
CHAPTER 1 Introduction

This chapter introduces informally the concepts and technical material developed in
the rest of the book. It discusses in particular the notion of deliberation, which is at the
core of the interaction between planning and acting. Section 1.1 motivates our study
of deliberation from a computational viewpoint and delineates the scope of the book.
We then introduce a conceptual view of an artificial entity, called an actor, capable of
acting deliberately on its environment, and discuss our main assumptions.Deliberation
models and functions are presented next. Section 1.4 describes two application domains
that will be simplified into illustrative examples of the techniques covered in rest of the
book.

1.1 PURPOSE ANDMOTIVATIONS

1.1.1 First Intuition

What is deliberative acting? That is the questionwe are studying in this book.We address
it by investigating the computational reasoning principles and mechanisms supporting
how to choose and perform actions.

We use the word action to refer to something that an agent does, such as exert-
ing a force, a motion, a perception or a communication, in order to make a change in
its environment and own state. An agent is any entity capable of interacting with its
environment. An agent acting deliberately is motivated by some intended objective. It
performs one or several actions that are justifiable by sound reasoning with respect to
this objective.

Deliberation for acting consists of deciding which actions to undertake and how to
perform them to achieve an objective. It refers to a reasoning process, both before and
during acting, that addresses questions such as the following:

� If an agent performs an action, what will the result be?
� Which actions should an agent undertake,and how should the agent perform the chosen
actions to produce a desired effect?
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2 Introduction

Such reasoning allows the agent to predict, to decide what to do and how do it, and
to combine several actions that contribute jointly to the objective. The reasoning con-
sists in using predictive models of the agent’s environment and capabilities to simulate
what will happen if the agent performs an action.Let us illustrate these abstract notions
intuitively.

Example 1.1. Consider a bird in the following three scenes:

� To visually track a target, the bird moves its eyes, head, and body.
� To get some food that is out of reach, the bird takes a wire rod, finds a wedge to bend
the wire into a hook, uses the hook to get the food.

� To reach a worm floating in a pitcher, the bird picks up a stone and drops it into the
pitcher, repeats with other stones until the water has risen to a reachable level, and then
picks up the worm.

Example 1.1 mentions actions such as moving, sensing, picking, bending and throw-
ing.The first scene illustrates a precise coordination of motion and sensing that is called
visual servoing.This set of coordinated actions is certainly purposeful: it aims at keeping
the target in the field of view. But it is more reactive than deliberative. The other two
scenes are significantly more elaborate: they demand reasoning about causal relations
among interdependent actions that transform objects, and the use of these actions to
achieve an objective. They illustrate our intuitive notion of acting deliberately.

Themechanisms for acting deliberately have always been of interest to philosophy.1

They are a subject of intense research in several scientific disciplines, including biol-
ogy, neuroscience, psychology, and cognitive sciences. The deliberative bird behaviors
of Example 1.1 have been observed and studied from the viewpoint of how deliberative
capabilities are developed, in species of corvids such as crows [597] or rooks [71, 70].
Numerous other animal species have the ability to simulate their actions and deliber-
ate on the basis of such simulations.2 The sophisticated human deliberation faculties
are the topic of numerous research, in particular regarding their development in infants
and babies, starting from the work of Piaget (as in [478, 479]) to the recent diversity of
more formal psychology models (e.g., [563, 19, 461]).

We are interested here in the study of computational deliberation capabilities that
allow an artificial agent to reason about its actions, choose them, organize them pur-
posefully, and act deliberately to achieve an objective. We call this artificial agent an
actor. This is to underline the acting functions on which we are focusing and to differen-
tiate them from the broader meaning of the word “agent.”We consider physical actors
such as robots, as well as abstract actors that act in simulated or virtual environments,
for example, through graphic animation or electronic Web transactions. For both kinds
of actors, sensory-motor functions designate in a broad sense the low-level functions
that implement the execution of actions.

1 In particular, the branch of philosophy called action theory, which explores questions such as, “What is left
over if I subtract the fact that my arm goes up from the fact that I raise my arm?” [610].

2 In the interesting classification of Dennett [150], these species are called Popperian, in reference to the
epistemologist Karl Popper.
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1.1 Purpose and Motivations 3

1.1.2 Motivations

We address the issue of how an actor acts deliberately by following the approaches and
methods of artificial intelligence (AI).Our purpose proceeds from the usual motivations
of AI research, namely:

� To understand, through effective formal models, the cognitive capabilities that corre-
spond to acting deliberately.

� To build actors that exhibit these capabilities.
� To develop technologies that address socially useful needs.

Understanding deliberation is an objective formost cognitive sciences.The specifics
of AI are to model deliberation through computational approaches that allow us to
explain as well as to generate the modeled capabilities. Furthermore, the investigated
capabilities are better understood by mapping concepts and theories into designed sys-
tems and experiments to test empirically, measure, and qualify the proposed models.
The technological motivation for endowing an artificial actor with deliberation capabil-
ities stems from two factors:

� autonomy – that is, the actor performs its intended functionswithout being directly oper-
ated by a person and

� diversity in the tasks it can perform and the environments in which it can operate.

Without autonomy,a directly operated or teleoperated device does not usually need
to deliberate. It simply extends the acting and sensing capabilities of a human operator
who is in charge of understanding and decision making, possibly with the support of
advice and planning tools, for example, as in surgical robotics and other applications of
teleoperation.

An autonomous system may not need deliberation if it operates only in the
fully specified environment for which it has been designed. Manufacturing robots
autonomously perform tasks such as painting, welding, assembling, or servicing a ware-
house without much deliberation. Similarly, a vending machine or a driverless train
operates autonomously without a need for deliberation. For these and similar examples
of automation, deliberation is performed by the designer. The system and its environ-
ment are engineered so that the only variations that can occur are those accounted for at
the design stage in the system’s predefined functioning envelope. Diversity in the envi-
ronment is not expected. A state outside of the functioning envelope puts the system
into a failure mode in which a person takes deliberate actions.

Similarly, a device designed for a unique specialized task may perform it
autonomously without much deliberation, as long the variations in its environment are
within its designed range. For example, a vacuum-cleaning or lawn-mowing robot does
not deliberate yet can cope autonomously with its specialized tasks in a reasonable
range of lawns or floors.But it may cease to function properly when it encounters a slip-
pery floor, a steep slope, or any condition outside of the range for which it was designed.

When a designer can account,within some functioning envelope, for all the environ-
ments and tasks a system will face and when a person can be in charge of deliberating
outside of this envelope,bymeans of teleoperation or reprogramming, then deliberation
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generally is not needed in the system itself. Such a systemwill be endowed with a library
of reactive behaviors (e.g., as the bird’s visual target tracking in Example 1.1) that cover
efficiently its functioning envelope. However, when an autonomous actor has to face a
diversity of tasks, environments and interactions, then achieving its purpose will require
some degree of deliberation. This is the case in many robotics applications, such as ser-
vice and personal robots, rescue and exploration robots, autonomous space stations and
satellites, or even driverless cars. This holds also for complex simulation systems used
in entertainment (e.g., video games) or educational applications (serious games). It is
equally applicable tomany control systems thatmanage complex infrastructures such as
industrial or energy plants, transportation networks, and urban facilities (smart cities).

Autonomy, diversity in tasks and environments, and the need for deliberation are
not binary properties that are either true or false.Rather, the higher the need for auton-
omy and diversity, the higher the need for deliberation.This relationship is not restricted
to artificial systems. Numerous natural species (plants and some invertebrates such as
sponges or worms) have been able to evolve to fit into stable ecological niches, appar-
ently withoutmuch deliberation.Species that had to face rapid changes in their environ-
ment and to adapt to a wide range of living conditions had to developmore deliberation
capabilities.

1.1.3 Focus and Scope

We address deliberation from an AI viewpoint. Our focus is on the reasoning functions
required for acting deliberately. This focus involves two restrictions:

� We are not interested in actions that consists solely of internal computations, such as
adding “2 + 3”or deducing that “Socrates ismortal.”These computations are not actions
that change the state of the world.3 They can be used as part of the actor’s deliberation,
but we take them as granted and outside of our scope.

� We are not concerned with techniques for designing the sensing, actuation, and sensory-
motor control needed for the low-level execution of actions.Sensory-motor control (e.g.,
the visual servoing of Example 1.1) can be essential for acting, but its study is not within
our scope.We assume that actions are performed with a set of primitives, which we will
call commands, that implement sensory-motor control.The actor performs its actions by
executing commands. To deliberate, it relies on models of how these commands work.

The scope of this book is not limited to the most studied deliberation function,
which is planningwhat actions to perform.Planning consists in choosing and organizing
the actions that can achieve a given objective. In many situations, there is not much
need for planning: the actions to perform are known. But there is a need for significant
deliberation in deciding how to perform each action, given the context and changes in
the environment. We develop the view that planning can be needed for deliberation
but is seldom sufficient. We argue that acting goes beyond the execution of low-level
commands.

3 The borderline between computational operations and actions that change the external world is not as
sharp for an abstract actor as for a physical one.
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Example 1.2. Dana finishes breakfast in a hotel restaurant, and starts going back to his
room.On the way, he notices that the elevator is not on his floor and decides to walk up
the stairs. After a few steps he becomes aware that he doesn’t have his room key, which
he left on the breakfast table. He goes back to pick it up.

In this example, the actor does not need to plan the simple task of going to his room.
He continually deliberates while acting: he makes opportunistic choices, simulates in
advance and monitors his actions, stops when needed and decides on alternate actions.

Deliberation consists of reasoning with predictive models as well as acquiring these
models.An actor may have to learn how to adapt to new situations and tasks, as much as
to use the models it knows about for its decision making. Further, even if a problem can
be addressed with the actor’s generic models, it can be more efficient to transform the
explicit computations with these models into low-level sensory-motor functions.Hence,
it is natural to consider learning to act as a deliberation function.Section 7.3 offers a brief
survey on learning and model acquisition for planning and acting. However, our focus
is on deliberation techniques using predefined models.

1.2 CONCEPTUAL VIEW OF AN ACTOR

1.2.1 A Simple Architecture

An actor interacts with the external environment and with other actors. In a simpli-
fied architecture, depicted in Figure 1.1(a), the actor has two main components: a set of
deliberation functions and an execution platform.

The actor’s sensory-motor functions are part of its execution platform. They trans-
form the actor’s commands into actuations that execute its actions (e.g., the movement
of a limb or a virtual character). The execution platform also transforms sensed signals
into features of the world (e.g., to recognize a physical or virtual object, or to query
information from the Web). The capabilities of the platform are explicitly described as
models of the available commands.

Deliberation 
functions

Execution platform

Commands Percepts

Other  
actors

Objectives

Messages

External World

SignalsActuations

(a)

Execution platform

Commands Percepts

Other  
actors

Objectives
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External World

SignalsActuations

Acting

Planning
Queries

Plans

(b)

Figure 1.1. Conceptual view of an actor (a); its restriction to planning and acting (b).
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6 Introduction

Deliberation functions implement the reasoning needed to choose, organize, and
perform actions that achieve the actor’s objectives, to react adequately to changes in the
environment, and to interact with other actors, including human operators. To choose
and execute commands that ultimately achieve its objectives, the actor needs to per-
form a number of deliberation functions. For example, the actor must commit to inter-
mediate goals, plan for those goals, refine each planned action into commands, react
to events, monitor its activities to compare the predicted and observed changes, and
decide whether recovery actions are needed. These deliberation functions are depicted
in Figure 1.1(b) as two main components: planning and acting. The acting component is
in charge of refining actions into commands, reacting to events, and monitoring.

1.2.2 Hierarchical and Continual Online Deliberation

The view presented in Section 1.2.1 can be a convenient first approach for describing an
actor, but one must keep in mind that it is an oversimplification.

Example 1.3. To respond to a user’s request, a robot has to bring an object o7 to a
location room2 (see Figure 1.2). To do that, it plans a sequence of abstract actions such
as “navigate to,” “fetch,” and “deliver.”One of these refines into “move to door,” “open
door,” “get out,” and “close door.” Once the robot is at the door, it refines the “open
door” action appropriately for how it perceives that particular door.

The robot’s deliberation can be accomplished by a collection of hierarchically orga-
nized components. In such a hierarchy, a component receives tasks from the component
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Figure 1.2. Multiple levels of abstraction in deliberative acting. Each solid arrow indicates a refinement of an
abstract action into more concrete ones. Each dashed arrow maps a task into a plan of actions.
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1.2 Conceptual View of an Actor 7

above it, and decides what activities need to be performed to carry out those tasks. Per-
forming a task may involve refining it into lower-level steps, issuing subtasks to other
components below it in the hierarchy, issuing commands to be executed by the platform,
and reporting to the component that issued the task. In general, tasks in different parts
of the hierarchymay involve concurrent use of different types of models and specialized
reasoning functions.

This example illustrates two important principles of deliberation: hierarchical orga-
nization and continual online processing.

� Hierarchically organized deliberation. Some of the actions the actor wishes to perform
do not map directly into a command executable by its platform. An action may need
further refinement and planning. This is done online and may require different repre-
sentations, tools, and techniques from the ones that generated the task. A hierarchized
deliberation process is not intended solely to reduce the search complexity of offline
plan synthesis. It is needed mainly to address the heterogeneous nature of the actions
about which the actor is deliberating, and the corresponding heterogeneous represen-
tations and models that such deliberations require.

� Continual online deliberation.Only in exceptional circumstances will the actor do all of
its deliberation offline before executing any of its planned actions. Instead, the actor gen-
erally deliberates at runtime about how to carry out the tasks it is currently performing.
The deliberation remains partial until the actor reaches its objective, including through
flexible modification of its plans and retrials. The actor’s predictive models are often
limited. Its capability to acquire and maintain a broad knowledge about the current
state of its environment is very restricted. The cost of minor mistakes and retrials are
often lower than the cost of extensive modeling, information gathering, and thorough
deliberation. Throughout the acting process, the actor refines and monitors its actions;
reacts to events; and extends, updates, and repairs its plan on the basis of its perception
focused on the relevant part of the environment.

Different parts of the actor’s hierarchy often use different representations of the
state of the actor and its environment. These representations may correspond to differ-
ent amounts of detail in the description of the state and different mathematical con-
structs. In Figure 1.2, a graph of discrete locations may be used at the upper levels, while
the lower levels may use vectors of continuous configuration variables for the robot
limbs.

Finally, because complex deliberations can be compiled down by learning into low-
level commands, the frontier between deliberation functions and the execution platform
is not rigid; it evolves with the actor’s experience.

1.2.3 Assumptions

We are not seeking knowledge representation and reasoning approaches that are effec-
tive across every kind of deliberation problem and at every level of a hierarchically
organized actor.Neither are we interested in highly specialized actors tailored for a sin-
gle niche, because deliberation is about facing diversity. Instead,we are proposing a few
generic approaches that can be adapted to different classes of environments and, for a
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given actor, to different levels of its deliberation. These approaches rely on restrictive
assumptions that are needed from a computational viewpoint, and that are acceptable
for the class of environments and tasks in which we are interested.

Deliberation assumptions are usually about how variable, dynamic, observable, and
predictable the environment is, and what the actor knows and perceives about it while
acting. We can classify them into assumptions related to the dynamics of the environ-
ment, its observability, the uncertainty managed in models, and how time and concur-
rency are handled.

� Dynamics of the environment.An actor may assume to be in a static world except for its
own actions,or itmay take into account exogenous events and changes that are expected
and/or observed. In both cases the dynamics of the world may be described using dis-
crete, continuous or hybridmodels.Of these,hybridmodels are themost general.Acting
necessarily involves discontinuities in the interaction with the environment,4 and these
are best modeled discretely.But a purely discrete model abstracts away continuous pro-
cesses that may also need to be modeled.

� Observability of the environment. It is seldom the case that all the information needed
for deliberation is permanently known to the actor. Some facts or parameters may be
always known, others may be observable if specific sensing actions are performed, and
others will remain hidden.The actor may have to act on the basis of reasonable assump-
tions or beliefs regarding the latter.

� Uncertainty in knowledge and predictions. No actor is omniscient. It may or may not be
able to extend its knowledge with specific actions. It may or may not be able to reason
about the uncertainty regarding the current state of the world and the predicted future
(e.g., with nondeterministic or probabilistic models).Abstracting away uncertainty dur-
ing a high-level deliberation can be legitimate if the actor can handle it at a lower level
and correct its course of action when needed.

� Time and concurrency. Every action consumes time. But deliberation may or may not
need to model it explicitly and reason about its flow for the purpose of meeting dead-
lines, synchronizing, or handling concurrent activities.

Different chapters of the bookmake different assumptions about time,concurrency,
and uncertainty. Except for Section 7.4 on hybrid models, we’ll restrict ourself to dis-
crete approaches. This is consistent with the focus and scope discussed in Section 1.1.3,
because it is primarily in sensory-motor functions and commands that continuous mod-
els are systematically needed.

1.3 DELIBERATIONMODELS AND FUNCTIONS

1.3.1 Descriptive and Operational Models of Actions

An actor needs predictive models of its actions to decide what actions to do and how
to do them. These two types of knowledge are expressed with, respectively, descriptive
and operational models.

4 Think of the phases in a walking or grasping action.
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1.3 Deliberation Models and Functions 9

� Descriptivemodels of actions specify the actor’s “knowwhat.”They describewhich state
or set of possible states may result from performing an action or command. They are
used by the actor to reason about what actions may achieve its objectives.

� Operational models of actions specify the actor’s “know how.” They describe how to
perform an action, that is, what commands to execute in the current context, and how
organize them to achieve the action’s intended effects. The actor relies on operational
models to perform the actions that it has decided to perform.

In general, descriptive models are more abstract than operational models.Descrip-
tivemodels abstract away the details, and focus on themain effects of an action; they are
useful at higher levels of a deliberation hierarchy. This abstraction is needed because
often it is too difficult to develop very detailed predictive models, and because detailed
models require information that is unknown at planning time. Furthermore, reasoning
with detailed models is computationally very complex. For example, if you plan to take
a book from a bookshelf, at planning time you will not be concerned with the available
space on the side or on the top of the book to insert your fingers and extract the book
from the shelf. The descriptive model of the action will abstract away these details. It
will focus on where the book is, whether it is within your reach, and whether you have
a free hand to pick it up.

The simplifications allowed in a descriptivemodel are not possible in an operational
model. To actually pick up the book, you will have to determine precisely where the
book is located in the shelf, which positions of your hand and fingers are feasible, and
which sequences of precise motions and manipulations will allow you to perform the
action.

Furthermore, operational models may need to include ways to respond to exoge-
nous events, that is, events that occur because of external factors beyond the actor’s
control. For example, someone might be standing in front of the bookshelf, the stool
that you intended to use to reach the book on a high shelf might be missing, or any of a
potentially huge number of other possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty caused by
exogenous events, for example, through nondeterministic or probabilistic models (see
Chapters 5 and 6), but the need to handle exogenous events is much more compelling
for operational models. Indeed, exogenous events are often ignored in descriptive mod-
els because it is impractical to try to model all of the possible joint effects of actions
and exogenous events, or to plan in advance for all of the contingencies. But opera-
tional models must have ways to respond to such events if they happen because they
can interfere with the execution of an action. In the library example, you might need to
ask someone to move out of the way, or you might have to stand on a chair instead of
the missing stool.

Finally, an actor needs descriptive models of the available commands in order to
use them effectively, but in general it does not need their operational models. Indeed,
commands are the lower-level sensory-motor primitives embedded in the execution
platform; their operational models correspond to what is implemented in these prim-
itives. Taking this remark to the extreme, if one assumes that every known action
corresponds to an executable command, then all operational models are embedded
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in the execution platform and can be ignored at the deliberation level. This assump-
tion seldom holds.

1.3.2 Description of States for Deliberation

To specify both descriptive and operational models of actions, we will use representa-
tional primitives that define the state of an actor and its environment; these are called
state variables. A state variable associates a value, which changes over time, to a rele-
vant attribute of the world.The definition of a state with state variables needs to include
enough details for the actor’s deliberations, but it does not need to be, nor can it be,
exhaustive.

In a hierarchically organized actor, different deliberative activities may need dif-
ferent amounts of detail in the state description. For example, in actions such as “grasp
knob”and “turn knob”at the bottomof Figure 1.2, to choose the commands for grasping
the handle and operating it, the actor needs to reason about detailed parameters such
as the robot’s configuration coordinates and the position and shape of the door handle.
Higher up, where the actor refines “bring o7 to room2” into actions such as “go to hall-
way” and “navigate to room1,” such details are not needed. It is more convenient there
to reason about the values of more abstract variables, such as location(robot) = room1
or position(door) = closed. To establish correspondences between these abstract vari-
ables and the detailed ones, the actor could have definitions saying, for example, that
location(robot) = room1 corresponds to a particular area in an Euclidean reference
frame.

The precise organization of a hierarchy of data structures and state representations
is a well-known area in computer science (e.g., [522]). It may take different forms in
application domains such as robotics, virtual reality, or geographic information systems.
Here,we’ll keep this point as simple as possible and assume that at each part of an actor’s
deliberation hierarchy, the state representation includes not only the variables used in
that part of the hierarchy (e.g., the robot’s configuration coordinates at the bottom of
Figure 1.2), but also the variables used higher up in the hierarchy (e.g., location(robot)).

An important issue is the distinction and correspondence between predicted states
and observed states. When an actor reasons about what might happen and simulates
changes of state to assess how desirable a course of action is, it uses predicted states.
When it reasons about how to perform actions in some context, it relies on observed
states; it may contrast its observations with its expectations. Predicted states are in gen-
eral less detailed than the observed one; they are obtained as a result of one or several
predictions starting from an abstraction of the current observed state. To keep the dis-
tinction clear, we’ll use different notations:

� s ∈ S is a predicted state;
� ξ ∈ � is an observed state.

Because of partial and inaccurate observations, there can be uncertainty about the
present observed state as well as about the future predicted states.Furthermore, informa-
tion in a dynamic environment is ephemeral.Some of the values in ξ may be out-of-date:
they may refer to things that the actor previously observed but that it cannot currently
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observe. Thus, ξ is the state of the actor’s knowledge, rather than the true state of the
world. In general, the actor should be endowed with appropriate means to manage the
uncertainty and temporality of the data in ξ .

Observability is an additional issue. As underlined in Section 1.2.3, some informa-
tion relevant to the actor’s behavior can be momentarily or permanently hidden; it has
to be indirectly inferred. In the general case, the design of an actor should include the
following distinctions among state variables:

� Avariable is invisible if it is not observable but can only be estimated from observations
and a priori information.

� A variable is observable if its value can be obtained by performing appropriate actions.
At various points, it may be either visible if its value is known to the actor, or hidden if
the actor must perform an observation action to get its value.

For simplicity, we’ll start out by assuming that the values of all state variables are
precisely known at every moment while acting. Later in the book, we’ll consider more
realistically that some state variables are observable but can only be observed by per-
forming some specific actions. InChapter 5,we deal with a specific case of partial observ-
ability: in Section 5.8.4, we transform a partially observable domain into an abstracted
domain whose states are sets of states.We also examine (in Chapter 6) the case in which
some state variables are permanently or momentarily observable but others remain
hidden. The class of models known as partially observable models, in which every state
variable is assumed to be always known or always hidden, is discussed in Section 6.8.3.

1.3.3 Planning Versus Acting

The simple architecture of Figure 1.1(b) introduces planning and acting as respectively
finding what actions to perform and how to refine chosen actions into commands.Here,
we further discuss these two functions, how they differ, and how they can be associated
in the actor’s deliberation.

The purpose of planning is to synthesize an organized set of actions to carry out
some activity. For instance, this can be done by a lookahead procedure that combines
prediction steps (Figure 1.3: when in state s, action a is predicted to produce state s′)
within a search through alternative sets of actions for a set that leads to a desired goal
state.

Planning problems vary in the kinds of actions to be planned for, the kinds of pre-
dictive models that are needed, and the kinds of plans that are considered satisfactory.

s s′
Predict

Search

a
Figure 1.3. Planning as a combination of prediction steps
and a search mechanism.
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For some kinds of problems, domain-specific planning methods have been developed
that are tailor-made for that kind of problem. For instance, motion planning synthe-
sizes a geometric and kinematic trajectory for moving a mobile system (e.g., a truck, a
robot, or a virtual character); perception planning synthesizes an organized set of sens-
ing and interpretation actions to recognize an object or to build a three-dimensional
model of a scene; infrastructure planning synthesizes plans to deploy and organize facil-
ities, such as a public transportation infrastructure, to optimize their usage or to meet
the needs of a community. Many other such examples can be given, such as flight navi-
gation planning, satellite configuration planning, logistics planning,or industrial process
planning.

There are, however, commonalities to many forms of planning. Domain-
independent planning tries to grasp these commonalities at an abstract level, in which
actions are generic state transformation operators over a widely applicable representa-
tion of states as relations among objects.

Domain-independent and domain-specific planning complement each other. In a
hierarchically organized actor, planning takes place at multiple levels of the hierar-
chy. At high levels, abstract descriptions of a problem can be tackled using domain-
independent planning techniques. The example shown in Figure 1.2 may require a path
planner (for moving to locations), a manipulation planner (for grasping the door han-
dle), and a domain-independent planner at the higher levels of the hierarchy.

Acting involves deciding how to perform the chosen actions (with or without the
help of a planner) while reacting to the context in which the activity takes place. Each
action is considered as an abstract task to be refined, given the current context, pro-
gressively into more concrete actions or commands.Whereas planning is a search over
predicted states, acting requires a continual assessment of the current state ξ , to con-
trast it with a predicted state s and adapt accordingly.Consequently, acting also includes
reacting to unexpected changes and exogenous events, which are independent from the
actor’s activity.

The techniques used in planning and acting can be compared as follows. Planning
can be organized as an open-loop search, whereas acting needs to be a closed-loop pro-
cess. Planning relies on descriptive models (know-what); acting uses mostly operational
models (know-how). Domain-independent planners can be developed to take advan-
tage of commonalities among different forms of planning problems, but this is less true
for acting systems, which require more domain-specific programming.

The relationship between planning and acting is more complex than a simple linear
sequence of “plan then act.”Seeking a complete plan before starting to act is not always
feasible, and not always needed. It is feasible when the environment is predictable and
well modeled, for example, as for a manufacturing production line. It is needed when
acting has a high cost or risk, and when actions are not reversible. Often in such appli-
cations, the designer has to engineer out the environment to reduce diversity as much
as possible beyond what is modeled and can be predicted.

In dynamic environments where exogenous events can take place and are difficult
to model and predict beforehand, plans should be expected to fail if carried out blindly
until the end. Their first steps are usually more reliable than the rest and steer toward
the objectives. Plan modification and replanning are normal and should be embedded
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Planning stage
Acting stage

Figure 1.4. Receding horizon scheme for planning and acting.

in the design of an actor. Metaphorically, planning is useful to shed light on the road
ahead, not to lay an iron rail all the way to the goal.

The interplay between acting and planning can be organized inmany ways, depend-
ing on how easy it is to plan and how quickly the environment changes. A general
paradigm is the receding horizon scheme, which is illustrated in Figure 1.4. It consists of
repeating the two following steps until the actor has accomplished its goal:

(i) Plan from the current state toward the goal, but not necessarily all the way to the goal.
(ii) Act by refining one or a few actions of the synthesized plan into commands to be exe-

cuted.

A receding horizon approach can be implemented in many ways. Options include
various planning horizon, number of actions to perform at each planning stage, and
what triggers replanning. Furthermore, the planning and acting procedures can be run
either sequentially or in parallel with synchronization.

Suppose an actor does a depth-first refinement of the hierarchy in Figure 1.2.
Depending on the actor’s planning horizon, it may execute each command as soon as
one is planned or wait until the planning proceeds a bit farther.Recall from Section 1.3.2
that the observed state ξ may differ from the predicted one. Furthermore, ξ may evolve
even when no commands are being executed. Such situations may invalidate what is
being planned, necessitating replanning.

The interplay between acting and planning is relevant even if the planner synthe-
sizes alternative courses of action for different contingencies (see Chapters 5 and 6).
Indeed, it may not be worthwhile to plan for all possible contingencies, or the planner
may not know in advance what all of them are.

1.3.4 Other Deliberation Functions

We have mentioned deliberation functions other than planning and acting: perceiving,
monitoring, goal reasoning, communicating, and learning. These functions (surveyed in
Chapter 7) are briefly described here.

Perceiving goes beyond sensing, even with elaborate signal processing and pattern
matching methods.Deliberation is needed in bottom-up processes for getting meaning-
ful data from sensors, and in top-down activities such as focus-of-attention mechanisms,
reasoning with sensor models, and planning how to do sensing and information gath-
ering. Some of the issues include how to maintain a mapping between sensed data and
deliberation symbols, where and how to use the platform sensors, or how to recognize
actions and plans of other actors.

Monitoring consists of comparing observations of the environment with what the
actor’s deliberation has predicted. It can be used to detect and interpret discrepancies,
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perform diagnosis, and trigger initial recovery actions when needed. Monitoring may
require planning what observation actions to perform, and what kinds of diagnosis tests
to perform. There is a strong relationship between planning techniques and diagnosis
techniques.

Goal reasoning is monitoring of the actor’s objectives ormission, to keep the actor’s
commitments and goals in perspective. It includes assessing their relevance, given the
observed evolutions, new opportunities, constraints or failures, using this assessment to
decide whether some commitments should be abandoned, and if so, when and how to
update the current goals.

Communicating and interacting with other actors open numerous deliberation
issues such as communication planning, task sharing and delegation, mixed initiative
planning, and adversarial interaction.

Learningmay allow an actor to acquire, adapt, and improve through experience the
models needed for deliberation and to acquire new commands to extend and improve
the actor’s execution platform. Conversely, techniques such as active learning may
themselves require acting for the purpose of better learning.

1.4 ILLUSTRATIVE EXAMPLES

To illustrate particular representations and algorithms, we’ll introduce a variety of
examples inspired by two application domains: robotics and operations management.
We’ll use highly simplified views of these applications to include only the features that
are relevant for the issue we’re trying to illustrate. In this section,we provide summaries
of the real-world context in which our simple examples might occur.

1.4.1 A Factotum Service Robot

We will use the word factotum to mean a general-purpose service robot that consists
of a mobile platform equipped with several sensors (lasers, cameras, etc.) and actuators
(wheels, arms, forklift) [329]. This robot operates in structured environments such as a
mall, an office building, a warehouse or a harbor. It accomplishes transportation and
logistics tasks autonomously, (e.g., fetching objects, putting them into boxes, assembling
boxes into containers, move them around, delivering them or piling them up in storage
areas).

This robot platform can execute parameterized commands, such as localize itself in
the map,move along a path, detect and avoid obstacles, identify and locate items, and
grasp, ungrasp and push items. It knows about a few actions using these commands, for
example,map the environment (extend or update the map), goto a destination, open a
door, search for or fetch an item.

These actions and commands are specified with descriptive and operational mod-
els. For example,move works if it is given waypoints in free space or an obstacle-free
path that meet kinematics and localization constraints; the latter are, for example, visual
landmarks required by action localize. These conditions need to be checked and mon-
itored by the robot while performing the actions. Concurrency has to be managed. For
example, goto should run in parallel with detect, avoid, and localize.
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Factotum needs domain-specific planners, for example, a motion planner formove,
a manipulation planner for grasp (possibly using locate,push, andmove actions).Corre-
sponding plans are more than a sequence or a partially ordered set of commands; they
require closed-loop control and monitoring.

At the mission-preparation stage (the upper levels in Figure 1.2), it is legitimate to
view a logistics task as an organized set of abstract subtasks for collecting, preparing,
conveying, and delivering the goods. Each subtask may be further decomposed into a
sequence of still abstract actions such as goto, take, and put. Domain-independent task
planning techniques are needed here.

However, deliberation does not end with the mission preparation stage. A goto
action can be performed in many ways depending on the environment properties: it
may or may not require a planned path; it may use different localization, path following,
motion control, detection, and avoidance methods (see the “goto” node in Figure 1.2).
A goto after a take is possibly different from the one before because of the held object.
To perform a goto action in different contexts, the robot relies on a collection of skills
defined formally by methods. A method specifies a way to refine an action into com-
mands.The same gotomay start with a method (e.g., followGPS waypoints) but may be
pursued with more adapted methods when required by the environment (indoor with-
out GPS signal) or the context. Such a change between methods may be a normal pro-
gression of the goto action or a retrial due to complications. The robot also has methods
for take, put, open, close, and any other actions it may need to perform.These methods
endow the robot with operational models (its know-how) and knowledge about how to
choose the most adapted method with the right parameters.

The methods for performing actions may use complex control constructs with con-
current processes (loops, conditionals, semaphores, multithread and real-time locks).
They can be developed from formal specifications in some representation and/or with
plan synthesis techniques.Different representationsmay be useful to cover themethods
needed by the factotum robot.Machine learning techniques can be used for improving
the methods, acquiring their models, and adapting the factotum to a new trade.

In addition to acting with the right methods, the robot has to monitor its activity at
every level, including possibly at the goal level. Prediction of what is needed to correctly
perform and monitor foreseen activities should be made beforehand.Making the right
predictions from the combined models of actions and models of the environment is a
difficult problem that involves heterogeneous representations.

Finally, the robot requires extended perception capabilities: reasoning on what is
observable and what is not, integrating knowledge-gathering actions to environment
changing actions, acting to maintain sufficient knowledge for the task at hand with a
consistent interpretation of self and the world.

1.4.2 A Complex Operations Manager

A Harbor Operations Manager (HOM) is a system that supervises and controls all the
tasks performed in a harbor.5 Examples of such tasks include unloading cars from ships,
parking them in storage areas, moving them to a repair area, performing the repair,

5 Example inspired from a facility developed for the port of Bremen, Germany [76, 100].
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Figure 1.5. Deliberation components for a
Harbor Operation Manager.

preparing the delivery of cars according to orders, and loading them onto trucks when
the trucks arrive at the harbor.Some of these operations are performed by humanwork-
ers, others automatically by machines such as the factotum robot of previous section.
This complex environment has several features that require deliberation:

� It is customizable: for example, delivery procedures can be customized according to the
car brand, model, or retailer-specific requirements.

� It is variable: procedures for unloading/loading cars depend on the car brands; storage
areas have different parking procedures, for example.

� It is dynamic: ships, cars, trucks, and orders arrive dynamically.
� It is partially predictable and controllable: cars may be damaged and need repair, storage
areas may not be available, orders have unpredictable requirements, ships and trucks
have random delays, for example.

At a high level, an HOM has to carry out a simple sequence of abstract tasks:
〈unload, unpack, store, wait-for-order, treatment, delivery〉 (see Figure 1.5). This invari-
ant plan is easily specified by hand. The deliberation problem in an HOM is not in the
synthesis of this plan but in the dynamic refinement of its tasks in more concrete sub-
tasks.For example, anHOM refines the abstract task store of Figure 1.5 into subtasks for
registering a car to be stored,moving it, and other tasks, down to executable commands.

Moreover, the tasks to be refined and controlled are carried out by different com-
ponents, for example, ships, gates, and storage or repair areas. Each ship has its own
procedure to unload cars to a gate.A gate has its own procedure to accept cars that are
unloaded to the deck. A natural design option is therefore to model the HOM in a dis-
tributed way, as a set of interacting deliberation components. The interactions between
ships and gates, gates and trucks, and trucks and storage areas must be controlled with
respect to the global constraints and objectives of the system. To do that, HOM must
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deal with uncertainty and nondeterminism due to exogenous events, and to the fact that
each component may – from the point of view of themanagement facility – behave non-
deterministically. For instance, in the task to synchronize a ship with a gate to unload
cars, the ship may send a request for unloading cars to the unloading manager, and
the gate may reply either that the request meets its requirements and the unloading
operation can proceed according to some unloading specifications, or that the request
cannot be handled. The management facility may not know a priori what the request,
the unloading specifications, and reply will be.

In summary, HOM relies on a collection of interacting components, each imple-
menting its own procedures. It refines the abstract tasks of the high-level plan into a
composition of these procedures to address each new object arrival and adapt to each
exogenous event. The refinement and adaptation mechanisms can be designed through
an approach in which the HOM is an actor organized into a hierarchy of components,
each abstract action is a task to be further refined and planned for, and where online
planning and acting are performed continually to adapt and repair plans. The approach
embeds one or several planners within these components, which are called at run-time,
when the system has to refine an abstract action to adapt to a new context. It relies
on refinement mechanisms that can be triggered at run-time whenever an abstract
action in a procedure needs to be refined or an adaptation needs to be taken into
account.

1.5 OUTLINE OF THE BOOK

This chapter has provided a rather abstract and broad introduction. Chapter 2 offers
more concrete material regarding deliberation with deterministic models and full
knowledge about a static environment. It covers the “classical planning” algorithms
and heuristics, with state-space search, forward and backward, and plan-space search. It
also presents how these planning techniques can be integrated online with acting.

Chapter 3 is focused on refinement methods for acting and planning. It explores
how a unified representation can be used for both functions, at different levels of the
deliberation hierarchy, and in different ways. It also discusses how the integration of
planning and acting can be performed.

Chapter 4 is about deliberation with explicit time models using a representation
with timelines and chronicles. A temporal planner, based on refinement methods, is
presented together with the constraint management techniques needed for handling
temporal data. Using the techniques from Chapter 3, we also discuss the integration of
planning and acting with temporal models.

Uncertainty in deliberation is addressed in Chapters 5 and 6. The main planning
techniques in nondeterministic search spaces are covered in Chapter 5, together with
model checking and determinization approaches. In this chapter, we present online
lookahead methods for the interleaving of planning and acting. We also show how
nondeterministic models can be used with refinements techniques that intermix plans,
actions, and goals. We discuss the integration of planning and acting with input/output
automata to cover cases such as the distributed deliberation in the HOM example.
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We cover probabilisticmodels in Chapter 6.We develop heuristic search techniques
for stochastic shortest path problems. We present online approaches for planning and
acting, discuss refinement methods for acting with probabilistic models, and analyze the
specifics of descriptive models of actions in the probabilistic case together with several
practical issues for modeling probabilistic domains.

Chapters 2 through 6 are devoted to planning and acting. Chapter 7 briefly surveys
the other deliberation functions introduced in Section 1.3.4, – perceiving, monitoring,
goal reasoning, interacting, and learning. It also discusses hybrid models and ontologies
for planning and acting.
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