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KISS-PRECISE SEQUENTIAL ROTATABLE DESIGNS 

BY 

AGNES M. HERZBERG, C. W. L. GARNER^) AND B. G. F. SPRINGER 

SUMMARY. A sequential procedure for the exploration of re­
sponse surfaces is proposed. The procedure, which is for experiments 
with two factors, uses the kiss-precise configuration, i.e., the 
design points are on circles in mutual contact at each stage. Only 
three points need be added at each stage and the design points form 
a first-order rotatable design. A second-degree surface may be 
fitted when a near stationary region is reached. 

1. Introduction. Several procedures have been proposed for the sequential 
exploration of response surfaces, to search the experimental region for a region of 
optimum response. Among these procedures are those of Kiefer & Wolfowitz [5], 
Spendley, Hext & Himsworth [7] and Springer [8]. Here a sequential procedure 
which makes use of rotatable designs at each stage is proposed. The procedure 
given is for experiments with two factors only, i.e., the two-dimensional case, as an 
exactly analogous procedure in higher dimensions is impossible although some 
variation may make a similar procedure applicable. 

The configuration used at each stage is the 'kiss-precise' configuration of Sir 
Frederick Soddy [6]. It is shown how it is possible to proceed from one design to 
another always retaining the kiss-precise configuration. 

The procedure makes use of only first-order designs; however, a second-degree 
surface may be fitted when a near-stationary region is reached. Although many 
first-order rotatable designs exist and are easy to construct, Soddy's configuration 
seems to give a neat way of proceeding from stage to stage. At each stage only three 
design points need be added; the minimum number of points required for a first 
order rotatable design is three. 

2. Spheres in mutual contact. If k is the dimension of the space, there exists a 
configuration of k+2 spheres in mutual contact. If rl9... , rk+2 are the radii of 
these spheres, then for k>2, 

\ ' l rk+2' \ " l rk+2/ 

For k==2, (1) becomes 

/i i i i \ = n i i iy 
\rl r\ r% r2J V^ r2 rz r4/ 
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or, as Soddy [6] states 

Four circles to the kissing come, 
The smaller are the benter. 
The bend is just the inverse of 
The distance from the centre. 
Though their intrigue left Euclid dumb 
There's now no need for rule of thumb. 
Since zero bend's a dead straight line 
And concave bends have minus sign, 
The sum of the squares of all four bends 
Is half the square of their sum. 

In the procedure presented here, only the special two-dimensional case where 
three of the circles have the same radius r = r 1 = r 2 = r 3 , and each circle is exterior 
to the other three, is used. Then from (2), r=(3+2V3)r4 . Such a configuration is 
shown in Figure 1. 

3. Initial stage. Suppose the response surface can be approximated by a poly­
nomial of degree one, i.e., f]=^0+ft^+jl^, where rj denotes the true response 
at (xl9 x2), and that the experimenter is searching for the region of optimum 
response. Without loss of generality, it can be assumed that this is the region of 
maximum response. 

Let A(t) denote the circle with radius t centred at A. Then, as shown in Figure 
1, Oj(r) (j=l9 2, 3) denote the three circles with equal radius r. Denote the points 
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Figure 2 
A first-order rotatable design showing points on circles 0(pt) (i = l, 2, 3) 

of contact of these three circles by Cl3- (y=l, 2, 3). Starting with Clj9 construct in 
03(r) the unique inscribed equilateral triangle. Let its other vertices be C2j and C3j 

named in a counterclockwise direction. 
If the points of the experimental design correspond to the points Ci3- (/,/= 

1, 2, 3), the design consists of 9 points partitioned into three sets of three points, 
the points of each set being equally spaced on a circle centred at O; see Figure 2. 
Box & Hunter [1] and Gardiner, Grandage & Hader [4] have shown that this 
configuration is sufficient for a first-order rotatable design in two dimensions. The 
radii of these concentric circles centred at O are 

Pi = V£r, p2 = V|r , Pz = VWr. 

Rotatable designs, introduced by Box & Hunter [1] for the exploration of re­
sponse surfaces, have the property that the variance of the estimated response at 
all points equidistant from the centre of the design is constant. It can easily be 
shown that the variance function of the estimated response for this 9 point design 
is 

var{j>(x)} = (i + ^ p V , 

where y(x) denotes the estimated response at x=(xl9 x2), a2 the experimental 
error variance, and />=||x||. When nothing is known about the nature of the re­
sponse surface it is reasonable to use a rotatable design at each stage since the 
variance of the estimated response is the same in all directions. 
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4. Sequential procedure. Let j t i be the observed response at Cu (i,j=l, 2, 3). 
Let 

tt = *2>« W = 1,2, 3), 

i.e. yi is the average of the responses on O^r); see Figure 1. Once the responses 
have been found at each design point Cii9 the direction in which the experimenter 
should proceed in exploring the response surface is determined in the following 
way. 

Let the three points Cu (/=1, 2, 3) whose yj is the minimum be removed. For 
example, if yz is the minimum yj9 Ci3 is replaced by Ca (/=1, 2, 3), where Ci4 is 
the image of CiS by reflection in the line OxO%\ see Figure 3. This procedure is 
continued until a region of maximum response is reached. 

Referred to a co-ordinate system with origin at the centre of the small circle with 
radius r4, the design points Ci:} (f,y=l, 2, 3) for the first configuration have co­
ordinates 

cA~\r>-^r\ c4b-2j3r)> cA°>73r)' 

C„: ( - 2 , , j ~ 3 r), C32: (±r, - ^ r ) , C33: ( ^ ^ r) ; 

see Figure 4. 

Figure 3 
Sample step in the sequential procedure 
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Figure 4 
A finite number of design points 
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The points CH are the images of the points CiZ by reflection in the line Ox02. 
If (x, y, 1) represents the point (x, y) of the plane, then its image under the re­
flection a3 in this line is represented by (x\ y\ 1), where 

1 

2 

41 
2 

r 

2 
1 

2 
r 

~J3 

0 

0 

1 

O', y'9 1) = (x, y, 1) I —— 

Thus the points Ca can be labelled CiZa3. 
Similarly it might be necessary to replace the points Ci2 by the points Ci2a29 

where a2 represents the reflection in the line 03Ox : 

(x,y,i)o2 = (x,y,l)\ 

The points Ca would be replaced by the points Caal9 where o1 represents the 
reflection in the line 02Oz: 

0 

0 

0 
- 1 

2 

7' 

0 
0 

1 

(x, y, I K = (x, y, 1) 

1 V3 
"2 2 

2 2 
r 

0N 

V3 
With products of these reflections, any set {C{j: f = l , 2, 3} of design points can 

be replaced by another such set of design points at any stage in the sequential pro­
cedure, but the original configuration is still preserved. Figure 4 gives the co­
ordinates of a finite number of design points. 

This method of obtaining co-ordinates of the design points can be continued 
indefinitely. As an example, suppose one wishes to examine the three triangles 
specified by the points 

CiZaza^a2, CiYaxaza2, Ci2a2 (i = 1,2, 3) 

and wishes to replace the triangle Ci2a2 (7=1,2, 3) by the triangle VZV2VX as 
marked at the top of Figure 4. This triangle is the image of triangle WZW2W1 shown 
at the bottom of the figure under the reflection c2, so that Vi=Wia2 (/= 1, 2, 3). 
But the triangle WJV2WZ is clearly the image, under a3, of the triangle C12a2azal9 

C22(y2azal9 C32cr2o
,30'1. Thus, 
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Therefore, 

Thus the point Vl9 for example, has co-ordinates 

1 

o-M-fr-à'-1) 

"2 2 
V3 1 
2 2 

r 

"V3 V \ ' 73 

0> 

0 

Since Figure 4 is a fragment of an infinite tessellation, any desired triangle can 
be expressed as 

c i ^ i ^ h ' ' ' ain>
 C2j<*h<*i2 ' ' ' ain> C3icfhalt - • • aln 

( / = 1,2, or 3; ll9 / 2 , . . . , /3 = 1,2,3) 

for some finite n. In fact, all triangles could be expressed as images of just one of 
the original triangles, say C1SC23C33 (Coxeter [2, p. 62]), but for present purposes 
this has no practical advantage. 

5. A stopping rule. Various possibilities may occur during the sequential pro­
cedure. A 'stalemate' may be reached when the three new design points must be 
discarded in favour of the three design points just discarded. Such a situation sug­
gests that some sort of extremal region has been reached and the region should be 
analyzed carefully. 

If the experimental points on a particular 0(r) remain in the design five times, 
it is highly probable that a near-stationary region has been reached. For example 
consider Figure 5 where it is assumed that the points 2, 3 and 4 have been in the 
sequential design in five consecutive stages. 

The remaining points excluding 1 have entered the design at some stage while 
the points 2, 3 and 4 have been in the design. For example, 2, 3, 4, 5, 6, 7, 8, 9 
and 10 were in the design, then points 5, 6 and 7 were replaced by 11, 12 and 13, 
etc. It is then possible to analyze the results corresponding to the 21 experiments 
together. The co-ordinates of these 21 experimental points are listed in Table 1. 
Note that the co-ordinate system in Figure 5 differs from that of Figure 4; the 
point 1 is the origin and the axes are indicated. The points numbered 2 to 22 form 
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Figure 5 
The stopping rule configuration 

a second-order rotatable design since 

2 4 u = A (Ï = 1,2), 

(3) 2 4« = 3 2 4*4 , = B (ij = 1, 2; i * j), 
u u 

where A and B are constants, all other moments of the design of order four or less 
are zero and the points lie on at least two distinct concentric circles with centre 
(0, 0), point 1 (Draper [3, p. 867]). A second degree surface may, therefore, be 
fitted in this region. 

If the fit of the estimated surface proves to be 'inadequate', the responses at the 
points 9, 15 and 21 may be removed from the analysis and the surface estimated 
from the remaining points, thus giving a smaller region over which the second 
degree surface should fit. These 18 points also form a second order design since 
the co-ordinates of the points satisfy (3). Similarly, at the next stage, points 6, 7, 
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TABLE 1 . The co-ordinates of the experimental 
points shown in Figure 5. 

Point number 
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1 

1 
2 ' ' 

5 
- f> 

2 
5 
2 r ' 

3 
- r, 
2 
3 

o, 
1 

i 
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3 
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3 
~ 2 r ' 
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1 
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V3 

Vs 
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12, 13, 18 and 19 can be removed and the properties of a second-order rotatable 
design are still retained. If necessary, points 8,10,14,16,20 and 22 can be removed, 
the remaining points form a singular design. In this case an experiment must be 
performed at point 1 (Draper [3, p. 867]). In this way the near-stationary region 
may be explored for a maximum. 

6. Extension to higher dimensions. In three dimensions, the kiss-precise con­
figuration consists of five spheres in mutual contact. The particular case of interest 
has four spheres of equal radius surrounding a smaller sphere. These four spheres 
touch each other in six points, the vertices of a regular octahedron. In strict 
analogy with the two-dimensional case, it would be necessary to choose four of 
these points, one on each sphere; starting with each point, a regular tetrahedron 
would have to be constructed in each sphere. In order to have a rotatable design, 
these four points must be equally spaced on a sphere and so form a regular tetra­
hedron. But it is impossible to pick the four vertices of a regular tetrahedron from 
the six vertices of a regular octahedron (Coxeter [2, §3.6]). Thus an extension to 
three dimensions of the procedure described in §4 is impossible. 

In k dimensions, this particular case of the kiss-precise configuration involves 

k+l mutually tangent hyperspheres with equal radii surrounding a smaller hyper-

sphere. These k+l hyperspheres touch each other in 1 ^ I points forming a fc-
(3 \ X l J 

dimensional polytope j (Coxeter [2, §8.1]). One point must be chosen 
yj, J, . . . , jj 

on each sphere, and these k+l points must be equally spaced on a hypersphere thus 
forming a A>dimensional regular simplex {3, 3 , . . . , 3}. But it is impossible to 

pick the vertices of a regular simplex from those of L ^ - J (see the co-ordinates 

in Coxeter [2, p. 157]). Hence the procedure cannot be extended to higher 
dimensions. 

Another possible extension to three dimensions of the procedure of §4 would be 
to arbitrarily inscribe regular tetrahedra in each of the four equal spheres of the 
kiss-precise configuration. A sequential rotatable design would be obtained if 
these tetrahedra were 'similarly placed' in each sphere, i.e. corresponding vertices 
are equidistant from the centre of the configuration, and if each tetrahedron could 
be replaced by its image under reflection in the plane determined by the centres 
of the other three tetrahedra, so that the resulting configuration is the same as the 
original one (as in the 2-dimensional case ; Figure 2). But tedious algebraic manipula­
tions show that four regular tetrahedra satisfying these conditions cannot be 
found. 

Perhaps, in higher dimensions a sequential procedure may be obtained which 
has the property described here in two of the dimensions and some other property 
in the remaining dimensions. 
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