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We show that the energy norm of weak solutions to Vlasov equation coupled with a
shear thickening fluid on the whole space has a decay rate the energy norm
E(t) � C/(1 + t)α,∀t � 0 for α ∈ (0, 3/2).
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1. Introduction

In this paper, we study Vlasov equation coupled with a shear thickening fluid
(see e.g. [7, 10])⎧⎨⎩ ∂tf + v · ∇xf + ∇ · [(u − v)f ] = 0,

∂tu −∇ · S(Du) + (u · ∇x)u + ∇xπ = − ∫
R3(u − v)f dv,

∇ · u = 0.
(1.1)

Here u : R3 × (0, T ) → R3 is the flow velocity vector, b : R3 × (0, T ) → R3 is the
magnetic vector, π : R3 × (0, T ) → R is the total pressure and Du is the symmetric
part of the velocity gradient, i.e.

Du = Diju :=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3.

To motivate the conditions on the stress tensor S, we recall the following examples
of constitutive laws

S(Du) = (μ0 + μ1|Du|p−2)Du (1.2)

where μ0 � 0 and μ1 > 0 are constants (see e.g. [1, 12]). The system is completed
by the initial data:

u|t=0 = u0, ∇x · u0 = 0, f |t=0 = f0. (1.3)

We recall some known results for the Newtonian case. Hamdache [8] proved the
global existence of weak solutions to the time-dependent Stokes system coupled
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with the Vlasov equation in a bounded domain. Later, existence of weak solution
was extended to the Vlasov–Navier–Stokes system by Boudin et al. [3] in a periodic
domain (refer also to [4, 5] for hydrodynamic limit problems). When the fluid is
inviscid, Baranger and Desvillettes established the local existence of solutions to
the compressible Vlasov–Euler equations [2].

On the other hand, recently, Mucha et al. in [10] considered (1.1) and S(Du) =
(1 + |Du|p−2)Du with p � 11

5 for the case of a periodic domain, and they established
the existence of solutions (f, u) for a large initial data (see also [7]). Moreover, a
divergence free vector u and nonnegative function f satisfy

u ∈ L∞(0, T ; Ẇ 1,p
div (T3)) ∩ C([0, T ];L2

div(T3)) ∩ L2(0, T ;W 2,2(T3))∩
∩ L∞(0, T ;W 1,2(R3)) ∩ Lp(0, T ; Ẇ 1,3p(T3)), ∂tu ∈ L2(0, T ;L2(T3)),

f ∈ L∞((0, T ) × T3 × R3) ∩ L∞(0, T ;L1(T3 × R3)), M2f ∈ L∞([0, T ]).

Here, for non-negative and integrable functions f , we denote

Mαf(t) :=
∫

T3×R3
|v|αf(t, x, v) dxdv, M0f = ‖f‖L1 = 1.

Recently, Han-Kwan [9] showed the large time behaviour of small data solutions to
the Vlasov–Navier–Stokes system, that is p = 2 in (1.1) on R3 × R3. More speaking,
he proved that for all t � 0 and α ∈ (0, 3/2)

E(t) � ϕα(E(0))
(1 + t)α

, E(t) :=
1
2

(∫
R3×R3

|v|2f dxdv +
∫

R3
|u|2 dx

)
. (1.4)

In this direction, we focus that Han-Kwan’a result extends to (1.1)–(1.3). Pre-
cisely, the solutions (f, u) for Vlasov equation coupled with a shear thickening fluid
(1.1)–(1.3) with a large initial data on R3 × R3 have the decay rate (1.4) under
some assumptions. Unlike Han’s results, we cannot use characteristic method (see
[9, § 3] for the fluid equations, and thus, we give additional conditions. Our analysis
is based on Han’s approach, however to deal with the non-Newtonian case, we focus
on the control of the stress tensor. Now, we present the main result of the paper.

Theorem 1.1. Let p � 11
5 and

‖ρf‖L∞((0,T )×R3) < ∞, ρf (t, x) :=
∫

R3
f(t, x, v) dv. (1.5)

Suppose that the initial data (f0, u0) satisfy

(i) 0 � f0 ∈ (L1 ∩ L∞)(R3 × R3), suppf0(x, ·) ⊂ B(R) for some R > 0 and a.a.
x ∈ R3, where B(R) is a ball centred at 0 with radius R,

(ii) u0 ∈ (Lp ∩ W 1,2
div )(R3) with 1 � p < 2.

Then, there exists a constant C (independent of t) such that global strong solutions
(f, u) to (1.1)–(1.3) satisfies

E(t) � C

(1 + t)α
, ∀t � 0, α ∈ (0, 3/2). (1.6)
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Remark 1.2. The result in [10] is also hold on the whole space. If the density
function f is ignored, the system (1.1) becomes to the Navier–Stokes equation of
non-Newtonian type:

∂tu −∇ · (1 + |Du|p−2)Du + (u · ∇x)u + ∇π = 0. (1.7)

For this equations, we knew that the solution for (1.7) satisfies the optimal temporal
decay rate, that is, ‖u(t)‖L2 � C(1 + t)−3/4 for p � 11/5, which is the same result
to Navier–Stokes equations (see also [6, 11]).

Remark 1.3. In light of the arguments in [9], using the characteristic method (see
§ 3 in [9]), it is possible to remove the condition (1.5) of ρf for Vlasov–Navise–Stokes
equation. Since this approach is not working for (1.1) due to strong stress tensor,
the condition (1.5) in theorem 1.1 is necessary to control the drag force in the fluid
equation for (1.1)–(1.3).

2. Preliminary

We first introduce some notations. Let (X, ‖ · ‖) be a normed space. By Lq(0, T ;X),
we denote the space of all Bochner measurable functions ϕ : (0, T ) → X such that⎧⎪⎪⎨⎪⎪⎩

‖ϕ‖Lq(0,T ;X) :=

(∫ T

0

‖ϕ(t)‖q dt

)1/q

< ∞ if 1 � q < ∞,

‖ϕ‖L∞(0,T ;X) := sup
t∈(0,T )

‖ϕ(t)‖ < ∞ if q = ∞.

For 1 � q � ∞, we mean by W k,q(R3) the usual Sobolev space. A = (aij)3i,j=1 and
B = (bij)3i,j=1 be matrix valued maps and we then denote A : B =

∑3
i,j=1 aijbij .

For vector fields u, v we write (uivj)i,j=1,2,3 as u ⊗ v. Unless specifically mentioned,
the letter C is used to represent a generic constant, which may change from line
to line. And also, we denote by A � B an estimate of the form A � CB with some
absolute constant C.

We first provide estimates of conservation laws and total energy dissipation in
the lemma below.

Lemma 2.1. Let (f, u) be a solution to (1.1)–(1.3) with sufficient integrability. Then
we have the following estimates:

(i) (Mass conservation) The total mass of f is conserved in time:∫
R3×R3

f(x, v, t) dxdv =
∫

R3×R3
f0(x, v) dxdv ∀ t � 0.

(ii) (Momentum conservation) The total momentum is conserved in time: for all
t � 0 ∫

R3×R3
vf(x, v, t) dxdv +

∫
R3

u(x, t) dx

=
∫

R3×R3
vf0(x, v) dxdv +

∫
R3

u0(x) dx.
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(iii) (Total energy conservation) The total energy is not increasing in time:

d
dt

E(t) + D(t) � 0.

Here,

E(t) :=
1
2

(∫
R3×R3

|v|2f dxdv +
∫

R3
|u|2 dx

)
,

and

D(t) := CK

∫
R3

|Du|2 dx +
∫

R3
|∇u|2 dx +

∫
R3×R3

|u − v|2f dxdv,

where CK is Korn’s constant.

Lemma 2.2. Let (f, u) be a solution to (1.1)–(1.3). Then we have∫
|ξ|�g(τ)

|u(τ)|2 dξ �
(∫ τ

0

‖U0‖L2(R3)

)2

+ g5(τ)

((∫ τ

0

‖u(s)‖2
L2(R3) ds

)2

+
(∫ t

0

‖u(s)‖(14−2p)/(19−5p)
L2(R3) ds

)(19−5p)/8
)

+g3(τ)
(∫ τ

0

‖(jf − ρfu)(s)‖L1(R3) ds

)2
)

.

Here, U0 is a solution of heat equation in R3, that is,

∂tU0 − ΔU0 = 0, U0|t=0 = u0.

Proof. We rewrite the fluid equation as

ut −�u −∇ · |Du|p−2Du + (u · ∇)u + ∇π = jf − ρfu. (2.1)

Applying the Fourier transformation of (2.1), we have

ût + |ξ|2û =: F (ξ, t), û0(ξ) := û(ξ, 0) = Û0, (2.2)

where

F (ξ, t) := ̂∇ · |Du|p−2Du(ξ, t) − ̂(u · ∇)u(ξ, t) − ∇̂P (ξ, t) + ̂jf − ρf .

First of all, we note that for the divergence free vectors v, w ∈ L∞(0, T ;L2(R3))

| ̂(v · ∇)w(ξ, t)| ∼=
∣∣∣∣∫

R3
e−ix·ξ∇ · (u ⊗ v) dx

∣∣∣∣
� |ξ|‖v ⊗ w‖L1 � |ξ|(||v(t)||2L2 + ||w(t)||2L2),
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and thus, we have

| ̂(u · ∇)u(ξ, t)| � |ξ|||u(t)||2L2 , (2.3)

Integrating (2.3) with respect to ξ on the ball {|ξ| � g(τ)}, we obtain∫
|ξ|�g(τ)

(∫ t

0

∣∣∣ ̂(u · ∇)u
∣∣∣dτ

)2

dξ �
∫
|ξ|�g(τ)

|ξ|2
(∫ t

0

∣∣∣û ⊗ u
∣∣∣ (τ, ξ) dτ

)2

dξ

� g(τ)5
(∫ t

0

‖u ⊗ u‖L1 (τ) dτ

)2

.

To deal with F , taking the divergence operator for the fluid equation, we know that
for all ξ ∈ R3,

∇̂P =
ξ ·
(

̂∇ · (|Du|p−2Du(ξ, t) − û · ∇u + ̂jf − ρfu
)

|ξ|2 ξ,

so that

|∇̂P (ξ)| � |ξ| (|||Du(t)|p−1||L1 + ||u(t)||2L2

)
+ ‖jf − ρf‖L1 ∀ ξ ∈ R3.

With aid of the estimates above, F (ξ, t) is bounded by

|F̂ (ξ, t)| � |ξ|
(
||Du(t)||p−1

Lp−1 + ||u(t)||2L2

)
+ ‖jf − ρf‖L1 .

and thus∫
|ξ|�g(τ)

(∫ t

0

∣∣∣F̂ (τ, ξ)
∣∣∣ dτ

)2

dξ � g5(τ)

((∫ τ

0

‖u(s)‖2
L2 ds

)2

+
(∫ t

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8
)

+g3(τ)
(∫ τ

0

‖(jf − ρfu)(s)‖L1 ds

)2
)

.

It follows from (2.2) that

û(ξ, t) = e−|ξ|2tÛ0(ξ) +
∫ t

0

F (ξ, t)e−|ξ|2(t−s) ds.

From the estimates above, the outcome we give is∫
|ξ|�g(τ)

|û(τ)|2 dξ �
(∫ τ

0

‖U0‖L2

)2

+ g5(τ)

((∫ τ

0

‖u(s)‖2
L2 ds

)2

+
(∫ t

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8
)

+g3(τ)
(∫ τ

0

‖(jf − ρfu)(s)‖L1 ds

)2
)

.
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where we use the following estimates∫ t

0

‖jf − ρf‖L1 ds �
∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)1/2

ds,

and also∫ t

0

‖∇u(s)‖p−1
Lp−1 ds

�
∫ t

0

‖u(s)‖(7−p)/4
L2 ‖∇2u(s)‖(5p−11)/4

L2 ds

� C

(∫ t

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8(∫ ∞

0

‖∇2u(t)‖2
L2 dt

)(5p−11)/8

� C

(∫ t

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8

,
5
2

� p < 3,

and ∫ t

0

‖∇u(s)‖p−1
Lp−1 ds � C ‖∇u‖2/(p−2)

L2((0,t)×R3) ‖∇u‖p(p−3)/(p−2)
Lp((0,t);Lp) < ∞, p � 3,

thus this completes the proof. �

Lemma 2.3 Gronwall inequality. Let y(t) satisfy the following differential inequality.
For almost all s � 0 and all s � t � T ,

y(t) +
∫ t

s

g̃2(τ)y(τ) dτ � y(s) +
∫ t

s

β(τ) dτ.

Then for almost all t ∈ [0, T ],

y(t) � y(0) exp
(
−
∫ t

0

g̃2(τ) dτ

)
+
∫ t

0

exp
(
−
∫ t

τ

g̃2(r) dr

)
β(τ) dτ.

Proof of theorem 1.1. Following the idea in [13], let g(t) be given a time-dependent
cut-off function, determined later. Observe that∫

R3
|Du|2 dx � CK

∫
R3

|∇xu|2 dx =
∫

R3
|ξ|2|û|2 ξ

�
∫
|ξ|�g(t)

|ξ|2|û|2 dξ

� g2(t)‖u‖2
L2 − g2(t)

∫
|ξ|�g(t)

|û|2 dξ,

where CK is Korn’s inequality. On the other hand, we note that∫
R3×R3

f |v − u|2 dv dx � 1
2

∫
R3×R3

f |v|2 dv dx − ‖ρf‖L∞(0,T ;L∞)‖u‖2
L2 .

Choose now C0 > 0 large enough so that ‖ρf‖L∞(0,T ;L∞)/(1 + C0) � 1/2. We will
also ensure that for all t ∈ [0, T ], g2(t)/(1 + C0) � 1/2. Following the argument in
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[9, p. 6], we can know

CK

∫
R3

|∇xu|2 dx +
∫

R3×R3
f |v − u|2 dv dx

� 1
2

∫
R3×R3

f |v − u|2 +
1
2

g2(t)
1 + C0

[∫
R3×R3

f |v|2 dv dx + ‖u‖2
L2

]
− g2(t)

∫
|ξ|�g(t)

|û|2 dξ.

Applying lemma 2.3 by the estimate above, we obtain

E(t) exp
(∫ t

0

g̃2(s) ds

)
+

1
2

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)
exp

(∫ τ

0

g̃2(r) dr

)
dτ

� E(0) + C
∫ t

0

g2(τ)‖U0‖2
L2 exp

(∫ τ

0

g̃2(r) dr

)
dτ

+ C
∫ t

0

g7(τ)
(∫ τ

0

‖u(r)‖2
L2 dr

)2

exp
(∫ τ

0

g̃2(r) dr

)
dτ

+ C
∫ t

0

g7(τ)

((∫ τ

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8
)

× exp
(∫ τ

0

g̃2(r) dr

)
dτ

+ C
∫ t

0

g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx

)1/2

dr

)2

× exp
(∫ τ

0

g̃2(r) dr

)
dτ. (2.4)

g2(t) =
4α(1 + C0)

1 + t
, i.e., g̃2(t) =

α

10 + t
,

where α ∈ [1, 3/2) to be determined later. This gives

exp
(∫ τ

0

g̃2(r) dr

)
= (10 + τ)α,

Note that we have, as α < 3/2,

E(0) +
∫ t

0

g2(τ)‖U0(τ)‖2
L2 exp

(∫ τ

0

g̃2(r) dr

)
dτ � E(0) +

∫ t

0

dτ

(1 + τ)1+3/2−α

� 1. (2.5)

The remaining terms are now estimated sequentially. Assume that on [0, T ],

E(t) � 1
(1 + t)β

, (2.6)
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with 0 � β < 3/2. Assuming (2.6), we have

∫ t

0

g7(τ)
(∫ τ

0

‖u(r)‖2
L2 dr

)2

exp
(∫ τ

0

g̃2(r) dr

)
dτ

� (1 + t)α−2β−1/2 if β < 1, α − 2β − 3/2 > −1,

� 1 if β < 1, α − 2β − 3/2 < −1,

� 1 if β > 1. (2.7)

On the other hand, by Hölder’s inequality, we note that

((∫ τ

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8
)2

�
(∫ τ

0

‖u(s)‖(28−4p)/(19−5p)
L2 dsτ

)(19−5p)/8

� C

(∫ τ

0

‖u(s)‖2
L2 dsτ

)
+ C. (2.8)

Here, we use the relation (28 − 4p)/(19 − 5p) > 2 and u ∈ L∞(0, τ ;L2) by the
energy estimate. Using (2.8), we have

∫ t

0

g7(τ)

((∫ τ

0

‖u(s)‖(14−2p)/(19−5p)
L2 ds

)(19−5p)/8
)2

exp
(∫ τ

0

g̃2(r) dr

)
dτ

�
∫ t

0

g7(τ)C
(∫ τ

0

‖u(s)‖2
L2 dsτ + C

)
exp

(∫ τ

0

g̃2(r) dr

)
dτ

� C

∫ t

0

g7(τ)
(∫ τ

0

‖u(s)‖2
L2 dsτ

)
exp

(∫ τ

0

g̃2(r) dr

)
dτ

+ C

∫ t

0

g7(τ) exp
(∫ τ

0

g̃2(r) dr

)
dτ

� (1 + t)α−β−1/2 + (1 + t)α−3/2 if β < 1, α − β − 3/2 > −1,

� 1 if β < 1, α − 2β − 3/2 < −1,

� 1 if β > 1. (2.9)

Let us assume as well that on [0, T ],

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)
(10 + τ)αdτ � (10 + t)α

(1 + t)β
. (2.10)
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Observe that if (2.10) holds for some α, then it holds as well for all α̃ � α. Assuming
(2.10) we have

∫ t

0

g5(τ)

(∫ τ

0

(∫
R3×R3

f |v − u|2 dv dx

)1/2

dr

)2

exp
(∫ τ

0

g̃2(r) dr

)
dτ

� (1 + t)2α−β−3/2 if 2α − β − 3/2 > 0,

� 1 if 2α − β − 3/2 < 0. (2.11)

Now we argue by induction in order to increase the admissible values of β. Start
with β = 0, and take α = 1. The a priori estimates (2.6) and (2.10) are indeed
satisfied since by the energy inequality

E(t) +
∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)
dτ � 1,

so that ∫ t

0

(∫
R3×R3

f |v − u|2(10 + τ) dv dx

)
dτ � (10 + t).

Using (2.4) together with (2.5), (2.7), (2.9) and (2.11), we obtain

(10 + t)E(t) +
∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)
(10 + τ) dτ

� 1 + (1 + t)1/2 + (1 + t)−1/2,

so that

E(t) +
1

(10 + t)

∫ t

0

(∫
R3×R3

f |v − u|2 dv dx

)
(10 + τ) dτ � 1

(1 + t)1/2
.

From now on, through the procedure method based on the inductive scheme in
[9, p. 10], we can get the desired results. This completes the proof. �
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