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Abstract

Recently, Lin and Liu [‘Congruences for the truncated Appell series F3 and F4’, Integral Transforms Spec.
Funct. 31(1) (2020), 10–17] confirmed a supercongruence on the truncated Appell series F3. Motivated by
their work, we give a generalisation of this supercongruence by establishing a q-supercongruence modulo
the fourth power of a cyclotomic polynomial.
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1. Introduction

In 1880, Appell defined four kinds of double series F1, F2, F3, F4 in two variables
(see [13, pages 210–211]) by generalising the Gauss hypergeometric 2F1-series [1,
(1.2.1)]. These four series, called Appell series, are famous in the field of double
hypergeometric functions and play an important role in mathematical physics.

Based on the definition of the truncated hypergeometric series, Liu [8] introduced
the truncated Appell series, defined by

F1[a; b, b′; c; x, y]n =

n∑
i=0

n∑
j=0

(a)i+j(b)i(b′)j

(c)i+j
· xiyj

i! j!
;

F2[a; b, b′; c, c′; x, y]n =

n∑
i=0

n∑
j=0

(a)i+j(b)i(b′)j

(c)i(c′)j
· xiyj

i! j!
;

F3[a, a′; b, b′; c; x, y]n =

n∑
i=0

n∑
j=0

(a)i(a′)j(b)i(b′)j

(c)i+j
· xiyj

i! j!
;

F4[a; b; c, c′; x, y]n =

n∑
i=0

n∑
j=0

(a)i+j(b)i+j

(c)i(c′)j
· xiyj

i! j!
,

where (a)n = a(a + 1) · · · (a + n − 1), n ∈ Z+, with (a)0 = 1, is the shifted factorial.
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Liu [8] confirmed two congruences for F1 and F2 by using some combinatorial
identities. Later, Lin and Liu [7] studied congruence properties of the truncated Appell
series F3 and F4 and found the following interesting result: for any odd prime p,

F3[ 1
2 , 1

2 ; 1
2 , 1

2 ; 1; 1, 1](p−1)/2 ≡ (−1)(p−1)/2 (mod p2). (1.1)

Motivated by the works of Lin and Liu and the recent progress on congruences
and q-congruences (see [2–6, 9–12, 14–18]), we continue the study of congruence
relations for the truncated Appell series. The goal of this paper is to give the following
generalisation of (1.1).

THEOREM 1.1. Let p be an odd prime. Then

F3[ 1
2 , 1

2 ; 1
2 , 1

2 ; 1; 1, 1](p−1)/2 ≡ (−1)(p−1)/2 (mod p4).

In fact, Theorem 1.1 can be verified by establishing the following more general
q-supercongruence, which is the principal goal of this paper. To state the theorem, we
need some q-notation. The q-shifted factorial is given by

(a; q)n =

{
(1 − a)(1 − aq) · · · (1 − aqn−1) n ∈ Z+,
1 n = 0,

and the q-binomial coefficients are defined by
[
x
k

]
=

[
x
k

]
q
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q1+x−k; q)k

(q; q)k
k ≥ 0,

0 k < 0.

Furthermore, [n] = [n]q = (1 − qn)/(1 − q) = 1 + q + · · · + qn−1 denotes the q-integer,
and Φn(q) stands for the nth cyclotomic polynomial in q, which is given by

Φn(q) =
∏

1�k�n
gcd(n,k)=1

(q − ζk)

with ζ a primitive nth root of unity.

THEOREM 1.2. Let n be a positive odd integer and d an integer and suppose that
n ≥ max{2d + 1, 1 − 2d}. Then, modulo Φn(q)4,

(n−1)/2−d∑
i=0

(n−1)/2+d∑
j=0

(q2d+1; q2)2
i (q1−2d; q2)2

j

(q2; q2)i(q2; q2)j(q2; q2)i+j
q2ij−4di+4dj

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(n−1)/2q(1−n2)/4 d = 0,

(1 − qn)2q|d|(2+3|d|−n)−n+(1−n2)/4
2|d|∑
k=1

(−1)k−|d|+(n−1)/2qk2−kHk(−2|d| − 1)

×
(qn+2|d|−2k+1; q2)k(q4|d|−2k+2; q2)(n−2|d|−1)/2

(q2; q2)k(q2; q2)(n−2|d|−1)/2
d � 0,

(1.2)
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where

Hk(x) =
k∑

t=1

q2t+x

(1 − q2t+x)2 ,

with Hk(x) = 0 for any integer k < 1.

Clearly, letting d = 0, q→ 1 and n = p, an odd prime, in Theorem 1.2, we
immediately achieve Theorem 1.1. Additionally, the cases d = ±1 of Theorem 1.2 yield
the following conclusion.

COROLLARY 1.3. Let n ≥ 3 be a positive odd integer. Then, modulo Φn(q)4,
(n−3)/2∑

i=0

(n+1)/2∑
j=0

(q3; q2)2
i (q−1; q2)2

j

(q2; q2)i(q2; q2)j(q2; q2)i+j
q2ij−4i+4j

≡ (−1)(n−1)/2[n]2 (qn−1; q2)2

(1 − q4)
q6−2n+(1−n2)/4.

Setting n = p, an odd prime, and then letting q→ 1 in Corollary 1.3, we instantly
arrive at

(p−3)/2∑
i=0

(p+1)/2∑
j=0

( 3
2 )2

i (− 1
2 )2

j

(1)i(1)j(1)i+j
≡ 0 (mod p4). (1.3)

Numerical calculation indicates that the following generalisation of (1.3) should be
true.

CONJECTURE 1.4. Let p be an odd prime and d an integer with 0 < d ≤ (p − 1)/2.
Then

(p−1)/2−d∑
i=0

(p−1)/2+d∑
j=0

( 1
2 + d)2

i ( 1
2 − d)2

j

(1)i(1)j(1)i+j
≡ 0 (mod p4). (1.4)

2. Proof of Theorem 1.2

The q-Chu–Vandermonde identity [1, (1.5.2)] can be written as
[
m + n

k

]
=

k∑
j=0

q j(m−k+j)
[

m
k − j

][
n
j

]
, (2.1)

which is useful in combinatorics and number theory and will play a key role in our
proof of Theorem 1.2. Another preliminary result we require is as follows.

LEMMA 2.1. Let n be a positive odd integer and d an integer with n ≥ 1 − 2d. Then
(n−1)/2+d∑

j=0

(−1) jqij+( j+2d−n)j/2
[ n−1

2 + d
j

][ n−1
2 − d + j

j

][
i + j

i

]−1

=

[
i + 2d − 1

n−1
2 + d

][ n−1
2 + d + i

i

]−1

.
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PROOF. It is routine to verify that

[ n−1
2 + d

j

][
i + j

i

]−1

=

[ n−1
2 + d + i

n−1
2 + d − j

][ n−1
2 + d + i

i

]−1

, (2.2)

(−1) j
[ n−1

2 − d + j
j

]
=

[
− n−1

2 + d − 1
j

]
q(n−2d+j)j/2. (2.3)

In view of the two simple relations (2.2) and (2.3), we immediately conclude that

(n−1)/2+d∑
j=0

(−1) jqij+( j+2d−n)j/2
[ n−1

2 − d + j
j

][ n−1
2 + d

j

][
i + j

i

]−1

=

[ n−1
2 + d + i

i

]−1 (n−1)/2+d∑
j=0

q j2+ij
[ n−1

2 + d + i
n−1

2 + d − j

][
− n−1

2 + d − 1
j

]

=

[ n−1
2 + d + i

i

]−1[
i + 2d − 1

n−1
2 + d

]
,

where the last step follows from the q-Chu–Vandermonde identity (2.1). This gives the
desired result. �

PROOF OF THEOREM 1.2. It is not hard to see that

(1 − qn+(2t+2d−1))(1 − qn−(2t+2d−1)) + (1 − q2t+2d−1)2qn−(2t+2d−1) = (1 − qn)2.

With the help of the above relation, we find that
[ n−1

2 − d
k

]
q2

[ n−1
2 + d + k

k

]
q2

=
1

(q2; q2)2
k

k∏
t=1

(1 − qn+(2t+2d−1))(1 − qn−(2t+2d−1))

=
1

(q2; q2)2
k

k∏
t=1

{(1 − qn)2 − (1 − q2t+2d−1)2qn−(2t+2d−1)}

≡ (−1)k (q2d+1; q2)2
k

(q2; q2)2
k

q(n−k−2d)k{1 − q−n(1 − qn)2Hk(2d − 1)} (mod Φn(q)4),

which implies that, modulo Φn(q)4,

(q2d+1; q2)2
k

(q2; q2)2
k

≡ (−1)kq(k+2d−n)k
[ n−1

2 − d
k

]
q2

[ n−1
2 + d + k

k

]
q2

{1 + q−n(1 − qn)2Hk(2d − 1)}.

(2.4)
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However, replacing d by −d in the q-supercongruence (2.4), we easily get

(q1−2d; q2)2
k

(q2; q2)2
k

≡ (−1)kq(k−2d−n)k
[ n−1

2 + d
k

]
q2

[ n−1
2 − d + k

k

]
q2

× {1 + q−n(1 − qn)2Hk(−2d − 1)} (mod Φn(q)4). (2.5)

Substituting the q-supercongruences (2.4) and (2.5) into the left-hand side of (1.2) in
Theorem 1.2 gives: modulo Φn(q)4,

(n−1)/2−d∑
i=0

(n−1)/2+d∑
j=0

(q2d+1; q2)2
i (q1−2d; q2)2

j

(q2; q2)i(q2; q2)j(q2; q2)i+j
q2ij−4di+4dj

≡
(n−1)/2−d∑

i=0

(n−1)/2+d∑
j=0

(−1)i+jq2ij+(i−2d−n)i+( j+2d−n)j
[ n−1

2 − d
i

]
q2

[ n−1
2 + d + i

i

]
q2

[ n−1
2 + d

j

]
q2

×
[ n−1

2 − d + j
j

]
q2

[
i + j

i

]−1

q2

{1 + q−n(1 − qn)2(Hi(2d − 1) + Hj(−2d − 1))}. (2.6)

To simplify (2.6), we divide the right-hand side of (2.6) into three parts. Let L stand
for the right-hand side of (2.6) and write

L = L1 + (1 − qn)2(L2(d) + L2(−d)),

where

L1 :=
(n−1)/2−d∑

i=0

(n−1)/2+d∑
j=0

(−1)i+jq2ij+(i−2d−n)i+(j+2d−n)j
[ n−1

2 − d
i

]
q2

[ n−1
2 + d + i

i

]
q2

×
[ n−1

2 + d
j

]
q2

[ n−1
2 − d + j

j

]
q2

[
i + j

i

]−1

q2

,

L2(d) :=
(n−1)/2−d∑

i=0

(n−1)/2+d∑
j=0

(−1)i+jq2ij+(i−2d−n)i+( j+2d−n)j−n
[ n−1

2 − d
i

]
q2

[ n−1
2 + d + i

i

]
q2

×
[ n−1

2 + d
j

]
q2

[ n−1
2 − d + j

j

]
q2

[
i + j

i

]−1

q2

Hi(2d − 1).
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We first consider the part L1. Applying the case q→ q2 of Lemma 2.1, we can
simplify L1 by first calculating the terms indexed j as

L1 =

(n−1)/2−d∑
i=0

(−1)iq(i−2d−n)i
[ n−1

2 − d
i

]
q2

[ n−1
2 + d + i

i

]
q2

×
(n−1)/2+d∑

j=0

(−1) jq2ij+( j+2d−n)j
[ n−1

2 + d
j

]
q2

[ n−1
2 − d + j

j

]
q2

[
i + j

i

]−1

q2

=

(n−1)/2−d∑
i=0

(−1)iq(i−2d−n)i
[ n−1

2 − d
i

]
q2

[
i + 2d − 1

n−1
2 + d

]
q2

. (2.7)

In fact, changing the summation order of i and j, L1 can also be expressed as

L1 =

(n−1)/2+d∑
j=0

(−1) jq( j+2d−n)j
[ n−1

2 + d
j

]
q2

[
j − 2d − 1

n−1
2 − d

]
q2

. (2.8)

Next, we shall discuss the evaluation of L1 under three cases.

Case (i): d = 0. It is easy to check that
[
i − 1

n−1
2

]
q2

= 0 for 1 ≤ i ≤ n − 1
2

,

which implies (2.7) equals 0 except for i = 0. Thus (2.7) reduces to (−1)(n−1)/2q(1−n2)/4.

Case (ii): d ≥ 1. It is obvious that
[
i + 2d − 1

n−1
2 + d

]
q2

= 0 for 0 ≤ i ≤ n − 1
2
− d,

which means (2.7) equals 0.

Case (iii): d ≤ −1. Similarly to case (ii),
[
j − 2d − 1

n−1
2 − d

]
q2

= 0 for 0 ≤ j ≤ n − 1
2
+ d.

It follows that (2.8) equals 0.

These considerations show that

L1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)(n−1)/2q(1−n2)/4 d = 0,

0 d � 0.
(2.9)

https://doi.org/10.1017/S0004972722000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000612


302 X. Wang and M. Yu [7]

At the same time, recalling Lemma 2.1 with q→ q2 again, we have shown

L2(d) =
(n−1)/2−d∑

i=0

(−1)iq(i−2d−n)i−n
[ n−1

2 − d
i

]
q2

[
i + 2d − 1

n−1
2 + d

]
q2

Hi(2d − 1). (2.10)

Likewise, we consider (2.10) in three cases. Following from the assumption that
Hk(x) = 0 for any integer k < 1, we thus attain

L2(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2d∑
i=1

(−1)iq(i−2d−n)i−n
[ n−1

2 − d
i

]
q2

[
i + 2d − 1

n−1
2 + d

]
q2

Hi(2d − 1) d ≤ −1,

0 d ≥ 0.

(2.11)

The detailed proof of (2.11) follows the proof of (2.9) and is omitted here. Now it
remains to consider L2(−d). Taking d = −d in (2.11),

L2(−d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 d ≤ 0,
2d∑
j=1

(−1)jq( j+2d−n)j−n
[ n−1

2 + d
j

]
q2

[
j − 2d − 1

n−1
2 − d

]
q2

Hj(−2d − 1) d ≥ 1.
(2.12)

Substituting the three formulas (2.9), (2.11) and (2.12) into (2.6), we arrive at

(n−1)/2−d∑
i=0

(n−1)/2+d∑
j=0

(q2d+1; q2)2
i (q1−2d; q2)2

j

(q2; q2)i(q2; q2)j(q2; q2)i+j
q2ij−4di+4dj

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − qn)2
−2d∑
i=1

(−1)iq(i−2d−n)i−n
[ n−1

2 − d
i

]
q2

[
i + 2d − 1

n−1
2 + d

]
q2

Hi(2d − 1) d ≤ −1,

(−1)(n−1)/2q(1−n2)/4 d = 0,

(1 − qn)2
2d∑
j=1

(−1)jq( j+2d−n)j−n
[ n−1

2 + d
j

]
q2

[
j − 2d − 1

n−1
2 − d

]
q2

Hj(−2d − 1) d ≥ 1.

The cases d ≥ 1 and d ≤ −1 can be compactly combined into

(1 − qn)2q|d|(2+3|d|−n)−n+(1−n2)/4

×
2|d|∑
k=1

(−1)k−|d|+(n−1)/2qk2−kHk(−2|d| − 1)
(qn+2|d|−2k+1; q2)k(q4|d|−2k+2; q2)(n−2|d|−1)/2

(q2; q2)k(q2; q2)(n−2|d|−1)/2
.

As explained above, this completes the proof of Theorem 1.2. �
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