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It was shown by Baer in [1] that every soluble group satisfying Min-n, the min-
imal condition for normal subgroups, is a torsion group. Examples of non-soluble
locally soluble groups satisfying Min-n have been known for some time (see
McLain [2]), and these examples too are periodic. This raises the question whether
all locally soluble groups with Min-n are torsion groups. We prove here that this is
not the case, by establishing the existence of non-trivial locally soluble torsion-free
groups satisfying Min-n. Rather than exhibiting one such group G, we give a general
method for constructing examples; the reader will then be able to see that a
variety of additional conditions may be imposed on G. It will follow, for instance,
that G may be a Hopf group whose normal subgroups are linearly ordered by in-
clusion and are all complemented in G; further, that the countable groups G with
these properties fall into exactly 2 "isomorphism classes. Again, there are exactly
2 ° isomorphism classes of countable groups G which have hypercentral non-
nilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all
their non-trivial homomorphic images.

As a by-product, we shall also show the existence of locally soluble torsion-
free groups which are characteristically simple and whose proper non-trivial
normal subgroups are linearly ordered by inclusion, with the order type Z of the
integers.

1. Treble products

1.1 Our results depend on some properties of the treble product of three
groups. This is a particular case of the twisted wreath product introduced by
Neumann in [3]; however, in order to make our arguments clearer, we use here a

* This work was done while the second author held a Royal Society European Programme
Fellowship at the University of Erlangen-Niirnberg.
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306 H. Heineken and J. S. Wilson [2]

different notation from that adopted by Neumann. Suppose we are given three
groups A, B and C and homomorphisms

s : B-+ Aut A and t : C->Aut B,

where Aut X denotes the automorphism group of X. Let W = A \ C be the (stan-
dard, restricted) wreath product of A and C. We form the free product F of W
and B, and write T for the quotient group of F by the normal subgroup K gen-
erated by all bKc)c~lb~l c and all as(b)b~la~lb, where a, b and c run through
the elements of A, B and C respectively. Then we call T the treble product of A, B
and C, and we denote it by Tr(4,£, C;s, i) or, suppressing reference to s and t,
byTr(A,B,C).

Obviously W C\K = B C\K = 1. We may therefore identify A, B and C
with their images in T. It is not hard to see that the subgroups <̂ 4,B> and <B, C>
of T are split extensions of A and B, and that T itself is a split extension of the
normal closure D of A in T by BC; further D is the direct product of the sub-
groups c~1Ac (ceC) of T.

In the terminology of Neumann [3], T is a twisted wreath product of A by BC.

1.2 We collect here some results about normal subgroups, and in particular
minimal normal subgroups, of the treble product T of three given groups A, B
and C. In the special case B = 1, Lemma 1 and Lemma 3 reduce to well known
properties of wreath products.

LEMMA 1. Suppose that N~=iA is a minimal normal subgroup of AB, and
that N is not contained in the centre Z of A. Then the normal closure Nc of N in
T is a minimal normal subgroup of T.

PROOF. Let M be a normal subgroup of T such that 1 # M £ Nc. We must
show that Nc ^ M for some c e C; it then follows immediately that M = Nc, and
that Nc is a minimal normal subgroup of T. If Lc = [Ac,M] ^ 1 for some ceC,
then, because Lc is normal in ACB and contained in Nc, we have Nc = Lc £ M,
as required. If Lc = 1 for each ceC, then M is contained in the centre of Ac, and
its projection in each subgroup Ac is contained both in Nc and Zc, and therefore
is trivial; thus M = 1, a contradiction.

It is easy to see that the conclusion of Lemma 1 need no longer hold if the
condition N $ Z is deleted. However, we require for later use a criterion valid
also in the case N c z. One such is provided by

LEMMA 2. Suppose that N-&A is a minimal normal subgroup of AB. If,
for every element c ^ 1 of C, there is a two-variable word pc(a, b) and there is an
element xc of B, such that
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(i) pc(l, b) = 1 for all b in B,
(ii) pc(a,xc) ^ I / o r all a ̂  I in N, and
(iii) pc(a, cxcc- 1) = 1 for all a in N,

then Nc is a minimal normal subgroup of T.

PROOF. Let M be a normal subgroup of T such that 1 ^ M £ Nc. Again it
will be enough to show that some conjugate of N is contained in M. Suppose that
this is not the case, and let

be a minimal collection of conjugates of N such that

Then k ^ 2. We may clearly assume Nt = N. Let Nk = Nc, so that c # 1. We
choose a non-trivial element q of Q, and write 5' = pc{q,xc). Then, by condition
(i), q' lies in the normal closure of <g> in <<?,xc>, and therefore in Q. Further, if
q{ denotes the projection of q in Nt, then the projection ofg ' in iV,- is pc(g;, xc), for
each i. By (ii), p£qi,xc) # 1, so that q' =£ 1. On the other hand,

from condition (iii). Thus

1 # 4'eM nN1N2--Nk_1.

But this is in contradiction to the choice of Nu •••,Nk, and the Lemma follows.
For later convenience we include the

REMARK. Let N be a minimal normal subgroup of AB, contained in A, and
suppose that there is an element y of B such that y~lny = n2 for all neN. If
[[^i c]»"] ^ 1 whenever l ^ c e C and I ̂  neN, then the conditions of Lemma
2 are satisfied with

pc(q,b) = a~2b~1ab, and xc = c~lyc,

for all c ± 1 in C.

LEMMA 3. Let N be a normal subgroup of AB, contained in A, such that
N C\X # 1 for every normal subgroup X ^ 1 of AB. Then Nc c\M ^ 1 for
every normal subgroup M # 1 0 / T.

PROOF. Let 1 # M-a T. If ACBC\M = 1, then M centralizes Ac and so
normalizes A; but since the normalizer of A is evidently ACB, we have a contra-
diction. Therefore Mt — ACB (~\M is a non-trivial normal subgroup of T.

We choose an element m ^ 1 of Mu with, say, m = dfc, where deAc and
b e B. We may assume d # 1, for otherwise we would have 1 # M t n /4B and
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N OM^ = 1. Replacing m by a conjugate if necessary, we may further assume
that the projection a of d in A is non-trivial. We write R for the direct product of
all conjugates of A except A itself. Then

1 # abeRMt HAB<iAB,

so that (KM! (~\AB) nJV # 1, and, in particular, RMt nA # 1. Let 1 # a'
= r'm' with a ' e A, r ' e /? and m' e M x . We cannot have a' — r', since the group
generated by A and R is their direct product; therefore m' = r ' a ' " 1 is a non-
trivial element of Ac n M ^ It follows that M 2 = ,4C n Mt is a non-trivial normal
subgroup of T.
Let

be a minimal collection of conjugates of 4̂ such that A1---AknM2 # 1. We
denote by JV; the subgroup of Aj conjugate to N, and write

for 0 ^ j S k (with the obvious conventions for; = 0 and j = k). Then To # 1.
Suppose 7 < fc and Tj ^= 1. The projection of T,- in /4J + 1 is a non-trivial normal
subgroup of Aj+1B, and so has non-trivial intersection with NJ+1; it therefore
follows that TJ+l =£ 1. Thus we have

Nc nM = Nc C\M2 # 1,
as required.

Combining Lemmas 1, 2 and 3 we now have

LEMMA 4. Suppose that the normal subgroup N of AB is contained in every
non-trivial normal subgroup of AB and satisfies either the conditions of Lemma 1
or those of Lemma 2. Then Nc is contained in every non-trivial normal subgroup
ofT.

1.3 We now show how the treble product construction may be iterated, to
produce a treble product tower. Let p be an ordinal number. Suppose we are
given a family {Aa;0^a<p} of non-trivial groups and a family
{0ff+i; 1 S= o + 1 < p} of homomorphisms, with 8a+1 a homomorphism from
Aa+1 into Aut A3 for each a. We define an ascending sequence Ka(a ^ p) of
groups, and an auxiliary sequence La{a < p) as follows:
Kx = Ll = Ao, and K2 is the split extension of Ao by Ax. If Ka+1 is defined and
is the split extension of a subgroup La by Aa, then

So i^+2 has -Ko+1 = L^ , , as a subgroup, and Ka+2 is a split extension of
La+1 = (Ka+l)

K"*2 by Aa+2.lf a is a limit ordinal and Kz is defined for all T < <r,
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with KT c Kx+1 for all T, then we define Ka — u {Kz;x < a}, and we define Ka+1

= Ka l Aa> the standard wreath product of Ka by Aa. Then Ka <= Ka+1, and
X a + 1 is a split extension of the base group La of Ka+l by >!<,.

Thus the groups Ka are defined for all ordinals a ^ p. The group JCP will be
called the treble product tower of the groups Aa (0 ^ a < p), and it will be denoted
byTrtU f f ;0g a < p).

LEMMA 5. Suppose that p > 2 and that N is a minimal normal subgroup
of K2 = (Ao, Aty, contained in Ao. Suppose further that the hypotheses of
Lemma 1 or of Lemma 2 are satisfied for N, with A = Ao, B = At and C = A2.
Then NK<> is a minimal normal subgroup of Kp.

PROOF. For p = 3 the statement is true by Lemma 1 or Lemma 2; we
therefore assume p > 3 and argue by induction on p. If p — 2 exists, we have

and NKp~' is a non-central minimal normal subgroup of Kp_l. We may therefore
apply Lemma 1 (with A = Lp_2, B = Ap-2 and C = A^J to deduce that NKp

is a minimal normal subgroup of Kp. If p — 1 exists and is a limit ordinal, then
Kp is the standard wreath product of Xp_x and Ap_u and the result again follows
from Lemma 1, with B = 1. Finally, if p is a limit ordinal, and if M is a non-
trivial normal subgroup of Kp contained in NKp, then M nNK- ^ 1 for some
a < p; and since M O NK"is a normal subgroup of Ka contained in NK", we have
NK- = M n NK- and NKp = M. Thus NKp is a minimal normal subgroup of Kp,
as required.

LEMMA 6. Suppose that p > 2 and f/iaf iV is a normal subgroup of K2

= <,4O,,41>, contained in Ao, such that N O X / 1 /or a// non-trivial normal
subgroups X of K2. Then NKT\Y =£ 1 for all non-trivial normal subgroups
YofKp.

The proof by induction on p using Lemma 3 is similar to the proof of Lemma
5, and we omit it.

Combining Lemma 5 and Lemma 6, we have

LEMMA 7. Suppose that p > 2, and suppose that the minimal normal sub-
group N of A0At is contained in every non-trivial normal subgroup of A0AY. If
either the conditions of Lemma 1 or those of Lemma 2 are satisfied for N, with
A = Ao, B = Al and C — A2, then NKl> is a minimal normal subgroup of Kp,
and is contained in every non-trivial normal subgroup of Kp.
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2. Groups satisfying Min-n

2.1 Lp-groups. Every locally soluble group satisfying Min-n has an ascending
invariant series with Abelian factors; this is a straightforward consequence of the
result of McLain [4] that each minimal normal subgroup of a locally soluble
group is Abelian. The first groups which we construct are locally soluble torsion-
free groups G which have unique ascending invariant series with Abelian factors,
of length any given limit ordinal p. The normal subgroups of such groups are
linearly ordered by inclusion, of order type p + 1, so that, a fortiori, the groups
satisfy Min-n. For brevity, we call a locally soluble group whose non-trivial nor-
mal subgroups are linearly ordered of order type p + l a Lp-group.

We begin with a general lemma concerning treble product towers.

LEMMA 8. Let G = Trt(^4ff;0 ^ a < p), and suppose that
(a) Aa has no Aa+^invariant subgroups other than Aa and 1, for each a

satisfying 1 ^ a + 1 < p, and
(b) for each a satisfying 2 ^ a + 2 < p, the conditions of Lemma 4 are

satisfied with A = N = Aa, B = Aa+1 and C = Aa+2.
Then any proper non-trivial normal subgroup of G is either of the form

KG
afor some a < p, or, in the case when p is not a limit ordinal, contains Lp_ t .

PROOF. Let 1 •£ M<iG. We may assume M <= Kp = G. Let a be the smallest
ordinal with Ka $ M; then a is not a limit ordinal, and, from Lemmas 5 and 6,
a > 1. Thus a = x + 1 for an ordinal T, and K° £ M. But G is a split extension of
K^ by if = <y40; T < $ < p>, which is itself a treble product tower. If T + 2 ^ p,
then, again by Lemmas 5 and 6, every non-trivial normal subgroup of H con-
tains Az+l = Aa; thus by choice of a, we must have K° = M. Otherwise,
o — T + 1= p, and M contains both Kp_1 and its normal closure Lp_t . The proof
of Lemma 8 is complete.

We now suppose in Lemma 8 that p is a limit ordinal and that each subgroup
Aa is Abelian. Then each subgroup generated by finitely many subgroups Aa is an
iterated extension of Abelian groups, and so is soluble; and it follows that G is
locally soluble. Thus, from the Lemma, G is an Lp-group. If each subgroup Aa is
torsion-free, so also is G. Further since Aa is a faithful module for Aa+l for every
a, each minimal normal subgroup of a non-Abelian quotient group of G will
coincide with its centralizer. Thus, in order to exhibit the existence of torsion-free
Lp-groups with unique ascending series with Abelian factors, it will be enough to
show how we may choose sequences (Aa;0 ^ a < p) of Abelian torsion-free
groups, with Aa a faithful irreducible v4ff+1-module for each a, and with each
triple (Aa,Aa+1,Aa+2) satisfying the conditions of Lemma 2.

Let F be a field of real numbers which is closed under forming (real) nth
roots, for all natural numbers n. Examples of countable such fields are (a) the
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field of real algebraic numbers and (b) the field of all real algebraic numbers with
soluble Galois groups; the real field itself is an uncountable example. The group
QF of all matrices

(jj J) (a,beF,a>0)

is a split extension of

) H H ( !)«'••>•>!):«

The groups SF and PF are isomorphic divisible Abelian groups, and PF operates
faithfully and irreducibly on SF. The ring of endomorphisms induced by QF

in SF is isomorphic to F itself, so QFl ^ QFl if and only if Ft £ F2.
Now we consider Trt(Aa; 0 ^ a < p), where all Aa are Abelian torsion-free

divisible groups of countable rank and the split extensions AaAa+l are isomorphic
t o QF^ where the Fa are countable fields of real numbers which are closed under
forming (real) nth roots. By the Remark following Lemma 2, each triple
(Aa,Aa+1,Aa+2) satisfies the conditions of Lemma 2. Thus, from Lemma 8, G is
an Lp-group.

Every normal subgroup of G is complemented. For each a there is a maximal
subgroup Ta such that Ka c Ta and Ka+1Ta = G.

If p = co and, for some natural number k, we have a set of isomorphisms
sa such that

\AaAa+1) " = Aa+kAa+k+1, A/ = Aa+k, Af+1 = AlT+k + 1,

and such that sas~l x is the identity mapping onAa+1, then there is an isomorphism
s defined by

(ata2 -ary = a\"(na'2'
<:n- as

r"<r>

for a j e ^ i , mapping Trt(ylff;0 <; <r < co) = GontoTrt(^ff;fe ^ a < a>) S G/Kk,
and G is non-Hopfian. Indeed, by suitable choices for the groups QF, we can ensure
that G has precisely k isomorphism classes of non-trivial quotient groups.

On the other hand, if F t and F2 are two non-isomorphic countable fields of
real numbers closed under forming (real) nth roots, and if/ is a function defined
on the positive integers taking the values 1 and 2, we may define Gf =
TTt(Aa; 0 ^ a < co) with all Aa Abelian torsion-free divisible of countable rank and

A0A1 ^ QFl,

AaAa+1 = QFl if a is not a square, and

a+1 s eAaAa+1 s eF/(n)for<r = n2.

I f / i # / 2 > then Gfi % G/2; and G7 is not isomorphic to any of its proper
quotients, since the distribution of the fields is not periodic. So there are at least
2Ko isomorphism classes of Hopfian groups Gf, and if /(n) = 1 for infinitely
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many n, the quotient groups of Gf are mutually non-isomorphic. However there
are only 2Uo isomorphism classes of countable groups, and we conclude that
there are exactly 2No isomorphism classes of countable Hopfian torsion-free
L^-groups.

2.2 Normal subgroup lattices which are not linearly ordered. Of course,
not every torsion-free locally soluble group satisfying Min-n is an Lp-group for
some ordinal p, because any finite direct product of groups of the sort constructed
above in section 2.1 satisfies Min-n. We next suggest how two of the many possible
modifications of the construction of Lp-groups can be used to establish the exis-
tence of locally soluble torsion-free groups satisfying Min-n, none of whose non-
trivial quotients are directly decomposable or have their normal subgroups linearly
ordered by inclusion.

Let Gt — Trt(y4ff; 0 ^ a < p), where p is a limit ordinal, and where the
operation of each Aa+1 on Aa is defined in the following way: Aa is considered as
the additive group of a vector space of finite dimension na over, for example, the
field F of real algebraic numbers, and Aa+1 operates on Aa as the multiplicative
group of positive elements of F. Using Lemmas 5 and 6 for the group Pa =
Tit(AT; a g x < p) and for quotient groups of Pa by normal subgroups contained
in Ar

a", it follows that every normal subgroup of Pa is contained in or con-
tains Ap

a . The lattice ££ of normal subgroups of Gx has a sublattice

of order type p + 1, consisting of the elements comparable with all elements of
-2?; and the interval of the lattice between K°x and K^ji is isomorphic to the
lattice of subspaces of an F-space of dimension nff. Gt is locally soluble, torsion-
free and satisfies Min-n; however if na > 1 for at least one a < p, the lattice ££ of
normal subgroups of Gt is not even distributive.

Let G2 = Trt(/4ff; 0 ^ a < p), where p is a limit ordinal. We express each
group Aa as a direct product of two isomorphic factors, which we regard as the
additive groups of two non-isomorphic fields of real numbers closed under forma-
tion of (real) nth roots for all n. We let Aa+, operate on the direct factors as the
multiplicative groups of positive elements of the two corresponding fields. This
time, the lattice JSf of normal subgroups has a sublattice <9" of elements comparable
with all elements of i? , and the intervals of JS? between any two neighbouring
elements of y are isomorphic to the non-linear lattice of order 4.

2.3 Once we have constructed locally soluble groups satisfying Min-n which
do not possess central factors, it is possible to construct new ones by using wreath
products. This is a consequence of the following Lemma which is probably well
known (cf. Hall [5]; p. 425).
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LEMMA 9. Let X and Y be transitive {faithful) permutation groups, and let
W be the (permutationat) wreath product of X and Y, with base group D. If X
has no non-trivial central factors, then any normal subgroup H of W is either
of the form NY with N~&X or DM with M < 7 .

It follows in particular from Lemma 9 that the wreath product of two groups
satisfying Min-n and having no central factors has the same properties. Indeed, it
can be deduced from Lemma 9 by induction on the ordinal p that the wreath
product W = Wr(Gff; a < p) (in the sense of Hall [6], p. 175) satisfies Min-n
whenever the groups Ga (a < p) satisfy Min-n and have no non-trivial central
factors. If the groups Ga are locally soluble, so is W, and if the Gc have their nor-
mal subgroups linearly ordered by inclusion, so does W. Thus we have another
source of locally soluble groups satisfying Min-n; and in particular, using the
periodic Lm-group defined by McLain in [2], we see that there are L^-groups
with elements both of finite and infinite order.

2.4 Properly hypercentral Hirsch-Plotkin radicals. In this section we
construct torsion-free locally soluble groups G satisfying Min-n, whose normal
subgroups are linearly ordered by inclusion, and all of whose non-trivial quotient
groups have non-nilpotent hypercentral Hirsch-Plotkin radicals. We begin by
constructing a treble product T = Tr(A,B, C), with A, B and C Abelian torsion-
free divisible groups, whose normal subgroups contained in Ac are linearly
ordered by inclusion and satisfy the minimal condition, and whose Hirsch-
Plotkin radical is non-Abelian.

We take for A, B and C Abelian torsion-free divisible groups of countable
rank, and consider A as a vector space of countable dimension over a countable
field f of real numbers closed under the formation of the (real) nth roots of positive
elements for all natural numbers n. Let e0, eu ••• be a f-basis of A, and let Et be
the I-subspace generated by e0, ••-,£;. We write B as a direct product Fo x F+

of two divisible groups of countable rank, and let one of them, F+, operate on
A as the group of scalar multiplications by positive elements of I. Thus the sub-
groups of A invariant under F+ are just the f-subspaces of A.

Let us denote by r\ the l-linear mapping of A which maps ei onto e(_ 1 for i > 0
and e0 onto the zero vector. We choose a subfield h of f (not necessarily closed
under taking roots) whose additive group is isomorphic to that of f. For each
weh we define £(w) by the formal power series for (1 + rf)w:

= | w ( w - l ) - . . ( w - n + l)
n=0 1 • 2 • • • • «

Because n is a locally nilpotent endomorphism of A, the £(w) are all well defined
Minear mappings of A. Furthermore we have £(kw) = (£(w))* for all integers k,
and ^(w!)^(w2) = ^(yv1 + w2) for all wuw2sfy. Therefore the set L of all linear
mappings {(w) is an Abelian torsion-free divisible group of automorphisms of A
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and has countable rank. We choose an isomorphism of F o and L, and use it to
define the operation of F o on A. The automorphisms of A induced by F + and Fo

centralize each other; we may therefore consider B = F o x F + as operating on
A, and form the split extension of A by B. It is then easy to verify that

(a) the non-trivial normal subgroups of AB are just the subgroups £, and
the subgroups containing A,

(b) AF0 is hypercentral, and £,_ j is the ith term of its upper central series;
further AF0 is the Hirsch-Plotkin radical of AB,

(c) ABjEt is isomorphic to AB for each i, and
(d) if a e A and a$E0, then the centralizer of a in ABis A; if a e A and a$E,,

then [b, a] 4 Eo for all b # 1 of B.

We take an element y e Euy $ Eo. Then [y, Fo] is a subgroup of Eo isomorphic
to the additive group of h, and the normalizer P of [}\F0] m ^+ ' s s u c n t n a t

[>•, F0~\P is isomorphic to Q^ as defined in section 2.1. Since there are 2Xo non-
isomorphic subfields h of t with additive group isomorphic to that of I, there are
2Xo isomorphism classes for the extensions AB.

It remains to define the action of C on B. This we may do by requiring that
BC be isomorphic to AB under an isomorphism / : AB -* BC such that

Af = B, E{ = FO and Bf = C,

and such that E{does not contain the element xeB which satisfies a~2x~lax =1
for all aeA. Then we may use Lemma 4, together with the Remark after Lemma 2,
to deduce that E% is contained in every non-trivial normal subgroup of T =
Tr(A, B, C). Because Tx{A, B, C) and Tr(A/Et, B, C) are isomorphic under the map
which acts as the identity on BC and maps e,- onto the coset £jej+J + 1 for each j ,
it follows furthermore that every non-trivial normal subgroup of T either is one
of the subgroups Ef or contains Ac.

We now use the group T as the starting point for the construction of a treble
product tower

G = Trt(Ak; 0 g k < to).

We take for all of the Ak Abelian torsion-free divisible groups, and for each k,
two subgroups Ak,0 and AkA satisfying

Ak,o <= A,i and AkjAkl £ AkAjAkt0 s Ak0.
We set

Ao = A, AOi = Et for i = 0,1,

Al = B, Al0 = FQ and A2 = C.

We let the operation of B on A, the operation of C on B, and the isomorphism
/ = / 0 be as already defined with AU1 = A{>tl. For fe ^ 0, the split extension
of Ak+1 by Ak+2 is taken isomorphic to the split extension of Ak by Ak+1 under an
isomorphism fk such that
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Afk _ A Afk _ A
Ak ~ Ak+i> -^it.o ~ sik + i o>

Afk _ A Afk _ A
Ak,l — Ak+l.li Ak+1 — Ak + 2>

and such that the element xk+l of Ak+l which squares each element of Ak is not
contained in {AklY".

By Lemma 7, 040,o)G is contained in every non-trivial normal subgroup of G.
For each i, G and lxt{AojAOMAk; 1 ̂  k < co) = G/(AOyi)

G are isomorphic
under a map which fixes Trt(/4k; 1 ^ /c < co) elementwise and maps -40jJ- onto
^40<i+j+ilA0 ,-for all; , and it follows that every non-trivial normal subgroup of T
either is a subgroup A°t or contains A%. The same argument applied to the groups
G/K° or their isomorphic images Trt(Ak; n ̂  k < co) shows that the normal
subgroups of G are linearly ordered, of order type co2 + 1. The Hirsch-Plotkin
radical of G is properly contained in (A0Altl)

a, and so coincides with (^4Oi4liO)G,
which is hypercentral with upper central height a> + 1. If N is a proper normal
subgroup, satisfying X G £ N c XG

+1, then G/N s TrtOl*; n^k<co). This shows
that the Hirsch-Plotkin radical of every non-trivial quotient group of G is hyper-
central with upper central height co + 1. Further, since G is a union of soluble
normal subgroups, G is locally soluble.

If we now assume that the isomorphisms fk are so chosen that/^C/^ + i ) " 1 is
the identity map on Ak+1 for each k ^ 0, then the maps/* : Ak-> Ak+1 extend to
an isomorphism/from G to Trt(Ak; I ^ k < co); a n d / " is an isomorphism of G
and Trt(/4t; w ^ k < co), which is isomorphic to G/KG. Since we have already
remarked that all of the non-trivial quotient groups GjA°ti are isomorphic to G,
it follows that G is isomorphic to all of its non-trivial quotients.

The group G thus constructed is of course countable. We have already re-
marked that there are 2Ko possible isomorphism classes for the split extension
AOAU and since non-isomorphic groups A0At give rise to non-isomorphic treble
product towers, it follows that there are (exactly) 2K° mutually non-isomorphic
choices for G.

We mention one further property of G. It is clear that all of the subgroups
XG are complemented in G; however none of the other subgroups (KnAn+i ;)

G

is complemented, since otherwise An+li would be complemented in An+1An+2,
which is not the case. Thus in each quotient the minimal normal subgroup is not
complemented, and G has no maximal subgroups.

3. Characteristically simple groups

Our remarks about characteristically simple groups stem from the following

LEMMA 10. Let G be a group whose normal subgroups are linearly ordered
by inclusion. If there is an isomorphism sfrom G onto a subgroup H, and ifH is
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complemented in G by a subgroup N<iG such that G = (N,N*,Ns2, •••,>,
then G may be embedded in a characteristically simple group G whose normal
subgroups are linearly ordered by inclusion, in such a way that G is com-
plemented inG by a subgroup C<iG.

If £1 is the linearly ordered set of all K < G with K c N, then the order
type of the set of proper non-trivial normal subgroups ofG is Z x il, where Z
denotes the set of integers with its natural order and where the Cartesian product
Z x £2 is lexicographically ordered.

PROOF. We write No = N, and for each integer k > 0 we take a group Nk

isomorphic to N and an isomorphism tk of Nk onto Nk-1. Let H = G_t. Begin-
ning with G = Go and s = s0, we construct inductively an ascending sequence
Gk (k ^ 0) of groups and a sequence sk (k ^ 0) of isomorphisms of Gk onto Gfc_t

such that Gk is a split extension of Nk by Gk-l and such that the restriction of sk

to Gfc-! is st_x for each k > 0. Suppose the sequences defined as far as Gk and sk;
we define Gk+l to be the split extension of Nk+l by Gk, where the operation of
Gk on Nk + 1 is defined by

9~lng = dg-1ykn'k*'gSl')'^+')"

for all g in Gk and n in Nk +1. It is then easy to see that the map sk+l defined by

1 = n'k+'gSk (neNk+l,g eGk)

is an isomorphism of Gk+1 onto Gk whose restriction to Gk is sk. Thus the G£s and
s'ks may be defined for all k. We write G for the union of the groups Gk and t for the
automorphism of<5 whose restriction to Gk is sk for each fc.

Suppose now that U and F are distinct normal subgroups oiG; then U t~\Gk

+ V nGk for some k. We assume U n Gk $ F n Gfc. Then (7 n Gm $ F n Gm

for all m ^ A:; and since these intersections are normal subgroups of Gm, which is
isomorphic to G, we have V HGm c U n Gm. So

F = U{F n Gm; m ^ fc} s U{C/ n G , ; r a a ) = U.

It follows that the normal subgroups of G are linearly ordered.
We define C = <iV1; N2, •••>. Then C is a normal subgroup ofG which com-

plements G in (5. For each integer k, we write Ck = C('k). Then

G = U{Cfc; k ^ 0} and 1 = f]{Ck; k < 0}.

Thus if J? is a non-trivial proper normal subgroup of G, we cannot have R c Ck

for every integer k or Ckcz R for every fc. Hence there is a least m satisfying R <= Cm,
and we have

Since
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RcCm = <£_! s R',

R cannot be a characteristic subgroup of G, and it follows thatG is characteristically
simple. Because Cm = C ^ A T , we have R = C^^N'"" nR), and N'"nR is
a normal subgroup of G'". The map

is easily verified to be a 1-1 order preserving correspondence of the set of proper
non-trivial normal subgroups of G and Z x Si. This concludes the proof of
Lemma 10.

In a natural extension of the notation of section 2.1, we call a group an Ln-
group if it is locally soluble and if Q is the order type of its set of proper non-trivial
normal subgroups. Applying Lemma 10 with G one of the L^-groups isomorphic
to every non-trivial quotient group constructed in section 2.1, we obtain a torsion-
free characteristically simple Lz-group G. Since every normal subgroup of G has a
complement, G has many maximal subgroups, the subgroups G((i)C(''+1) in the
notation of the Lemma for instance. We may also apply Lemma 10 with G one of
the torsion-free LW2-groups isomorphic to every non-trivial quotient constructed
in section 2.4. We deduce that there are torsion-free LZxo)-groups, all of whose
proper non-trivial quotient groups are isomorphic and have non-nilpotent hyper-
central Hirsch-Plotkin radicals.

An example of a periodic characteristically simple Lz-group may be con-
structed by Lemma 10, using the periodic LM-group M described by McLain in [2].

A different approach to characteristically simple groups is provided by the
wreath powers of Hall [6]. A linearly ordered set SI is called irreducible if, for all
x and y in Cl with x < y, there is an order automorphism 0 of SI such that y < x 6.
This implies in particular that SI has neither a greatest nor a least element. In
Theorem D of [6], Hall proved that the derived group W of the wreath power

W = WrSn

of a group S over a linearly ordered set SI is characteristically simple, provided
only that SI is irreducible. If S is an Ls-group with no non-trivial central factors,
it follows readily using Lemma 9 that W is an L n x ( 1 +Z)-group with no non-trivial
central factors, and since S must be perfect, we have further that W = W.
Thus, once we have constructed locally soluble groups with no non-trivial central
factors, we may construct characteristically simple such groups. Taking for SI the
set of integers and for 5 the wreath product G iMof a torsion-free L^-group G
and the periodic Lm-group M mentioned above, we obtain a characteristically
simple LZxo)-group with elements of both finite and infinite order.
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