncation kΔ in
this case is given by

kΔ = ∑
σ∈Σ

(−1)dim(σ)1T−Δ,σ
.

By the Brianchon–Gram theorem (Theorem 2.7), we have

kΔ = 1Δ .

For any pair of cones σ1 ⪯ σ2 in Σ, we have

Kσ1 ,σ2 = ∑
{τ∈Σ ∶ σ2⊆τ⊆σ1}

(−1)dim(τ) = 0

by the binomial identity ∑n
k=0(−1)k(n

k) = 0. Thus, the conditions in Theorem 3.5
are satisfied. Moreover, the Kσ are constant, and hence the assumptions in the
polynomiality theorem are also satisfied. Thus, we recover the polynomiality of the
volume function Δ ↦ vol(Δ) (see Theorem 2.1).

Example 4.4 (Rectangle) We consider the fan Σ in V = R2 as in Figure 15, con-
sisting of one-dimensional cones σx and σy and their opposites, as well as the two-
dimensional cone σx y and its counterparts for the other three quadrants. We also
have the cone {0}. The fan Σ is normal to the rectangle Δ with support numbers
T1 , T2 , T ′1 , T ′2 as indicated.

Let f (x , y) be an absolutely integrable function on R2 with f++ denoting the value
of its integral over the first quadrant. Similarly, let the values of its integral over the
other quadrants be denoted by f+−, f−+, f−−. Also, let g(x) and h(y) be absolutely
integrable functions on R with their integrals over [0,∞) denoted by g+ and h+ and
their integrals over (−∞, 0] denoted by g− and h−, respectively. Finally, let k denote a
constant.

We assign the following functions to the cones in Σ:
• K0(x , y) = f (x , y) + g(x) + h(y) + k,
• Kσ±x (x , y) = h(y) + k,
• Kσ±y(x , y) = g(x) + k, and
• Kσ(x , y) = k for all two-dimensional cones σ in Σ.

https://doi.org/10.4153/S0008414X22000013 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000013


Combinatorics of trace formula 405

Figure 15: Illustration of the truncated function kΔ for when Δ is a rectangle.

Notice that the conditions (i) and (ii) of Theorem 3.5 are clearly satisfied.
Let us calculate JΣ(Δ). Because of the symmetry in this example, it is enough to

consider a quarter of the picture. We have

∫
T1

0
∫

T2

0
( f (x , y) + g(x) + h(y) + k) d y dx + ∫

T1

0
∫
∞

T2
( f (x , y) + h(y)) d y dx

+ ∫
∞

T1
∫

T2

0
( f (x , y) + g(x)) d y dx + ∫

∞

T1
∫
∞

T2
f (x , y) d y dx

= f++ + g+T2 + h+T1 + kT1T2 ,

which is a polynomial of degree 2 in T1 and T2. Adding similar contributions from the
other three quadrants, we arrive at

JΣ(Δ) = k (T1 + T ′1 )(T2 + T ′2) + h+ T1 + g− T ′1 + g+ T2 + g− T ′2
+ ( f++ + f+− + f−+ + f−−).

4.1 An extension of the Langlands combinatorial lemma

As before, V is an n-dimensional real vector space. We fix an inner product ⟨⋅, ⋅⟩ on V
and identify V with its dual space V∗. Let Σ be a full dimensional, complete, simplicial
fan in V, and let Δ ∈ P(Σ) be a full dimensional simple polytope with normal fan Σ.
Since we identified V and V∗, we take both Σ and Δ to lie in V.

Let σ ∈ Σ be a cone. First, we consider the case where σ is full dimensional. Let vσ
be the corresponding vertex of Δ. Let W = {w1 , . . . , wn} (resp. B = {b1 , . . . , bn}) be
the set of edge vectors of σ (resp. of σ∨). Then the b i (resp. the w j) are the inward facet
normals to σ (resp. σ∨), and the cone σ is given by inequalities as

σ = {x ∶ ⟨x , b i⟩ ⩾ 0, i = 1, . . . , n} .

Also, the inward-looking tangent cone T+Δ,σ at the vertex vσ is given by

T+Δ,σ = {x ∶ ⟨x , w i⟩ ⩽ ⟨vσ , w i⟩, i = 1, . . . , n} .
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Figure 16: A three-dimensional example where ΓΔ,σ is a cube. A face τ (of σ) and its corre-
sponding dual face τ∗ (of σ∨) and the vertex vτ (of ΓΔ,σ ) are illustrated.

We consider the oriented hyperplanes corresponding to the union of these two sets of
inequalities:

Hb i ,0 = {x ∶ ⟨x , b i⟩ = 0} , i = 1, . . . , n,
Hw i ,⟨vσ ,w⟩ = {x ∶ ⟨x , w i⟩ = ⟨vσ , w⟩} , i = 1, . . . , n.(4.1)

If vσ lies in σ , then the hyperplanes in (4.1) are the facets of the polytope Δ ∩ σ oriented
outward. In general, vσ may not lie in σ .

Definition 4.1 We denote the virtual polytope in V determined by the oriented
hyperplanes in (4.1) by ΓΔ,σ . We denote the convex chain corresponding to ΓΔ,σ by
γΔ,σ .

See Section 2.6 for a review of the notions of virtual polytope and convex chain.
Also, see Figure 16 for a three-dimensional example of ΓΔ,σ and Figure 17 for a pair of
two-dimensional examples of the virtual polytope ΓΔ,σ and its convex chain γΔ,σ .

In this section, we consider the Lawrence–Varchenko conical decomposition for
the virtual polytope ΓΔ,σ (Theorem 2.10). We will see that this recovers and extends
some of the key combinatorial lemmas appearing in Arthur’s work (e.g., [Ar81]). As a
special case, we immediately recover the Langlands combinatorial lemma (see [Ar05,
Section I.8, p. 46], [GKM97, Appendix B]). In addition, we interpret the Langlands
combinatorial lemma as a formula for the inverse of a distinguished element in the
incidence algebra of poset of faces of σ (see Section 2.7).

Recall that for τ ⪯ σ , the largest face of σ∨ orthogonal to τ is denoted by τ∗ and we
have dim τ + dim τ∗ = n (Section 2.1). It follows that the intersection Span(τ) ∩ (vσ +
Span(τ∗)) is a single point which can be shown to be a vertex vτ of ΓΔ,σ . In fact, we
will see below that τ ↦ vτ gives a one-to-one correspondence between the faces of σ
and the vertices of ΓΔ,σ . The vertex corresponding to the zero-dimensional face 0 is
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Figure 17: Two examples of the virtual polytopes ΓΔ,σ . In the first example, the vertex vσ lies
in the cone σ and ΓΔ,σ is an actual polytope (a quadrangle). The convex chain γΔ,σ is the
characteristic function of the quadrangle. In the second example, vσ lies outside σ and ΓΔ,σ
is a virtual quadrangle. The convex chain γΔ,σ is the function which has values 1 and −1 in the
two shaded regions, respectively.

0 itself. On the other hand, the vertex corresponding to the whole σ is the vertex vσ
of Δ.

For a face τ ⪯ σ , let W(τ) ⊂ W (resp. B(τ) ⊂ B) be the subset of edge vectors of τ
(resp. τ∗). Thus,

τ = {x ∈ σ ∶ ⟨x , b⟩ = 0, b ∈ B(τ)}.

The vertex vτ is then the unique solution of the system of equations
⎧⎪⎪⎨⎪⎪⎩

⟨x , w⟩ = ⟨vσ , w⟩, ∀w ∈ W(τ),
⟨x , b⟩ = 0, ∀b ∈ B(τ).

Moreover, the inward tangent cone T+ΓΔ,σ ,vτ
at the vertex vτ is given by the inequalities

T+ΓΔ,σ ,vτ
= {x ∈ V ∶ ⟨x , w⟩ ⩽ ⟨vσ , w⟩, ∀w ∈ W(τ)

⟨x , b⟩ ⩾ 0, ∀b ∈ B(τ) } .

Thus, the set of outward facet normals of ΓΔ,σ at vτ is W(τ) ∪ −B(τ). In other words,
the cone in the normal fan of ΓΔ,σ corresponding to the vertex vτ is generated by the
set of vectors W(τ) ∪ −B(τ) (Section 2.3).

Consider the nearest face partition corresponding to σ (Section 2.4). That is, for
each face τ, let V τ

σ be the set of points x ∈ V whose shortest distance to σ is attained at
a point in the relative interior of τ. Since σ is a cone, each V τ

σ is a full dimensional
cone. Moreover, the closures of the cones V τ

σ , τ ⪯ σ , are the maximal cones of a
complete simplicial fan in V which we call the nearest face fan of σ . The following
is straightforward to verify.

Proposition 4.5 In the nearest face fan of σ, the cone corresponding to a face τ ⪯ σ is
the convex cone generated by the set of vectors W(τ) ∪ −B(τ).

Since the V τ
σ partition of the whole space V, the above proposition shows that the

union of the cones generated by W(τ) ∪ −B(τ), τ ⪯ σ , is V. This then implies that the
normal fan of ΓΔ,σ coincides with the nearest fan of σ . In particular, the vτ are all of the
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vertices of ΓΔ,σ . In other words, τ ↦ vτ gives a one-to-one correspondence between
the faces of σ and the vertices of ΓΔ,σ .

Now, take a vector ξ in σ○ ∩ (σ∨)○, that is,

⟨ξ, b⟩ > 0, ∀b ∈ B,

⟨ξ, w⟩ > 0, ∀w ∈ W .

Note that since σ ≠ V , we know (σ○)∨ + σ○ ≠ V and hence σ○ ∩ (σ∨)○ = ((σ○)∨ +
σ○)∨ ≠ ∅.

Let T ξ
ΓΔ,σ ,vτ

be the polarized tangent cone at the vertex vτ appearing in the
Lawrence–Varchenko decomposition of ΓΔ,σ relative to the vector ξ (see Section 2.5).
By construction, the edge vectors of T ξ

ΓΔ,σ ,vτ
are ± the edge vectors of the tangent cone

of ΓΔ,σ at vτ so that the minimum of ⟨ξ, ⋅⟩ on T ξ
ΓΔ,σ ,vτ

is attained at the vertex vτ . Since
the inner product of ξ with any vector in W ∪ B is positive, it follows that the set
of inward facet normals of T ξ

ΓΔ,σ ,vτ
is exactly W(τ) ∪ B(τ). More precisely, T ξ

ΓΔ,σ ,vτ
is

defined by the inequalities

T ξ
ΓΔ,σ ,vτ

= {x ∈ V ∶ ⟨x , w⟩ > ⟨vσ , w⟩, ∀w ∈ W(τ)
⟨x , b⟩ ⩾ 0, ∀b ∈ B(τ) } .(4.2)

On the other hand, let Cτ
σ be the inward-looking tangent cone of σ at τ. It is the cone

defined as

Cτ
σ = {x ∈ V ∶ ⟨x , b⟩ ⩾ 0, ∀b ∈ B(τ)}.

It follows from (4.2) that T ξ
ΓΔ,σ ,vτ

can be written as

T ξ
ΓΔ,σ ,vτ

= Cτ
σ ∩ T−Δ,τ .

If σ is not full dimensional, we can repeat the above, replacing Δ with Δ ∩ Span(σ).
Then γΔ,σ is a convex chain supported on Span(σ). We extend γΔ,σ to the whole V by
requiring it to be constant along σ⊥. Now, applying the Lawrence–Varchenko theorem
to the virtual polytope ΓΔ,σ and the vector ξ as above, we obtain the following conical
decomposition for ΓΔ,σ .

Lemma 4.6 With notation as above, let γΔ,σ be the convex chain associated with
the virtual polytope ΓΔ,σ . We have

γΔ,σ = ∑
τ⪯σ

(−1)dim τ1Cτ
σ 1T−Δ,τ

.(4.3)

Proof First, we note that the number nvτ of the edges flipped in the polarized tangent
cone T ξ

ΓΔ,σ ,vτ
is equal to ∣W(τ)∣ = dim τ. The above discussion then proves the case

where σ is full dimensional. If σ is not full dimensional, all the cones considered in
the right-hand side of (4.3) above should be extended in the orthogonal direction σ⊥.
This finishes the proof. ∎

Letting Δ = {0}, we recover a combinatorial lemma of Langlands.
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Corollary 4.7 (Langlands combinatorial lemma) Let σ ⊂ V be a convex polyhedral
cone. The following identities hold.

∑
τ⪯τ′⪯σ

(−1)dim τ+dim τ′1Cτ′
σ

1Cτ′∗
τ∗

=
⎧⎪⎪⎨⎪⎪⎩

1, if τ = σ ,
0, if τ ≠ σ ,

(4.4)

∑
τ⪯τ′⪯σ

(−1)dim τ′+dim τ1Cτ′
τ

1Cτ′∗
σ∗

=
⎧⎪⎪⎨⎪⎪⎩

1, if τ = σ ,
0, if τ ≠ σ .

(4.5)

Alternatively, consider the incidence algebra of the poset of faces of σ with ring of
scalars R being the ring of all real-valued functions on V (see Section 2.7 and Example
2.12). Define the elements F and G of the incidence algebra by

F(τ, τ′) = (−1)dim τ1Cτ′
τ

,

G(τ, τ′) = (−1)dim τ1Cτ′∗
τ∗

.

Equations (4.4) and (4.5) state that F and G are inverses of each other in the incidence
algebra, that is,

(F ∗ G)(τ, σ) = (G ∗ F)(τ, σ) = δ(τ, σ).(4.6)

Proof First, to prove (4.4), we can assume without loss of generality that τ = 0.
Equation (4.4) is then an immediate consequence of (4.3) when we let Δ = {0}. To
obtain (4.5), we apply (4.4) to σ∨ in place of σ . Finally, (4.6) is a rewriting of (4.4) and
(4.5) using the language of incidence algebra. ∎

Corollary 4.8 With notation as before, we have

1T−Δ,σ
= ∑

τ⪯σ
(−1)dim τ1Cτ

σ γΔ,τ .(4.7)

Proof Let H and L be elements of the incidence algebra such that H(0, τ) = 1T−Δ,σ
and

L(0, τ) = γΔ,τ , ∀τ ⪯ σ . Then (4.3) states that L(0, τ) = (H ∗ F)(0, τ). Convolution of
both sides from right with G gives (L ∗ G)(0, τ) = H(0, τ), which is exactly (4.7). ∎

4.2 Proof of polynomiality

Proof of Theorem 4.1 In the definition of JΣ(Δ), we use Corollary 4.8 to write T−Δ,σ
as ∑

τ⪯σ
(−1)dim τ1Cτ

σ γΔ,τ . We have

JΣ(Δ) = ∫
V

∑
σ∈Σ

(−1)dim σ Kσ(x) 1T−Δ,σ
(x)dx

= ∫
V

∑
σ∈Σ

(−1)dim σ Kσ(x)( ∑
τ∶τ⪯σ

(−1)dim τ1Cτ
σ (x) γΔ,τ(x)) dx

= ∑
τ∈Σ

(−1)dim τ ∫
V

( ∑
σ ∶τ⪯σ

(−1)dim σ Kσ(x) 1Cτ
σ (x) γΔ,τ(x)) dx .
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Now, we use the assumption that Kσ(x) is invariant along σ and γΔ,τ is invariant along
τ⊥ (by definition of γΔ,τ) to write the above as

∑
τ
(−1)dim τ

⎛
⎜
⎝
∫
τ⊥

∑
σ ∶τ⪯σ

(−1)dim σ Kσ(x2) 1Cτ
σ (x2)dx2

⎞
⎟
⎠
⋅
⎛
⎜
⎝

∫
Span(τ)

γΔ,τ(x1)dx1
⎞
⎟
⎠

.

Here, x = x1 + x2 where x1 ∈ Span(τ) and x2 ∈ τ⊥, and dx1 and dx2 are the Lebesgue
measures on Span(τ) and τ⊥, respectively, so that dx = dx1dx2. By Theorem 2.1 and
Remark 2.9, we know that

vol(ΓΔ,τ) = ∫
Span(τ)

γΔ,τ(x1) dx1

is a polynomial in the support numbers of ΓΔ,τ of degree dim τ. By definition (see
(4.1)), these support numbers either correspond to the b i in which case they are 0, or
they correspond to the w i in which case they are equal to the a i , the corresponding
support numbers of Δ. It follows that vol(ΓΔ,τ) is a polynomial in the support numbers
of Δ of degree dim τ. Recall that the normal fan of the face of Δ corresponding to τ is
the fan Σ/τ consisting of all the images of the cones σ ⪰ τ in the quotient vector space
V/ Span(τ) ≅ τ⊥. One then observes that ∫

τ⊥
∑

σ ∶τ⪯σ
(−1)dim σ Kσ(x) 1Cτ

σ (x) dx2 is exactly

JΣ/τ(0). In summary,

JΣ(Δ) = ∑
τ∈Σ

(−1)dim τ JΣ/τ(0) vol(ΓΔ,τ).

This shows that JΣ(Δ) is a linear combination of the polynomials vol(ΓΔ,τ) and hence
is a polynomial itself. It remains to show that JΣ/τ(0) is convergent. But this is the
content of Lemma 3.7, and the proof is finished. ∎

Proof of Theorem 4.2 In the proof of Theorem 4.1, replace any integral ∫
A

f (x)dx

with a sum ∑
m∈A∩M

f (m). In particular, replace vol with the number of lattice points.

For τ ∈ Σ, let M1 = Span(τ) ∩ M and M2 = τ⊥ ∩ M. Note that it is possible that M1 +
M2 ≠ M. Nevertheless, M1 + M2 is a subgroup of finite index in M. Let M′ ⊂ M be a
system of coset representatives for M/(M1 + M2). Then every m ∈ M can be uniquely
written as m′ + m1 + m2 where m′ ∈ M′ and m i ∈ M i . Then, similar to the proof of
Theorem 4.1, we write

SΣ(Δ, M) = ∑
m∈M

∑
σ∈Σ

(−1)dim σ Kσ(m) 1T−Δ,σ
(m)

= ∑
m∈M

∑
σ∈Σ

(−1)dim σ Kσ(m)( ∑
τ∶τ⪯σ

(−1)dim τ1Cτ
σ (m) γΔ,τ(m))

= ∑
τ∈Σ

(−1)dim τ ∑
m∈M

( ∑
σ ∶τ⪯σ

(−1)dim σ Kσ(m) 1Cτ
σ (m) γΔ,τ(m))
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= ∑
τ
(−1)dim τ ∑

m′∈M′

⎛
⎝ ∑

m2∈M2

∑
σ ∶τ⪯σ

(−1)dim σ Kσ(m′ + m2) 1Cτ
σ (m′ + m2)

⎞
⎠

⋅
⎛
⎝ ∑

m1∈M1

γΔ,τ(m′ + m1)
⎞
⎠

.

One shows that, for fixed m′ ∈ M′, the quantity ∑
m2∈M2

∑
σ ∶τ⪯σ

(−1)dim σ Kσ(m′ + m2) is

equal to SΣ/τ(0) with respect to the functions Kσ(m′ + x) (instead of Kσ(x)). By the
discrete version of Lemma 3.7, we know that SΣ/τ(0) is convergent. Let us see that
the other term ∑

m1∈M1

γΔ,τ(m′ + m1) depends polynomially on Δ. Let π ∶ V → Span(τ)

be the orthogonal projection. Since γΔ,τ is invariant in the τ⊥ direction, we have
γΔ,τ(m′ + m1) = γΔ,τ(π(m′) + m1). Now, the polynomiality of ∑

m1∈M
γΔ,τ(π(m′) +

m1) follows from Remark 2.9 (see also Theorem 2.3 and Remark 2.4). Thus, SΣ(Δ, M)
is a finite sum (over m′ ∈ M′) of polynomials and hence a polynomial itself. This
finishes the proof. ∎

5 Toric varieties

5.1 Background on toric varieties

In this section, we review some basic facts about toric varieties. Common references
on toric varieties are [CLS11, Fu93]. Let T = TN ≅ (C∗)n be an algebraic torus of
dimension n overC, with character lattice M ≅ Zn and cocharacter lattice N ≅ Zn . We
denote the corresponding vector spaces N ⊗Z R and M ⊗Z R by NR and MR, respec-
tively. For m ∈ M, we denote the corresponding character/irreducible representation
by χm ∶ T → C∗.

Let σ ⊂ NR be a rational strongly convex polyhedral cone. Recall that σ is rational
if it is generated as a cone by vectors from N. To σ , one associates an affine toric variety
Uσ defined by

Uσ = Spec(C[σ∨ ∩ M].

Here, C[σ∨ ∩ M] is the semigroup algebra of the semigroup of all lattice points in
the dual cone σ∨. If τ ⪯ σ , then we have natural inclusion Uτ ↪ Uσ . The variety U0
associated with the origin is just the algebraic torus T itself. The M-grading on the
algebra C[σ∨ ∩ M] induces a T-action on the variety Uσ with open orbit U0.

Recall that a fan Σ in NR is rational if all the cones in Σ are generated by vectors in
N. Let XΣ be the toric variety corresponding to a complete rational fan Σ (see [CLS11,
Chapter 3] for more details). The (abstract) variety XΣ is obtained by gluing all the
affine toric varieties Uσ , σ ∈ Σ, with respect to inclusion maps Uτ ↪ Uσ and τ ⪯ σ .

There is an inclusion-reversing correspondence between the cones in Σ and the
T-orbits in XΣ . For σ ∈ Σ, let the corresponding T-orbit be Oσ .

For a ray ρ ∈ Σ(1), we denote the corresponding T-orbit closure Oρ by Dρ . The Dρ
for ρ ∈ Σ(1) are T-invariant prime divisors on XΣ . For each ray ρ ∈ Σ(1), let vρ ∈ N
be the primitive vector along ρ, i.e., shortest lattice vector on ρ. Let ξ ∈ σ ∩ N be a
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cocharacter. One knows that for x ∈ U0, limt→0 ξ(t) ⋅ x exists and is a point in the
orbit Oσ .

Let us assume that XΣ is a projective variety. This is equivalent to the set P(Σ), of
polytopes with normal fan Σ, being nonempty. Let Δ ⊂ MR be a lattice polytope with
normal fan Σ. The faces of Δ are in one-to-one correspondence with cones in Σ. For
σ ∈ Σ, let Qσ be the corresponding face of Δ. We note that dim Qσ = codim σ . The
polytope Δ can be represented as

Δ = {x ∈ MR ∶ ⟨x , vρ⟩ ⩽ −aρ ,∀ρ ∈ Σ(1)},(5.1)

where the aρ are the support numbers of Δ (see Section 2). Recall that for σ ∈ Σ, we let
T+Δ,σ (resp. T−Δ,σ ) be the inward-looking (resp. outward-looking) tangent cone of the
corresponding face Qσ in Δ (see equations (2.2) and (2.3)).

To Δ, one associates a T-invariant (Cartier) divisor

DΔ = ∑
ρ∈Σ(1)

−aρ Dρ .

It can be shown that DΔ is an ample divisor. We denote the corresponding line bundle
on XΣ by LΔ . Since DΔ is T-invariant, the line bundle LΔ comes with a natural T-
linearization. The divisor DΔ defines a sheaf of rational functions O(DΔ) by

H0(U ,O(DΔ)) = { f ∈ C(XΣ) ∶ ( f ) + DΔ > 0 on U} ⊂ C[U0],(5.2)

= { f ∈ C(XΣ) ∶ ordDρ( f ) ⩾ aρ , ∀ρ ∈ Σ(1) such that Dρ ∩ U ≠ ∅}.(5.3)

In particular, for an open affine chart Uσ , the subspace H0(Uσ ,O(DΔ)) is T-invariant
and hence decomposes into one-dimensional T-modules. Let m ∈ M. One verifies that
for any ray ρ ∈ Σ(1), the order of zero/pole of the character χm , regarded as a rational
function on U0 ≅ T , along the divisor Dρ is given by

ordDρ(χm) = −⟨m, vρ⟩.

It follows that, for any σ ∈ Σ, the irreducible representation χm appears in
H0(Uσ ,O(DΔ)) if and only if ⟨m, vρ⟩ ⩽ −aρ , for all ρ ∈ σ(1). Since C[U0], the
coordinate ring of the algebraic torus, is multiplicity-free as a T-module, it follows
that H0(Uσ ,O(DΔ)) is also multiplicity-free. Thus, the T-module H0(Uσ ,O(DΔ))
decomposes into one-dimensional irreducible representation as

H0(Uσ ,O(DΔ)) = ⊕
m∈T+Δ,σ∩M

χm ,(5.4)

where as before T+Δ,σ denotes the inward-looking tangent cone of Δ at the face corre-
sponding to σ . Similarly, χm appears in the space of global sections H0(XΣ ,O(DΔ))
if and only if ⟨m, vρ⟩ ⩽ −aρ , for all ρ ∈ Σ(1), and we have

H0(XΣ ,O(DΔ)) = ⊕
m∈Δ∩M

χm .(5.5)

This implies that dim(H0(XΣ ,O(DΔ)) = ∣Δ ∩ M∣, the number of lattice points in M.
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5.2 Brianchon–Gram theorem and equivariant Euler characteristic

Let F be a T-linearized sheaf (of rational functions) on XΣ , that is, for any T-invariant
open set U, the space of sections H0(U ,F) is a T-module and the restriction maps are
T-equivariant. For m ∈ M and V a T-module, let Vm denote the m-isotypic component
of V. By the equivariant Euler characteristic of F, we mean the function χT(XΣ ,F) ∶
M → Z≥0 given by

χT(XΣ ,F)(m) =
n
∑
i=0

(−1)i dim(H i(XΣ ,F)m).

Let us compute the equivariant Euler characteristic of the T-linearized sheaf
O(DΔ). As explained above, for each cone σ ∈ Σ, the T-module H0(Uσ ,O(DΔ))
decomposes as

H0(Uσ ,O(DΔ)) = ⊕
m∈T+Δ,σ∩M

χm .

Recall that T+Δ,σ denotes the inward tangent cone of Δ at the face corresponding to σ
(see Section 2.2).

From above, it follows that the equivariant Euler characteristic χT(XΣ ,O(DΔ)),
computed using Čech cohomology, can be written as:

χT(XΣ ,O(DΔ)) = ∑
σ∈Σ

(−1)dim(Qσ)1T+Δ,σ∩M ,(5.6)

where as usual 1A denotes the characteristic function of a set A.
One knows that O(DΔ) is ample and hence H i(XΣ ,O(DΔ)) = 0 for i > 0. Thus,

we also obtain

χT(XΣ ,O(DΔ))(m) = dim(H0(XΣ ,O(DΔ))m), ∀m ∈ M .(5.7)

And hence, from (5.5), we have

χT(XΣ ,O(DΔ)) = 1Δ∩M .(5.8)

Comparing with (5.6), one recovers the Brianchon–Gram theorem (Theorem 2.6).
The alternative version of the Brianchon–Gram theorem using outward face cones

(Theorem 2.7) can also be obtained in a similar fashion. Let Δ′ be the polytope with
support numbers aρ + 1 and D′ = DΔ′ = ∑

ρ∈Σ(1)
−(aρ + 1)Dρ the corresponding Cartier

divisor. Note that ⟨x , vρ⟩ ⩽ −(aρ + 1) if and only ⟨−x , vρ⟩ > aρ . Thus, for all m ∈ M, we
have

χT(XΣ ,O(−D′))(m) = ∑
σ∈Σ

(−1)n−dim σ 1T−Δ,σ∩M(−m)(5.9)

(recall (2.3) for defining inequalities of outward tangent cone T−Δ,σ ). On the other hand,
the Khovanskii–Pukhlikov formula for inverse of the polytope Δ with respect to the
convolution ∗ (see Section 2.6) tells us that:

χT(XΣ ,O(−D′))(m) = (−1)n χT(XΣ ,O(DΔ))(−m) = (−1)n1Δ∩M(−m).(5.10)
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Putting together (5.9) and (5.10), we obtain

(−1)n1Δ∩M = ∑
σ∈Σ

(−1)n−dim σ 1T−Δ,σ∩M ,

which immediately implies Theorem 2.7.

Remark 5.1 (A symplectic interpretation of the Brianchon–Gram theorem) We can
also give a symplectic geometric interpretation of the Brianchon–Gram theorem,
namely as an identity between Liouville measures. Let X be a symplectic manifold
with a Hamiltonian S1-action with moment map μ ∶ X → R. This means that the
Hamiltonian vector field of μ generates the S1-action. Let ε be a regular value of the
moment map μ. Then μ−1([ε,∞)) is a manifold with boundary. The symplectic cut
X μ≥ε is the manifold obtained by collapsing each S1-orbit in the boundary μ−1(ε) to
a point.

We can decompose T = (C∗)n as T = (S1)n ×Rn
>0. Equip T with the standard

symplectic form fromCn . Each ray ρ ∈ Σ(1)defines a Hamiltonian function μρ ∶ U0 →
R on U0 ≅ T by

μρ(x) = ∣x∣vρ ∶= ∣x1∣r1⋯∣xn ∣rn ,

where x = (x1 , . . . , xn) and vρ = (r1 , . . . , rn). One verifies that the Hamiltonian vector
field of μρ generates the C∗-action on T corresponding to the cocharacter vρ ∈ N .
Let Σ be a smooth fan, let Δ be a rational polytope with normal fan Σ, and let aρ ,
ρ ∈ Σ(1), be its support numbers. Starting with (C∗)n , doing repeated symplectic cuts
with respect to the μ = μρ and ε = aρ , ρ ∈ Σ(1), one arrives at the toric variety XΣ .
One can show that the open affine chart Uσ is the symplectic manifold obtained by
symplectic cuts using rays of σ . Moreover, the image of the moment map of Uσ is the
inward tangent cone T+Δ,σ .

The Brianchon–Gram equality (2.5) can be thought of as an equality involving
pushforwards (to NR = Rn) of Liouville measures on all the symplectic manifolds Uσ
and XΣ .

5.3 Positive part of a toric variety and logarithm map

As before, let XΣ be the toric variety associated with a rational fan Σ in NR. Take
σ ∈ Σ. By definition, the set Uσ(C) of points of Uσ defined over C is the set of
maximal ideals of the semigroup algebra C[σ∨ ∩ M]. This set then can be identified
with Hom(σ∨ ∩ M ,C), where Hom denotes the semigroup homomorphisms. This
observation enables us to construct X+Σ , the points of XΣ over the semigroup R≥0 (see
[Fu93, Section 4.1]). We think of X+Σ as the “positive” part of XΣ(C). It is constructed
as follows. For each σ ∈ Σ, let U+σ = Hom(σ∨ ∩ M ,R≥0). Then, as before, the U+σ glue
together to give X+Σ . One has natural inclusion X+Σ ↪ XΣ(C). Moreover, the absolute
value ∣ ⋅ ∣ ∶ C→ R≥0 induces a retraction map XΣ(C) → X+Σ . Let TK = (S1)n denote
the usual compact torus which is the maximal compact subgroup of T. One verifies
that the retraction map induces a homeomorphism between the quotient XΣ(C)/TK
and X+Σ .
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Another way to look at X+Σ is as follows. Consider the logarithm map

Log ∶ TN = (C∗)n �→ NR = Hom(M ,R)

defined as follows. For z ∈ T and m ∈ M, let

Log(z)(m) = log(∣χm(z)∣).(5.11)

In the standard coordinates for (C∗)n , the logarithm map is given by

Log(z1 , . . . , zn) = (log ∣z1∣, . . . , log ∣zn ∣).(5.12)

For each σ ∈ Σ, the orbit Oσ can be identified with T/Tσ where Tσ is the T-stabilizer
of Oσ . Let Nσ denote the cocharacter lattice of Tσ . It follows from the definitions
that Nσ ⊗R = Span(σ). The logarithm map then induces a map Logσ ∶ T/Tσ →
NR/ Span(σ). In the same way, that XΣ(C) is a disjoint union of the tori Oσ , σ ∈ Σ,
the positive part X+Σ , is a disjoint union of the real vector spaces NR/ Span(σ), σ ∈ Σ.

Finally, X+Σ is actually homeomorphic to a polytope (in a nonunique way). Given a
polytope Δ with normal fan Σ, one can construct explicitly a TK-invariant continuous
map μ ∶ XΣ → Δ such that the induced map μ̄ ∶ XΣ/TK → Δ is a homeomorphism and
the following diagram is commutative (see [Fu93, Section 4.2]).

(5.13)
(C∗)n ≅ U0 XΣ(C)

NR Rn ≅ U+0 X+Σ Δ

LogLog Log μ

≅

μ̄
≅

Moreover, the bottom row gives a homeomorphism between NR and the interior Δ○
of Δ. The map μ is a special case of the notion of momentum map from the theory of
Hamiltonian group actions in symplectic geometry.

6 Geometric interpretations of combinatorial truncation

We propose two geometric interpretations of our combinatorial truncation in terms of
geometric notions on toric varieties. The same ideas should extend to give geometric
interpretations of Arthur’s truncation and modified kernel. We expect that in this case
one should replace a toric variety XΣ by Mumford’s compactification of a reductive
algebraic group as in [KKMS73, Section IV.2].

6.1 Combinatorial truncation as a complex measure on a toric variety

In this section, we propose that combinatorial truncation can be interpreted as a
“truncated” complex measure on a projective toric variety, obtained from the data of
prescribed measures on each torus orbit as well as choice of a polytope normal to the
fan which determines certain neighborhoods of the torus orbits.

As usual, let XΣ be the toric variety associated with a (rational) fan Σ in NR. Recall
that the starting data of combinatorial truncation are a collection of functions {Kσ ∶
NR → C ∶ σ ∈ Σ}, where each Kσ is invariant in the direction of Span(σ).

As before, let TK = (S1)n denote the compact torus in T = (C∗)n , which is the
maximal compact subgroup of T. Suppose we are given a TK-invariant complex
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measure ω0 = f0dμ0 on U0 = T where f0 is a continuous function on U0 and dμ0
denotes a Haar measure on U0. Moreover, suppose, for each {0} ≠ σ ∈ Σ, we have
a TK-invariant complex measure ωσ = fσ dμσ on the torus orbit Oσ , the T-orbit in
XΣ associated with σ . Here, fσ is a continuous function on Oσ , and dμσ is the Haar
measure on Oσ induced from dμ0. Recall that Oσ ≅ T/Tσ is itself isomorphic to a
torus, where Tσ ⊂ T is the stabilizer of any point in Oσ . Since ωσ , and hence fσ , are
TK-invariant, the function fσ induces a continuous function kσ ∶ NR/ Span(σ) �→ C.

The projection NR → NR/ Span σ maps the cone σ to {0}. This gives us an equiv-
ariant morphism πσ from the T-toric variety Uσ to the (T/Tσ)-toric variety Oσ (see
[CLS11, Section 3.3]). We can use πσ ∶ Uσ → Oσ to extend the measure ωσ to a measure
Ωσ on the affine toric chart Uσ ⊂ XΣ (and, in particular, on the open orbit U0 ≅ T) by
defining

Ωσ = π∗σ(ωσ).

The measure Ωσ then gives a continuous function Kσ ∶ NR → C which is invariant in
the direction of Span(σ).

Now, fix an inner product ⟨⋅, ⋅⟩ on NR and identify MR with NR via ⟨⋅, ⋅⟩. As usual,
take a polytope Δ ⊂ MR ≅ NR with normal fan Σ. Recall that Log ∶ T → NR denotes
the logarithm map on the torus, which extends to Log ∶ XΣ → X+Σ (see (5.11) and the
diagram (5.13)). Consider the tangent cone T−Δ,σ . We regard it as an open subset of
U+0 ≅ NR ≅ Rn and hence as an open subset of X+Σ . We have

UΔ,σ = Log−1(T−Δ,σ).

We can also define the subset UΔ ⊂ U0 by

UΔ = Log−1(Δ).

We think of Ωσ 1Uσ ,Δ as an extension of the measure ωσ to the neighborhood UΔ,σ .
Finally, we can define a complex measure ΩΔ on XΣ by

ΩΔ = ∑
σ∈Σ

(−1)dim σ Ωσ 1UΔ,σ .

It is a TK-invariant complex measure on XΣ and corresponds to the function kΔ on
NR. We think of it as a truncation of ω0 with respect to the measures ωσ at infinity.
From Theorems 3.5 and 4.1, we have the following.

Proposition 6.1 Under the assumptions in Theorem 3.5 on the functions Kσ , the total
measure of ΩΔ is finite and is a polynomial in the support numbers of Δ.

Remark 6.2 In fact, each tangent cone T−Δ,σ gives us an open neighborhood of the
orbit closure Oσ in XΣ . To construct this open neighborhood, we complete T−Δ,σ ⊂ NR

to an open subset T̃Δ,σ ⊂ X+Σ containing the closure O+σ by

T̃Δ,σ = ⋃
σ ′∶σ⪯σ ′

⋃
τ∶τ⪯σ ′

T−Qτ ,σ ′ ⊂ X+Σ ∶= ⊔
σ∈Σ

NR/ Span(σ).

One verifies that T̃Δ,σ is indeed an open subset of X+Σ containing O+σ . It follows that
ŨΔ,σ = Log−1(T̃Δ,σ) is an open neighborhood of the orbit closure Oσ in the toric
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variety XΣ . We note that T−Δ,σ is open dense in T̃Δ,σ , and hence, for the purposes of
truncation, it does not matter whether we work with T−Δ,σ or T̃Δ,σ .

6.2 Combinatorial truncation as a Lefschetz number

In this section, we give an interpretation of the combinatorial truncation as a Lefschetz
number.

6.2.1 Lefschetz number

Let X be a topological space such that all its cohomology groups H i(X ,R) are finite
dimensional and for some n ⩾ 0, H i(X ,R) = 0,∀i > n. Let Φ ∶ X → X be a continuous
map. Recall that the Lefschetz number of Φ is defined to be

Λ(Φ) =
n
∑
i=0

(−1)i Tr(Φ∗ ∶ H i(X ,R) → H i(X ,R)).

The Lefschetz number of the identity map is, by definition, equal to the Euler
characteristic of X. The Lefschetz number appears in the Lefschetz fixed point theorem
which states that if X is a compact triangulable space and Λ(Φ) ≠ 0, then Φ has at least
one fixed point.

Let us define an analogue of the notion of Lefschetz number for morphisms of
sheaves. Let F be a sheaf of vector spaces on X such that all the cohomology groups of
(X ,F) are finite dimensional and for some n, H i(X ,F) = 0, ∀i > n. By a morphism
of sheaves Ψ ∶ F → F, we mean a collection of linear maps {ΨU ∶ F(U) → F(U) ∶ U ⊂
X open } which are compatible with the restriction maps. That is, for U ⊂ V , we have

ΨU ○ restV ,U = restV ,U ○ΨV .

Clearly, Ψ induces linear maps Ψ∗ ∶ H i(X ,F) → H i(X ,F) between the cohomology
groups of (X ,F). Extending the above notion of Lefschetz number, we make the
following definition.

Definition 6.1 (Lefschetz number for morphisms of sheaves) The Lefschetz number
Λ(Ψ,F) is defined to be

Λ(Ψ,F) =
n
∑
i=0

(−1)i Tr(Ψ∗ ∶ H i(X ,F) → H i(X ,F)).

Remark 6.3 When Ψ is the identity morphism, i.e., all the maps ΨU are identities,
then Λ(Ψ,F) is just the Euler characteristic of the sheaf F.

Let U be a finite open cover of X. Suppose U is a good open cover with respect to F,
that is, F is acyclic on any intersection of the open sets in U. It is a standard result in
topology that the Čech cohomology groups of (U,F) are independent of the choice
of the good open cover and coincide with the sheaf cohomology groups of (X ,F).

Suppose the vector spaces in the Čech cochain complex C●(U,F) are finite
dimensional. In other words, for any collection of open sets U1 , . . . , Uk ∈ U, we have
dim H0(U1 ∩⋯∩ Uk ,F) < ∞. In this case, the Lefschetz number can be computed in
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terms of the traces of the vector spaces in the cochain complex C●(U,F) as well. This
straightforward result is sometimes referred to as the Hopf trace formula.
Proposition 6.4 With assumptions as above, the Lefschetz number can be computed as

Λ(Ψ) =
n
∑
i=0

(−1)i Tr(Ψ∗ ∶ C i(U,F) → C i(U,F)),

where C i(U,F) denotes the vector space of ith Čech cochains of U with coefficients in F.
Similarly, suppose X is equipped with a measure and F a sheaf of L2-functions on

X, and let Ψ ∶ F → F be a morphism of sheaves. Moreover, suppose for every open set
U, the linear operator Ψ ∶ F(U) → F(U) is a trace class operator with kernel function
KU . Then, for each i, the induced map Ψ∗ ∶ H i(X ,F) → H i(X ,F) is also a trace class
operator. We denote its kernel by Ti .
Definition 6.2 (Lefschetz number for morphisms of sheaves of L2-functions) We
define the Lefschetz number Λ(Ψ,F) by

Λ(Ψ,F) = ∫
X

n
∑
i=0

(−1)i Ti(x) dx .(6.1)

As above, let U be a finite open cover of X which is a good cover with respect to F.
Suppose, for each i, the operator Ψ∗ ∶ C i(U,F) → C i(U,F) is trace class with kernel
K i . Similarly to Proposition 6.4, the Lefschetz number Λ(Ψ,F) can be computed as

Λ(Ψ,F) = ∫
X

n
∑
i=0

(−1)i K i(x) dx .

The observation in this section is that when X = XΣ is a toric variety, the Lefschetz
number is given by a combinatorial truncation JΣ(Δ). As usual, let Σ be a (rational)
fan in NR, and let Δ ∈ P(Σ) be a polytope with normal fan Σ. As in Section 5.1, let XΣ
be the toric variety of the fan Σ and O(DΔ) be the sheaf of sections of the (Cartier)
divisor DΔ associated with Δ. Let the aρ , ρ ∈ Σ(1), be the support numbers of Δ. Let Δ′
be the polytope whose support numbers are the aρ − 1. Let Ψ ∶ O(−DΔ′) → O(−DΔ′)
be a morphism of sheaves.

Recall that the characters χm , m ∈ M, form a vector space basis for C[U0]. More-
over, a subset of this basis is a basis forO(−DΔ′). For m ∈ M, let Kσ(m) be the (m, m)-
entry of the matrix of the linear operator Ψσ ∶ O(−DΔ′)(Uσ) → O(−DΔ′)(Uσ). The
following follows from Section 5.2 and in particular (5.9).
Proposition 6.5 (Combinatorial truncation as a Lefschetz number on a toric variety)
With notation as above, the Lefschetz number Λ(Ψ,O(−DΔ′)) is equal to the truncated
sum SΣ(Δ, M):

Λ(Ψ,O(−DΔ′)) = SΣ(Δ, M) ∶= ∑
m∈M

∑
σ∈Σ

(−1)dim σ Kσ(m) 1T−Δ,σ∩M(m).

Remark 6.6 The reason for the appearance of the polytope Δ′ instead of Δ is that
we defined the outward tangent cones T−Δ,σ using strict inequalities. If we change the
convention and use nonstrict inequalities in the definition of T−Δ,σ , then Proposition
5.9 holds with D in place of D′.
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Finally, as a side remark, we also mention an example of a presheaf that is
reminiscent of Arthur’s construction of the kernels KP (see [Ar05, Section 4]).

Example 6.7 (A sheaf of W-invariant sections on the toric variety of Weyl fan)
Suppose Σ is the Weyl fan and hence the Weyl group acts on Σ. Note that by definition
W acts on the character lattice M. For σ ∈ Σ, let Wσ be the W-stabilizer of σ . Let O(Δ)
be the invertible sheaf associated with a W-invariant polytope Δ. We define the sheaf
O(Δ)W by

H0(Uσ ,O(Δ)W) ∶= H0(Uσ ,O(Δ))Wσ , ∀σ ∈ Σ.

Let τ ⊂ σ be cones in Σ. Note that Wσ ⊂ Wτ and hence if f ∈ H0(Uσ ,O(Δ))Wσ ,
then, in general, f∣Uτ may not be Wτ-invariant and hence may not lie
in H0(Uτ ,O(Δ))Wτ . We remedy this by defining the restriction map
iσ τ ∶ H0(Uσ ,O(Δ)W) → H0(Uτ ,O(Δ)W) by:

iσ τ( f ) = ∑
w∈Wτ/Wσ

(w ⋅ f )∣Uτ .

Let us verify that the above restriction maps iσ τ give a well-defined presheaf on XΣ .
Suppose we have cones γ ⊂ τ ⊂ σ in Σ with corresponding affine charts Uγ ⊂ Uτ ⊂ Uσ .
We need to show iτγ ○ iσ τ = iσ γ . Let f ∈ H0(Uσ ,O(Δ)W). We have

iτγ(iσ τ( f )) = ∑
w∈Wγ/Wτ

∑
w′∈Wτ/Wσ

(ww′) ⋅ f .

As w (resp. w′) runs over a set of representatives for Wγ/Wτ (resp. Wτ/Wσ ), the
product ww′ runs over a set of representatives for Wγ/Wσ . This proves the claim.

It is interesting to compute the Euler characteristic and Čech cohomologies of the
above presheaf.
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