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Abstract

For a proper, smooth scheme X over a p-adic field K, we show that any proper, flat,
semistable OK-model X of X whose logarithmic de Rham cohomology is torsion free
determines the same OK-lattice inside H i

dR(X/K) and, moreover, that this lattice
is functorial in X. For this, we extend the results of Bhatt–Morrow–Scholze on the
construction and the analysis of an Ainf -valued cohomology theory of p-adic formal,
proper, smooth OK-schemes X to the semistable case. The relation of the Ainf -
cohomology to the p-adic étale and the logarithmic crystalline cohomologies allows
us to reprove the semistable conjecture of Fontaine–Jannsen.
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1. Introduction

1.1 Integral relations between p-adic cohomology theories
For a proper, smooth scheme X over a complete, discretely valued extension K of Qp with a
perfect residue field k, comparison isomorphisms of p-adic Hodge theory relate the p-adic étale, de
Rham, and, in the case of semistable reduction, also crystalline cohomologies of X. For instance,
they show that for i ∈ Z, the Gal(K/K)-representation H i

ét(XK ,Qp) functorially determines the
filtered K-vector space H i

dR(X/K). Even though the integral analogues of these isomorphisms
are known to fail in general, one may still consider their hypothetical consequences, for instance,
one may ask the following.

• For proper, flat, semistable OK-models X and X ′ of X endowed with their standard log
structures, do the images of H i

log dR(X/OK) and H i
log dR(X ′/OK) in H i

dR(X/K) agree?
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One of the goals of the present paper is to show that the answer is positive if the logarithmic
de Rham cohomology of the models X and X ′ is torsion free (see (8.6.2) and Theorem 8.7):
in this case, both H i

log dR(X/OK) and H i
log dR(X ′/OK) agree with the OK-lattice in H i

dR(X/K)

that is functorially determined by H i
ét(XK ,Zp). The good reduction case of this result may be

derived from the work of Bhatt–Morrow–Scholze [BMS18] on integral p-adic Hodge theory, and
our approach, as well as the bulk of this paper, is concerned with extending the framework of
[BMS18] to the semistable case.

1.2 The Ainf -cohomology in the semistable case

To approach the question above, we set C := K̂, let Ainf := W (O[C) be the basic period ring
of Fontaine, and, for a semistable OK-model X of X, similarly to the smooth case treated in
[BMS18], construct the Ainf -cohomology object

RΓAinf
(X ) ∈ D[0, 2 dim(X)](Ainf)

that is quasi-isomorphic to a bounded complex of finite free Ainf -modules and has finitely
presented cohomology H i

Ainf
(X ). We show that base changes of RΓAinf

(X ) recover other
cohomology theories:

RΓAinf
(X )⊗L

Ainf
W (C[) ∼= RΓét(XK ,Zp)⊗L

Zp W (C[),

RΓAinf
(X )⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OK)⊗L

OK OC ,
RΓAinf

(X )⊗L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k))⊗L
W (k) W (k),

(1.2.1)

see § 7.2; here RΓlog cris denotes the logarithmic crystalline (that is, Hyodo–Kato) cohomology,

W (k) (respectively, OK) carries the log structure associated to N>0
1 7→ 0, 0 7→ 1−−−−−−−→ W (k)

(respectively, OK \ {0} ↪→ OK), and Xk is endowed with the base change of the standard
log structure OX , ét ∩ (OX , ét[

1
p ])× of X .

If the cohomology of RΓlog dR(X/OK) is torsion free, then each H i
Ainf

(X ) is Ainf -free and the
base changes (1.2.1) hold in each individual cohomological degree (see § 7.6 and Proposition 7.7).
In this case, the Fargues equivalence for Breuil–Kisin–Fargues Gal(K/K)-modules allows us to
prove that

the Gal(K/K)-representation H i
ét(XK ,Zp) determines H i

Ainf
(X )

(see Theorem 8.7). Then H i
ét(XK ,Zp) also determines1H i

log dR(X/OK) (and H i
log cris(Xk/W (k)))

and, since the same reasoning applies to another model X ′, the result claimed in § 1.1 follows.
The base changes (1.2.1) also allow us to extend the cohomology specialization results

obtained in the good reduction case in [BMS18]. Qualitatively, in Proposition 7.7 we show that
H i

log dR(X/OK) is torsion free if and only if H i
log cris(Xk/W (k)) is torsion free, in which case

H i
ét(XK ,Zp) is torsion free. Quantitatively, in Theorems 7.9 and 7.12 we show that for every

n > 0, we have

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) 6 lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp((H
i
ét(XK ,Zp)tors)/p

n) 6
1

lengthOK (OK/p)
· lengthOK ((H i

log dR(X/OK)tors)/p
n).

1 The implicit functor is nonexact, as it must be: there exists a nonexact sequence of abelian schemes over Z2 that
is short exact over Q2 (see [BLR90, 7.5/8]), so there is no exact functor F with F (H1

ét((−)Q2
,Z2)) = H1

dR(−/Z2).
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1.3 The semistable comparison isomorphism
The analysis of RΓAinf

(X ), specifically, its relation to the p-adic étale and the logarithmic
crystalline cohomologies, permits us to reprove in Theorem 9.5 the semistable conjecture of
Fontaine–Jansen [Kat94a, Conjecture 1.1]:

RΓét(XK ,Zp)⊗
L
Zp Bst

∼= RΓlog cris(Xk/W (k))⊗L
W (k) Bst. (1.3.1)

Other proofs of this conjecture have been given in [Tsu99], [Fal02], [Niz08], [Bha12], [Bei13a],
and [CN17], whereas [BMS18] used RΓAinf

(X ) to reprove the crystalline conjecture. Similarly
to [CN17], we establish (1.3.1) for p-adic formal OK-schemes X that are proper, flat, and
‘semistable’.

A key result that leads to (1.3.1) is the absolute crystalline comparison isomorphism

RΓAinf
(X )⊗L

Ainf
Acris

∼= RΓlog cris(XOK/p/Acris) (1.3.2)

of Corollary 5.43, whose construction in § 5 forms the technical core of this paper. This
construction is based on an ‘all possible coordinates’ technique that is a variant of its analogue
used to establish (1.3.2) in the smooth case in [BMS18, § 12]. The presence of singularities and
log structures creates additional complications that do not appear in the smooth case and are
examined in § 5.

Using the absolute crystalline comparison isomorphism, in Theorem 6.6 we compare the
Ainf -cohomology of X with the B+

dR-cohomology of X defined by Bhatt–Morrow–Scholze in
[BMS18, § 13]:

RΓAinf
(X )⊗L

Ainf
B+

dR
∼= RΓcris(X

ad
C /B+

dR). (1.3.3)

The identification (1.3.3) is important for ensuring that the semistable comparison (1.3.1)
is compatible with the de Rham comparison proved in [Sch13a], and hence that it respects
filtrations.

As for the question posed in § 1.1, even though it only involves the étale and the de Rham
cohomologies, the resolution of its torsion-free case outlined in § 1.2 uses both (1.3.2) and
(1.3.3) (so also the bulk of the material of this paper). This is because we need to ensure
that the determination of H i

dR(X/K) by H i
ét(XK ,Qp) via the de Rham comparison of p-adic

Hodge theory is compatible with the determination of H i
log dR(X/OK) and H i

log dR(X ′/OK)

by H i
ét(XK ,Zp) via Ainf -cohomology and Breuil–Kisin–Fargues modules. In fact, to show that

the cohomology modules of RΓAinf
(X ) are Breuil–Kisin–Fargues, we already use the absolute

crystalline comparison (1.3.2).

1.4 The object AΩX and its base changes
Even though we have so far focused on schemes, the construction and the analysis of RΓAinf

(−)
works for any p-adic formal OC-scheme X that is semistable in the sense described in § 1.5 (see
(1.5.1)) and that, whenever needed, is assumed to be proper. Specifically, for such an X, in
§ 2.2 we use the (variant for the étale topology of the) definition of Bhatt–Morrow–Scholze from
[BMS18] to build an object

AΩX ∈ D>0(Xét, Ainf) and to set RΓAinf
(X) := RΓ(Xét, AΩX).

As in the smooth case of [BMS18], the relation of RΓAinf
(X) to the p-adic étale cohomology

of the adic generic fiber Xad
C of X follows from the results of [Sch13a] (see § 2). In turn, the
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relations to the logarithmic de Rham and crystalline cohomologies are the subjects of §§ 4 and
5, respectively, and rest on the following identifications established in Theorems 4.17 and 5.4:

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log and AΩX ⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (1.4.1)

where u : (XOC/p/Acris)log cris→ Xét is the forgetful map of topoi. The arguments for (1.4.1) build
on the same general skeleton as in [BMS18] but differ, among other aspects, in how they handle
the interaction of the Deligne–Berthelot–Ogus décalage functor Lη used in the definition of AΩX

with the intervening base changes and with the almost isomorphisms supplied by the almost
purity theorem. Namely, for this, the nonflatness over the singular points of X of the explicit
perfectoid proétale covers that we construct makes it difficult to directly adapt the arguments
from [BMS18]. Instead, we take advantage of several general results about Lη from [Bha18].
Verifying their assumptions in our case amounts to the analysis in § 3 of continuous group
cohomology modules built using the aforementioned perfectoid cover. The typical conclusion of
this analysis is that these modules have no nonzero ‘almost torsion’ and that the element µ ∈ Ainf

kills their ‘nonintegral parts’.
Further and more specific overviews of our arguments are given in the beginning of each

section that follows. In the rest of this introduction, we fix the precise notational setup for
the remainder of the paper (see § 1.5), discuss the logarithmic structure on X that we later use
without notational explication (see § 1.6), and review the relevant general notational conventions
(see § 1.7).

1.5 The setup
In what follows, we fix the notational setup.

• We fix an algebraically closed field k of characteristic p > 0, let C be the completed algebraic
closure of W (k)[1

p ], and let m ⊂ OC be the maximal ideal in the valuation ring of C.

• For convenience, we fix an embedding pQ ⊂ C, that is, for every prime `, we fix a system
of compatible `n-power roots p1/`∞ := (p1/`n)n>0 of p in OC .

• We fix a p-adic formal scheme X over OC that in the étale topology may be covered by
open affines U which admit an étale OC-morphism

U = Spf(R)→ Spf(R�) with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q) (1.5.1)

for some d > 0, some 0 6 r 6 d, and some q ∈ Q>0 (where d, r, and q may depend on U).

For example, C could be the completed algebraic closure of any discretely valued field K of
mixed characteristic (0, p) with a perfect residue field. In addition, no generality is gained by
allowing pq in (1.5.1) to be any nonunit π ∈ OC \ {0}. The role of the embedding pQ ⊂ C is to
simplify arguments with explicit charts for the log structure on X (defined in § 1.6); this is
particularly useful in § 5, especially in §§ 5.25–5.26. Our C is less general than in [BMS18], where
any complete algebraically closed nonarchimedean extension of Qp is typically allowed. One of
the main reasons for this is that we want to be able to apply, especially in § 5, certain auxiliary
results from [Bei13a] (in any event, relations t0 · · · tr − π in which π has a nonrational valuation
go beyond ‘semistable reduction’).

The existence of étale local semistable coordinates (1.5.1) implies that each XOC/pn is flat
and locally of finite presentation over OC/pn and Xsm

OC/pn is dense in XOC/pn . By [SP, 04D1] and

limit arguments, equation (1.5.1) is the formal p-adic completion of the W (k)-base change of an
étale O-morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − pq)

)
(1.5.2)
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for some discrete valuation subring O ⊂ W (k) that contains pq. The references [SP, 04D1] and
[GR03, 7.1.6(i)] also imply that R is R�-flat. In addition, if R ⊗OC k is not k-smooth, then R
determines q.2

Any smooth p-adic formal OC-scheme X meets the requirements above: indeed, then the
cover {U} exists already for the Zariski topology with r = 0 and q = 1 for all U, see [FK18,
I.5.3.18]. Another key example is

X = X̂OC (1.5.3)

for some discrete valuation subring O ⊂ OC with a perfect residue field and a uniformizer π ∈ O
and a locally of finite type, flat O-scheme X that is semistable in the sense that XO/π is a normal
crossings divisor in X (as defined in [SP, 0BSF]), so that, in particular, X is regular at every
point of XO/π.3 Moreover, if X is even strictly semistable in the sense that XO/π is even a strict
normal crossings divisor in X (as defined in [SP, 0BI9]), then the étale maps (1.5.4) exist even
Zariski locally on X , and so the cover {U} also exists already for the Zariski topology of X.

• We let Xad
C denote the adic generic fiber of X. By (1.5.1) and [Hub96, 3.5.1], the adic space

Xad
C is smooth over C; by [Hub96, 1.3.18 ii)], if X is OC-proper, then Xad

C is C-proper.
• We let (Xad

C )proét denote the proétale site of Xad
C (reviewed in [BMS18, § 5.1] and defined in

[Sch13a, 3.9] and [Sch16, (1)]) and let

ν : (Xad
C )proét→ Xét (1.5.5)

be the morphism to the étale site of X that sends any étale U→ X to the constant pro-system
associated to its adic generic fiber. By [SP, 00X6], this functor indeed defines a morphism of
sites: by [Hub96, 3.5.1], it preserves coverings, commutes with fiber products, and respects
final objects. Thus, ν induces a morphism of topoi (ν−1, ν∗) (see [SP, 00XC]).

1.6 The logarithmic structure on X

Unless noted otherwise, we always equip

(1) the ring OC (respectively, OC/pn or k) with the log structure OC \ {0} ↪→ OC
(respectively, its pullback);

(2) the formal scheme X (respectively, XOC/pn or Xk) with the log structure given by the

subsheaf associated to the subpresheaf4 OX, ét ∩ (OX, ét[
1
p ])× ↪→ OX, ét (respectively, its

pullback log structure).

2 The following argument justifies this. Choose an n ∈ Z>q and let A be the local ring of Spec(R/pn) at some
singular point. Without loss of generality, all the ti with 0 6 i 6 r are noninvertible in A, so, in particular, r > 1.
The dth Fitting ideal Fittd(Ω

1
(R�/pn)/(OC/pn)

) ⊂ R�/pn is generated by the r-fold partial products t0 · · · t̂i · · · tr
with 0 6 i 6 r, so the same holds for Fittd(Ω

1
A/(OC/pn)) ⊂ A (see [SGA 7I, VI, 5.1(a)]). Consequently, the quotient

(R�/pn)/(Fittd(Ω
1
(R�/pn)/(OC/pn)

)) is faithfully flat over OC/(pq), and hence so is A/(Fittd(Ω
1
A/(OC/pn))). It

follows that (pq) ⊂ OC is the preimage of Fittd(Ω
1
A/(OC/pn)) ⊂ A, to the effect that R determines q.

3 To justify that any X as in (1.5.3) meets the requirements, we first note that étale locally on X there exists
a regular sequence such that the product its r + 1 first terms cuts out XO/π. Thus, since any finite extension
of O/π is separable, the miracle flatness theorem [EGA IV2, 6.1.5] ensures that every x ∈ XO/π has an étale
neighborhood U → X that admits an étale O-morphism U → Spec(O[t0, . . . , td]/(t0 · · · tr − π)) or, equivalently,
an étale morphism

U → Spec(O[t0, . . . , tr, t
±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π))). (1.5.4)

4 The subpresheaf and its associated subsheaf necessarily agree on every quasi-compact object U of Xét.
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Both (1) and (2) determine the same log structure on Spf(OC), so the map X→ Spf(OC) is
that of log formal schemes. Moreover, étale locally on X, the log structure may be made explicit:
in the presence of a coordinate morphism (1.5.1), Claims 1.6.1 and 1.6.3 below give an explicit
chart for the log structure of U, namely, the chart (1.6.2) in which we replace O by OC , replace
U by U, and set π := pq. This chart shows, in particular, that U and OC may be endowed with
fine log structures whose base changes along a ‘change of log structure’ self-map of OC recover
the log structures described in (1)–(2) (for example, the fine log structure on OC could be that

determined by the chart N>0
a 7→(pq)a

−−−−−→ OC , in which case the ‘change of log structure’ self-map of
OC is the identity on the underlying scheme Spec(OC) and is determined on the log structures

by the map of charts N>0
a 7→(pq)a

−−−−−→ OC \ {0}). Since many common properties of maps of log
schemes are stable under base change, in practice this means that we may often deal with the
log structures in (1)–(2) as if they were fine and, in particular, we may cite [Kat89] for certain
purposes.

By the preceding discussion, all the log structures above are quasi-coherent and integral.
Moreover, by [Kat89, 3.7(2)], each XOC/pn is log smooth over OC/pn, so that, by [Kat89, 3.10],
the OX-module Ω1

X/OC , log of logarithmic differentials is finite locally free. We set

Ωi
X/OC , log :=

∧iΩ1
X/OC , log,

let Ω•X/OC , log denote the logarithmic de Rham complex, and set

RΓlog dR(X/OC) := RΓ(Xét,Ω
•
X/OC , log).

Claim 1.6.1. For a valuation subring O ⊂W (k) and an O-scheme U that has an étale morphism

U → Spec
(
O[t0, . . . , tr, t

±1
r+1, . . . , t

±1
d ]/(t0 · · · tr − π)

)
for some nonunit π ∈ O \ {0},

the log structure on U associated to OU, ét ∩ (OU, ét[
1
p ])× has the chart

Nr+1
>0 tN>0

(O \ {0})→ Γ(U,OU ) (1.6.2)

given by (ai)06i6r 7→
∏

06i6r t
ai
i on Nr+1

>0 , the diagonal N>0 → Nr+1
>0 and N>0

a 7→πa−−−−→ (O \ {0})
on N>0, and the structure map (O \ {0})→ Γ(U,OU ) on O \ {0}.

Proof. Without loss of generality, U is affine, so, by a limit argument, we may assume that O is
discretely valued. Then U , endowed with the log structure associated to (1.6.2), is logarithmically
regular in the sense of [Kat94b, 2.1] (compare with [Bei12, § 4.1, proof of Lemma]). Therefore,
since the locus of triviality of this log structure is U [1

p ], the claim follows from [Kat94b, 11.6]. 2

Claim 1.6.3. For O as in Claim 1.6.1, a flat O-scheme U (respectively, and its formal
p-adic completion U) endowed with the log structure associated to OU, ét ∩ (OU, ét[

1
p ])×

(respectively, OU, ét ∩ (OU, ét[
1
p ])×),

the formal p-adic completion morphism j : U→ U of log ringed étale sites is strict. (1.6.4)

Proof. For a geometric point u of U, due to [SP, 04D1], the stalk map OU, u ∼= j−1(OU, u)→ OU, u

induces an isomorphism OU, u/pn ∼= OU, u/p
n for every n > 0. We consider the stalk map

OU, u ∩
(
OU, u

[
1
p

])× ∼= j−1
(
OU, u ∩

(
OU, u

[
1
p

])×)
→ OU, u ∩

(
OU, u

[
1
p

])×
. (1.6.5)
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Every element x of the target of (1.6.5) satisfies the equation xy = pn for some n > 0. We choose
an x̃ ∈ OU, u congruent to x modulo pn+1, so that x̃ỹ = pn + pn+1z̃ for some ỹ, z̃ ∈ OU, u. Since
1+pz̃ ∈ O×U, u, we adjust ỹ to get x̃ỹ = pn, which shows that x̃ ∈ OU, u∩(OU, u[1

p ])× and (pn) ⊂ (x̃).
Thus, the image of x̃ in OU, u and x generate the same ideal, and hence are unit multiples of
each other. Conversely, if x̃1, x̃2 ∈ OU, u ∩ (OU, u[1

p ])× are unit multiples of each other in OU, u,
then, by reducing modulo pn for a large enough n, we see that they generate the same ideal in
OU, u, so are unit multiples of each other already in OU, u. In conclusion, the map (1.6.5) induces
an isomorphism (

OU, u ∩
(
OU, u

[
1
p

])×)/O×U, u ∼−→
(
OU, u ∩

(
OU, u

[
1
p

])×)/O×U, u,
to the effect that the map (1.6.4) is indeed strict, as claimed. 2

1.7 Conventions and additional notation
For a field K, we let K be its algebraic closure (taken inside C if K is given as a subfield of C).
If K has a valuation, we let OK be its valuation subring and write OK for the integral closure
of OK in K. In mixed characteristic, we normalize the valuations by requiring that v(p) = 1.
We let (−)sm denote the smooth locus of a (formal) scheme over an implicitly understood base.
For power series rings, we use {−} to indicate decaying coefficients. For a topological ring R, we
let R◦ denote the subset of powerbounded elements.

We let W (−) (respectively Wn(−)) denote p-typical Witt vectors (respectively, their length
n truncation), and let [−] denote Teichmüller representatives. We let Z(p) be the localization of
Z at p, let µpn be the group scheme of pnth roots of unity, and let ζpn denote a primitive pnth

root of unity. For brevity, we set Zp(1) := lim
←−(µpn(C)). We let M̂ denote the (by default, p-adic)

completion of a module M and, similarly, let
⊕̂

denote the completion of a direct sum. Unless
specified otherwise, we endow a p-adically complete module with the inverse limit of the discrete
topologies.

We use the definition of a perfectoid ring given in [BMS18, 3.5] (the compatibility with prior
definitions is discussed in [BMS18, 3.20]). Explicitly, by [BMS18, 3.9 and 3.10], a p-torsion-free
ring S is perfectoid if and only if S is p-adically complete and the divisor (p) ⊂ S has a p-power

root in the sense that there is a $ ∈ S with ($p) = (p) and S/$S
x 7→xp
∼ // S/pS. In particular, for

such an S, any p-adically formally étale S-algebra S′ that is p-adically complete is also perfectoid.
For a ring object R of a topos T , we write D(T , R), or simply D(R), for the derived category

of R-modules. For an object M of a derived category, we denote its derived p-adic completion
by

M̂ := R limn(M ⊗L
Z Z/pnZ), and also set ∗ ⊗̂L

·− := R limn((∗ ⊗L
· −)⊗L

Z Z/pnZ) (1.7.1)

(see [SP, 0940] for the definition of R lim). For a morphism f of ringed topoi, we use the
commutativity of the functor Rf∗ with derived limits and derived completions, see [SP, 0A07
and 0944].

For a profinite group H and a continuous H-module M , we write RΓcont(H,M) for the
continuous cochain complex. Whenever convenient, we also view RΓcont(H,−) as the derived
global sections functor of the site of profinite H-sets (see [Sch13a, 3.7(iii)] and [Sch16, (1)]).

For commuting endomorphisms f1, . . . , fn of an abelian group A, we recall the Koszul
complex :

KA(f1, . . . , fn) := A⊗Z[x1,...,xn]

⊗n
i=1

(
Z[x1, . . . , xn]

xi−→ Z[x1, . . . , xn]
)
, (1.7.2)
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where A is regarded as a Z[x1, . . . , xn]-module by letting xj act as fj , the tensor products are
over Z[x1, . . . , xn], and the factor complexes are concentrated in degrees 0 and 1.

For an ideal I of a ring R and an R-module complex (M•, d•) with M j ∼= 0 for j < 0, the
subcomplex

ηI(M
•) ⊂M• is defined by (ηI(M

•))j := {m ∈ IjM j | dj(m) ∈ Ij+1M j+1}. (1.7.3)

We will mostly (but a priori not always, see Proposition 5.34) use ηI(M
•) as in [BMS18, 6.2],

namely, when I is generated by a nonzero-divisor and the M j have no nonzero I-torsion.
A logarithmic divided power thickening (or, for brevity, a log PD thickening) is an exact closed

immersion of logarithmic (often abbreviated to log) schemes equipped with a divided power
structure on the quasi-coherent sheaf of ideals that defines the underlying closed immersion of
schemes.

2. The object AΩX and the p-adic étale cohomology of X

As in the case when X is smooth treated in [BMS18], the eventual construction of the Ainf -
cohomology modules of X rests on the object AΩX that lives in a derived category of Ainf -module
sheaves on X. In this short section, we review the definition of AΩX in § 2.2 and then, in the case
when X is proper, review the connection between AΩX and the integral p-adic étale cohomology
of Xad

C in Theorem 2.3. We begin by fixing the basic notation that concerns the ring Ainf of
integral p-adic Hodge theory. The setup of §§ 2.1–2.2 will be used freely in the rest of the paper.

2.1 The ring Ainf

We denote the tilt of OC by

O[C := lim
←−y 7→yp(OC/p), so that, by reduction mod p, lim

←−y 7→ypOC
∼−→ lim
←−y 7→yp(OC/p) = O[C

as multiplicative monoids (see [Sch12, 3.4(i)]). We regard p1/p∞ fixed in § 1.5 as an element of
O[C . Due to the fixed embedding pQ>0 ⊂ OC , this element comes equipped with well-defined
powers (p1/p∞)q ∈ O[C for q ∈ Q>0. For each x ∈ O[C , we let (. . . , x(1), x(0)) denote its preimage
in lim
←−y 7→ypOC . The map x 7→ valOC (x(0)) makes O[C a complete valuation ring of height 1 whose

fraction field C[ := Frac(O[C) is algebraically closed (see [Sch12, 3.4(iii), 3.7(ii)]). We let m[

denote the maximal ideal of O[C .
The basic period ring Ainf of Fontaine is defined by

Ainf := W (O[C) and comes equipped with the Witt vector Frobenius ϕ : Ainf
∼−→ Ainf .

We equip the local domain Ainf with the product of the valuation topologies via the Witt
coordinate bijection W (O[C) ∼=

∏∞
n=1O[C . Then Ainf is complete and its topology agrees with the

(p, [x])-adic topology for any nonzero nonunit x ∈ O[C . We fix (once and for all) a compatible
system ε = (. . . , ζp2 , ζp, 1) of p-power roots of unity in OC , so that ε ∈ O[C , and set

µ := [ε]− 1 ∈ Ainf . (2.1.1)

Since (p, µ) = (p, [ε−1]), the topology of Ainf is (p, µ)-adic. By forming the limit of the sequences

0→Wn(O[C)
µ−→Wn(O[C)→Wn(O[C)/µ→ 0, (2.1.2)
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we see that Ainf/µ is p-adically complete and that the ideal (µ) ⊂ Ainf does not depend on the
choice of ε (use the fact that the valuation of ζp − 1 does not depend on ζp).

The assignment [x] 7→ x(0) extends uniquely to a ring homomorphism

θ : Ainf � OC , the de Rham specialization map of Ainf , (2.1.3)

which is surjective, as indicated, and intertwines the Frobenius ϕ of Ainf with the absolute
Frobenius of OC/p. Its kernel Ker(θ) ⊂ Ainf is principal and generated by the element

ξ :=
∑p−1

i=0 [εi/p] (2.1.4)

(see [BMS18, 3.16]). Analogues of the sequences (2.1.2) show that each Ainf/ξ
n is p-adically

complete. In fact, the map θ identifies Ainf/ξ
n with the initial p-adically complete infinitesimal

thickening of OC of order n− 1, see [SZ18, 3.13]. The composition

θ ◦ ϕ−1 : Ainf � OC is the Hodge–Tate specialization map of Ainf ,

and its kernel is generated by the element ϕ(ξ) =
∑p−1

i=0 [εi].
Due to the nature of our C (see § 1.5), the ring OC/p is a k-algebra, so Ainf is a W (k)-algebra.

2.2 The object AΩX

The operations that define O[C and Ainf make sense on the proétale site (Xad
C )proét: namely, as in

[Sch13a, 4.1, 5.10, and 6.1], we have the integral completed structure sheaf

Ô+
Xad
C

:= lim
←−n(O+

Xad
C , proét

/pn), its tilt Ô+, [

Xad
C

:= lim
←−y 7→yp(O

+
Xad
C , proét

/p), (2.2.1)

and the basic period sheaf
Ainf,Xad

C
:= W (Ô+, [

Xad
C

).

For brevity, we often denote these sheaves simply by Ô+, Ô+, [, and Ainf . Affinoid perfectoids
form a basis for (Xad

C )proét (see [Sch13a, 4.7]) and the construction of the map θ of (2.1.3) makes
sense for any perfectoid OC-algebra (see [BMS18, § 3]). In particular, Ainf,Xad

C
comes equipped

with the map
θXad

C
: Ainf,Xad

C
→ Ô+

Xad
C

, (2.2.2)

which, by construction, is compatible with the map θ : Ainf → OC , intertwines the Witt vector
Frobenius ϕ of Ainf,Xad

C
with the absolute Frobenius of Ô+

Xad
C

/p, and, by [Sch13a, 6.3 and 6.5], is

surjective with Ker(θXad
C

) = ξ ·Ainf,Xad
C

(in addition, ξ is not a zero divisor in Ainf,Xad
C

).

The key object that we are going to study in this paper is

AΩX := Lη(µ)(Rν∗(Ainf,Xad
C

)) ∈ D>0(Xét, Ainf), (2.2.3)

where the décalage functor Lη of [BMS18, § 6] is formed with respect to the ideal (µ) of
the constant sheaf Ainf of Xét (the definition of Lη(µ) builds on the formula (1.7.3) for η(µ)). The
formula (2.2.3) may also be executed with the Zariski site XZar as the target of ν, and it then
defines the object

AΩXZar
∈ D>0(XZar, Ainf), (2.2.4)

which is the AΩX that was used in [BMS18]. We will only use AΩXZar
in Corollary 4.21 (and in

some results that lead to it) for comparison with AΩX.
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Since ϕ(µ) = ϕ(ξ)µ, by [BMS18, 6.11], we have Lη(ϕ(µ))
∼= Lη(ϕ(ξ)) ◦ Lη(µ), so the Frobenius

automorphism of Ainf,Xad
C

gives the Frobenius morphism

AΩX ⊗L
Ainf , ϕ

Ainf
∼= Lη(ϕ(ξ))(AΩX)

[BMS18, 6.10 and 3.17(ii)]
−−−−−−−−−−−−−−−−→ AΩX in D>0(Xét, Ainf), (2.2.5)

which, by [BMS18, 6.14], induces an isomorphism

(AΩX ⊗L
Ainf , ϕ

Ainf)
[

1
ϕ(ξ)

] ∼−→ (AΩX)
[

1
ϕ(ξ)

]
. (2.2.6)

In addition, by loc. cit., we also have

AΩX ⊗L
Ainf

Ainf

[
1
µ

] ∼= (Rν∗(Ainf,Xad
C

))⊗L
Ainf

Ainf

[
1
µ

]
, (2.2.7)

so a result of Scholze [BMS18, 5.6] supplies the following relation to integral p-adic étale
cohomology.

Theorem 2.3. If X is proper over OC , then there is an identification

RΓ(Xét, AΩX)⊗L
Ainf

Ainf

[
1
µ

] ∼= RΓét(X
ad
C ,Zp)⊗L

Zp Ainf

[
1
µ

]
. (2.3.1)

In broad strokes, the proof of Theorem 2.3 given in [BMS18, 5.6] goes as follows: one considers
the map

RΓét(X
ad
C ,Zp)⊗L

Zp Ainf
∼= RΓproét(X

ad
C ,Zp)⊗L

Zp Ainf → RΓproét(X
ad
C ,Ainf,Xad

C
) (2.3.2)

induced by the inclusion Ainf ↪→ Ainf,Xad
C

and deduces from the almost purity theorem with, for

instance, Lemma 3.17 below that the ideal

W (m[) := Ker(W (O[C)�W (k)) of Ainf (2.3.3)

kills the cohomology of its cone. Since µ lies in W (m[) and we have the identification (2.2.7), it
follows that the map (2.3.2) induces the identification (2.3.1).

Remark 2.4. In practice, X often arises as the formal p-adic completion of a proper, finitely
presented OC-scheme X . In this situation, Xad

C agrees with the adic space associated to XC (see
[Con99, 5.3.1 4.], [Hub94, 4.6(i)], and [Hub96, 1.9.2 ii)]) and, by [Hub96, 3.7.2], we have

RΓét(X
ad
C ,Zp) ∼= RΓét(XC ,Zp).

3. The local analysis of AΩX

Even though the definition of the object AΩX given in (2.2.3) is global, the key computations
that will eventually relate it to the logarithmic de Rham and crystalline cohomologies are local
and are presented in this section. Under the assumption that X has a coordinate morphism as
in (1.5.1) (or (3.1.1) below), their basic goal is to express the cohomology of the proétale sheaf
Ainf,Xad

C
, at least after applying Lη(µ), in terms of continuous group cohomology formed using

an explicit perfectoid proétale cover Xad
C,∞ of Xad

C (see Theorem 3.20). The basic relation of
this sort is supplied by the almost purity theorem, so the key point is to explicate the appearing
group cohomology modules well enough in order to eliminate the ‘almost’ ambiguities inherent in
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this theorem with the help of Lemma 3.18 below that comes from [Bha18]. We first carry out this
program for the simpler sheaf Ô+

Xad
C

, and then build on this case to address Ainf,Xad
C

.

In comparison with the local analysis carried out in the smooth case in [BMS18], one
complication is that the perfectoid cover of X that gives rise to Xad

C,∞ is not flat over the singular
points of Xk. This makes it difficult to transfer various arguments with ‘q-de Rham complexes’
across the coordinate morphism (3.1.1). In fact, we avoid q-de Rham complexes altogether and
instead phrase the intermediate steps of the local analysis purely in terms of continuous group
cohomology modules.

3.1 The local setup
We assume throughout § 3 that X = Spf(R) and for some d > 0, some 0 6 r 6 d, and some
q ∈ Q>0, there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf(R)→ Spf(R�) =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr− p

q). (3.1.1)

Due to our assumptions from § 1.5, a general X is of this form on a basis for its étale topology.

3.2 The perfectoid cover Xad
C,∞

For each m > 0, we consider the R�-algebra

R�m := OC{t1/p
m

0 , . . . , t1/p
m

r , t
±1/pm

r+1 , . . . , t
±1/pm

d }/(t1/p
m

0 · · · t1/p
m

r −pq/p
m

), and R�∞ := (lim−→R�m)̂ ,

where, as always unless mentioned otherwise (see § 1.7), the completion is p-adic. Explicitly, we
have the p-adically completed direct sum decomposition

R�∞
∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]>0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 6 j 6 r

OC · ta0
0 · · · t

ad
d , (3.2.1)

which shows that R�∞ is perfectoid (see § 1.7) and that, for each m > 0, the map R�m → R�∞ is
an inclusion of an R�m-module direct summand composed of those summands OC · ta0

0 · · · t
ad
d of

(3.2.1) for which pmaj ∈ Z for all j.
The corresponding R-algebras are

Rm := R⊗R� R
�
m and R∞ :=

(
lim−→Rm

)̂ ∼= (R⊗R� R
�
∞)̂.

Each Rm (respectively, R∞) is a p-torsion-free p-adically formally étale R�m-algebra (respectively,
R�∞-algebra). In particular,R∞ is perfectoid (see § 1.7). By [GR03, 7.1.6(ii)], eachRm is p-adically
complete.

The summands in (3.2.1) with aj 6∈ Z for some 0 6 j 6 d comprise an R�-submodule M�
∞

of R�∞, and we set M∞ := R ⊗̂R�M�
∞. Thus, we have the R�-module (respectively, R-module)

decomposition
R�∞
∼= R� ⊕M�

∞ (respectively, R∞ ∼= R⊕M∞). (3.2.2)

The profinite group

∆ :=
{

(ε0, . . . , εd) ∈
(

lim
←−m>0

(µpm(OC))
)⊕(d+1) ∣∣∣ ε0 · · · εr = 1

}
' Z⊕dp

acts R�-linearly on R�m by scaling each t
1/pm

j by the µpm-component of εj . The induced actions

of ∆ on R�∞ and R∞ are continuous, compatible, and preserve the decompositions (3.2.1) and
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(3.2.2). In terms of the element ε fixed in § 2.1, ∆ is topologically freely generated by the following
d elements:

δi := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , r where the 0th and ith entries are nonidentity;

δi := (1, . . . , 1, ε, 1, . . . , 1) for i = r + 1, . . . , d where the ith entry is nonidentity.

After inverting p, for each m > 0, we have

R�m
[

1
p

] ∼= ⊕a1,...,ad∈{0, 1
pm

,..., p
m−1
pm
}R
�
[

1
p

]
· ta1

1 · · · t
ad
d ,

so R�m[1
p ] is the R�[1

p ]-algebra obtained by adjoining the (pm)th roots of t1, . . . , td ∈ (R�[1
p ])×,

and hence is finite étale over R�[1
p ]. Therefore, lim−→m

(R�m[1
p ]) is a pro-(finite étale) ∆-cover of

R�[1
p ]. The explicit description (3.2.1) implies that R�m = (R�m[1

p ])◦, so the pro-object

(X�)ad
C,∞ := lim

←−Spa
(
R�m
[

1
p

]
, R�m

)
which determines the perfectoid space Spa

(
R�∞

[
1
p

]
, R�∞

)
,

is an affinoid perfectoid pro-(finite étale) ∆-cover of the adic generic fiber (X�)ad
C of Spf(R�);

in particular, (X�)ad
C,∞ is an affinoid perfectoid object of the proétale site ((X�)ad

C )proét.

Consequently, the Xad
C -base change of (X�)ad

C,∞, namely, the tower

Xad
C,∞ := lim

←−Spa
(
Rm
[

1
p

]
, Rm

)
which determines the perfectoid space Spa

(
R∞
[

1
p

]
, R∞

)
,

is an affinoid perfectoid pro-(finite étale) ∆-cover of Xad
C , so, in particular, is an affinoid perfectoid

object of (Xad
C )proét.

By [Sch13a, 4.10(iii)], the value on Xad
C,∞ of the sheaf Ô+

Xad
C

reviewed in (2.2.1) is R∞.

3.3 The cohomology of Ô+ and continuous group cohomology

By [Sch13a, 3.5, 3.7(iii) and its proof, 6.6] (see also [Sch16]), the Čech complex of the sheaf Ô+
Xad
C

with respect to the pro-(finite étale) affinoid perfectoid cover

Xad
C,∞ � Xad

C

is identified with the continuous cochain complex RΓcont(∆, R∞). In particular, by using
[SP, 01GY], we obtain the edge map to the proétale cohomology of Ô+

Xad
C

:

e : RΓcont(∆, R∞)→ RΓproét(X
ad
C , Ô+), (3.3.1)

which on the level of cohomology is described by the Cartan–Leray spectral sequence (see [SP,
01GY] or [SGA 4II, V.3.3]). By the almost purity theorem [Sch13a, 4.10 (v)], the maximal ideal
m ⊂ OC kills the cohomology groups of Cone(e).

We will show in Theorem 3.9 that Lη(ζp−1)(e) is an isomorphism, so that

Lη(ζp−1)(RΓproét(X
ad
C , Ô+))

is computed in terms of continuous group cohomology. For this, we will use the following lemma.

Lemma 3.4 [BMS18, 8.11(i)]. An OC-module map f : M →M ′ with

M [m] =
(

M
(ζp−1)M

)
[m] = 0

and both Ker f and Coker f killed by m induces an isomorphism

M
M [ζp−1]

∼−→ M ′

M ′[ζp−1] . 2
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In order to apply Lemma 3.4, we will check in Proposition 3.8 that the cohomology modules
H i

cont(∆, R∞) have no nonzero m-torsion. This will use the following general lemmas.

Lemma 3.5. For an inclusion o ⊂ O of a discrete valuation ring into a nondiscrete valuation ring
of rank 1, if N is an o-module and M ⊂ O denotes the maximal ideal, then (N ⊗o O)[M] = 0.

Proof. The o-flatness of O reduces us to the case when N is finitely generated, so it suffices to
observe that (O/(a))[M] = 0 whenever a ∈ O. 2

Lemma 3.6. Fix an i ∈ Z>0, let H be a profinite group, let {Mj}j∈J be p-adically complete,
p-torsion-free, continuous H-modules, and suppose that either:

(i) the group H i
cont(H,Mj) is p-torsion free for every j; or

(ii) some pn kills H i
cont(H,Mj) for every j.

Then the following map is injective:

H i
cont

(
H,
⊕̂

j∈JMj

)
↪→
∏
j∈J H

i
cont(H,Mj) where the completion is p-adic.

In particular, in the case (i) (respectively, (ii)), H i
cont(H,

⊕̂
j∈JMj) is p-torsion free (respectively,

killed by pn).

Proof. Let c be a continuous (
⊕̂

j∈JMj)-valued i-cocycle that represents an element of the kernel.
For each j, let cj be the ‘jth coordinate’ of c. We discard the j with cj = 0 and, for each remaining
j, we choose the maximal nj ∈ Z>0 such that cj is (pnjMj)-valued, so that the function j 7→ nj
is finite-to-one. Since each Mj is p-torsion free, each p−njcj is an Mj-valued continuous i-cocycle.

In the case (i), the class of p−njcj in H i
cont(H,Mj) vanishes, so each cj is the coboundary of

a (pnjMj)-valued continuous (i − 1)-cochain bj . In the case (ii), pn kills H i
cont(H,Mj), so cj is

the coboundary of a (pnj−nMj)-valued continuous (i− 1)-cochain bj whenever nj > n.
In both cases, the bj exhibit c as a continuous coboundary. 2

Lemma 3.7 [BMS18, 7.3(ii)]. Let H be a profinite group isomorphic to Z⊕dp for some d > 0,
and letM ∼= lim

←−n>1
Mn be a continuousH-module with eachMn a discrete, pn-torsion, continuous

H-module. For any γ1, . . . , γd ∈ H that topologically freely generate H, there is a natural
identification

RΓcont(H,M) ∼= KM (γ1− 1, . . . , γd− 1), so also Hj
cont(H,M) ∼= Hj(KM (γ1− 1, . . . , γd− 1)),

in the derived category (see § 1.7 for the notation). 2

Proposition 3.8. The element ζp − 1 kills the OC-modules H i
cont(∆,M∞). Moreover, for each

b ∈ OC , the OC-modules R∞/b and H i
cont(∆, R∞/b) have no nonzero m-torsion.

Proof. Let S := OC · ta0
0 · · · t

ad
d be a summand of (3.2.1). By Lemma 3.7, the OC-module

H i
cont(∆, S) is the ith cohomology of the OC-tensor product of d complexes of the form

OC
ζ−1−−→ OC for suitable p-power roots of unity ζ. Moreover, since the d complexes may be

defined over some discrete valuation subring of OC , Lemma 3.5 ensures that

H i
cont(∆, S) has no nonzero m-torsion. (3.8.1)
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If S contributes to M∞, that is, if aj 6∈ Z for some j, then some ζ is not 1, and the corresponding
factor complex is quasi-isomorphic to OC/(ζ − 1). Thus, in this case,

ζ − 1 and hence also ζp − 1, kills H i
cont(∆, S). (3.8.2)

For m > 0, let M�
m denote the p-adically completed direct sum of those summands OC · ta0

0 · · · t
ad
d

of (3.2.1) for which m is the smallest nonnegative integer with pm · (a0, . . . , ad) ∈ Z⊕(d+1).
Lemma 3.6 and (3.8.1)–(3.8.2) imply that the OC-module

H i
cont(∆,M

�
m) has no nonzero m-torsion and is killed by ζp − 1. (3.8.3)

Since R is R�-flat and R⊗R� M�
m is p-adically complete (see §§ 1.5 and 3.2), Lemma 3.7 gives

H i
cont(∆, R⊗R� M

�
m) ∼= R⊗R� H

i
cont(∆,M

�
m). (3.8.4)

Since M∞ ∼=
⊕̂

m(R ⊗R� M�
m), equations (3.8.3)–(3.8.4) and Lemma 3.6 imply that ζp − 1 kills

H i
cont(∆,M∞).

Since R∞/b is p-adically complete and each of the summands of the decomposition

R∞/(b, p
n) ∼= R/(b, pn)⊕

⊕
m>0(R⊗R� M�

m)/(b, pn) for n > 0

may be defined over a suitably large discrete valuation subring of OC , Lemma 3.5 ensures that
R∞/b has no nonzero m-torsion. In addition, the ∆-action on each summand may be defined
over a possibly larger such subring, so, by Lemmas 3.5 and 3.7, in the case b 6= 0 each

H i
cont(∆, (R⊗R� M

�
m)/b) so also H i

cont(∆,M∞/b), has no nonzero m-torsion.

This conclusion extends to the case b = 0 because the (ζp − 1)-annihilation of H i
cont(∆,M∞)

supplies the injection H i
cont(∆,M∞) ↪→ H i

cont(∆,M∞/(ζp − 1)). It remains to observe that the
OC-module H i

cont(∆, R/b) also has no nonzero m-torsion: ∆ acts trivially on R/b, so Lemma 3.7
ensures that H i

cont(∆, R/b) is a direct sum of copies of R/b. 2

Theorem 3.9. The edge map e defined in (3.3.1) induces the isomorphism

Lη(ζp−1)(e) : Lη(ζp−1)(RΓcont(∆, R∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)).

Proof. Proposition 3.8 ensures that the OC-modules H i
cont(∆, R∞) have no nonzero m-torsion

and that
Hi

cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

∼= Hi
cont(∆, R)

Hi
cont(∆, R)[ζp−1]

.

Since ∆ acts trivially on R, this last quotient is a finite direct sum of copies of R (see Lemma 3.7),
so, by Proposition 3.8, it has no nonzero m-torsion. Consequently, since m kills the kernel and
the cokernel of each map

H i(e) : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

(see § 3.3), Lemma 3.4 applies to these maps and gives the desired conclusion. 2

Remark 3.10. Theorem 3.9 extends as follows: for any profinite group ∆′ equipped with a
continuous surjection ∆′ � ∆ and any pro-(finite étale) affinoid perfectoid ∆′-cover

Spa
(
R′∞
[

1
p

]
, R′∞

)
→ Spa

(
R
[

1
p

]
, R
) ∼= Xad

C that refines the ∆-cover Xad
C,∞→ Xad

C of § 3.2
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compatibly with the surjection ∆′ � ∆, the edge map e′ defined analogously to (3.3.1) induces
the isomorphism

Lη(ζp−1)(e
′) : Lη(ζp−1)(RΓcont(∆

′, R′∞))
∼−→ Lη(ζp−1)(RΓproét(X

ad
C , Ô+)).

Indeed, by the almost purity theorem [Sch13a, 4.10(v)], the ideal m kills the cohomology of
Cone(e′) (in addition to that of Cone(e)), so the octahedral axiom (see [BBD82, 1.1.7.1]) ensures
that it also kills the cohomology of the cone of the map RΓcont(∆, R∞) → RΓcont(∆

′, R′∞);
Lemma 3.4 then applies to this map and combines with Theorem 3.9 to give the claim.

The main goal of this section is an analogue of Theorem 3.9 for the sheaf Ainf,Xad
C

(see

Theorem 3.20). To prepare for it, in §§ 3.11 and 3.14 we describe the values of the sheaves Ô+, [

Xad
C

and Ainf,Xad
C

on Xad
C,∞.

3.11 The tilt R[∞
Thanks to the explicit description (3.2.1) of the perfectoid ring R�∞, its tilt

(R�∞)[ := lim
←−y 7→yp(R

�
∞/p)

is described explicitly by the identification

(R�∞)[ ∼= (lim−→m
(O[C [x

1/pm

0 , . . . , x
1/pm

r , x
±1/pm

r+1 , . . . , x
±1/pm

d ]/(x
1/pm

0 · · ·x1/pm

r − (p1/p∞)q/p
m

)))̂
∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p

]>0)⊕(r+1)⊕(Z[ 1
p

])⊕(d−r),

aj = 0 for some 0 6 j 6 r

O[C ·x
a0
0 · · ·x

ad
d ,

where x
1/pm

i corresponds to the p-power compatible sequence (. . . , t
1/pm+1

i , t
1/pm

i ) of elements of
R�∞, the completions are p1/p∞-adic, and the decomposition is as O[C-modules. Thus,

the tilt R[∞ := lim
←−y 7→yp(R∞/p) of the perfectoid ring R∞

is identified with the p1/p∞-adic completion of any lift of the étale R�∞/p-algebra R∞/p to an
étale (R�∞)[-algebra (such a lift exists, see [SP, 04D1]). By [Sch13a, 5.11(i)], the value on Xad

C,∞

of the sheaf Ô+, [

Xad
C

reviewed in (2.2.1) is the ring R[∞.

By functoriality, the group ∆ acts continuously andO[C-linearly on (R�∞)[ and R[∞. Explicitly,
∆ respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales x

aj
j by

ε
aj
j ∈ O[C .

Our analysis in § 3.14 of the value on Xad
C,∞ of the sheaf Ainf,Xad

C
will hinge on the following

lemmas.

Lemma 3.12. Both R[∞/b and H i
cont(∆, R

[
∞/b) for each b ∈ O[C \{0} have no nonzero m[-torsion.

Proof. We may assume that b ∈ m[, so, by using Frobenius, that b | p1/p∞ in O[C . Then
Proposition 3.8 and the ∆-isomorphism R[∞/b

∼= R∞/b
] for some b] ∈ OC gives the claim. 2

Lemma 3.13. For any affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC), the ring

Ainf(R
′
∞) := W ((R′∞)[) (respectively, Ainf(R

′
∞)/µ)

is (p, µ)-adically complete (respectively, p-adically complete). Moreover, for any n, n′ > 0, the
sequence (pn, µn

′
) is Ainf(R

′
∞)-regular and the Ainf/(p

n, µn
′
)-algebra Ainf(R

′
∞)/(pn, µn

′
) is flat.
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Proof. By its definition, the perfect O[C-algebra (R′∞)[ := lim
←−y 7→yp(R

′
∞/p) has no nonzero p1/p∞-

torsion (that is, it is O[C-flat), so the regular sequence claim follows from [SP, 07DV]. The formal
criterion of flatness [Bou, Ch. III, § 5.2, Theorem 1(i)⇔(iv)] then implies the Ainf/(p

n, µn
′
)-

flatness of Ainf(R
′
∞)/(pn, µn

′
) (even with n′ = 0). In addition, the short exact sequences (2.1.2)

with (R′∞)[ in place of O[C imply the p-adic completeness of Ainf(R
′
∞)/µ.

Analogously to the case of Ainf discussed in § 2.1, we use the Witt coordinate bijection and the
µ-adic topology on (R′∞)[ to topologize Ainf(R

′
∞) ∼=

∏∞
n=1(R′∞)[ and we see that this topology

agrees with the (p, µ)-adic topology. Thus, Ainf(R
′
∞) is (p, µ)-adically complete. 2

3.14 The ring Ainf(R∞)
By [Sch13a, 6.5(i)], the value on Xad

C,∞ of the sheaf Ainf,Xad
C

is the ring

Ainf(R∞) := W (R[∞).

By Lemma 3.13 and the formal criterion of flatness, Ainf(R∞) is (p, µ)-adically formally flat as
an Ainf -algebra and (p, µ)-adically formally étale as an Ainf(R

�
∞)-algebra. By using, in addition,

Lemma 3.12, we see that each quotient

Ainf(R∞)/(pn, µn
′
), so also Ainf(R∞)/µ, has no nonzero W (m[)-torsion. (3.14.1)

In general, for a perfect Fp-algebra A, the Witt ring W (A) is the unique p-adically complete

p-torsion-free Zp-algebra Ã equipped with an isomorphism Ã/p ' A (see [Bha18, 2.5]). For an

a ∈ A, the Teichmüller [a] ∈ Ã is lim
n→∞

(ãp
n

n ) where ãn ∈ Ã is any lift of a1/pn (see [Bha18, 2.4]).

Therefore,

Ainf(R
�
∞) ∼=

(
lim−→m

Ainf [X
1/pm

0 , . . . , X1/pm

r , X
±1/pm

r+1 , . . . , X
±1/pm

d ]
/(∏r

i=0X
1/pm

i − [(p1/p∞)q/p
m

]
))̂

∼=
⊕̂

(a0,...,ad)∈(Z[ 1
p ]>0)⊕(r+1)⊕(Z[ 1

p ])⊕(d−r),

aj = 0 for some 0 6 j 6 r

Ainf ·Xa0
0 · · ·Xad

d ,

where the completions are (p, µ)-adic, the decomposition is as Ainf -modules, and, in terms of

§ 3.11, we have X
1/pm

i = [x
1/pm

i ]. The summands for which ai ∈ Z for all i comprise a subring

A(R�) ∼= Ainf{X0, . . . , Xr, X
±1
r+1, . . . , X

±1
d }/(X0 · · ·Xr−[(p1/p∞)q]) inside Ainf(R

�
∞), (3.14.2)

where the convergence is (p, µ)-adic. The remaining summands, that is, those for which ai 6∈ Z
for some i, comprise an A(R�)-submodule N�∞ ⊂ Ainf(R

�
∞).

On sections over Xad
C,∞, the map θ from (2.2.2) is identified with the unique ring

homomorphism
θ : Ainf(R∞)� R∞ such that [x] 7→ x(0),

is surjective with the kernel generated by the regular element ξ (see [BMS18, 3.10, 3.11]), and
intertwines the Witt vector Frobenius of Ainf(R∞) with the absolute Frobenius of R∞/p. Thus,

θ : A(R�)� R� is described by Xi 7→ ti. (3.14.3)

We use the surjection (3.14.3) to uniquely lift the étale R�/p-algebra R/p to a (p, µ)-adically
complete, formally étale A(R�)-algebra A(R). By construction, we have the identification

Ainf(R∞) ∼= Ainf(R
�
∞) ⊗̂A(R�)A(R), (3.14.4)
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where the completion is (p, µ)-adic. Therefore, by setting N∞ := N�∞ ⊗̂A(R�)A(R), we arrive at

the decompositions of Ainf(R
�
∞) and Ainf(R∞) into ‘integral’ and ‘nonintegral’ parts:

Ainf(R
�
∞) ∼= A(R�)⊕N�∞ and Ainf(R∞) ∼= A(R)⊕N∞. (3.14.5)

Modulo Ker θ (that is, modulo ξ), these decompositions reduce to the decompositions (3.2.2).
The Witt vector Frobenius of Ainf(R

�
∞) preserves A(R�); explicitly: it is semilinear with

respect to the Frobenius of Ainf and raises each X
1/pm

i to the pth power. By construction,
A(R) inherits a Frobenius ring endomorphism from A(R�), and the identification (3.14.4) is
Frobenius-equivariant.

The natural ∆-action on Ainf(R∞) is continuous and commutes with the Frobenius.
Explicitly, ∆ respects the completed direct sum decomposition and an (ε0, . . . , εd) ∈ ∆ scales
X
aj
j by [ε

aj
j ] ∈ Ainf . The ∆-action on A(R�) lifts uniquely to a necessarily Frobenius-equivariant

∆-action on A(R). In particular, ∆ acts trivially on A(R)/µ. The identifications (3.14.4) and
(3.14.5) are ∆-equivariant.

3.15 The cohomology of Ainf and continuous group cohomology
Similarly to § 3.3, the Čech complex of the sheaf Ainf,Xad

C
with respect to the pro-(finite

étale) affinoid perfectoid cover Xad
C,∞ → Xad

C is identified with the continuous cochain complex
RΓcont(∆,Ainf(R∞)). Thus, by using [SP, 01GY], we obtain the edge map to the proétale
cohomology of Ainf,Xad

C
:

e : RΓcont(∆,Ainf(R∞))→ RΓproét(X
ad
C ,Ainf). (3.15.1)

By the almost purity theorem, more precisely, by [Sch13a, 6.5(ii)], the subset [m[] ⊂ Ainf that
consists of the Teichmüller lifts of the elements in the maximal ideal m[ ⊂ O[C kills all the
cohomology groups of Cone(e). Since µ ∈W (m[) (see (2.3.3)), it will be useful to strengthen this
annihilation as follows.

Lemma 3.16. The ideal W (m[) ⊂ Ainf defined in (2.3.3) kills each H i(Cone(e)).

Proof. We argue similarly to [BMS18, proof of Theorem 5.6]. Both the source and the target of e
are derived p-adically complete (see § 1.7), so, by [BS15, 3.4.4 and 3.4.14], eachH i(Cone(e)) is also
derived p-adically complete. Thus, the desired conclusion follows from the following lemma. 2

Lemma 3.17. If [m[]Ainf kills a derived p-adically complete Ainf -module H, then so does W (m[).

Proof. By the derived p-adic completeness, any free Ainf -module resolution F • of H satisfies

H ∼= Coker
(

lim
←−n(F−1/pn)→ lim

←−n(F 0/pn)
)
.

Moreover, for every n > 1 the ideals [m[] ·Wn(O[C) and Wn(m[) := Ker(Wn(O[C)→ Wn(k)) of
Wn(O[C) agree. Thus, the ([m[]Ainf)-annihilation of H implies that Wn(m[) kills both

H/pn ∼= H0(F • ⊗Ainf
Ainf/p

n) and TorAinf
1 (H,Ainf/p

n) ∼= H−1(F • ⊗Ainf
Ainf/p

n).

Thus, since [m[]2 = [m[] and F0/p
n has no nonzero m-torsion for every nonzero m ∈ [m[],

any element x ∈ Wn+1(m[) · (F0/p
n+1) may be lifted to Wn+1(m[) · (F−1/p

n+1), compatibly
with a specified lift of its image x ∈ Wn(m[) · (F0/p

n) to Wn(m[) · (F−1/p
n). In particular,

W (m[) · (lim
←−n(F 0/pn)) lies in the image of lim

←−n(F−1/pn), that is, W (m[) kills H, as desired. 2
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K. Česnavičius and T. Koshikawa

We will show in Theorem 3.20 that Lη(µ)(e) is an isomorphism, so that continuous group

cohomology computes Lη(µ)(RΓproét(X
ad
C ,Ainf)). For this, we will use the following lemma.

Lemma 3.18. If B
b−→ B′ is a morphism in D(Ainf) such that each H i(B ⊗L

Ainf
Ainf/µ) has no

nonzero W (m[)-torsion and W (m[) kills each H i(Cone(b)), then Lη(µ)(b) is an isomorphism.

Proof. Since Lη is not a triangulated functor, the fact that Lη(µ)(Cone(b)) ∼= 0 does not a priori

suffice. Instead, the ideal (W (m[))2 kills the cohomology of Cone(b)⊗L
Ainf

Ainf/µ, so the sequences

0→ H i(B ⊗L
Ainf

Ainf/µ)→ H i(B′ ⊗L
Ainf

Ainf/µ)→ H i(Cone(b)⊗L
Ainf

Ainf/µ)→ 0

are short exact. By the Bockstein construction (see [BMS18, 6.12]), as i varies, they comprise a
short exact sequence whose terms are complexes that compute Lη(µ)(B)⊗L

Ainf
Ainf/µ, etc. Thus,

the vanishing of Lη(µ)(Cone(b)) implies that (Lη(µ)(b))⊗L
Ainf

Ainf/µ is an isomorphism. It follows

that Cone(Lη(µ)(b))⊗L
Ainf

Ainf/µ ∼= 0, so µ acts invertibly on the cohomology of Cone(Lη(µ)(b)).

But then, as we see after applying −⊗L
Ainf

Ainf [
1
µ ], this cohomology vanishes. 2

We now verify that the edge map e defined in (3.15.1) also meets the first assumption of
Lemma 3.18.

Proposition 3.19. For each i ∈ Z, the Ainf -module H i
cont(∆,Ainf(R∞)/µ) is p-torsion free and

p-adically complete; moreover, the following natural maps are isomorphisms:

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆,Ainf(R∞)/(µ, pn)) for n > 0 (3.19.1)

and

H i
cont(∆,Ainf(R∞)/µ)

∼−→ lim
←−n(H i

cont(∆,Ainf(R∞)/(µ, pn))). (3.19.2)

In addition, H i
cont(∆,Ainf(R∞)/(µ, pn)) and H i

cont(∆,Ainf(R∞)/µ) have no nonzero W (m[)-
torsion.

Proof. Since A(R)/µ is p-adically complete and has a trivial ∆-action (see Lemma 3.13
and § 3.14), Lemma 3.7 implies that H i

cont(∆, A(R)/µ) is a direct sum of copies of A(R)/µ, and
likewise for H i

cont(∆, A(R)/(µ, pn)). Consequently, since, by (3.14.1), the rings A(R)/(µ, pn)
and A(R)/µ have no nonzero W (m[)-torsion, the analogues of all the claims with A(R) in place
of Ainf(R∞) follow. Thus, due to (3.14.5), we only need to establish these analogues with N∞ in
place of Ainf(R∞).

To prepare for treating N∞, we start by building on the ideas of [Bha18, proof of Lemma 4.6]
to analyze a single summand S := Ainf ·Xa0

0 · · ·X
ad
d that, as in § 3.14, contributes to N�∞.

We set

bj := aj − a0 for 1 6 j 6 r and bj := aj for r + 1 6 j 6 d, (3.19.3)

and let m ∈ Z>0 be the minimal such that pmbj ∈ Z for all j. Lemma 3.7 applied with the
topological generators δ1, . . . , δd of ∆ defined in § 3.2 gives an Ainf -isomorphism

H i
cont(∆, S/µ) ' H i(C•),
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where C• is the (Ainf/µ)-tensor product of the d complexes

[Ainf/µ
[εbj ]−1
−−−−→ Ainf/µ] ∼= Ainf/([ε

bj ]− 1)⊗L
Ainf

Ainf/µ. (3.19.4)

By reordering the bj , we may assume that for all j we have bj/b1 ∈ Z(p), so that b1 6∈ Z and both

[εb1 ] − 1 | [εbj ] − 1 and [εb1 ] − 1 |µ. Then the object (3.19.4) with j = 1 is given by the complex

[Ainf/([ε
b1 ] − 1)

0−→ Ainf/([ε
b1 ] − 1)] and, by using the left-hand sides of (3.19.4) for the factors

with j 6= 1, we see that C• is quasi-isomorphic to a direct sum of shifts of

Ainf/([ε
b1 ]− 1) ∼= Ainf/ϕ

−m(µ).

Thus, for i ∈ Z,

H i
cont(∆, S/µ) '

⊕
I Ainf/ϕ

−m(µ) for some set I, and hence H i
cont(∆, S/µ)[p] = 0.

(3.19.5)
By Lemma 3.7 and [SP, 061Z, 0662], this implies that

H i
cont(∆, S/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, S/(µ, p
n)). (3.19.6)

We now analyze N�∞. Since Ainf(R
�
∞)/µ is p-adically complete, § 3.14 gives the ∆-

decomposition

Ainf(R
�
∞)/µ ∼=

⊕̂
(a0,...,ad)∈(Z[ 1

p
]>0)⊕(r+1)⊕(Z[ 1

p
])⊕(d−r),

aj = 0 for some 0 6 j 6 r

Ainf/µ ·Xa0
0 · · ·X

ad
d

in which the completion is p-adic. Lemma 3.6 (i) then combines with (3.19.5) to prove that

H i
cont(∆, N

�
∞/µ)[p] = 0 for each i ∈ Z.

Analogously to (3.19.6), this, in turn, implies that

H i
cont(∆, N

�
∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N
�
∞/(µ, p

n)). (3.19.7)

Finally, we analyze N∞. The identification

N∞/(µ, p
n) ∼= N�∞/(µ, p

n)⊗A(R�) A(R)

is ∆-equivariant and A(R)/(µ, pn) is (A(R�)/(µ, pn))-flat, so Lemma 3.7 gives the identifications

H i
cont(∆, N∞/(µ, p

n)) ∼= H i
cont(∆, N

�
∞/(µ, p

n))⊗A(R�) A(R) for n > 1, (3.19.8)

which are compatible as n varies. Consequently, for n > 1, the sequences

0→H i
cont(∆, N∞/(µ, p

n))[p]→H i
cont(∆, N∞/(µ, p

n))→H i
cont(∆, N∞/(µ, p

n−1))→ 0 (3.19.9)

are short exact because, by (3.19.5) and (3.19.7), so are their analogues with N�∞ in place of N∞.
By taking the inverse limit of these sequences for varying n and using [SP, 0D6K], we obtain

H i
cont(∆, N∞/µ)

∼−→ lim
←−n(H i

cont(∆, N∞/(µ, p
n))), (3.19.10)

which is the sought analogue of (3.19.2). The p-torsion-freeness of H i
cont(∆, N∞/µ) follows from

(3.19.9)–(3.19.10) and, as in (3.19.6), it implies that

H i
cont(∆, N∞/µ)⊗Ainf

Ainf/p
n ∼−→ H i

cont(∆, N∞/(µ, p
n)).

It remains to show that each H i
cont(∆, N∞/(µ, p

n)) has no nonzero W (m[)-torsion.
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The surjectivity aspect of the short exact sequences (3.19.9) implies that the sequences

0→ N∞/(µ, p)
pn−1

−−−→ N∞/(µ, p
n)→ N∞/(µ, p

n−1)→ 0

remain short exact after applying H i
cont(∆,−). Thus, H i

cont(∆, N∞/(µ, p
n)) is a successive

extension of copies of H i
cont(∆, N∞/(µ, p)). Consequently, it has no nonzero W (m[)-torsion

because, by Lemma 3.12, neither does H i
cont(∆, N∞/(µ, p)) (note that N∞/(µ, p) is a direct

summand of Ainf(R∞)/(µ, p) ∼= R[∞/µ). 2

Theorem 3.20. The edge map e defined in (3.15.1) induces the isomorphism

Lη(µ)(e) : Lη(µ)(RΓcont(∆,Ainf(R∞)))
∼−→ Lη(µ)(RΓproét(X

ad
C ,Ainf,Xad

C
)).

Proof. By the projection formula [SP, 0944],

RΓcont(∆,Ainf(R∞))⊗L
Ainf

Ainf/µ ∼= RΓcont(∆,Ainf(R∞)/µ), (3.20.1)

so Proposition 3.19 implies that the cohomology modules of RΓcont(∆,Ainf(R∞)) ⊗L
Ainf

Ainf/µ

have no nonzero W (m[)-torsion. Thus, the claim follows from Lemmas 3.16 and 3.18. 2

Remark 3.21. Analogously to Remark 3.10, Theorem 3.20 extends as follows: for any pro-(finite

étale) affinoid perfectoid ∆′-cover

Spa
(
R′∞
[

1
p

]
, R′∞

)
→ Spa

(
R
[

1
p

]
, R
) ∼= Xad

C that refines Xad
C,∞→ Xad

C

subject to the same conditions as in Remark 3.10, the edge map e′ defined analogously to (3.15.1)

induces the isomorphism

Lη(µ)(e
′) : Lη(µ)(RΓcont(∆

′,Ainf(R
′
∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf,Xad

C
)).

Indeed, as in Remark 3.10, by the almost purity theorem and the octahedral axiom, [m[]Ainf

kills the cohomology modules of the cone of the map

e0 : RΓcont(∆,Ainf(R∞))→ RΓcont(∆
′,Ainf(R

′
∞))

and, by [BS15, 3.4.4 and 3.4.14], these modules are derived p-adically complete; thus, by

Lemma 3.17, even W (m[) kills them, to the effect that Lemma 3.18 applies to the map e0

and proves the claim.

As a final goal of § 3, we wish to show in Theorem 3.34 that even the maps Lη(µ)(e ⊗̂
L
Ainf

A
(m)
cris )

are isomorphisms for Ainf -algebras A
(m)
cris reviewed in § 3.26 below. This extension of Theorem 3.20

will be important for relating AΩX to logarithmic crystalline cohomology in § 5. Our analysis of

Lη(µ)(e ⊗̂
L
Ainf

A
(m)
cris ) will use the following further consequences of the proof of Proposition 3.19.
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3.22 The decomposition of N∞
For m > 0, let N�m be the (p, µ)-adically completed direct sum of those summands
Ainf ·Xa0

0 · · ·X
ad
d that contribute to Ainf(R

�
∞) in § 3.14 for which m is the smallest nonnegative

integer such that pmaj ∈ Z for all j (equivalently, in the notation of (3.19.3), such that
pmbj ∈ Z for all j). For varying m > 0, the A(R�)-modules N�m and the A(R)-modules
Nm := N�m ⊗̂A(R�)A(R) comprise the (p, µ)-adically completed direct sum decompositions

N�∞
∼=
⊕̂

m>0N
�
m and N∞ ∼=

⊕̂
m>0Nm. (3.22.1)

For a fixed i, Lemma 3.7 and (3.19.5)–(3.19.6) imply that

H i
cont(∆, N

�
m/(µ, p

n)) '
⊕

I′ Ainf/(ϕ
−m(µ), pn) for some set I ′ and every n > 0. (3.22.2)

Corollary 3.23. For all i and n,m > 0,

H i
cont(∆, Nm/(µ, p

n)) is killed by ϕ−m(µ) and is a flat Ainf/(ϕ
−m(µ), pn)-module.

Proof. If R = R�, then (3.22.2) suffices. In addition, by Lazard’s theorem, A(R)/(µ, pn) is a
filtered direct limit of finite free A(R�)/(µ, pn)-modules. Thus, the general case of the claim
follows by using (3.19.8) and its analogue for N0 and N�0 . 2

We wish to supplement Proposition 3.19 with Proposition 3.25 that analyzes the cohomology
of N∞ without reducing modulo µ. Its proof will use the following base change result for Lη.

Lemma 3.24 [Bha18, 5.16]. For a ring A, elements f, g ∈ A with g a nonzero-divisor, and a
K ∈ D(A), if the modules H i(K ⊗L

A A/f) have no nonzero g-torsion, then the natural map

Lη(f)(K)⊗L
A A/g→ Lη(f)(K ⊗

L
A A/g) where f denotes the image of f in A/g,

is an isomorphism. 2

Proposition 3.25. The element µ kills every H i
cont(∆, N∞).

Proof. Let δ1, . . . , δd be the free generators of ∆ fixed in § 3.2. By Lemma 3.7, we need to prove
that

Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)) ∼= 0. (3.25.1)

The key point, with which we start, is to prove the vanishing (3.25.1) modulo ϕ(ξ). The
isomorphism

KN∞(δ1 − 1, . . . , δd − 1)⊗L
Ainf

Ainf/µ ∼= KN∞/µ(δ1 − 1, . . . , δd − 1),

Lemma 3.7, and Proposition 3.19 show that the cohomology of KN∞(δ1−1, . . . , δd−1)⊗L
Ainf

Ainf/µ
is p-torsion free. Therefore, Lemma 3.24 supplies the identification

Lη(µ)(KN∞(δ1−1, . . . , δd−1))⊗L
Ainf

Ainf/ϕ(ξ) ∼= Lη(ζp−1)(KN∞/ϕ(ξ)(δ1−1, . . . , δd−1)). (3.25.2)

The inverse Frobenius ϕ−1 maps N�∞ isomorphically onto a direct summand of N�∞, so it maps
N∞ isomorphically onto a direct summand of N∞. Thus, ϕ−1 maps N∞/ϕ(ξ) isomorphically onto
a direct summand ofN∞/ξ ∼=M∞ (see (3.14.5)). In particular, by Lemma 3.7 and Proposition 3.8,
ζp − 1 kills the cohomology of KN∞/ϕ(ξ)(δ1 − 1, . . . , δd − 1), so both sides of (3.25.2) are acyclic.

Since N∞ is (p, µ)-adically complete, it is also ϕ(ξ)-adically complete (see [SP, 090T]). Thus,
KN∞(δ1 − 1, . . . , δd − 1) is derived ϕ(ξ)-adically complete, and [BMS18, 6.19] implies the same
for Lη(µ)(KN∞(δ1 − 1, . . . , δd − 1)). The established acyclicity of the left-hand side of (3.25.2)
therefore implies the desired vanishing (3.25.1). 2
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3.26 The Ainf -algebras A
(m)
cris

For m ∈ Z>1, we let A
(m)
cris be the p-adic completion of the Ainf -subalgebra A

0, (m)
cris of Ainf [

1
p ]

generated by the elements ξs/s! with s 6 m. In particular, A
(m)
cris
∼= Ainf for m < p. In contrast,

if m > p, then, since µp/p! ∈ A(m)
cris , the p-adic and (p, µ)-adic topologies of A

(m)
cris agree. By its

definition, A
(m)
cris is p-torsion free; in fact, although we will not use this, Proposition 5.36 below

implies that A
(m)
cris is even a domain. The map θ of (2.1.3) extends to A

(m)
cris :

θ : A
(m)
cris � OC . (3.26.1)

Due to the ‘finite-type nature’ of the Ainf -algebra A
(m)
cris , more precisely, due to [BMS18,

12.8(ii)], the systems of ideals

(pnA
(m)
cris )n>1 and ({x ∈ A(m)

cris | µx ∈ p
nA

(m)
cris })n>1 of A

(m)
cris are intertwined.

Equivalently,

for every n > 1, the map (A
(m)
cris /p

n′)[µ]→ A
(m)
cris /p

n vanishes for large n′ > n. (3.26.2)

Therefore, by taking the inverse limit over n of the sequences

0→ (A
(m)
cris /p

n)[µ]→ A
(m)
cris /p

n µ−→ A
(m)
cris /p

n
→ A

(m)
cris /(µ, p

n)→ 0, (3.26.3)

we conclude that

A
(m)
cris is µ-torsion free and A

(m)
cris /µ is p-adically complete. (3.26.4)

The Frobenius automorphism of Ainf preserves the subring A
0, (m)
cris ⊂ Ainf [

1
p ]: indeed, for

m > p, since ξ =
∑p−1

i=0 [εi/p] and ξp ∈ pA0, (m)
cris , we have ϕ(ξ) =

∑p−1
i=0 [εi] and ϕ(ξ) ∈ pA0, (m)

cris .
Thus, the Frobenius induces a ring endomorphism

ϕ : A
(m)
cris → A

(m)
cris ,

which, via the map θ, intertwines the absolute Frobenius of OC/p (compare with (2.1.3)).

3.27 The A(R)-algebras A
(m)
cris (R)

The ‘relative version’ of A
(m)
cris (respectively, a ‘highly ramified cover’ of this relative version) is

the A(R)-algebra (respectively, Ainf(R∞)-algebra)

A
(m)
cris (R) := A(R) ⊗̂Ainf

A
(m)
cris (respectively, A(m)

cris (R∞) := Ainf(R∞) ⊗̂Ainf
A

(m)
cris ),

where the completion is (p, µ)-adic (equivalently, p-adic if m > p). In the case m < p, due to

Lemma 3.13 and § 3.26, we have A
(m)
cris (R) ∼= A(R) and A(m)

cris (R∞) ∼= Ainf(R∞).

Due to the decomposition (3.14.5), the subring A
(m)
cris (R) ⊂ A(m)

cris (R∞) is an A
(m)
cris (R)-

module direct summand. Explicitly, the decomposition of Ainf(R
�
∞) described in § 3.14 gives

the decomposition

A(m)
cris (R�∞) ∼=

⊕̂
(a0,...,ad)∈(Z[ 1

p
]>0)⊕(r+1)⊕(Z[ 1

p
])⊕(d−r),

aj = 0 for some 0 6 j 6 r

A
(m)
cris ·X

a0
0 · · ·X

ad
d , (3.27.1)

2060

https://doi.org/10.1112/S0010437X1800790X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1800790X


The Ainf-cohomology in the semistable case

where the completion is (p, µ)-adic (equivalently, p-adic if m> p), and A(m)
cris (R∞) is (p, µ)-adically

formally étale over A(m)
cris (R�∞) (see § 3.14). In particular, (3.26.2) holds with A

(m)
cris replaced by

A(m)
cris (R�∞), and hence also by A(m)

cris (R∞). Consequently, the generalization of (3.26.4) holds too:

A(m)
cris (R∞) is µ-torsion free and A(m)

cris (R∞)/µ is p-adically complete. (3.27.2)

In addition, by (3.27.1) and the formal étaleness, each A(m)
cris (R∞) is p-torsion free. By §§ 3.14

and 3.26, the rings A
(m)
cris (R) and A(m)

cris (R∞) come equipped with compatible A
(m)
cris -semilinear

Frobenius endomorphisms that are compatible as m varies.

The group ∆ acts continuously, Frobenius-equivariantly, and A
(m)
cris -linearly on A

(m)
cris (R) and

A(m)
cris (R∞). For each δ ∈∆, the Ainf -module endomorphism δ−1

µ of A(R) induces an A
(m)
cris -module

endomorphism δ−1
µ of A

(m)
cris (R) that satisfies δ = 1 + µ · δ−1

µ . In particular, ∆ acts trivially on

A
(m)
cris (R)/µ.

3.28 The A
(m)
cris -base change of the edge map

Since A
(m)
cris
∼= Ainf for m < p, for the sake of analyzing the map e ⊗̂L

Ainf
A

(m)
cris , where e is as in

(3.15.1), we suppose thatm> p. Then, for each n > 0, we have A
(m)
cris /p

n ∼=A
(m)
cris /(p

n, µn
′
) for every

large enough n′ > 0 (see § 3.26). Consequently, since (pn, µn
′
) is an Ainf(R∞)-regular sequence

with Ainf(R∞)/(pn, µn
′
) flat over Ainf/(p

n, µn
′
) (see Lemma 3.13), the projection formula

[SP, 0944] and Lemma 3.7 imply that

RΓcont(∆,Ainf(R∞)) ⊗̂L
Ainf

A
(m)
cris
∼= RΓcont(∆,A

(m)
cris (R∞)).

Consequently, the edge map e defined in (3.15.1) gives rise to the map

e ⊗̂L
Ainf

A
(m)
cris : RΓcont(∆,A

(m)
cris (R∞))→ RΓproét(X

ad
C ,Ainf) ⊗̂

L
Ainf

A
(m)
cris . (3.28.1)

Since [m[] kills each H i(Cone(e)) (see § 3.15) and [m[]2 = [m[], by using a free Ainf -

module resolution of A
(m)
cris /p

n and the definition [SP, 064M], we see that [m[] also kills

each H i(Cone(e) ⊗L
Ainf

A
(m)
cris /p

n). Consequently, by [SP, 0D6K], the ideal [m[]Ainf kills each

H i(Cone(e) ⊗̂L
Ainf

A
(m)
cris ), to the effect that, by Lemma 3.17 (and [BS15, 3.4.4 and 3.4.14]), so

does W (m[). In conclusion,

W (m[) kills the cohomology modules of Cone(e ⊗̂L
Ainf

A
(m)
cris ) ' Cone(e) ⊗̂L

Ainf
A

(m)
cris . (3.28.2)

By applying Lemma 3.18, we will show in Theorem 3.34 that Lη(µ)(e ⊗̂
L
Ainf

A
(m)
cris ) is an

isomorphism. Thus, we need to know that the Ainf -modules H i
cont(∆,A

(m)
cris (R∞)/µ) have no

nonzero W (m[)-torsion (compare with Proposition 3.19 for Ainf(R∞)/µ). The following result is
a step in that direction.

Proposition 3.29. Each A(m)
cris (R∞)/(µ, pn) and also A(m)

cris (R∞)/µ have no nonzero W (m[)-
torsion.

Proof. By the p-adic completeness of A(m)
cris (R∞)/µ (see (3.27.2)), we may focus on the rings

A(m)
cris (R∞)/(µ, pn). The argument for the latter is similar to that of [BMS18, 12.8(iii)] and uses
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approximation by Noetherian rings. Namely, by the (p, ϕ−1(µ))-adic completeness of Ainf , the
assignment

T 7→ [ε]1/p − 1 defines a Zp-algebra morphism ZpJT K→ Ainf . (3.29.1)

By [BMS18, 4.31], this makes Ainf a faithfully flat ZpJT K-algebra. Thus, letting M be the mod

((T+1)p−1, pn) reduction of the ZpJT K-subalgebra of ZpJT K[1
p ] generated by the 1

s!(
∑p−1

i=0 (T+1)i)s

with s 6 m, we have the identification

A(m)
cris (R∞)/(µ, pn) ∼= M ⊗ZpJT K/((T+1)p−1, pn) Ainf(R∞)/(µ, pn).

The (ZpJT K/((T + 1)p − 1, pn))-flatness of Ainf(R∞)/(µ, pn) ensures that the ϕ−1(µ)-torsion

submodule of A(m)
cris (R∞)/(µ, pn) is the base change of the T -torsion submodule M [T ] ⊂ M .

Consequently, since ϕ−1(µ) ∈ W (m[), the consideration of the p-adic filtration of M [T ] reduces
us to proving that

Fp ⊗ZpJT K/((T+1)p−1, pn) Ainf(R∞)/(µ, pn) ∼= R[∞/ϕ
−1(µ) has no nonzero m[-torsion,

which follows from Lemma 3.12. 2

To relate H i
cont(∆,A

(m)
cris (R∞)/µ) to H i

cont(∆,Ainf(R∞)/µ) in Proposition 3.33, we will use
the following general result about exactness properties of p-adically completed tensor products.

For concreteness, we state it for Ainf and its algebra A
(m)
cris , but the proof is not specific to these

choices.

Lemma 3.30. For a fixed m > p, consider the following condition on an Ainf -module L:

for j > 0, {TorAinf
j (L,A

(m)
cris /p

n)}n>0 is Mittag–Leffler with vanishing eventual images, (?)

which means that for every j, n, the map TorAinf
j (L,A

(m)
cris /p

n′) → TorAinf
j (L,A

(m)
cris /p

n) vanishes
for some n′ > n. For a bounded complex

M• = . . .→M i di−→M i+1
→ . . .

of Ainf -modules, if each M i and each H i(M•) satisfy (?), then, for every i, we have

H i(M• ⊗̂Ainf
A

(m)
cris ) ∼= lim

←−n(H i(M• ⊗Ainf
A

(m)
cris /p

n)) ∼= H i(M•) ⊗̂Ainf
A

(m)
cris . (3.30.1)

Proof. For an inverse system {0→ I ′n → In → I ′′n → 0}n>0 of short exact sequences of abelian
groups, {In}n>0 is Mittag–Leffler with vanishing eventual images if and only if so are both
{I ′n}n>0 and {I ′′n}n>0. Therefore, the short exact sequences

0→ Ker(di)→M i
→ Im(di)→ 0 and 0→ Im(di−1)→ Ker(di)→ H i(M•)→ 0 (3.30.2)

imply, by descending induction on i, that each Ker(di) and each Im(di) satisfy (?). Consequently,

these sequences remain short exact after applying −⊗̂Ainf
A

(m)
cris , to the effect that the flanking

terms of (3.30.1) get identified. By construction, this identification is compatible with the

canonical maps to lim
←−n(H i(M•⊗Ainf

A
(m)
cris /p

n)), so it remains to establish the second identification

in (3.30.1).
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By [SP, 0662 and 0130], the spectral sequences associated to a double complex give the

following spectral sequences that converge to H i+j(M• ⊗L
Ainf

A
(m)
cris /p

n):

(n)Eij2 = H i(Hj(M•)⊗L
Ainf

A
(m)
cris /p

n) and (n)′Eij1 = Hj(M i ⊗L
Ainf

A
(m)
cris /p

n),

where the differential on the (n)′E1-page is Hj(di ⊗L
Ainf

A
(m)
cris /p

n). As n varies, both families of

spectral sequences form inverse systems. Moreover, by assumption, the systems {(n)Eij2 }n>0 with

i 6= 0 and {(n)′Eij1 }n>0 with j 6= 0 are Mittag–Leffler with vanishing eventual images. This persists

to the subsequent pages: namely, by the first sentence of the proof, to the systems {(n)Eijs }n>0

with i 6= 0 and {(n)′Eijs }n>0 with j 6= 0 for any s 6∞. Consequently, the edge maps

H i(M•)⊗A(m)
cris /p

n
→ H i(M• ⊗L A

(m)
cris /p

n) and H i(M• ⊗L A
(m)
cris /p

n)→ H i(M• ⊗A(m)
cris /p

n)

become isomorphisms after applying the functor lim
←−n. It remains to note that then so does their

composition, which is the canonical map H i(M•)⊗Ainf
A

(m)
cris /p

n
→ H i(M• ⊗Ainf

A
(m)
cris /p

n). 2

To make Lemma 3.30 practical, we now establish its condition (?) in several key
cases.

Lemma 3.31. For a fixed m > p, the condition (?) holds in any of the following cases:

(i) for any n, n′ > 0, the sequence (pn, µn
′
) is L-regular and L/(pn, µn

′
) is Ainf/(p

n, µn
′
)-flat;

(ii) the module L has no nonzero p-torsion and each L/pn is a filtered direct limit of direct
sums of Ainf -modules of the form Ainf/(ϕ

−s(µ), pn) for variable s > 0.

Thus, (?) holds for Ainf(R∞) and Ainf(R∞)/µ, and for each H i
cont(∆, N∞) and

H i
cont(∆,Ainf(R∞)/µ).

Proof. If (i) holds, then, by the regular sequence aspect, L⊗L
Ainf

Ainf/(p
n, µn

′
) ∼= L/(pn, µn

′
), so,

by the flatness aspect, L ⊗L
Ainf

A
(m)
cris /p

n is concentrated in degree 0. Thus, in the case (i), the
inverse systems in (?) vanish termwise.

If (ii) holds, then each L⊗L
Ainf

Ainf/p
n is concentrated in degree 0, so

{TorAinf
j (L,A

(m)
cris /p

n)}n>0
∼= {Tor

Ainf/p
n

j (L/pn, A
(m)
cris /p

n)}n>0 (3.31.1)

for every j > 0. In addition, since ϕ−s(µ) |µ for s > 0 and each Ainf/p
n has no nonzero µ-torsion,

the assumption on L/pn in (ii) ensures that the right-hand side of (3.31.1) vanishes termwise for
j > 1. In contrast, for j = 1 and every n > 0, there is an n′ > n such that the transition map
between positions n′ and n in the right-hand side system of (3.31.1) vanishes: this follows from
the identification

Tor
Ainf/p

n′

1 (Ainf/(ϕ
−s(µ), pn

′
), A

(m)
cris /p

n′) ∼= (A
(m)
cris /p

n′)[ϕ−s(µ)]

and (3.26.2). Consequently, (ii) implies (?), as claimed.
By Lemma 3.13, (i) holds for Ainf(R∞) and then, by Lazard’s theorem, (ii) holds for

Ainf(R∞)/µ. Likewise, Proposition 3.19, Corollary 3.23, and Lazard’s theorem imply that (ii)
holds for each H i

cont(∆,Ainf(R∞)/µ). By Lemma 3.7, H i
cont(∆, N∞) vanishes for large i and, by

Proposition 3.25, we have the short exact sequences

0→ H i
cont(∆, N∞)→ H i

cont(∆, N∞/µ)→ H i+1
cont(∆, N∞)→ 0.
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K. Česnavičius and T. Koshikawa

Therefore, due to the first sentence of the proof of Lemma 3.30, descending induction on i shows
that (?) for H i

cont(∆,Ainf(R∞)/µ) implies (?) for H i
cont(∆, N∞). 2

Thanks to Lemma 3.31, we may draw the following concrete consequences from Lemma 3.30.

Proposition 3.32. For every m > p and i ∈ Z, we have the identifications

H i
cont(∆, N∞ ⊗̂Ainf

A
(m)
cris ) ∼= lim

←−n(H i
cont(∆, N∞ ⊗Ainf

A
(m)
cris /p

n))

∼= H i
cont(∆, N∞) ⊗̂Ainf

A
(m)
cris .

(3.32.1)

In particular, µ kills every H i
cont(∆, N∞ ⊗̂Ainf

A
(m)
cris ).

Proof. By Lemma 3.7, the Koszul complex M• of N∞ with respect to δ1, . . . , δd satisfies

H i(M•) ∼= H i
cont(∆, N∞) and H i(M• ⊗̂A(m)

cris ) ∼= H i
cont(∆, N∞ ⊗̂Ainf

A
(m)
cris ),

as well as
H i(M• ⊗A(m)

cris /p
n) ∼= H i

cont(∆, N∞ ⊗A
(m)
cris /p

n)

for every n > 0. Moreover, by Lemma 3.31, each M i and each H i(M•) satisfy (?). Thus, (3.32.1)
is a special case of (3.30.1). By Proposition 3.25, µ kills every H i

cont(∆, N∞), so, by (3.32.1), it

also kills every H i
cont(∆, N∞ ⊗̂Ainf

A
(m)
cris ). 2

Proposition 3.33. For every m > p and i ∈ Z, we have the identifications

H i
cont(∆,A

(m)
cris (R∞)/µ) ∼= lim

←−n(H i
cont(∆,A

(m)
cris (R∞)/(µ, pn)))

∼= H i
cont(∆,Ainf(R∞)/µ) ⊗̂Ainf

A
(m)
cris .

Moreover, the Ainf -module H i
cont(∆,A

(m)
cris (R∞)/µ) has no nonzero W (m[)-torsion.

Proof. Similarly to the proof of Proposition 3.32, Lemma 3.30 applies to the Koszul complex of
Ainf(R∞)/µ and, due to (3.27.2), gives the identifications. Thus, it suffices to show that each

H i
cont(∆,Ainf(R∞)/µ)⊗Ainf

A
(m)
cris /p

n
(3.19.1)∼= H i

cont(∆,Ainf(R∞)/(µ, pn))⊗Ainf/pn A
(m)
cris /p

n

has no nonzero W (m[)-torsion. Since ∆ acts trivially on A(R)/(µ, pn), Lemma 3.7 and

Proposition 3.29 imply that each H i
cont(∆, A(R)/(µ, pn))⊗Ainf/pnA

(m)
cris /p

n has no nonzero W (m[)-
torsion. Consequently, due to the decomposition (3.22.1), it suffices to show that for j > 0, the
module

H i
cont(∆, Nj/(µ, p

n))⊗Ainf/pnA
(m)
cris /p

n
3.23∼= H i

cont(∆, Nj/(µ, p
n))⊗Ainf/(ϕ−j(µ), pn)A

(m)
cris /(ϕ

−j(µ), pn)

has no nonzero W (m[)-torsion. For this, similarly to the proof of Proposition 3.29, we will
approximate by Noetherian rings. More precisely, similarly to (3.29.1), the assignment

T 7→ [ε]1/p
j − 1 defines a Zp-algebra morphism ZpJT K→ Ainf ,

for which Ainf is ZJT K-flat. In terms of this morphism, the Ainf -algebra A
(m)
cris /(ϕ

−j(µ), pn) is
the Ainf/(ϕ

−j(µ), pn)-base change of the mod (T, pn) reduction M of the ZpJT K-subalgebra of
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ZpJT K[1
p ] generated by the elements 1

s!(
∑p−1

i=0 (T + 1)p
j−1 · i)s with s 6 m. Consequently, we need

to show that

H i
cont(∆, Nj/(µ, p

n))⊗ZpJT K/(T, pn) M

has no nonzero W (m[)-torsion. By Corollary 3.23, the module

H i
cont(∆, Nj/(µ, p

n)) is ZpJT K/(T, pn)-flat.

Thus, by p-adically filtering M , we reduce to showing that H i
cont(∆, Nj/(µ, p

n))/p has no nonzero

W (m[)-torsion. This, in turn, follows from Proposition 3.19 and Lemma 3.12. 2

With Proposition 3.33 in hand, we are ready for the promised claim about Lη(µ)(e ⊗̂
L
Ainf

A
(m)
cris ).

Theorem 3.34. For each m > p, the map e ⊗̂L
Ainf

A
(m)
cris from (3.28.1) induces the isomorphism

Lη(µ)(e ⊗̂
L
Ainf

A
(m)
cris ) : Lη(µ)(RΓcont(∆,A

(m)
cris (R∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf) ⊗̂

L
Ainf

A
(m)
cris ).

Proof. By (3.28.2), the ideal W (m[) ⊂ Ainf kills the cohomology of Cone(e ⊗̂L
Ainf

A
(m)
cris ). By

Proposition 3.33 (and the projection formula [SP, 0944] with (3.27.2)), the cohomology modules

of

RΓcont(∆,A
(m)
cris (R∞))⊗L

Ainf
Ainf/µ

have no nonzero W (m[)-torsion. Thus, Lemma 3.18 applies and gives the desired conclusion. 2

Remark 3.35. Analogously to Remark 3.21, we may extend Theorem 3.34 to any affinoid

perfectoid ∆′-cover that refines Xad
C,∞ → Xad

C and is subject to the same conditions as in

Remark 3.10: more precisely, with the notation used there, we have

Lη(µ)(e
′ ⊗̂L

Ainf
A

(m)
cris ) : Lη(µ)(RΓcont(∆

′,A(m)
cris (R′∞)))

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf) ⊗̂

L
Ainf

A
(m)
cris ),

where A(m)
cris (R′∞) := Ainf(R

′
∞) ⊗̂Ainf

A
(m)
cris . Indeed, as there (see also § 3.28), the ideal W (m[)

kills the cohomology of the cone of the map RΓcont(∆,A
(m)
cris (R∞))→ RΓcont(∆

′,A(m)
cris (R′∞)), so

Lemma 3.18 applies to this map and gives the claim.

4. The de Rham specialization of AΩX

With the local analysis of § 3 at our disposal, we turn to relating AΩX to the logarithmic de Rham

complex of X in Theorem 4.17. The key steps for this are the identification and the analysis of the

Hodge–Tate specialization of AΩX in Theorems 4.2 and 4.11. These steps were also used in the

smooth case in [BMS18, §§ 8 and 9] but, due to the difficulties mentioned in the beginning of § 3,

we carry them out differently. Namely, we rely on the analysis of group cohomology presented in

§ 3 and, in the identification step, we use Lemma 3.24 (which comes from [Bha18]). Nevertheless,

similarly to [BMS18, § 9.2], we will take advantage of the following formalism of presheaves.
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4.1 The presheaf version AΩpsh
X

In addition to the étale site Xét, we consider the site Xpsh
ét whose objects are those connected

affine opens of Xét that have an étale coordinate map (1.5.1) and coverings are the isomorphisms.

Thus, the topology of Xpsh
ét is the coarsest possible and any presheaf is already a sheaf. Since the

objects of Xpsh
ét form a basis of Xét, there is a morphism of topoi

(φ−1, φ∗) : Xét→ Xpsh
ét

for which φ∗ is given by restricting sheaves on Xét to Xpsh
ét and φ−1 is given by sheafifying.

In particular, since any sheaf is the sheafification of its associated presheaf, φ−1 ◦φ∗ ∼= id. We let

νpsh := φ ◦ ν : (Xad
C )proét→ Xpsh

ét

be the indicated composition of morphisms of topoi (with ν defined in (1.5.5)) and set

AΩpsh
X := Lη(µ)(Rν

psh
∗ (Ainf,Xad

C
)) ∈ D>0(Xpsh

ét , Ainf). (4.1.1)

Since Lη commutes with pullback under flat morphisms of ringed topoi (see [BMS18, 6.14]),

φ−1(AΩpsh
X ) ∼= AΩX. (4.1.2)

Moreover, AΩpsh
X may be described explicitly: for every object U of Xpsh

ét , we have

RΓ(U, AΩpsh
X ) ∼= Lη(µ)(RΓ((Uad

C )proét,Ainf,Uad
C

)). (4.1.3)

In particular, since, by [BMS18, 6.19], the functor Lη preserves derived completeness when used

in the context of a replete topos (such as that of sets), we see from (4.1.3) that AΩpsh
X is derived

ξ-adically (and also ϕ(ξ)-adically) complete (compare with Corollary 4.6 below).
Armed with the formalism of § 4.1, we now identify the Hodge–Tate specialization of AΩX.

Theorem 4.2. We have the identification

AΩX ⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(Rν∗(Ô+
Xad
C

)), (4.2.1)

where in the target Lη is with respect to the ideal sheaf (ζp− 1)OX, ét ⊂ OX, ét. If the coordinate
morphisms (1.5.1) exist Zariski locally on X, then (4.2.1) also holds for AΩXZar

(defined in (2.2.4)).

Proof. The kernel of θXad
C
◦ ϕ−1 : Ainf,Xad

C
� Ô+

Xad
C

is generated by the nonzero-divisor ϕ(ξ) (see

§ 2.2), so the projection formula [SP, 0944] provides the identification

Rν∗(Ainf,Xad
C

)⊗L
Ainf , θ◦ϕ−1 OC ∼= Rν∗(Ô+

Xad
C

).

Since (θ ◦ϕ−1)(µ) = ζp− 1, this induces the map (4.2.1) and, likewise, also its presheaf version

AΩpsh
X ⊗L

Ainf , θ◦ϕ−1 OC → Lη(ζp−1)(Rφ∗(Rν∗(Ô+
Xad
C

))). (4.2.2)

Due to (4.1.2), the map φ−1 brings (4.2.2) to (4.2.1), so we seek to show that (4.2.2) is an
isomorphism.

For every object U ∼= Spf(R) of Xpsh
ét equipped with an étale morphism as in (1.5.1), the

discussion and the notation of § 3 apply. In particular, Proposition 3.19 and (3.20.1) ensure
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that the cohomology of RΓcont(∆,Ainf(R∞)) ⊗L
Ainf

Ainf/µ is p-torsion free. Thus, since we have

ϕ(ξ) ≡ p mod (µ) (see § 2.1), Lemma 3.24 implies that

Lη(µ)(RΓcont(∆,Ainf(R∞)))⊗L
Ainf , θ◦ϕ−1 OC

∼−→ Lη(ζp−1)(RΓcont(∆, R∞)).

Since the edge maps (3.3.1) and (3.15.1) are compatible, Theorems 3.9 and 3.20 then imply that

Lη(µ)(RΓ((Uad
C )proét,Ainf))⊗L

Ainf , θ◦ϕ−1 OC
∼−→ Lη(ζp−1)(RΓ((Uad

C )proét, Ô+)).

Consequently, (4.2.2) is an isomorphism on every U, as desired. 2

4.3 The object Ω̃X

To proceed further, we need to analyze the right-hand side of (4.2.1), namely,

Ω̃X := Lη(ζp−1)(Rν∗(Ô+
Xad
C

)) ∈ D>0(OX, ét), (4.3.1)

where, as in Theorem 4.2, the functor Lη is formed with respect to the ideal sheaf (ζp− 1)OX, ét.

Proposition 4.4. For i > 0, the OX, ét-module H i(Ω̃X) is locally free of rank
(

dimx(Xk)
i

)
at

a variable closed point x of Xk (in particular, each H i(Ω̃X)/pn is a quasi-coherent OX, ét/p
n-

module). Moreover,

ν] : OX, ét
∼−→ ν∗(Ô+

Xad
C

) so that H0(Ω̃X) ∼= OX, ét. (4.4.1)

Proof. The claims are étale local (see [SP, 058S]), so we assume that X = Spf(R), that X is

connected, and that there is an étale Spf(OC)-morphism as in (1.5.1):

X = Spf(R)→ Spf(R�) =: X� with R� := OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q), (4.4.2)

so that the discussion and the notation of § 3 apply. In particular, since R is R�-flat (see § 1.5)

and ∆ acts trivially on R� and R, Lemma 3.7 and Proposition 3.8 imply that

R⊕(di) ∼= H i
cont(∆, R

�)⊗R� R ∼=
Hi

cont(∆, R
�
∞)

Hi
cont(∆, R

�
∞)[ζp−1]

⊗R� R
∼−→ Hi

cont(∆, R∞)

Hi
cont(∆, R∞)[ζp−1]

. (4.4.3)

Thus, since the edge maps e of (3.3.1) are compatible for R and R�, Theorem 3.9 shows that

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� R
∼−→ Hi(Xad

C , Ô+)

Hi(Xad
C , Ô+)[ζp−1]

(4.4.4)

is an isomorphism of free R-modules of rank
(
d
i

)
. Consequently,

Hi((X�)ad
C , Ô+)

Hi((X�)ad
C , Ô+)[ζp−1]

⊗R� OSpf(R), ét
∼−→ Riν∗(Ô+)

(Riν∗(Ô+))[ζp−1]
∼= H i(Ω̃X), (4.4.5)

to the effect that H i(Ω̃X) is free of rank
(
d
i

)
, as desired. For (4.4.1), by § 3.3, we need to show that

R
∼−→ (R∞)∆. This map is an inclusion of a direct summand whose complementary summand

M∆
∞ is both p-torsion free and, by Proposition 3.8, killed by ζp − 1, so the claim follows. 2
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Remark 4.5. The proof of Proposition 4.4, specifically, (4.4.4) and (4.4.5), shows that if
X is affine, connected, and admits a coordinate map as in (1.5.1), then the presheaf
assigning H i(X′ad

C , Ô+)/H i(X′ad
C , Ô+)[ζp − 1] to a variable X-étale affine X′ is already a sheaf.

In particular, if the coordinate maps (1.5.1) exist Zariski locally on X (for instance, if X is
OC-smooth or arises as in (1.5.3) from a strictly semistable X ), then the sheaves H i(Ω̃X) may
be computed using the Zariski topology: more precisely, then the object Ω̃XZar

defined by the
formula (4.3.1) using the Zariski topology of X satisfies

H i(Ω̃XZar
)
∼−→ (H i(Ω̃X))|XZar

for every i. (4.5.1)

Corollary 4.6. The object AΩX is derived ξ-adically complete and

AΩpsh
X

∼−→ Rφ∗(AΩX)
(4.1.2)∼= Rφ∗(φ

−1(AΩpsh
X )). (4.6.1)

Proof. For the derived ξ-adic completeness, since φ−1 ◦ Rφ∗ ∼= id, it suffices to show that the
map

AΩX→ R limn(AΩX ⊗L
Ainf

Ainf/ξ
n)

becomes an isomorphism after applying Rφ∗. Thus, since AΩpsh
X is derived ξ-adically complete

(see § 4.1), it suffices to establish the adjunction isomorphism (4.6.1). For this, by the definition

of Xpsh
ét given in § 4.1, we may assume that X is affine, connected, and admits an étale morphism

(1.5.1). In addition, since AΩpsh
X is derived ϕ(ξ)-adically complete, the Xpsh

ét -analogue of [BMS18,
9.15] reduces us to proving that

AΩpsh
X ⊗L

Ainf
Ainf/(ϕ(ξ)n)

∼−→ Rφ∗(φ
−1(AΩpsh

X ⊗L
Ainf

Ainf/(ϕ(ξ)n))).

By the five lemmas, we may assume that n = 1 and, by the proof of Theorem 4.2,

AΩpsh
X ⊗L

Ainf
Ainf/(ϕ(ξ)) ∼= Lη(ζp−1)(Rφ∗(Rν∗(Ô+

Xad
C

))) =: Ωpsh
X .

It remains to recall from Remark 4.5 that the cohomology presheaves of Ωpsh
X are sheaves. 2

Our next task is to identify the vector bundles H i(Ω̃X) with the twists of the bundles given
by logarithmic differentials (see Theorem 4.11). For this, in Proposition 4.8, we first express
H i(Ω̃X) as

∧iH1(Ω̃X), and then, in (4.10.2), construct a map that relates H1(Ω̃X) to Kähler
differentials.

4.7 The cup product maps
By the same arguments as in [SP, 068G], there are product maps

Rjν∗(Ô+)⊗OX, ét
Rj
′
ν∗(Ô+)

−∪−−−−→ Hj+j′(Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+))

that satisfy x ∪ y = (−1)jj
′
y ∪ x (see [SP, 0BYI]). By [SP, 0B6C], there is a cup product map

Rν∗(Ô+)⊗L
OX, ét

Rν∗(Ô+)→ Rν∗(Ô+).

These maps combine to give the ‘cup product map’ (where the tensor product is over OX, ét)

i⊗
s=1

R1ν∗(Ô+)→ Riν∗(Ô+) for each i > 0. (4.7.1)
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Proposition 4.8. For each i > 0, the map (4.7.1) induces the isomorphism∧i
(

R1ν∗(Ô+)

R1ν∗(Ô+)[ζp−1]

)
∼=
∧iH1(Ω̃X)

∼−→ H i(Ω̃X) ∼= Riν∗(Ô+)

Riν∗(Ô+)[ζp−1]
. (4.8.1)

Proof. By Proposition 4.4, each H i(Ω̃X) has no nontrivial 2-torsion, so the antisymmetry of
the map (4.7.1) in each pair of variables indeed induces the OX, ét-module map (4.8.1). For the
isomorphism claim, we may work étale locally, so we put ourselves in the situation (4.4.2).
The edge maps

e : H i
cont(∆, R∞)→ H i(Xad

C , Ô+)

of (3.3.1) are compatible with cup products: to check this, one identifies H i(Xad
C , Ô+) with

the direct limit of the ith Čech cohomology groups of Ô+ with respect to a variable proétale
hypercovering of Xad

C (see [SP, 01H0]) and uses the hypercovering construction of the cup product
(see [SP, 01FP]). Due to Theorem 3.9 and (4.4.3), it then remains to argue that via the cup
product the identification

H1
cont(∆, R)

3.7∼= Rd induces H i
cont(∆, R)

3.7∼=
∧i(Rd),

which follows from [BMS18, 7.3 and 7.5]. 2

To relate H1(Ω̃X) to Kähler differentials, we now review the needed material on cotangent
complexes.

4.9 The completed cotangent complex L̂Ô+/Zp
Affinoid perfectoids form a basis of (Xad

C )proét (see [Sch13a, 4.7]). Therefore, [BMS18, 3.14] ensures

that for the sheaf of rings Ô+
Xad
C

, the cotangent complex LÔ+/OC , whose terms are Ô+
Xad
C

-flat and

which gives an object of D60(Ô+
Xad
C

), satisfies

LÔ+/OC ⊗
L
Z Z/pZ ∼= 0, and, hence, also L̂Ô+/OC

∼= 0.

Consequently, the derived p-adic completion turns the canonical morphism

LOC/Zp ⊗OC Ô
+
Xad
C

→ LÔ+/Zp into an isomorphism (LOC/Zp ⊗OC Ô
+
Xad
C

)̂ ∼−→ L̂Ô+/Zp

in the derived category. By [GR03, 6.5.12(ii)], the complex LOC/Zp is quasi-isomorphic to Ω1
OC/Zp

placed in degree 0. The p-divisibility of Ω1
OC/Zp then ensures that for every n > 0 we have

LOC/Zp⊗
L
OC (Ô+/pnÔ+)∼= (Ω1

OC/Zp [p
n]⊗OC Ô

+)[1]
[Sch13a, 4.2(iii)]∼= (Ω1

OC/Zp [p
n]⊗OC (O+/pnO+))[1],

where O+ abbreviates the integral structure sheaf O+
Xad
C

. Moreover, by [Fon82, Theorem 1′(ii)],5

OC{1} := lim
←−n, y 7→py(Ω

1
OC/Zp [p

n]) is a free OC-module of rank 1.

In conclusion, letting {1} abbreviate the OC-tensor product with OC{1}, we obtain an
isomorphism

(LOC/Zp ⊗OC Ô
+
Xad
C

)̂ ∼= (Ô+
Xad
C

{1})[1], so also L̂Ô+/Zp
∼= (Ô+

Xad
C

{1})[1], in D(Ô+
Xad
C

). (4.9.1)

5 For passage from Ω1
Zp/Zp

of [Fon82] to Ω1
OC/Zp , one may use [GR03, 6.5.20(i)] to conclude that Ω1

OC/Zp
[p] = 0.
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4.10 The relation between Ω̃X and Kähler differentials
The functoriality of the cotangent complex supplies the pullback morphism

L̂OX, ét/Zp → Rν∗(L̂Ô+/Zp)
(4.9.1)∼= (Rν∗(Ô+

Xad
C

{1}))[1]. (4.10.1)

To explicate its source, we note that, as in § 4.9, the explicit description of LOC/Zp gives

(LOC/Zp ⊗OC OX, ét)̂ ∼= (OX, ét{1})[1], so H0(L̂OX, ét/Zp)
∼= H0(L̂OX, ét/OC ).

Moreover, the short exact sequence [SP, 0D6K] leads to the identification

H0(L̂OX, ét/OC ) ∼= Ω1
X/OC

(the R1 lim term vanishes due to the description [Ill71, III.3.2.7]: each XOC/pn is a local complete
intersection over OC/pn and, as may be seen using (1.5.1), no nonzero local section of a vector
bundle on XOC/pn vanishes on Xsm

OC/pn). By [Ill71, III.3.1.2], over Xsm, this identification gives a
quasi-isomorphism between

L̂OXsm, ét/OC and Ω1
Xsm/OC placed in degree 0.

Consequently, by applying H0(−) to the map (4.10.1) and twisting by OC{−1} we obtain the
first map in the following composition of OX, ét-module morphisms:

Ω1
X/OC{−1}→ R1ν∗(Ô+

Xad
C

)� R1ν∗(Ô+)

(R1ν∗(Ô+))[ζp−1]
∼= H1(Ω̃X). (4.10.2)

By [BMS18, 8.15 and its proof], the restriction of this composition to Xsm is an isomorphism
onto ((ζp− 1) ·H1(Ω̃X))|Xsm . Moreover, by Proposition 4.4, the OX, ét-module H1(Ω̃X) is a vector

bundle, so it has no nonzero (ζp−1)-torsion and (H1(Ω̃X))/(ζp−1) has no nonzero local sections
that vanish on Xsm

OC/(ζp−1). In conclusion, we may divide the composition (4.10.2) by ζp − 1 to

obtain a map

Ω1
X/OC{−1}→ H1(Ω̃X) that is an isomorphism over Xsm. (4.10.3)

Theorem 4.11. The restriction of the map (4.10.3) to Xsm extends uniquely to an OX, ét-
isomorphism

Ω1
X/OC , log{−1} ∼= H1(Ω̃X), (4.11.1)

which, by (4.4.1) and Proposition 4.8, induces an OX, ét-module identification

Ωi
X/OC , log{−i} ∼= H i(Ω̃X) for every i > 0. (4.11.2)

The proof of Theorem 4.11 will use the formal GAGA and Grothendieck existence theorems.
The Noetherian cases of these theorems proved in [EGA III1, § 5] have been extended to suitable
non-Noetherian settings by K. Fujiwara and F. Kato (with important inputs by O. Gabber).
The following theorem summarizes the relevant to our aims special case of this extension.

Theorem 4.12 (Fujiwara–Kato). For a valuation ring V of height 1, a nonzero nonunit a ∈ V
such that V is a-adically complete, and a proper, finitely presented V -scheme Y , the functor

F 7→ (F/anF)n>0 (4.12.1)

is an equivalence from the category of finitely presented OY -modules F to that of sequences
(Fn)n>0 of finitely presented OYV/an -modules Fn equipped with isomorphisms Fn+1|YV/an ' Fn.
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Proof. The claim is a special case of [FK18, I.10.1.2]. In order to explain why [FK18, I.10.1.2]
implies our assertion, we first reinterpret our source and target categories.

By a result of Gabber [FK18, 0.9.2.7], the ring V is ‘a-adically topologically universally
adhesive’, so, by [FK18, 0.8.5.25(2)], it is also ‘topologically universally coherent with respect to
(a)’. In particular, by [FK18, 0.8.5.24], every finitely presented V -algebra is a coherent ring and,
hence, by [FK18, 0.5.1.2], the OY -module OY is coherent (in the sense of [FK18, 0.4.1.4(2)] or
[EGA I, 0.5.3.1]). In particular, by [FK18, 0.4.1.8], an OY -module F is finitely presented if and
only if F is coherent, and likewise for OYV/an -modules for n > 0.

By [FK18, 0.8.4.2 and 0.8.5.19(3)], the formal a-adic completion Ŷ of Y is covered by
open affines whose coordinate rings are ‘topologically universally adhesive’ and, hence, by
[FK18, 0.8.5.18], also ‘topologically universally Noetherian outside (a)’. In particular, by [FK18,
I.2.1.1(1) and I.2.1.7], the topological ring V is ‘topologically universally rigid-Noetherian’ and
the formal scheme Ŷ is ‘universally rigid-Noetherian’. In addition, by [FK18, 0.8.4.5], the formal
scheme Ŷ is locally of finite presentation over Spf(V ). Thus, [FK18, I.7.2.2] applied with A = V
and [FK18, I.7.2.1] imply that Ŷ is ‘universally cohesive’. Then, by [FK18, I.7.2.4 and I.3.4.1],
the functor (Fn) 7→ lim

←−Fn is an equivalence from the target category of (4.12.1) to the category
of coherent O

Ŷ
-modules.

In conclusion, our claim is that the quasi-coherent pullback i∗ along the morphism i : Ŷ → Y
of locally ringed spaces induces an equivalence between the category of coherent OY -modules
and that of coherent O

Ŷ
-modules. This is a special case of [FK18, I.10.1.2] (see also [FK18,

I.§ 9.1]). 2

Remarks.

4.13. In Theorem 4.12, if each Fn is locally free, then the OY -module F that algebraizes the
sequence (Fn)n>0 is also locally free. Indeed, it is enough to argue that the stalks of F at
the points of YV/a are flat, so, since i is flat by [FK18, I.1.4.7(2), 0.8.5.8(2), 0.8.5.17], it
suffices to note that the O

Ŷ
-module i∗F ∼= lim

←−Fn is locally free because the Nakayama
lemma ensures that Fn+1 is locally trivialized by any lifts of local sections that trivialize Fn.

4.14. Remark 4.13. and the proof of Theorem 4.12 also show that i is flat and that the functor
(Fn) 7→ lim

←−Fn is an equivalence to the category of finitely presented O
Ŷ

-modules.

4.15 Proof of Theorem 4.11
As we observed in § 4.10, no nonzero local section of a vector bundle on X vanishes on Xsm.
Thus, the desired isomorphism (4.11.1) is unique if it exists. Consequently, we may assume that
X = Spf(OC{t0, . . . , tr, t±1

r+1, . . . , t
±1
d }/(t0 · · · tr−p

q)) with r, d, and q as in (1.5.1). In this case, X

is an open subscheme of the formal p-adic completion of some proper, flat W (k)-scheme X that
Zariski locally has étale ‘coordinate morphisms’ as in (1.5.2) with O there replaced by W (k).
Thus, finally, we may drop the previous assumptions and assume instead that X = X̂ with X as
above. We equip X with the log structure OX ∩ (OX [1

p ])×, so that X is log smooth over W (k)

(see § 1.6, especially, Claim 1.6.1) and the map X → X of log ringed étale sites is strict (see
Claim 1.6.3). By Theorem 4.12, the map (4.10.3) algebraizes to an OX -module map

f : Ω1
X/OC{−1}→ H.

By Proposition 4.4 and Remark 4.13., the OX -module H is locally free. By (4.10.3) and the
Nakayama lemma, f is surjective at every point of X sm

k .
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Claim 4.15.1. There is an isomorphism HC ' Ω1
XC/C .

Proof. By the adic GAGA (see [Sch13a, 9.1(i)]), it suffices to find an analogous isomorphism
after pullback to (XC)ad ∼= Xad

C . On the one hand, such a pullback of HC is isomorphic to

(R1ν∗(Ô+
Xad
C

))[1
p ]. On the other hand, [Sch13b, 3.23–3.24 and their proofs] supply an isomorphism

between (R1ν∗(Ô+
Xad
C

))[1
p ] and the pullback of Ω1

XC/C to (XC)ad. 2

Claim 4.15.1 ensures that fC is a generically surjective morphism between isomorphic vector
bundles on XC . Since XC is proper and smooth, every global section of the structure sheaf of
each connected component of XC is constant, so det(fC) is an isomorphism, and hence fC is also
an isomorphism. In conclusion, f |X sm is a surjection between vector bundles of the same rank,
so

f |X sm : Ω1
X sm/OC{−1} ∼−→ H|X sm . (4.15.2)

Since X \X sm is of codimension >2 in X , limit arguments and [EGA IV2, 5.10.5] ensure that H
is the unique vector bundle extension of H|X sm to X . The isomorphism (4.15.2) then leads to an
isomorphism Ω1

X/OC , log{−1} ' H whose formal p-adic completion gives the desired (4.11.1). 2

Remark 4.16. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then, by (4.5.1),
the identifications of Theorem 4.11 hold already for the Zariski topology; more precisely, then

H i(Ω̃XZar
) ∼= Ωi

X/OC , log{−i} as OXZar
-modules for every i > 0.

We are ready to relate the de Rham specialization of AΩX to differential forms by combining
the results above with the argument from the proof of [BMS18, 14.1].

Theorem 4.17. There is an identification

AΩX ⊗L
Ainf , θ

OC ∼= Ω•X/OC , log. (4.17.1)

If the coordinate morphisms (1.5.1) exist Zariski locally on X, then (4.17.1) also holds for AΩXZar
.

Proof. Since ϕ(µ) = ϕ(ξ)µ (see § 2.1), [BMS18, 6.11] gives the second identification in

AΩX ⊗L
Ainf , θ

OC ∼= AΩX ⊗L
Ainf , ϕ

Ainf ⊗L
Ainf , θ◦ϕ−1 OC ∼= (Lη(ϕ(ξ))(AΩX))⊗L

Ainf , θ◦ϕ−1 OC .

By [BMS18, 6.12], since Ainf/(ϕ(ξ)) ∼= OC via θ ◦ϕ−1, the object (Lη(ϕ(ξ))(AΩX))⊗L
Ainf , θ◦ϕ−1OC

is identified with the complex whose ith degree term is

H i(AΩX ⊗L
Ainf , θ◦ϕ−1 OC)⊗OC

(
Ker(θ◦ϕ−1)

(Ker(θ◦ϕ−1))2

)⊗i (4.2.1)∼= H i(Ω̃X)⊗OC
(

Ker(θ◦ϕ−1)
(Ker(θ◦ϕ−1))2

)⊗i
and the differentials are given by Bockstein homomorphisms.

Since O[C is perfect, L̂Ainf/Zp
∼= 0. Moreover, (4.9.1) applied with X = Spf(OC) implies that

L̂OC/Zp ∼= (OC{1})[1]. Thus, L̂OC/Ainf
∼= (OC{1})[1], where OC is an Ainf -algebra via θ ◦ϕ−1. In

particular, due to [Ill71, III.3.2.4(iii)], we have Ker(θ ◦ϕ−1)/(Ker(θ ◦ϕ−1))2 ∼= OC{1}.
In conclusion, by (4.11.2) and the preceding discussion, AΩX ⊗L

Ainf , θ
OC is identified with

the complex whose ith degree term is Ωi
X/OC , log and the differentials are certain Bockstein

homomorphisms. Each Ωi
X/OC , log is a vector bundle, so the agreement of the Bockstein

differentials with those of Ω•X/OC , log may be checked over Xsm (compare with the argument

for (4.10.3)), where it follows from [BMS18, 14.1(ii)] (or [Bha18, proof of Proposition 7.9]).
Due to Remark 4.16, the proof for AΩXZar

is the same. 2
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Corollary 4.18. The de Rham specialization of RΓ(Xét, AΩX) may be identified as follows:

RΓ(Xét, AΩX)⊗L
Ainf , θ

OC ∼= RΓlog dR(X/OC). (4.18.1)

Proof. The claim follows from Theorem 4.17 and the projection formula [SP, 0944]. 2

Remark 4.19. In the case when X ∼= X̂ for a proper, flat W (k)-scheme X that étale locally
has étale coordinate morphisms (1.5.2) with O there replaced by W (k), we have the further
identification

RΓ(Xét,Ω
•
X/W (k), log

)⊗L
W (k)

OC
∼−→ RΓ(Xét,Ω

•
X/OC , log) = RΓlog dR(X/OC),

where X is endowed with the log structure OX , ét ∩ (OX , ét[
1
p ])× (whose pullback to X is the log

structure OX, ét ∩ (OX, ét[
1
p ])× of X, see Claim 1.6.3) and W (k) is endowed with the log structure

associated to W (k) \ {0} ↪→W (k). Indeed, the pullback map between the E1-spectral sequences

Hj(XOC ,Ωi
XOC /OC , log) ⇒ H i+j(RΓ(Xét,Ω

•
XOC /OC , log)),

Hj(X,Ωi
X/OC , log) ⇒ H i+j(RΓlog dR(X/OC))

is an isomorphism because, by the Grothendieck finiteness and comparison theorems [EGA III1,
3.2.1 and 4.1.7] (combined with limit arguments, which use Claim 1.6.1 and the fact that X is
necessarily finitely presented, see [SP, 053E]; alternatively, directly by [FK18, I.9.2.1]),

Hj(XOC ,Ω
i
XOC /OC , log)

∼−→ Hj(X,Ωi
X/OC , log) for all i, j.

Corollary 4.20. If X is proper over OC , then RΓ(Xét, AΩX) is a perfect object of D>0(Ainf);
in other words, then RΓ(Xét, AΩX) is quasi-isomorphic to a bounded complex of finite free
Ainf -modules.

Proof. By the Grothendieck finiteness theorem [Ull95, 5.3] and the spectral sequence as in
Remark 4.19, theOC-modules Hj(RΓlog dR(X/OC)) are finitely presented and, hence, also perfect
(see [SP, 0ASP]). Thus, by Corollary 4.18 and [SP, 066U], the object

RΓ(Xét, AΩX)⊗L
Ainf

Ainf/(ξ)

of D>0(OC) is perfect. Moreover, by Corollary 4.6, the object RΓ(Xét, AΩX) is derived ξ-adically
complete. Therefore, by [SP, 09AW], it is perfect as well, as desired. 2

We close the section by comparing RΓ(Xét, AΩX) with its analogue defined using the Zariski
topology.

Corollary 4.21. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then the coho-
mology RΓ(Xét, AΩX) may be computed using the Zariski topology of X; more precisely, then

RΓ(XZar, AΩXZar
)
∼−→ RΓ(Xét, AΩX). (4.21.1)

Proof. By Theorem 4.17 and Corollary 4.18, the reduction of (4.21.1) modulo ξ is identified with

RΓ(XZar,Ω
•
X/OC , log)

∼−→ RΓ(Xét,Ω
•
X/OC , log),

and, hence, is an isomorphism as indicated. Thus, since, by Corollary 4.6 (and its Zariski
analogue), RΓ(XZar, AΩXZar

) and RΓ(Xét, AΩX) are derived ξ-adic complete, (4.21.1) is an
isomorphism. 2

Example 4.22. By § 1.5, Corollary 4.21 applies to any OC-smooth X and, more generally, to any
X that Zariski locally arises from a strictly semistable scheme defined over a discrete valuation
ring.
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5. The absolute crystalline comparison isomorphism

In Theorem 4.17, we identified the OC-base change along θ of the object AΩX with Ω•X/OC , log.
The goal of this section is to similarly identify the Acris-base change of AΩX with an object that
computes the logarithmic crystalline (that is, Hyodo–Kato) cohomology of XOC/p over Acris (see
Theorem 5.4). This is more general because, on the one hand, θ factors through the morphism
Ainf → Acris, while, on the other hand, Ω•X/OC , log computes the log crystalline cohomology

of XOC/p over OC . In fact, even the map Ainf � Ainf/µ factors through Ainf → Acris, so
the identification of the Acris-base change of AΩX will capture the entire µ = 0 locus of Ainf

(in contrast, the comparison with the p-adic étale cohomology captured the µ 6= 0 locus, see
Theorem 2.3).

In comparison with the case when X is smooth treated in [BMS18, § 12], controlling the
interaction of the functor Lη(µ) with the relevant base changes seems more subtle. To overcome
this, we resort to the analysis of continuous group cohomology carried out in § 3. Another
major complication is the presence of log structures. Specifically, not knowing the existence
of logarithmic divided power envelopes of certain nonexact logarithmic closed immersions in
mixed characteristic, we are forced to devise slightly indirect arguments when analyzing the
relevant divided power envelopes. For this, we rely on the results and arguments from [Kat89]
and [Bei13b];6 the latter reference is especially useful for us because some log structures that we
use are not coherent (only quasi-coherent).

5.1 The ring Acris

Using the generator ξ of the kernel of θ : Ainf � OC , we let A0
cris be the Ainf -subalgebra of Ainf [

1
p ]

generated by the divided powers ξn

n! for n > 1. The induced map θ : A0
cris � OC identifies A0

cris

with the divided power envelope of θ : Ainf � OC/p over (Zp, pZp) equipped with the unique
divided powers on pZp, see [Tsu99, A2.8]. Since θ(µ) = 0, we have µp ∈ pA0

cris, so the p-adic
topology of A0

cris agrees with the (p, µ)-adic topology. We set

Acris := (A0
cris)̂ where the completion is p-adic (equivalently, (p, µ)-adic).

The induced map θ : Acris�OC identifies Acris with the initial p-adically complete divided power
thickening of OC over Zp (see [Tsu99, A1.3 and A1.5]). By Proposition 5.36 below (or by [Tsu99,
A2.13] and [Bri06, 2.33]), the map A0

cris→ Acris is an injection into an integral domain.
Analogously to § 3.26, the ring Acris comes equipped with the Frobenius endomorphism ϕ

that intertwines the absolute Frobenius endomorphism of OC/p via the map θ. The identification

Acris
∼= (lim−→m

A
(m)
cris )̂ which results from the evident A0

cris
∼= lim−→m

A
0, (m)
cris , (5.1.1)

is Frobenius equivariant and compatible with the maps θ.

5.2 The log structure on Acris

For each n > 0, the ring Acris/p
n is a divided power thickening of OC/p over Z/pn. Therefore,

by [Bei13b, § 1.17, Lemma], every quasi-coherent, integral log structure N on OC/p for which
N/(OC/p)× is uniquely p-divisible lifts uniquely to a quasi-coherent, integral log structure on
Acris/p

n. Thus, letting N be the default log structure § 1.6 (1) on OC/p, for which

N/(OC/p)× ∼= Q>0,

6 We are citing the post-publication arXiv version of the article, which slightly differs from the published version.
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we obtain compatible, quasi-coherent, integral log structures on the rings Acris/p
n, to the effect

that each Acris/p
n becomes a log PD thickening of OC/p. Explicitly, these log structures are the

pullbacks of the log structure on Acris associated to the prelog structure

O[C \ {0}→ Acris, x 7→ [x]. (5.2.1)

In what follows, we always equip:

• each Acris/p
n, as well as Acris, with the log structure described above;

• each Z/pnZ with the standard divided powers on pZ/pnZ and the trivial log structure.

For every divided power thickening Z̃ over Z/pnZ of an OC/p-scheme Z, the morphism

Z
z−→ Spec(OC/p) extends uniquely to a PD morphism Z̃

z̃−→ Spec(Acris/p
n) (see the proof of

[Tsu99, A1.5]). If, in addition, Z̃ is equipped with a quasi-coherent, integral log structure for

which z is enhanced to a morphism z] of log schemes, then, by [Bei13b, § 1.17, Exercise], the

morphism z] extends uniquely to a PD morphism z̃] : Z̃ → Spec(Acris/p
n) of log schemes.

5.3 The absolute crystalline cohomology of XOC/p
We let

(XOC/p/Zp)log cris

be the log crystalline site of XOC/p over Zp defined as in [Bei13b, § 1.12]: the objects are the étale

XOC/p-schemes Z equipped with a divided power thickening Z̃ over some Z/pnZ such that Z̃ is,

in turn, equipped with a quasi-coherent, integral log structure whose pullback to Z is identified

with the pullback of the log structure of XOC/p (which is defined in § 1.6 (2)); the coverings are

the jointly surjective étale log PD morphisms. The universal property of Acris reviewed in the

last paragraph of § 5.2 gives the following identification of sites:

(XOC/p/Zp)log cris
∼= (XOC/p/Acris)log cris,

where (XOC/p/Acris)log cris is the log crystalline site of XOC/p over Acris defined analogously to

the site (XOC/p/Zp)log cris reviewed above (simply replace Z/pnZ by Acris/p
n). The absolute

logarithmic crystalline cohomology of XOC/p is the cohomology of the structure sheaf:

RΓlog cris(XOC/p/Acris) := RΓ((XOC/p/Acris)log cris, OXOC/p/Acris
).

We consider the morphism of topoi

u : (XOC/p/Acris)log cris→ (XOC/p)ét
∼= Xét

that ‘forgets the thickenings Z̃’ (see [Bei13b, § 1.5]), and we use it to obtain the identification

RΓlog cris(XOC/p/Acris) ∼= RΓ(Xét, Ru∗(OXOC/p/Acris
)).

By the functoriality discussed in [Bei13b, § 1.5, Corollary], the absolute Frobenius of XOC/p
(which is the multiplication by p on log structures) and the Frobenius of Acris induce the Acris-

semilinear Frobenius endomorphisms of Ru∗(OXOC/p/Acris
) and RΓlog cris(XOC/p/Acris).

The main goal of this section is the following identification of the Acris-base change of AΩX.
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Theorem 5.4. There is a Frobenius-equivariant identification

AΩX ⊗̂
L
Ainf

Acris
∼= Ru∗(OXOC/p/Acris

), (5.4.1)

where the Frobenii result from those discussed in §§ 2.1, 2.2, 5.1, and 5.3 and, consistently with

the notation (1.7.1), we have AΩX ⊗̂
L
Ainf

Acris = R limn(AΩX ⊗L
Ainf

Acris/p
n).

We will first prove a version of Theorem 5.4 in the presence of fixed semistable coordinates.
We will then complete the proof by using ‘all possible coordinates’ to globalize the argument.
This overall strategy is similar to that used in [BMS18, § 12] in the smooth case.

5.5 The local setup
For the local argument, we assume until § 5.17 that X = Spf(R), that X is connected, and that
for some 0 6 r 6 d and q ∈ Q>0 there is an étale OC-morphism

X = Spf(R)→ Spf(R�) with R� = OC{t0, . . . , tr, t±1
r+1, . . . , t

±1
d }/(t0 · · · tr − p

q). (5.5.1)

We use the rings R�∞ and R∞, the group ∆, and its generators δi introduced in § 3.2, the rings
Ainf(R

�
∞), Ainf(R∞), A(R�), and A(R) and the modules N�∞ and N∞ introduced in § 3.14, the

rings A(m)
cris (R∞) and A

(m)
cris (R) introduced in § 3.27, and the object AΩpsh

X introduced in § 4.1.
Roughly speaking, with the coordinates above, we will access the right-hand side of (5.4.1)

through the logarithmic de Rham complex of an explicit log smooth lift Spf(Acris(R)) over
Spf(Acris) of XOC/p over Spec(OC/p) (see Proposition 5.13). This complex may be made explicit
by expressing its differentials in terms of the ∆-action on Acris(R) (see Lemma 5.15). In contrast,
results from § 3, namely, Theorem 3.20 and (3.25.1), make the left-hand side of (5.4.1) explicit.
Once both sides are explicit, one identifies them and establishes (the presheaf version of) the
local case of Theorem 5.4.

However, this relatively short local proof, whose detailed version in the good reduction case is
given in [BMS18, 12.5], is ill-suited for globalization. This is because it appears difficult to extend

the implicit exchange of the order of the functors Lη(µ) and −⊗̂L
Ainf

Acris in this argument to
general perfectoid covers that appear in the ‘all possible coordinates’ technique. For instance, one
may attempt to use the almost purity theorem and Lemma 3.18 to reduce such commutativity
to the ‘base case’ of R∞, but this requires understanding the W (m[)-torsion in the groups

H i
cont(∆, (Ainf(R∞) ⊗̂Ainf

Acris)/µ)

that seem difficult to access due to pathologies of the ring Acris/µ.

Similarly to [BMS18, § 12.2], to overcome this difficulty we will use the rings A
(m)
cris reviewed

in § 3.26 that retain better finite-type properties over Ainf than Acris. In particular, we use the

work of § 3 to commute the functors Lη(µ) and −⊗̂L
Ainf

A
(m)
cris in the following proposition.

Proposition 5.6. In the local setting of § 5.5, for every m > p, we have

Lη(µ)(RΓproét(X
ad
C ,Ainf)) ⊗̂

L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓproét(X
ad
C ,Ainf) ⊗̂

L
Ainf

A
(m)
cris ). (5.6.1)

Proof. The map (5.6.1) exists because its target is derived p-adically complete (see [BMS18,
6.19]). Moreover, by Theorems 3.20 and 3.34, it suffices to prove that

Lη(µ)(RΓcont(∆,Ainf(R∞))) ⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆,A
(m)
cris (R∞))).
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By Propositions 3.25 and 3.32, the ‘nonintegral’ part N∞ does not contribute, so it suffices to
show:

Lη(µ)(RΓcont(∆, A(R))) ⊗̂L
Ainf

A
(m)
cris

∼−→ Lη(µ)(RΓcont(∆, A
(m)
cris (R))). (5.6.2)

In turn, (5.6.2) follows from the triviality of the ∆-action on A(R)/µ and A
(m)
cris (R)/µ (see §§ 3.14

and 3.27): namely, due to Lemma 3.7 and this triviality, the left-hand (respectively, right-hand)
side of (5.6.2) becomes

KA(R)

(
δ1−1
µ , . . . , δd−1

µ

)
⊗̂Ainf

A
(m)
cris

(
respectively, K

A
(m)
cris (R)

(
δ1−1
µ , . . . , δd−1

µ

))
,

where the completed tensor product is nonderived (that is, termwise) because each pn, µn
′

is an
A(R)-regular sequence with A(R)/(pn, µn

′
) flat over Ainf/(p

n, µn
′
) (see Lemma 3.13); the two

Koszul complexes may then be identified termwise (see § 3.27). 2

Continuing to work in the local setting, we now express the (presheaf version of the) left-hand
side of (5.4.1) in the form that will be convenient for the ‘all possible coordinates’ technique.

Corollary 5.7. In the local setting of § 5.5, there is a Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

Acris
∼=
(

lim−→m
(η(µ)(KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)))

)̂
(5.7.1)

(see (4.1.1) for AΩpsh
X ) where, on the right-hand side, the direct limit and the p-adic completion

are termwise.

Proof. The ∆-equivariant Frobenii of the rings A(m)
cris (R∞) are compatible as m varies (see § 3.27),

so, due to the divisibility µ |ϕ(µ), they induce the Frobenius on the right-hand side of (5.7.1).
Proposition 5.6 and Theorem 3.34 give the Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

A
(m)
cris
∼= η(µ)(KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)),

so it remains to pass to the direct limit and to form the p-adic completion. 2

We turn to the right-hand side of (5.4.1) and begin by constructing a log smooth lift Acris(R)
of R/p.

5.8 The ring Acris(R)
The ‘relative version’ of Acris (respectively, a ‘highly ramified cover’ of this relative version) is
the A(R)-algebra (respectively, Ainf(R∞)-algebra)

Acris(R) := A(R) ⊗̂Ainf
Acris (respectively, Acris(R∞) := Ainf(R∞) ⊗̂Ainf

Acris),

where the completion is p-adic (equivalently, (p, µ)-adic, see § 5.1). Due to the decomposition
(3.14.5), the subring Acris(R) ⊂ Acris(R∞) is an Acris(R)-module direct summand. The maps θ
from §§ 3.14 and 5.1 induce compatible surjections

θ : Acris(R)� R and θ : Acris(R∞)� R∞.

We let A0
cris(R∞) be the Ainf(R∞)-subalgebra of Ainf(R∞)[1

p ] generated by the elements ξn/n! for

n > 1. By [Tsu99, proof of A2.8], letting Ainf(R∞)[T
n

n! ]n>1 denote the divided power polynomial
algebra over Ainf(R∞) in one variable, we have

A0
cris(R∞) ∼=

(
Ainf(R∞)

[
Tn

n!

]
n>1

)/
(T − ξ) so also A0

cris(R∞) ∼= Ainf(R∞)⊗Ainf
A0

cris.
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Consequently, since ξ generates Ker(θ) ⊂ Ainf(R∞), the ring A0
cris(R∞) is identified with the

divided power envelope of (Ainf(R∞),Ker(θ)+pAinf(R∞)) over (Zp, pZp). By the previous display,

Acris(R∞) ∼= (A0
cris(R∞))̂.

By § 3.14, the ring Acris(R∞) (respectively, Acris(R)) is p-adically formally étale as an Acris(R
�
∞)-

algebra (respectively, Acris(R
�)-algebra) and p-adically formally flat as an Acris-algebra. In

particular, Acris(R∞) inherits p-torsion freeness from Acris. Moreover, even though we will not
use this, Acris(R∞) is also µ-torsion free, as follows from Proposition 5.36 below (contrast this
with an argument for (3.27.2)).

The rings Acris(R) and Acris(R∞) come equipped with Acris-semilinear Frobenius endomor-

phisms that are compatible with their counterparts for A
(m)
cris (R) and A(m)

cris (R∞) discussed in
§ 3.27. The profinite group ∆ acts continuously, Frobenius-equivariantly, and Acris-linearly on
Acris(R) and Acris(R∞). As in § 3.27, the induced ∆-action on Acris(R)/µ is trivial.

We will endow Acris(R) with a log structure, which will, in fact, come from A(R).

5.9 The log structure on A(R)
Provisionally, we consider the (fine) log structures on Ainf and A(R) associated to the prelog
structures

N>0
a 7→ [(p1/p∞ )q ]a

−−−−−−−−−→ Ainf and Nr+1
>0

(ai) 7→
∏
X
ai
i−−−−−−−−→ A(R).

Then, under the diagonal map N>0→ Nr+1
>0 , the ring A(R) is a (p, µ)-adically formally log smooth

Ainf -algebra (see (3.14.2) and [Kat89, 3.5–3.6]). To eliminate the dependence on q, we always,
unless noted otherwise, equip Ainf with the log structure associated to the prelog structure

O[C \ {0}→ Ainf , x 7→ [x]. (5.9.1)

Likewise, we always equip A(R) with the log structure that is the base change of the fine log
structure on A(R) described above along the ‘change of log structure’ self-map of Ainf determined

by N>0
a 7→ ((p1/p∞ )q)a

−−−−−−−−−−→ O[C \{0}. Explicitly, this log structure is associated to the prelog structure

Nr+1
>0

⊔
N>0

(O[C \ {0})→ A(R) (5.9.2)

that embeds N>0 diagonally into Nr+1
>0 , sends an a ∈ N>0 to ((p1/p∞)q)a, and sends the ith

standard basis vector of Nr+1
>0 (respectively, an x ∈ O[C \ {0}) to Xi (respectively, to [x]).

These latter ‘default’ log structures on Ainf and A(R) are quasi-coherent and integral and,
by base change, with them A(R) is (p, µ)-adically formally log smooth over Ainf . In fact, via the
map θ, the ring A(R) over Ainf becomes a (p, µ)-adically formally log smooth thickening of R/p
over OC/p (where R/p is endowed with the log structure discussed in § 1.6).

The Frobenii of Ainf and A(R) extend to the log structures by letting them act as
multiplication by p on Nr+1

>0 and N>0 and as the pth power map on O[C \ {0}. Consequently,
the Frobenius of the log Ainf -algebra A(R) lifts the absolute Frobenius of the log OC/p-algebra
R/p.

The Frobenius-equivariant ∆-action on the Ainf -algebra A(R) (see § 3.14) extends to a
Frobenius-equivariant ∆-action on the log Ainf -scheme Spec(A(R)): indeed, a δ ∈ ∆ sends each
Xi with 0 6 i 6 r to uδ, i ·Xi for some Teichmüller unit uδ, i ∈ A(R)× (see § 3.14) and the prelog
structures

Nr+1
>0

(ai) 7→
∏
X
ai
i−−−−−−−−→ A(R) and Nr+1

>0

(ai) 7→
∏

(uδ, i ·Xi)ai−−−−−−−−−−−−−→ A(R)
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determine the same log structure on Spec(A(R)), namely, the one associated to the prelog
structure

Zr+1 × Nr+1
>0

((zi), (ai)) 7→
∏
u
zi
δ, i ·

∏
X
ai
i−−−−−−−−−−−−−−−−−→ A(R).

5.10 The logarithmic de Rham complex
With a slight abuse of notation, we let

Ω•A(R)/Ainf , log

be the (global section complex of the) logarithmic de Rham complex of Spf(A(R)) over Spf(Ainf).
More precisely, Ω•A(R)/Ainf , log is the (termwise) inverse limit over n, n′ > 0 of the logarithmic

de Rham complexes of A(R)/(pn, µn
′
) over Ainf/(p

n, µn
′
) (described, for instance, in [Ogu18,

V.2.1.1]). Due to the formal log smoothness of A(R) over Ainf , each Ωi
A(R)/Ainf , log is a free

A(R)-module: indeed, the logarithmic differentials

d log(X1), . . . , d log(Xd)

form an A(R)-basis of Ω1
A(R)/Ainf , log. We let

∂
∂ log(Xi)

: A(R)→ A(R) for i = 1, . . . , d (5.10.1)

denote the dual basis of log Ainf -derivations (we do not notationally explicate the accompanying
homomorphisms from the log structure to A(R)). These satisfy the following explicit formulas
that are derived using the relation d log(X0) + · · ·+ d log(Xr) = 0:

∂
∂ log(Xi)

(Xj) =

{
0 if 0 < j 6= i,

Xi if j = i,
and ∂

∂ log(Xi)
(X0) =

{
−X0 if 0 < i 6 r,
0 if r < i.

(5.10.2)

The ∂
∂ log(Xi)

also define an isomorphism Ω1
A(R)/Ainf , log

∼= A(R)⊕d, which extends to an

isomorphism
Ω•A(R)/Ainf , log

∼= KA(R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
(5.10.3)

that may be considered canonical because its construction only uses data determined by the local
coordinate map (5.5.1). The Frobenius of the log Ainf -algebra A(R) multiplies each d log(Xi) by
p, so its effect on the right-hand side of (5.10.3) is given in each degree j by pj times the Frobenius
of A(R).

5.11 The log structure on Acris(R)
Unless specified otherwise, we equip the A(R)-algebras Acris(R) and Acris(R)/pn for n > 0 with
the pullback of the log structure on A(R) determined by (5.9.2). Thus, since the log structures
(5.9.1) on Ainf and (5.2.1) on Acris agree, Acris(R) is p-adically formally log smooth over Acris.
Letting the completion be p-adic, we set

Ω•Acris(R)/Acris, log := Ω•A(R)/Ainf , log ⊗̂Ainf
Acris,

which is the (global sections of the) logarithmic de Rham complex of Spf(Acris(R)) over
Spf(Acris).

We use the p-adic completeness of Acris(R) and its p-adic formal flatness over Acris (see § 5.8)
to extend the divided power structure of Acris to Acris(R) (see [SP, 07H1]). In effect, Acris(R) over
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Acris becomes a p-adically formally log smooth log PD thickening of R/p over OC/p (compare
with § 5.9).

Through results of [Bei13b], the following lemma will be key for relating the right-hand
side of (5.4.1) to the logarithmic de Rham cohomology of Spf(Acris(R)) over Spf(Acris) in
Proposition 5.13.

Lemma 5.12. For each n > 1, the log smooth log PD thickening Acris(R)/pn over Acris/p
n of

R/p over OC/p is PD smooth in the sense of [Bei13b, § 1.4] (see the proof for the definition).

Proof. The PD smoothness is the claim that for every log PD thickening U ↪→ Ũ over the log
PD scheme Acris/p

n such that U is affine and the log structure of Ũ (and, hence, also of U) is
integral and quasi-coherent, the indicated diagonal log PD morphism exists in every commutative
diagram

U //� _

��

Spec(R/p) �
� // Spec(Acris(R)/pn)

log PD

��
Ũ

log PD
//

log PD

33

Spec(Acris/p
n)

of log schemes and log (or log PD where indicated) scheme morphisms over Acris/p
n (see [Bei13a,

§ 1.4]).
This sought property of Acris(R)/pn is invariant under base change that changes the log

structure on Acris/p
n, so we may assume that Acris/p

n and Acris(R)/pn are instead equipped
with the pullbacks of the ‘provisional’ fine log structures defined in § 5.9. Moreover, since the PD
structure of Acris(R)/pn is extended from Acris/p

n, the log PD thickening

Spec(R/p) ↪→ Spec(Acris(R)/pn)

over Acris/p
n is its own log PD-envelope over Acris/p

n (in the sense of [Bei13b, § 1.3]). Thus, the
log smoothness of Acris(R)/pn over Acris/p

n and [Bei13b, § 1.4, Remarks (ii)] give the claimed
PD smoothness. 2

Proposition 5.13. In the local setting of § 5.5, letting ∂
∂ log(Xi)

: A
(m)
cris (R) → A

(m)
cris (R) denote

the A
(m)
cris -derivations induced from (5.10.1) by base change, we have Frobenius-equivariant

identifications

RΓlog cris(OXOC/p/Acris
) ∼= Ω•Acris(R)/Acris, log

(5.10.3)∼=
(

lim−→m>p

(
K
A

(m)
cris (R)

(
∂

∂ log(X1)
, . . . , ∂

∂ log(Xd)

)))̂
(the Frobenius action on the last term is analogous to that described after (5.10.3)).

Proof. By Lemma 5.12, each Acris(R)/pn over Acris/p
n is a PD smooth thickening of R/p over

OC/p, so [Bei13b, (1.8.1)] gives the Frobenius-equivariant identification7

RΓlog cris(OXOC/p/Acris
) ∼= RΓét(Spf(Acris(R)),Ω•Spf(Acris(R))/Spf(Acris), log).

7 Equation (1.8.1) of [Bei13a] uses the logarithmic PD de Rham complex, that is, the quotient of
Ω•Spf(Acris(R))/ Spf(Acris), log by the PD relations d(u[m]) = u[m−1]du, see [Bei13b, § 1.7]. In our situation, there
is no difference: since the PD structure of Acris(R)/pn is extended from the base Acris/p

n, the PD relations hold
already in Ω•Spf(Acris(R))/ Spf(Acris), log.
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Since the sheaves Ωi
Spf(Acris(R))/Spf(Acris), log are locally free and, in particular, quasi-coherent,

they are acyclic for Γét(Spf(Acris(R)),−) (see [FK18, I.1.1.23(2)]), so we have

RΓét(Spf(Acris(R)),Ω•Spf(Acris(R))/Spf(Acris), log) ∼= Γét(Spf(Acris(R)),Ω•Spf(Acris(R))/ Spf(Acris), log).

It remains to observe that the latter complex is identified with Ω•Acris(R)/Acris, log. 2

Having expressed the presheaf versions of both sides of (5.4.1) in the desired forms in
Corollary 5.7 and Proposition 5.13, we now seek to exhibit an isomorphism between them in
Proposition 5.16.

5.14 The element log([ε])

Fix an m> p2. By the proof of [BMS18, 12.2],8 each µn/(n+ 1)! ∈ A(m)
cris [1

p ] with n> 1 lies in A
(m)
cris ,

is p-adically topologically nilpotent there, and p-adically tends to 0 as n → ∞. Consequently,
recalling that µ = [ε]− 1, we may define

log([ε]) := µ− µ2

2 + µ3

3 − . . . in A
(m)
cris ,

so that the Frobenius maps log([ε]) to p · log([ε]). By [BMS18, 12.2],9 the elements log([ε]) and

µ are unit multiples of each other in A
(m)
cris , so (log([ε]))n

µ ·n! lies in A
(m)
cris , is topologically nilpotent if

n > 1, and p-adically tends to 0 in A
(m)
cris as n→∞.

The following lemma describes the ∆-action on A
(m)
cris (R) in terms of the derivations ∂

∂ log(Xi)

induced on A
(m)
cris (R) by base change from the derivations (5.10.1).

Lemma 5.15. For m > p2, a δi ∈ ∆ with i = 1, . . . , d (see § 3.2) acts on A
(m)
cris (R) as the series

exp
(
log([ε]) · ∂

∂ log(Xi)

)
:=
∑

n>0
(log([ε]))n

n!

(
∂

∂ log(Xi)

)n
. (5.15.1)

In particular, for m and i as above, we have the following description of the ‘q-derivative’ δi−1
µ :

δi−1
µ = ∂

∂ log(Xi)
·
(∑

n>1
(log([ε]))n

µ ·n!

(
∂

∂ log(Xi)

)n−1)
as maps A

(m)
cris (R)→ A

(m)
cris (R), (5.15.2)

where the parenthetical factor defines an A
(m)
cris -linear additive automorphism of A

(m)
cris (R).

Proof. The argument is similar to that of [BMS18, 12.4]. First, (log([ε]))n

n! tends to 0 in the p-

adic topology of A
(m)
cris (see § 5.14), so the series (5.15.1) does define an A

(m)
cris -linear additive

endomorphism of A
(m)
cris (R). This endomorphism is also multiplicative because, by the Leibniz

rule,

(log([ε]))n

n!

(
∂

∂ log(Xi)

)n
(ab) =

∑n
j=0

(
(log([ε]))j

j!

(
∂

∂ log(Xi)

)j
(a) · (log([ε]))n−j

(n−j)!
(

∂
∂ log(Xi)

)n−j
(b)
)
.

8 The argument is as follows. Since p, µξ is an Ainf -regular sequence, µp − µξp ∈ pµξAinf , so µp−1/p = ξp/p+ ξa

with a ∈ Ainf . Thus, since (p2)!/pp ∈ pZ, we have (µp−1/p)p ∈ pA(m)
cris , so µp−1/p is topologically nilpotent in A

(m)
cris .

In effect, since 1
(n+1)!

pbn/(p−1)c ∈ Zp, the elements µn/(n+ 1)! tend to 0 in the p-adic topology of A
(m)
cris and are

topologically nilpotent.
9 The argument is as follows. By the previous footnote,

∑
n>p

(−1)nµn

n+1
lies in pA

(m)
cris . Thus, since each µn

n+1
with

0 < n < p is topologically nilpotent in A
(m)
cris , so is

∑
n>1

(−1)nµn

n+1
. In conclusion, log([ε])

µ
is a unit in A

(m)
cris .
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Therefore, in the case R = R�, the desired equality

δi = exp
(
log([ε]) · ∂

∂ log(Xi)

)
of endomorphisms A

(m)
cris (R�)→ A

(m)
cris (R�) (5.15.3)

follows by noting that both of its sides agree on every Xj : indeed, due to the formulas (5.10.2),
they send Xi to [ε]Xi, fix each Xj with 0 < j 6= i, and send X0 to [ε−1]X0 if i 6 r and to X0 if
r < i.

In the general case, since µ, and hence also ξ, divides each (log([ε]))n

n! with n > 1 (see § 5.14),
both sides of the equality (5.15.3) induce the trivial action modulo (p, ξ) (see § 3.27). Therefore,

due to the formal étaleness of A
(m)
cris (R) over A

(m)
cris (R�) and the settled R = R� case, the sides

agree.

Since A
(m)
cris (R) is µ-torsion free (see (3.27.2)) and µ | (log([ε]))n

n! in A
(m)
cris , the equality (5.15.2)

follows from (5.15.3). Since (log([ε]))n

µ ·n! is a unit for n = 1, is topologically nilpotent for n > 1 (see

§ 5.14), and p-adically tends to 0 as n → ∞, the parenthetical factor of (5.15.2) is indeed an
automorphism. 2

We are ready to settle the (presheaf version of the) local case of Theorem 5.4.

Proposition 5.16. In the local setting of § 5.5, for m > p2 and i = 1, . . . , d, the morphism

(
A

(m)
cris (R)

∂
∂ log(Xi)−−−−−→ A

(m)
cris (R)

) (id, ∑n>1
(log([ε]))n

n!

(
∂

∂ log(Xi)

)n−1)
−−−−−−−−−−−−−−−−−−−−−−−→

(
A

(m)
cris (R)

δi−1−−−→ A
(m)
cris (R)

)
(5.16.1)

of complexes in degrees 0 and 1 is Frobenius equivariant, granted that the usual Frobenius action

on the copy of A
(m)
cris (R) in degree 1 of the source is multiplied by p (compare with the description

after (5.10.3)). For m > p2, these morphisms induce a Frobenius-equivariant quasi-isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
KA(m)

cris (R∞)
(δ1 − 1, . . . , δd − 1)

)
, (5.16.2)

which, as m varies, induces the Frobenius-equivariant identification (a local version of (5.4.1)):

RΓlog cris(OXOC/p/Acris
) ∼= RΓ(Xpsh

ét , AΩpsh
X ) ⊗̂L

Ainf
Acris. (5.16.3)

Proof. The Frobenius-equivariance of (5.16.1) follows from the equations

∂
∂ log(Xi)

◦ ϕ = p ·
(
ϕ ◦ ∂

∂ log(Xi)

)
and ϕ(log([ε])) = p · log([ε])

(see §§ 5.10 and 5.14). Since ∆ acts trivially on A
(m)
cris (R)/µ (see § 3.27), the subcomplex

η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
⊂ K

A
(m)
cris (R)

(δ1 − 1, . . . , δd − 1)

is obtained by letting its jth term be the submodule of the jth term of

K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)

composed of the µj-multiples (see (1.7.2) and (1.7.3)); since µ |ϕ(µ), this subcomplex is
Frobenius-stable. Thus, Lemma 5.15 implies that the morphisms (5.16.1) induce an isomorphism

K
A

(m)
cris (R)

(
∂

∂ log(X1) , . . . ,
∂

∂ log(Xd)

)
∼−→ η(µ)

(
K
A

(m)
cris (R)

(δ1 − 1, . . . , δd − 1)
)
. (5.16.4)
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Proposition 3.32 (with Lemma 3.7) implies that the natural inclusion of the target of (5.16.4)
into the target of (5.16.2) is a quasi-isomorphism, and (5.16.2) follows. The maps (5.16.2) are
compatible as m varies, so, by passing to their limit over m, forming the termwise p-adic
completions, and applying Corollary 5.7 and Proposition 5.13, we obtain the desired identification
(5.16.3). 2

Proposition 5.16 concludes the ‘single coordinate patch’ part of the proof of Theorem 5.4, so
we turn to the ‘all possible coordinates’ technique that will globalize the argument. For this, the
key steps are, for a small enough affine X, to build in § 5.21 a functorial in X explicit complex
that computes the presheaf version of the left-hand side of (5.4.1), to then build in § 5.32 such
a complex for the right-hand side of (5.4.1), and, finally, to build in § 5.38 and Proposition 5.39 a
natural quasi-isomorphism between these complexes. Each of these steps will use our work in
the setting of § 5.5 discussed so far.

5.17 More general coordinates
Continuing to work locally, we now assume until the final part of the proof of Theorem 5.4
given in § 5.40 that X = Spf(R) is affine and nonempty, that every two irreducible components
of Spec(R⊗OC k) meet (so that X is connected), and that we have:

• a finite set Σ that indexes the coordinates of the formal OC-torus

R�Σ := OC{t±1
σ |σ ∈ Σ};

• a nonempty finite set Λ and, for each λ ∈ Λ, an OC-algebra

R�λ := OC{tλ, 0, . . . , tλ, rλ , t
±1
λ, rλ+1, . . . , t

±1
λ, d}/(tλ, 0 · · · tλ, rλ − p

qλ) with qλ ∈ Q>0;

• a closed immersion

X = Spf(R)→ Spf(R�Σ)×
∏
λ∈Λ Spf(R�λ ), (5.17.1)

where the products are formed over Spf(OC), subject to the requirements that already

X = Spf(R)→ Spf(R�Σ) is a closed immersion (5.17.2)

and, for each λ ∈ Λ, the induced map

X = Spf(R)→ Spf(R�λ ) is étale. (5.17.3)

By (5.17.3), for each λ ∈ Λ, the irreducible components of Spec(R ⊗OC k) are a priori
identified with the connected components of

⊔
i Spec((R ⊗OC k)/(tλ, i)). Thus, our assumption

on Spec(R ⊗OC k) implies that each irreducible component of Spec(R ⊗OC k) is cut out by a
unique tλ, i with 0 6 i 6 rλ.

By § 1.5, if R⊗OC k is not k-smooth, then R determines qλ, which therefore does not depend
on λ. On the other hand, if R⊗OC k is k-smooth, then qλ may depend on λ. This, together with
the possibility that rλ > 0, complicates matters in the ‘simpler’ smooth case but is crucial to
allow in order for the eventual ‘all possible coordinates’ constructions to be functorial in R.

For any X, the data above exist on a basis for Xét: indeed, a coordinate map (5.17.3) exists
étale locally on X (see § 1.5), and then R is the p-adic completion of a finite-type OC-algebra, so
the Zariski topology of Spf(R) has a basis whose elements embed into some (variable) ĜΣ

m.
Each (5.17.3) is an instance of the local setting of § 5.5, so the discussion between § 5.5 and

the present section applies to it. Another instance is the identity map Spf(R�Σ)
=−→ Spf(R�Σ) (with

r = 0 and d = #Σ), so the indicated discussion also applies to the ring R�Σ in place of R�.
Our first aim in this setup is to reexpress the (presheaf version of the) left-hand side of (5.4.1)

in § 5.21.
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5.18 The perfectoid RΣ,Λ,∞
For each λ ∈ Λ, we set

∆λ :=

{
(ε0, . . . , εd) ∈

(
lim
←−m>0

(µpm(OC))
)⊕(d+1) ∣∣∣ ε0 · · · εrλ = 1

}
' Z⊕dp

and let

Spa
(
Rλ,∞

[
1
p

]
, Rλ,∞

)
→ Spa

(
R
[

1
p

]
, R
)

and Spa
(
R�λ,∞

[
1
p

]
, R�λ,∞

)
→ Spa

(
R�λ
[

1
p

]
, R�λ

)
be the affinoid perfectoid pro-(finite étale) ∆λ-covers defined as in § 3.2 using the coordinate

map Spf(R)
(5.17.3)
−−−−→ Spf(R�λ ). Similarly, we set

∆Σ :=
(

lim
←−m>0

(µpm(OC))
)Σ
' ZΣ

p

and let
Spa

(
R�Σ,∞

[
1
p

]
, R�Σ,∞

)
→ Spa

(
R�Σ
[

1
p

]
, R�Σ

)
be the affinoid perfectoid pro-(finite étale) ∆Σ-cover defined as in § 3.2 using the coordinate map
Spf(R�Σ)

=−→ Spf(R�Σ), so that, explicitly,

R�Σ,∞
∼=
(

lim−→m>0
(OC{t±1/pm

σ |σ ∈ Σ})
)̂
.

By forming products over Spa(OC [1
p ],OC) and setting

∆Σ,Λ := ∆Σ ×
∏
λ∈Λ ∆λ,

we obtain the affinoid perfectoid pro-(finite étale) ∆Σ,Λ-cover

Spa
(
R�Σ,∞

[
1
p

]
, R�Σ,∞

)
×
∏
λ∈Λ Spa

(
R�λ,∞

[
1
p

]
, R�λ,∞

)
→ Spa

(
R�Σ
[

1
p

]
, R�Σ

)
×
∏
λ∈Λ Spa

(
R�λ
[

1
p

]
, R�λ

)
,

which we abbreviate as

Spa
(
R�Σ,Λ,∞

[
1
p

]
, R�Σ,Λ,∞

)
→ Spa

(
R�Σ,Λ

[
1
p

]
, R�Σ,Λ

)
.

Its base change along the generic fiber of (5.17.1) is the pro-(finite étale) ∆Σ,Λ-cover

Spa
(
RΣ,Λ,∞

[
1
p

]
, RΣ,Λ,∞

)
→ Spa

(
R
[

1
p

]
, R
)
, (5.18.1)

which contains each Spa(Rλ,∞[1
p ], Rλ,∞) → Spa(R[1

p ], R) as a subcover. Thus, by the almost

purity theorem [Sch12, 7.9(iii)], the OC-algebra RΣ,Λ,∞ defined by (5.18.1) is perfectoid (the
notions of ‘perfectoid’ used here and in [Sch12] agree by [BMS18, 3.20]).

The topological generators for ∆Σ and ∆λ fixed in § 3.2 are

δσ := (1, . . . , 1, ε, 1, . . . , 1) for σ ∈ Σ, where the σth entry is nonidentity,

and

δλ, i := (ε−1, 1, . . . , 1, ε, 1, . . . , 1) for i = 1, . . . , rλ, where the 0th and ith entries are nonidentity;

δλ, i := (1, . . . , 1, ε, 1, . . . , 1) for i = rλ + 1, . . . , d, where the ith entry is nonidentity.

Jointly, the δσ and δλ, i topologically freely generate ∆Σ,Λ.
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5.19 The rings Ainf(RΣ,Λ,∞) and A(m)
cris (RΣ,Λ,∞)

Similarly to § 3.14, we set
Ainf(RΣ,Λ,∞) := W (R[Σ,Λ,∞).

By Lemma 3.13, for n, n′ > 0, the sequence (pn, µn
′
) is Ainf(RΣ,Λ,∞)-regular,

Ainf(RΣ,Λ,∞)/(pn, µn
′
)

is Ainf/(p
n, µn

′
)-flat, and Ainf(RΣ,Λ,∞)/µ is p-adically complete. As in § 3.14, we have the

surjection
θ : Ainf(RΣ,Λ,∞)� RΣ,Λ,∞ (5.19.1)

that intertwines the Witt vector Frobenius of Ainf(RΣ,Λ,∞) with the absolute Frobenius of
RΣ,Λ,∞/p and whose kernel is generated by the regular element ξ. To fix further notation,
we let

A(R�Σ) ∼= Ainf{X±1
σ |σ ∈ Σ},

A(R�λ ) ∼= Ainf{Xλ, 0, . . . , Xλ, rλ , X
±1
λ, rλ+1, . . . , X

±1
λ, d}/(Xλ, 0 · · ·Xλ, rλ − [(p1/p∞)qλ ])

(5.19.2)

be the isomorphisms (3.14.2) for R�Σ and R�λ . Similarly to § 3.27, for an m ∈ Z>1, we set

A(m)
cris (RΣ,Λ,∞) := Ainf(RΣ,Λ,∞) ⊗̂Ainf

A
(m)
cris , (5.19.3)

where the completion is (p, µ)-adic (equivalently, p-adic if m > p). Since Ainf(RΣ,Λ,∞) is (p, µ)-

adically formally flat over Ainf , the ring A(m)
cris (RΣ,Λ,∞) inherits p-torsion freeness from A

(m)
cris . By

also using the short exact sequences (3.26.3) and the vanishing (3.26.2), we see that

A(m)
cris (RΣ,Λ,∞) is µ-torsion free and A(m)

cris (RΣ,Λ,∞)/µ is p-adically complete.

As in § 3.27, the rings A(m)
cris (RΣ,Λ,∞) come equipped with A

(m)
cris -semilinear Frobenius

endomorphisms that are compatible as m varies. The maps (3.26.1) and (5.19.1) give rise
to the surjection

θ : A(m)
cris (RΣ,Λ,∞)� RΣ,Λ,∞. (5.19.4)

The actions of the profinite group ∆Σ,Λ on Ainf(RΣ,Λ,∞) and A(m)
cris (RΣ,Λ,∞) are compatible,

continuous, and Frobenius-equivariant.
The following consequence of Remark 3.35 will help us build a desired functorial complex in

§ 5.21.

Proposition 5.20. In the local setting of § 5.17, for every m > p, the analogue for RΣ,Λ,∞ of
the edge map (3.15.1) induces the Frobenius-equivariant identification

η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d)

)
∼−→RΓ(Xpsh

ét , AΩpsh
X ) ⊗̂L

Ainf
A

(m)
cris . (5.20.1)

In particular, we have the following Frobenius-equivariant identification in the derived category:(
lim−→m

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d)

)))̂
∼−→RΓ(Xpsh

ét , AΩpsh
X ) ⊗̂L

Ainf
Acris,

where the direct limit and the p-adic completion of the complexes in the source are formed
termwise.
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Proof. Proposition 5.6 gives the Frobenius-equivariant identification

RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

A
(m)
cris
∼= Lη(µ)(RΓproét(X

ad
C ,Ainf) ⊗̂

L
Ainf

A
(m)
cris ).

Therefore, since the pro-(finite étale) affinoid perfectoid ∆Σ,Λ-cover Spa(RΣ,Λ,∞[1
p ], RΣ,Λ,∞)

of Spa(R[1
p ], R) contains Spa(Rλ,∞[1

p ], Rλ,∞) as a subcover (see § 5.18), Remark 3.35 applies

and (with Lemma 3.7) gives (5.20.1). The remaining assertion follows: each A(m)
cris (RΣ,Λ,∞) is

p-torsion free, so the termwise p-adic completion of the source there agrees with the derived
p-adic completion. 2

5.21 A functorial complex that computes RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

Acris

For a fixed R, we form the filtered direct limit over the closed immersions (5.17.1) for varying Σ
and Λ to build the complex

lim−→Σ,Λ

((
lim−→m>p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d)

)))̂ )
, (5.21.1)

where the direct limits and the p-adic completion are termwise. By its construction, this
complex comes equipped with an Acris-semilinear Frobenius endomorphism. The isomorphisms
of Proposition 5.20 are compatible with enlarging Σ and Λ, so they show that in the derived
category the complex (5.21.1) is canonically and Frobenius-equivariantly identified with

RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

Acris.

Moreover, if R′ is a p-adically formally étale R-algebra equipped with data as in § 5.17 for some
sets Σ′ and Λ′, then the term indexed by Σ, Λ (and by the closed immersion (5.17.1)) of the
direct limit (5.21.1) maps to the term indexed by Σ ∪ Σ′, Λ ∪ Λ′ (and by a closed immersion of
Spf(R′)) of the analogous direct limit for R′, compatibly with the transition maps in (5.21.1)
and with the Frobenius. Thus, the complex (5.21.1) equipped with its Frobenius is functorial in

R, and so is its identification with RΓ(Xpsh
ét , AΩpsh

X ) ⊗̂L
Ainf

Acris.
Our next aim is to similarly reexpress the (presheaf version of the) right-hand side of (5.4.1)

in § 5.32.

5.22 The completed log PD envelope DΣ,Λ

By § 5.9, the maps θ : A(R�λ ) � R�λ of (3.14.3) are compatible with log structures. Thus, they
give rise to a Frobenius-equivariant closed immersion

Spec(R/p) ↪→ Spf(A(R�Σ))×
∏
λ∈Λ Spf(A(R�λ )) =: Spf(A�Σ,Λ) (5.22.1)

of (p, µ)-adic formal log schemes, where the products are over the (p, µ)-adic formal log scheme
Spf(Ainf). By [Kat89, 4.1, 4.4], for n, n′ > 0, the quasi-coherent log structure of

Spec(A�Σ,Λ/(p
n, µn

′
))

and the log scheme map

Spec(A�Σ,Λ/(p
n, µn

′
))→ Spec(Ainf/(p

n, µn
′
))

are integral.
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For n, n′ > 0, by [Bei13b, 1.3, Theorem], the Ainf/(p
n, µn

′
)-base change of the closed

immersion (5.22.1) has a log PD envelope

Spec(DΣ,Λ, n, n′) over (Z/pnZ, pZ/pnZ),

which, in particular, is a nil thickening of Spec(R/p), so is affine as indicated (see [SP, 01ZT]).
In fact, DΣ,Λ, n, n′ is supplied already by [Kat89, 5.4] because the closed immersion (5.22.1) is
the base change of a similar closed immersion of fine formal log schemes along a ‘change of log
structure’ self-map of Ainf (see § 5.9).10

If n′ is large enough relative to n, so that µn
′ ∈ pnAcris, then, by §§ 5.1–5.2, Spec(Acris/p

n)
is identified with the log PD envelope of the exact log closed immersion

Spec(OC/p) ↪→ Spec(Ainf/(p
n, µn

′
)) over (Z/pnZ, pZ/pnZ).

Thus, for such n, n′, the envelope Spec(DΣ,Λ, n, n′) comes equipped with a canonical log PD
morphism to Spec(Acris/p

n) that identifies it with the log PD envelope of

Spec(R/p) ↪→ Spec(A�Σ,Λ ⊗Ainf
Acris/p

n) over Spec(OC/p) ↪→ Spec(Acris/p
n).

Thus, letting DΣ,Λ, n be this log PD envelope, that is, the common DΣ,Λ, n, n′ for large n′, we have
DΣ,Λ, n/p

n−1 ∼= DΣ,Λ, n−1 for n > 1 and obtain a p-adic formal log Spf(Acris)-scheme Spf(DΣ,Λ)
that fits into a factorization

Spec(R/p) ↪→ Spf(DΣ,Λ)→ Spf(Acris(R
�
Σ))×

∏
λ∈Λ Spf(Acris(R

�
λ )) =: Spf(A�Σ,Λ, cris), (5.22.2)

where the products are formed over the p-adic formal log scheme Spf(Acris) and we have

A�Σ,Λ, cris
∼= A�Σ,Λ ⊗̂Ainf

Acris.

By functoriality, Spf(DΣ,Λ) comes equipped with an Acris-semilinear Frobenius. In addition,
since, for each n > 0, the ideal defining the exact closed immersion Spec(R/p) ↪→ Spec(R/pn)
inherits divided powers from Z/pn, the universal property of DΣ,Λ supplies the factorization

Spec(R/p) ↪→ Spf(R) ↪→ Spf(DΣ,Λ) over Spec(OC/p) ↪→ Spf(OC) ↪→ Spf(Acris). (5.22.3)

The profinite group ∆Σ,Λ acts continuously and Frobenius-equivariantly on A�Σ,Λ over Ainf (see
§ 3.14) and, due to the last paragraph of § 5.9, this action extends to a ∆Σ,Λ-action on the (p, µ)-
adic formal log scheme Spf(A�Σ,Λ). Thus, since the closed immersion (5.22.1) is ∆Σ,Λ-equivariant,
∆Σ,Λ acts Acris-linearly and Frobenius-equivariantly on each DΣ,Λ, n and also on DΣ,Λ.

The main practical deficiency of DΣ,Λ is its inexplicit nature, for instance, we do not know
whether DΣ,Λ is p-torsion free. In contrast, its utility for us manifests itself through the following
proposition.

Proposition 5.23. In the local setting of § 5.17, the complex (where the inverse limit is
termwise)

Ω•DΣ,Λ/Acris, log,PD := lim
←−n>0

(Ω•
(A�Σ,Λ, cris/p

n)/(Acris/pn), log
⊗A�Σ,Λ, cris/p

n DΣ,Λ, n)

10 The two references characterize the log PD envelope differently, but they give the same Spec(DΣ,Λ, n, n′), in
essence because the image of any monoid morphism M →M ′ with M finitely generated is finitely generated.

2087

https://doi.org/10.1112/S0010437X1800790X Published online by Cambridge University Press

http://stacks.math.columbia.edu/tag/01ZT
http://stacks.math.columbia.edu/tag/01ZT
http://stacks.math.columbia.edu/tag/01ZT
http://stacks.math.columbia.edu/tag/01ZT
https://doi.org/10.1112/S0010437X1800790X
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is canonically and Frobenius-equivariantly identified in the derived category as follows:

RΓlog cris(OXOC/p/Acris
) ∼= Ω•DΣ,Λ/Acris, log,PD. (5.23.1)

Under this identification, the map

RΓlog cris(OXOC/p/Acris
)→ RΓlog dR(X/OC) is Ω•DΣ,Λ/Acris, log,PD

(5.22.3)
−−−−→ Ω•Spf(R)/OC , log.

(5.23.2)

In particular, we have a Frobenius-equivariant identification

RΓlog cris(OXOC/p/Acris
) ∼= KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)
(5.23.3)

where the ∂
∂ log(Xσ) (respectively, ∂

∂ log(Xλ, i)
) are as in (5.10.1) with R�Σ (respectively, R�λ ) in place

of R and the Frobenius acts in degree j on the right-hand side as pj times the Frobenius of DΣ,Λ

(compare with § 5.10).

Proof. By § 5.11, each A�Σ,Λ, cris/p
n is a log smooth thickening of R/p over Acris/p

n. Therefore,

by [Bei13a, 1.4, Remarks (ii)] (and the second paragraph of § 5.22), the log PD thickening

DΣ,Λ, n of R/p is PD smooth over Acris/p
n (see the proof of Lemma 5.12). Thus, as in the

proof of Proposition 5.13 above, [Bei13a, (1.8.1)] ensures that the logarithmic PD de Rham

complex Ω•DΣ,Λ, n/(Acris/pn), log,PD Frobenius-equivariantly computes RΓlog cris(OXOC/p/(Acris/pn)).

By [Bei13a, 1.7, Exercises, (i)],

Ω•DΣ,Λ, n/(Acris/pn), log,PD
∼= Ω•

(A�Σ,Λ, cris/p
n)/(Acris/pn), log

⊗A�Σ,Λ, cris/p
n DΣ,Λ, n, (5.23.4)

so (5.23.1) follows. Then, since each R/pn is a log smooth log PD thickening of R/p over OC/pn,

analogous reasoning applies to

RΓlog cris(OXOC/p/OC
)

[Bei13a, (1.8.1)]∼= RΓlog dR(X/OC)

(compare with the proof of Proposition 5.13) and gives (5.23.2).

Finally, the identification (5.23.3) results from (5.23.1) and the Frobenius-equivariant

identifications

Ω•
(A�Σ,Λ, cris/p

n)/(Acris/pn), log
∼= KA�Σ,Λ, cris/p

n

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)
supplied by (5.10.3). 2

Remark 5.24. By [Bei13a, (1.11.1)], the first map in (5.23.2) induces the identification

RΓlog cris(OXOC/p/Acris
)⊗L

Acris
OC/p ∼= RΓlog dR(X/OC)⊗L

OC OC/p (5.24.1)

in the derived category, so the same holds for the second map:

Ω•DΣ,Λ/Acris, log,PD ⊗
L
Acris
OC/p ∼= Ω•(R/p)/(OC/p), log.
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To make the identification (5.23.3) analogous to the identification in Proposition 5.20, we will

express DΣ,Λ as a completed direct limit of rings D
(m)
Σ,Λ that ‘are generated by divided powers

of degree at most m’, see (5.30.1). For this, we will build on the ideas from the proof of [Kat89,
4.10(1)] to identify DΣ,Λ with the p-adic completion of the (nonlog) divided power envelope of
an exact closed immersion in Lemma 5.29.11 This will also make DΣ,Λ more explicit and easier
to analyze.

5.25 A chart for A�Σ,Λ
To express DΣ,Λ as the p-adic completion of a usual (nonlog) divided power envelope, in §§ 5.25–
5.27 we build a chart for the (fine version) of the log closed immersion

Spec(R/p) ↪→ Spec(A�Σ,Λ). (5.25.1)

For this, we fix the unique q ∈ Q>0 for which

Z · q = Σλ∈Λ Z · qλ inside Q,

so that qλ/q ∈ Z>0 for every λ (and even qλ = q in the case when R⊗OC k is not k-smooth, see
§ 5.17). We endow OC/p and Ainf with the compatible via θ fine log structures determined by

N>0→ OC/p with 1 7→ pq and N>0→ Ainf with 1 7→ [(p1/p∞)q].

For each λ ∈ Λ, we consider the submonoid

Qλ ⊂ q
qλ

∏
06i6rλ

N>0 generated by
∏

06i6rλ
N>0 and the diagonal

( q
qλ
, . . . , qqλ

)
,

so that the chart

Qλ→ A(R�λ ) given by
∏

06i6rλ
N>0

(ni) 7→
∏
X
ni
λ, i−−−−−−−−−→ A(R�λ ) and

( q
qλ
, . . . , qqλ

)
7→ [(p1/p∞)q]

makes Spec(A(R�λ )) a fine log Spec(Ainf)-scheme. We let

Q :=
(∏

λ∈ΛQλ
)/ (( q

qλ1
, . . . , q

qλ1

)
=
( q
qλ2
, . . . , q

qλ2

))
λ1 6=λ2

be the quotient monoid obtained by identifying the diagonal elements (q/qλ, . . . , q/qλ), so that
the map

Q→ A�Σ,Λ that results from the charts Qλ→ A(R�λ )

is a chart for the target Spec(A�Σ,Λ) of a fine version of the log closed immersion (5.25.1). In

terms of this chart, the Frobenius of A�Σ,Λ multiplies each element of Q by p (see § 5.9).

5.26 A convenient chart in the smooth case
We consider the case when R ⊗OC k is k-smooth, so that for each λ ∈ Λ there is a unique
0 6 iλ 6 rλ with tλ, iλ 6∈ R×, and build the monoids

Pλ0 :=
(
N>0 ×

∏
06i6rλ0

, i 6=iλ0
Z
)
×
∏
λ6=λ0

((∏
06i6rλ

Z
)/

Z
)

for λ0 ∈ Λ, (5.26.1)

11 The arguments below would become more direct if we could ‘uncomplete’ DΣ,Λ by constructing the log PD
envelope of the (possibly nonexact) log closed immersion Spec(R/p) ↪→ Spec(A�Σ,Λ). Neither [Kat89, 5.4] nor

[Bei13a, 1.3, Theorem] gives this hypothetical envelope because p is not nilpotent in A�Σ,Λ.
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where each Z by which we quotient is embedded diagonally. For each (λ, i) with 0 6 i 6 rλ,

tλ, i = (pq)nλ, i · vλ, i in R for unique nλ, i ∈ Z>0 and vλ, i ∈ R×; (5.26.2)

explicitly, nλ, iλ = qλ
q and nλ, i = 0 for i 6= iλ. In particular,

∏
06i6rλ

vλ, i = 1 for each λ. The map

Pλ0 → R/p given by N>0 3 1 7→ pq, Z(λ,i) 3 1 7→ vλ,i,

where the subscript (λ, i) indicates the factor Z of (5.26.1) being considered, is a chart for the
source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this chart,
the Frobenius of R/p multiplies each element of Pλ0 by p.

Due to (5.26.2), knowing the indices iλ, we may evidently express the image of every generator
of Q under Q → A�Σ,Λ � R/p in terms of the images of elements of Pλ0 without knowing
the ‘values’ of these images. Thus, the log closed immersion (5.25.1) has a natural Frobenius-
equivariant chart

Q→ Pλ0 =
(
N>0 ×

∏
06i6rλ0

, i 6=iλ0
Z
)
×
∏
λ 6=λ0

((∏
06i6rλ

Z
)/

Z
)

that, for instance, sends 1 ∈ (N>0)(λ0, iλ0
) to the element (qλ0/q,−1, . . . ,−1) of

N>0 ×
∏

06i6rλ0
, i 6=iλ0

Z,

each (q/qλ, . . . , q/qλ) to 1 ∈ N>0, each 1 ∈ (N>0)(λ,i) with i 6= iλ to 1 ∈ Z(λ,i), etc.

More precisely, the resulting A�Σ,Λ-algebra

A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]

comes equipped with an A�Σ,Λ-semilinear Frobenius and is initial among the A�Σ,Λ-algebras B

equipped with a unit Vλ, i ∈ B× for each (λ, i) with 0 6 i 6 rλ subject to the relations

Xλ, i = [((p1/p∞)q)nλ, i ] ·Vλ, i,
∏

06i6rλ
Vλ, i = 1. (5.26.3)

In particular,

R is naturally an (A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra (with Vλ, i = vλ, i). (5.26.4)

A fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as follows:

Spec(R/p) �
� jλ0 // Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])

qλ0 // Spec(A�Σ,Λ), (5.26.5)

where Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]) is equipped with the log structure determined by Pλ0 . By
construction, jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log
étale.

The relations (5.26.3) do not depend on the choice of λ0, so neither does the factorization
(5.26.5). More precisely, for another λ′0 ∈ Λ, we have a natural isomorphism over Q of charts for
R/p:

Pλ0

∼−→ Pλ′0 , (5.26.6)

which gives rise to the vertical Frobenius-equivariant isomorphism in the following commutative
diagram.

Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]) qλ0 --
Spec(R/p)

# �
jλ0 11
� {

jλ′0

-- Spec(A�Σ,Λ).

Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ′0 ])

∼

OO

qλ′0

11 (5.26.7)
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5.27 A convenient chart in the nonsmooth case
We now consider the case when R⊗OC k is not k-smooth, so that qλ = q and Qλ ∼=

∏
06i6rλ

N>0

for every λ ∈ Λ. Letting ∆λ ⊂ Qλ be the diagonal copy of N>0, we can then describe the chart
Q for a fine version of Spec(A�Σ,Λ) as follows:

Q ∼=
(∏

λ∈Λ

(∏
06i6rλ

N>0

))/
(∆λ1 = ∆λ2)λ1 6=λ2

.

By § 5.17, each tλ, i 6∈ R× cuts out a unique irreducible component {yλ, i} of Spec(R ⊗OC k).
Its generic point yλ, i determines the ideal (tλ, i) ⊂ R: indeed, (pq) ⊂ (tλ, i) in R and the ideal
(tλ, i)/(p

q) ⊂ R/(pq) is the kernel of the localization map R/(pq)→ (R/(pq))yλ, i , as may be seen

over R�λ . Conversely, for each generic point y of Spec(R⊗OC k) and λ ∈ Λ, a unique tλ, iλ(y) with

0 6 iλ(y) 6 rλ cuts out {y} (see § 5.17). Consequently, for each y and λ, λ0 ∈ Λ,

tλ, iλ(y) = uλ, λ0, y · tλ0, iλ0
(y) in R for a unique uλ, λ0, y ∈ R×. (5.27.1)

Letting Y denote the set of the generic points of Spec(R⊗OC k), for λ0 ∈ Λ we build the monoid

Pλ0 :=
((∏

Y N>0 ×
∏
{06i6rλ0

}\iλ0
(Y) Z

)
×
∏
λ 6=λ0

(∏
06i6rλ

Z
))/

(∆λ = ∆λ0)λ 6=λ0 , (5.27.2)

where the quotient means that for every λ 6= λ0 we are identifying every diagonal element of∏
06i6rλ

Z with the corresponding diagonal element of
∏
{06i6rλ0

}\iλ0
(Y) Z (interpreted to be 0 if

the indexing set is empty). The assignment (as in § 5.26, subscripts indicate factors in (5.27.2))

(N>0)y 3 1 7→ tλ0, iλ0
(y), Z(λ, i) 3 1 7→ tλ, i if i 6∈ iλ(Y), Z(λ, i) 3 1 7→ uλ, λ0, y if i = iλ(y)

determines a chart

Pλ0 → R/p

for the source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this
chart, the Frobenius of R/p multiplies each element of Pλ0 by p.

Due to the relation (5.27.1), the images in R/p of the generators of Q are evidently expressible
in terms of the images of the elements of Pλ0 (without knowing the ‘values’ of these images), so,
as in the smooth case, there is a natural Frobenius-equivariant chart for a fine version of (5.25.1):

Q→ Pλ0

that, for instance, for λ 6= λ0 and y ∈ Y, sends 1 ∈ (N>0)(λ, iλ(y)) to (1, 1) ∈ (N>0)y × Z(λ, iλ(y)).

The resulting A�Σ,Λ-algebra

A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]

comes equipped with an A�Σ,Λ-semilinear Frobenius endomorphism and is initial among the

A�Σ,Λ-algebras B for which Xλ, i ∈ B× when i 6∈ iλ(Y) and that are equipped with, for each

y ∈ Y and λ ∈ Λ, a unit Uλ, λ0, y ∈ B× subject to the relations

Xλ, iλ(y) = Uλ, λ0, y ·Xλ0, iλ0
(y), Uλ0, λ0, y = 1, and∏

y∈Y Uλ, λ0, y =
(∏
{06i6rλ0

}\iλ0
(Y)Xλ0, i

)/(∏
{06i6rλ}\iλ(Y)Xλ, i

)
for λ ∈ Λ.

(5.27.3)
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For a λ′0 ∈ Λ, we may set Uλ, λ′0, y = Uλ, λ0, y ·U
−1
λ′0, λ0, y

to express the Uλ, λ′0, y in terms of the

Uλ, λ0, y, so, up to a canonical A�Σ,Λ-isomorphism, A�Σ,Λ ⊗Z[Q] Z[Pλ0 ] does not depend on λ0.
Moreover,

R is naturally an (A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra (with Uλ, λ0, y = uλ, λ0, y). (5.27.4)

As in the smooth case, we equip Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]) with the log structure determined
by Pλ0 , so a fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as
follows:

Spec(R/p) �
� jλ0 // Spec(A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])

qλ0 // Spec(A�Σ,Λ), (5.27.5)

where jλ0 is an exact closed immersion and, by [Kat89, 3.5], the projection qλ0 is log étale. As in
§ 5.26, we have natural isomorphisms Pλ0 ' Pλ′0 over Q and the compatibility diagram (5.26.7).

We now use the charts Q→ Pλ0 to build a (nonlog) PD envelope whose p-adic completion
is DΣ,Λ.

5.28 The divided power envelope of jλ0

For λ0 ∈ Λ, we let Djλ0
be the divided power envelope over (Zp, pZp) of the closed immersion jλ0

defined in (5.26.5) and (5.27.5). The universal property of A0
cris (see § 5.1) identifies Djλ0

with
the divided power envelope of the closed immersion

jλ0, cris : Spec(R/p) ↪→ Spec((A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ]) over Spec(OC/p) ↪→ Spec(A0
cris)

(compare with § 5.22). Since jλ0 underlies an exact closed immersion of log schemes, we may,
in addition, identify Djλ0

endowed with the log structure determined by Pλ0 with the log PD

envelope of jλ0 over Zp, or of jλ0, cris over A0
cris (compare with [Kat89, 5.5.1]). For λ′0 ∈ Λ, the

vertical isomorphism in (5.26.7) induces an isomorphism

Djλ0

∼= Djλ′0
. (5.28.1)

By functoriality, Djλ0
comes equipped with an A0

cris-semilinear Frobenius endomorphism, and
the isomorphisms (5.28.1) are Frobenius equivariant. Due to (5.26.4) and (5.27.4), there is a map

Djλ0
→ R that lifts Djλ0

� R/p; (5.28.2)

its formation is compatible with the isomorphisms (5.28.1).
By the universal property of A�Σ,Λ ⊗Z[Q] Z[Pλ0 ] (see (5.26.3) and (5.27.3)), the continuous

∆Σ,Λ-action on A�Σ,Λ extends to a (p, µ)-adically continuous ∆Σ,Λ-action on A�Σ,Λ ⊗Z[Q] Z[Pλ0 ],

so it induces an A0
cris-linear ∆Σ,Λ-action on Djλ0

. As an (A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])-algebra, Djλ0
is

generated by the divided powers of the elements of the ideal of jλ0 , so this action is p-adically
continuous.

Lemma 5.29. For λ0 ∈ Λ, the map qλ0 induces Frobenius- and ∆Σ,Λ-equivariant isomorphisms

DΣ,Λ, n
∼= Djλ0

/pn for n > 0 (respectively, DΣ,Λ
∼= D̂jλ0

) (5.29.1)

that are Acris-linear and compatible with divided powers, maps to R/pn (respectively, R; see
(5.22.3) and (5.28.2)), and the isomorphisms (5.28.1). In particular, DΣ,Λ is p-adically complete,

DΣ,Λ/p
n ∼−→ DΣ,Λ, n for n > 0

and the ∆Σ,Λ-action on DΣ,Λ is p-adically continuous.
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Proof. We may identify DΣ,Λ, n with the log PD envelope of

Spec(R/p) ↪→ Spec(A�Σ,Λ, cris/p
n) over Spec(OC/p) ↪→ Spec(Acris/p

n)

defined using fine log structures (see § 5.22). On the other hand, we may identify Djλ0
/pn with

the (log) divided power envelope of jλ0, cris ⊗A0
cris

A0
cris/p

n, that is, of

Spec(R/p) ↪→ Spec((A�Σ,Λ, cris/p
n)⊗Z[Q] Z[Pλ0 ]), over Spec(OC/p) ↪→ Spec(Acris/p

n)

(see § 5.28 and [SP, 07HB]). Consider a commutative square

T0� _

��

// Spec((A�Σ,Λ, cris/p
n)⊗Z[Q] Z[Pλ0 ])

qλ0
⊗Ainf

Acris/p
n

��
T //

?

55

Spec(A�Σ,Λ, cris/p
n)

(5.29.2)

of log schemes over Acris/p
n in which T0 ↪→ T is a log PD thickening such that the log structure

NT of T (and, hence, also NT0 of T0) is integral and quasi-coherent and the log structures
of Spec((A�Σ,Λ, cris/p

n) ⊗Z[Q] Z[Pλ0 ]) and Spec(A�Σ,Λ, cris/p
n) are determined by the charts Pλ0

and Q, respectively (see §§ 5.25–5.27). By [Bei13a, 1.1 Exercises (iii)], for any t, t′ ∈ Γ(T,NT ) and
u0 ∈ O×T0

with t|T0 = u0 · t′|T0 , there exists a unique lift u ∈ O×T of u0 such that t = ut′. Thus,
by the construction of Pλ0 and the universal property described by (5.26.3) and (5.27.3), there
is a unique log morphism indicated by the dashed arrow in (5.29.2) that makes the diagram
commute. Consequently, qλ0 induces an isomorphism between the log PD envelopes:

Djλ0
/pn ∼= DΣ,Λ, n, and, by letting n vary, also D̂jλ0

∼= DΣ,Λ.

Functoriality implies the claimed compatibilities, and (5.29.1) implies the ‘in particular’ assertion.
2

We now use Lemma 5.29 to define the rings D
(m)
Σ,Λ that are analogous to the rings A

(m)
cris (R)

of § 3.27.

5.30 The rings D
(m)
Σ,Λ

For λ0 ∈ Λ, the divided powers of the elements of the ideal of jλ0 generate Djλ0
as an algebra over

A�Σ,Λ⊗Z[Q]Z[Pλ0 ]. In turn, for a fixed m ∈ Z>1, the divided powers of degree at most m generate

a Frobenius-stable (A�Σ,Λ ⊗Z[Q] Z[Pλ0 ])-subalgebra

D
(m)
jλ0
⊂ Djλ0

, and Djλ0
=
⋃
m>1D

(m)
jλ0

.

Since Djλ0
is naturally and Frobenius-semilinearly an A0

cris-algebra (see § 5.28), D
(m)
jλ0

is naturally

and Frobenius-semilinearly an algebra over the subring A
0, (m)
cris ⊂ A0

cris defined in § 3.26. By
Lemma 5.29,

the image D0
Σ,Λ of Djλ0

in DΣ,Λ

(5.29.1)∼= D̂jλ0
is Frobenius-stable and independent of λ0,

and the same holds for the image D
0, (m)
Σ,Λ ⊂ D0

Σ,Λ of D
(m)
jλ0

in DΣ,Λ. For m > p, the p-adic

completion

D
(m)
Σ,Λ := (D

0, (m)
Σ,Λ )̂ is naturally an algebra over A

(m)
cris

and comes equipped with an A
(m)
cris -semilinear Frobenius.
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By Lemma 5.29, the composition Djλ0
� D0

Σ,Λ ↪→ DΣ,Λ induces an isomorphism modulo pn

and, hence, so do both maps that comprise it. Thus, since D0
Σ,Λ =

⋃
m>pD

0, (m)
Σ,Λ , we have

DΣ,Λ
∼= (D0

Σ,Λ)̂ ∼= (lim−→m>p
D

(m)
Σ,Λ

) ̂ over Acris (5.30.1)

compatibly with the Frobenii. In what follows, D0
Σ,Λ plays the role of the ring that underlies the

hypothetical log PD envelope of the log closed immersion (5.25.1) (see footnote 11).

By Lemma 5.29, the ∆Σ,Λ-action on DΣ,Λ respects the subrings D
0, (m)
Σ,Λ ⊂DΣ,Λ. The induced

A
(m)
cris -linear ∆Σ,Λ-action on D

(m)
Σ,Λ is p-adically continuous and compatible as m varies. The

identifications in (5.30.1) are ∆Σ,Λ-equivariant.

5.31 The derivations ∂
∂ log(Xτ )

For brevity, let τ denote either the index ‘σ’ for some σ ∈ Σ or the index ‘λ, i’ for some λ ∈ Λ
and i = 1, . . . , d. The log derivations ∂

∂ log(Xτ ) defined in (5.10.1) with R�Σ or R�λ in place of R

give rise to the log Ainf -derivations

∂
∂ log(Xτ ) : A�Σ,Λ→ A�Σ,Λ (5.31.1)

(as in § 5.10, we do not explicate the accompanying homomorphisms from the log structure).
These, in turn, induce the divided power Acris-derivations

∂
∂ log(Xτ ) : DΣ,Λ→ DΣ,Λ (5.31.2)

(compare with Proposition 5.23 and its proof, especially (5.23.4)), where a divided power Acris-
derivation ∂ is required to satisfy ∂(x[m]) = x[m−1]∂(x) for divided powers x[m] with m > 1, in
addition to the Acris-linearity and the Leibniz rule.

Since qλ0 is log étale (see §§ 5.26–5.27), the derivations (5.31.1) uniquely extend to log Ainf -
derivations

∂
∂ log(Xτ ) : A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]→ A�Σ,Λ ⊗Z[Q] Z[Pλ0 ] for every λ0 ∈ Λ. (5.31.3)

These, in turn, induce divided power A0
cris-derivations (see [SP, 07HW])

∂
∂ log(Xτ ) : Djλ0

→ Djλ0
. (5.31.4)

By construction, the derivations (5.31.2) and (5.31.4) are compatible, so they induce A
(m)
cris -

derivations
∂

∂ log(Xτ ) : D
(m)
Σ,Λ→ D

(m)
Σ,Λ for m > p

that are compatible as m varies and recover (5.31.2) under the identification

DΣ,Λ
∼= (lim−→D

(m)
Σ,Λ)̂.

Consequently, we may reexpress the identification (5.23.3) as the Frobenius-equivariant
identification

RΓlog cris(OXOC/p/Acris
) ∼=

(
lim−→m>p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)))̂
, (5.31.5)

where in degree j of K
D

(m)
Σ,Λ

(( ∂
∂ log(Xτ ))τ ) the Frobenius acts as pj times the Frobenius of D

(m)
Σ,Λ.
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5.32 A functorial complex that computes RΓlog cris(XOC/p/Acris)

For a fixed R, the formation of the rings DΣ,Λ, Djλ0
, D0

Σ,Λ, and D
(m)
Σ,Λ and the morphisms jλ0

and qλ0 is compatible with enlarging Σ and Λ, and the same holds for the identification (5.31.5).
Thus, we may form the filtered direct limit over all the closed immersions (5.17.1) for varying Σ
and Λ to build the complex

lim−→Σ,Λ

((
lim−→m>p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)))̂ )
, (5.32.1)

where the direct limits and the p-adic completion are termwise. By construction, this complex
comes equipped with an Acris-semilinear Frobenius endomorphism (see the end of § 5.31) and,
by (5.31.5), in the derived category it is canonically and Frobenius-equivariantly identified with

RΓlog cris(OXOC/p/Acris
).

Moreover, if R′ is a p-adically formally étale R-algebra equipped with data as in § 5.17 for some
sets Σ′ and Λ′, then the term indexed by Σ, Λ (and by the closed immersion (5.17.1)) of the
direct limit (5.32.1) maps to12 the term indexed by Σ ∪ Σ′, Λ ∪ Λ′ (and by a closed immersion
of Spf(R′)) of the analogous direct limit for R′, compatibly with the transition maps in (5.32.1)
and with the Frobenius. Thus, the complex (5.32.1) equipped with its Frobenius is functorial in
R, and so is its identification with RΓlog cris(OXOC/p/Acris

).

Since the formation of the maps (5.23.2) is compatible with enlarging Σ and Λ, and then also
with replacing R by R′, the map RΓlog cris(OXOC/p/Acris

)→ RΓlog dR(X/OC) is identified with a
map

lim−→Σ,Λ

((
lim−→m>p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)))̂ )
→ Ω•Spf(R)/OC , log

whose formation is compatible with replacing R by R′.
Having constructed the functorial complexes (5.21.1) and (5.32.1), we seek to exhibit a

natural map between them and to prove that it is an isomorphism. These tasks, which will be
completed in § 5.38 and Proposition 5.39, are the last stepping stones to the proof of Theorem 5.4
given in § 5.40. We begin with the following variants of Lemma 5.15 and Proposition 5.16.

Lemma 5.33. For m > p2, the element δτ ∈ ∆Σ,Λ, where the index τ is either ‘σ’ for some σ ∈ Σ

or ‘λ, i’ for some λ ∈ Λ and i = 1, . . . , d (see § 5.18), acts on D
(m)
Σ,Λ as the endomorphism∑

n>0
(log([ε]))n

n!

(
∂

∂ log(Xτ )

)n
, (5.33.1)

where (log([ε]))n

n! lies in A
(m)
cris and p-adically tends to 0 (see § 5.14).

Proof. Analogously to the proof of Lemma 5.15, the series (5.33.1) a priori defines an Acris-
algebra endomorphism of DΣ,Λ. Moreover, by Lemma 5.15, the action of δτ on the ring A�Σ,Λ, cris

defined in (5.22.2) is given by (5.33.1). Thus, due to the universal properties (5.26.3) and (5.27.3),
the same holds for the action of δτ on

A�Σ,Λ, cris ⊗̂Z[Q] Z[Pλ0 ] ∼= ((A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ])̂
12 One uses the universal properties described in (5.26.3) and (5.27.3) and keeps in mind the case when R⊗OC k
is not k-smooth but R′ ⊗OC k is.
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(see (5.31.3)), where the completion is p-adic. Then, by the universal property of Djλ0
(see § 5.28)

and (5.29.1), the element δτ acts on DΣ,Λ, and hence also on D
0, (m)
Σ,Λ and D

(m)
Σ,Λ, by the series

(5.33.1). 2

Proposition 5.34. In the local setting of § 5.17, for m > p2, the additive morphisms

(
D

(m)
Σ,Λ

∂
∂ log(Xτ )−−−−−→ D

(m)
Σ,Λ

) (id, ∑n>1
(log([ε]))n

n!

(
∂

∂ log(Xτ )

)n−1)
−−−−−−−−−−−−−−−−−−−−−−−→

(
D

(m)
Σ,Λ

δτ−1−−−→ D
(m)
Σ,Λ

)
(5.34.1)

of complexes in degree 0 and 1, where the index τ ranges over ‘σ’ for σ ∈ Σ and ‘λ, i’ for λ ∈ Λ
and i = 1, . . . , d, define a Frobenius-equivariant morphism (whose target is defined as in (1.7.3))

K
D

(m)
Σ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)
→ η(µ)

(
K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d)
)
,

where in each degree j of the source the Frobenius acts as pj times the Frobenius of D
(m)
Σ,Λ.

Proof. By Lemma 5.33, the morphism (5.34.1) is well defined. Moreover, the image of its degree

1 component lies in µ ·D(m)
Σ,Λ because, by § 5.14, the element (log([ε]))n

µ ·n! lies in A
(m)
cris and p-adically

tends to 0. The rest of the claim then follows from the definitions (1.7.2) and (1.7.3), granted
that one argues the Frobenius-equivariance as in the proof of Proposition 5.16. 2

Proposition 5.34 reduces the task of exhibiting a natural map from the complex (5.32.1) to
the complex (5.21.1) to exhibiting a natural ∆Σ,Λ-equivariant ring morphism

D
(m)
Σ,Λ→ A(m)

cris (RΣ,Λ,∞).

To build the latter, we will realize A(m)
cris (RΣ,Λ,∞) inside the following ring Acris(RΣ,Λ,∞).

5.35 The ring Acris(RΣ,Λ,∞)
For an affinoid perfectoid Spa(R′∞[1

p ], R′∞) over Spa(C,OC) (such as that with R′∞ = RΣ,Λ,∞),

we consider the Ainf(R
′
∞)-subalgebra

A0
cris(R

′
∞) ⊂ Ainf(R

′
∞)
[

1
p

]
generated by the elements ξn/n! for n > 1. Analogously to § 5.8, by [Tsu99, proof of A2.8], we
have

A0
cris(R

′
∞) ∼=

(
Ainf(R

′
∞)
[
Tn

n!

]
n>1

)
/(T − ξ), so A0

cris(R
′
∞) ∼= Ainf(R

′
∞)⊗Ainf

A0
cris.

Thus, analogously to § 5.8, the ring A0
cris(R

′
∞) is identified with the divided power envelope of

(Ainf(R
′
∞),Ker(θ) + p ·Ainf(R

′
∞)) over (Zp, pZp), and

Acris(R
′
∞) := Ainf(R

′
∞) ⊗̂Ainf

Acris is identified with (A0
cris(R

′
∞))̂.

For an m ∈ Z>1, we let A0, (m)
cris (R′∞) ⊂ A0

cris(R
′
∞) be the Ainf(R

′
∞)-subalgebra generated by the

elements ξn/n! with n 6 m (compare with § 3.26). For a fixed m, the subalgebra

Ainf(R
′
∞)
[
Tn

n!

]
m>n>1

⊂ Ainf(R
′
∞)
[
Tn

n!

]
n>1
⊂
(
Ainf(R

′
∞)
[

1
p

])
[T ]
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is described by explicit lower bounds on the ‘p-adic valuations’ of the coefficients of TN for N > 1.
Thus, since the sequence (p, ξ) is Ainf(R

′
∞)-regular (compare with Lemma 3.13), the quotient of

Ainf(R
′
∞)[T

n

n! ]n>1 by Ainf(R
′
∞)[T

n

n! ]m>n>1 has no nonzero (T − ξ)-torsion. Consequently,

A0, (m)
cris (R′∞) ∼= (Ainf(R

′
∞)
[
Tn

n!

]
m>n>1

)/(T − ξ), (5.35.1)

to the effect that
A0, (m)

cris (R′∞) ∼= Ainf(R
′
∞)⊗Ainf

A
0, (m)
cris .

Thus, by letting the completion be p-adic if m > p and (p, µ)-adic if m < p, we obtain the

following identification with the A
(m)
cris -algebra A(m)

cris (R′∞) defined as in (5.19.3):

(A0, (m)
cris (R′∞))̂ ∼= A(m)

cris (R′∞) := Ainf(R
′
∞) ⊗̂Ainf

A
(m)
cris . (5.35.2)

Proposition 5.36. For an affinoid perfectoid Spa(R′∞[1
p ], R′∞) over Spa(C,OC) and an m > 1,

the following ring homomorphisms are injective:

A0, (m)
cris (R′∞) ↪→ A(m)

cris (R′∞) ↪→ Acris(R
′
∞) ↪→ B+

dR(R′∞) :=
(
Ainf(R

′
∞)
[

1
p

])̂ (5.36.1)

where the completion is ξ-adic and the definition of the last map is explained in the proof. In
particular, the Ainf -algebras in (5.36.1) have no nonzero µ-torsion.

Proof. The assertion about the µ-torsion follows from the rest because µ/ξ is a unit in B+
dR(R′∞)

(see (2.1.1)–(2.1.4)) and B+
dR(R′∞) inherits ξ-torsion freeness from Ainf(R

′
∞).

The sequence (p, ξ) is Ainf(R
′
∞)-regular and Ainf(R

′
∞) is ξ-adically separated (see [SP,

090T]), so the ring Ainf(R
′
∞)[1

p ] is also ξ-adically separated. Thus, we obtain the injection

Ainf(R
′
∞)
[

1
p

]
↪→ B+

dR(R′∞), and hence also A0, (m)
cris (R′∞) ↪→ B+

dR(R′∞),

which, in particular, allows us to assume that m> p. For varying n> 0, the Ainf(R
′
∞)-submodules

Fil0n ⊂ A0
cris(R

′
∞) generated by the ξn

′

n′! for n′ > n

form a decreasing filtration of A0
cris(R

′
∞) by ideals. By [Tsu99, A2.9(2)],13 each

A0
cris(R

′
∞)/Fil0n is p-torsion free and p-adically complete. (5.36.2)

Thus, the p-adic completions Filn := (Fil0n)̂ form a decreasing filtration of Acris(R
′
∞) by

ideals with
Acris(R

′
∞)/Filn ∼= A0

cris(R
′
∞)/Fil0n . (5.36.3)

The p-torsion freeness also supplies a decreasing filtration modulo p:

Fil0n /pFil0n ↪→ A0
cris(R

′
∞)/pA0

cris(R
′
∞).

The isomorphism A0
cris(R

′
∞) ∼= (Ainf(R

′
∞)[Tn/n!]n>1)/(T − ξ) gives the explicit description

A0
cris(R

′
∞)/pA0

cris(R
′
∞) ∼= (R′[∞/ξ

p)[Y1, Y2, . . .]/(Y
p

1 , Y
p

2 , . . .) with Yj =
T p

j

(pj)!
(5.36.4)

13 Note that [Tsu99, A2.9(2)] is written in a different setting, but its proof continues to work if A there is replaced
by our R′∞.
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(compare with [BC09, 9.4.1(3)]), so the filtration {Fil0n /pFil0n}n>0 is separated. Thus, since

Fil0n /pFil0n
∼= Filn /pFiln compatibly with A0

cris(R
′
∞)/pA0

cris(R
′
∞) ∼= Acris(R

′
∞)/pAcris(R

′
∞),

the p-adic separatedness of Acris(R
′
∞) and (5.36.2) force the filtration {Filn}n>0 to be separated

too:

Acris(R
′
∞) ↪→ lim

←−n (Acris(R
′
∞)/Filn)

(5.36.3)∼= lim
←−n (A0

cris(R
′
∞)/Fil0n).

Moreover, we have the injection lim
←−n (A0

cris(R
′
∞)/Fil0n) ↪→ B+

dR(R′∞) that results from the
injections

A0
cris(R

′
∞)/Fil0n ↪→ (A0

cris(R
′
∞)/Fil0n)

[
1
p

] ∼= (Ainf(R
′
∞)
[

1
p

])/
ξn ∼= B+

dR(R′∞)/ξn.

Thus, we obtain the desired natural injection Acris(R
′
∞) ↪→ B+

dR(R′∞) of A0
cris(R

′
∞)-algebras.

We turn to the remaining injection A(m)
cris (R′∞) ↪→ Acris(R

′
∞). For n > 0, we consider the ideal

Fil
0, (m)
n := A0, (m)

cris (R′∞)
⋂

Fil0n = Ker
(
A0, (m)

cris (R′∞)→
(
Ainf(R

′
∞)
[

1
p

])/
ξn
)
⊂ A0, (m)

cris (R′∞),

so that {Fil
0, (m)
n }n>0 forms a filtration of A0, (m)

cris (R′∞). Explicitly, as an Ainf(R
′
∞)-module, Fil

0, (m)
n

is generated by the products ξn1/n1! · · · ξns/ns! with n1+· · ·+ns > n and 06 ni 6m. By (5.36.2),
each

A0, (m)
cris (R′∞)/Fil0, (m)

n is p-torsion free, (5.36.5)

so we again get the induced filtration modulo p:

Fil0, (m)
n /pFil0, (m)

n ↪→ A0, (m)
cris (R′∞)/pA0, (m)

cris (R′∞).

As in the case of {Fil0n /pFil0n}n>0, the analogous to (5.36.4) description of

A0, (m)
cris (R′∞)/pA0, (m)

cris (R′∞)

supplied by the isomorphism (5.35.1) shows that the filtration {Fil
0, (m)
n /pFil

0, (m)
n }n>0 is

separated.
For each n > 0, there is a jn > 0 such that pjn kills

A0
cris(R

′
∞)/(A0, (m)

cris (R′∞) + Fil0n)

(for instance, jn := ordp(n!) has this property). Consequently, pjn kills the kernel of the map

A0, (m)
cris (R′∞)/Fil

0, (m)
n

pj · (A0, (m)
cris (R′∞)/Fil

0, (m)
n )

→
A0

cris(R
′
∞)/Fil0n

pj · (A0
cris(R

′
∞)/Fil0n)

for each j > 0,

so, for j > jn, every element of this kernel is a multiple of pj−jn . The short exact sequences

0→ Fil
0, (m)
n

pj · Fil
0, (m)
n

(5.36.5)
−−−−→ A0, (m)

cris (R′∞)

pj ·A0, (m)
cris (R′∞)

→
A0, (m)

cris (R′∞)/Fil
0, (m)
n

pj · (A0, (m)
cris (R′∞)/Fil

0, (m)
n )

→ 0

then show that for each n > 0, every element of the kernel

Ker(A(m)
cris (R′∞)→ Acris(R

′
∞)) ∼= Ker

(
lim
←−j>0

(A0, (m)
cris (R′∞)/pj)→ lim

←−j>0
(A0

cris(R
′
∞)/pj)

)
(5.36.6)

lies in lim
←−j>0

(Fil
0, (m)
n /pj Fil

0, (m)
n ). In particular, this kernel maps to Fil

0, (m)
n /p ⊂ A0, (m)

cris (R′∞)/p

for each n > 0. However, by the previous paragraph,
⋂
n>0 (Fil

0, (m)
n /p) = 0, so the kernel (5.36.6)

lies in p · A(m)
cris (R′∞). Since Acris(R

′
∞) has no nonzero p-torsion and A(m)

cris (R′∞) is p-adically

separated, this implies that the map A(m)
cris (R′∞)→ Acris(R

′
∞) is injective, as desired. 2
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The following lemma is the final step to building the desired map D
(m)
Σ,Λ→ A(m)

cris (RΣ,Λ,∞) in

§ 5.38.

Lemma 5.37. For λ0 ∈ Λ, there is a ∆Σ,Λ-equivariant divided power morphism

Djλ0
→ A0

cris(RΣ,Λ,∞) (5.37.1)

that is compatible with the isomorphisms Djλ0

∼= Djλ′0
of (5.28.1) and is Frobenius-equivariant.

Proof. By construction, Ainf(RΣ,Λ,∞) is an A�Σ,Λ-algebra. Moreover, since Ainf(RΣ,Λ,∞) is ξ-

adically complete with Ainf(RΣ,Λ,∞)/ξ ∼= RΣ,Λ,∞ (see § 5.19), if tλ, i is a unit in R ⊂ RΣ,Λ,∞,

then Xλ, i is a unit in Ainf(RΣ,Λ,∞) (see (3.14.3)). Thus, if R⊗OC k is k-smooth, then equations

(5.26.3) have a unique solution in Ainf(RΣ,Λ,∞), to the effect that, in this case, Ainf(RΣ,Λ,∞) is

naturally and ∆Σ,Λ-equivariantly an (A�Σ,Λ⊗Z[Q]Z[Pλ0 ])-algebra, compatibly with the ‘change of

λ0’ isomorphisms of (5.26.7), the maps (5.26.4) and (5.19.1) to R and RΣ,Λ,∞, and the Frobenii.

If R ⊗OC k is not k-smooth, then, in the notation of § 5.27, for each m > 0 and a generic

point y ∈ Y of Spec(R⊗OC k), the element t
1/pm

λ0, iλ0
(y) is not a zero divisor in RΣ,Λ,∞ and is a unit

in RΣ,Λ,∞[1
p ]. Thus, since RΣ,Λ,∞ is integrally closed in RΣ,Λ,∞[1

p ], we conclude from (5.27.1)

that

t
1/pm

λ, iλ(y)/t
1/pm

λ0, iλ0
(y) ∈ R

×
Σ,Λ,∞ for every λ0, λ ∈ Λ, m > 0.

In other words,

t
1/pm

λ, iλ(y) = u
(m)
λ, λ0, y

· t1/p
m

λ0, iλ0
(y) in RΣ,Λ,∞ for a unique u

(m)
λ, λ0, y

∈ R×Σ,Λ,∞.

By the uniqueness, (u
(m+1)
λ, λ0, y

)p = u
(m)
λ, λ0, y

, so u[λ, λ0, y
:= (u

(m)
λ, λ0, y

)m>0 ∈ (R[Σ,Λ,∞)× satisfies

Xλ, iλ(y) = [u[λ, λ0, y] ·Xλ0, iλ0
(y) in Ainf(RΣ,Λ,∞)

(see §§ 3.11 and 3.14). Thus, since each Xλ, i is a nonzero-divisor in Ainf(RΣ,Λ,∞), the [u[λ, λ0, y
]

solve the equations (5.27.3) in Ainf(RΣ,Λ,∞), compatibly with the solution in R ⊂ RΣ,Λ,∞ of

(5.27.4). Thus, in the nonsmooth case as well, Ainf(RΣ,Λ,∞) is ∆Σ,Λ-equivariantly an algebra

over A�Σ,Λ ⊗Z[Q] Z[Pλ0 ], compatibly with the change of λ0, the maps (5.27.4) and (5.19.1) to R

and RΣ,Λ,∞, and the Frobenii.

In conclusion, in all the cases we obtain a commutative square which is compatible with the

change of λ0:

A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]
jλ0 // //

��

R

��
so also

A�Σ,Λ ⊗Z[Q] Z[Pλ0 ]
jλ0 // //

��

R

��
Ainf(RΣ,Λ,∞)

θ // // RΣ,Λ,∞ A0
cris(RΣ,Λ,∞)

θ // // RΣ,Λ,∞.

The universal property of Djλ0
then supplies the desired divided power morphism (5.37.1). 2
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5.38 The comparison map
The p-adic completion of the morphism (5.37.1) is the morphism

DΣ,Λ→ Acris(RΣ,Λ,∞) (5.38.1)

(see Lemma 5.29), which does not depend on λ0. By construction, it makes the following diagram
commute.

DΣ,Λ
(5.22.3) // //

(5.38.1)

��

R� _

��
Acris(RΣ,Λ,∞)

θ // // RΣ,Λ,∞

(5.38.2)

Its restriction to D
0, (m)
Σ,Λ of § 5.30 lands in the subring A0, (m)

cris (RΣ,Λ,∞)
5.36
⊂ Acris(RΣ,Λ,∞), so, by

passing to p-adic completions and using (5.35.2), we obtain the compatible morphisms

D
(m)
Σ,Λ→ A(m)

cris (RΣ,Λ,∞) for m > p (5.38.3)

that recover (5.38.1) via the identifications (5.30.1) and (5.1.1). By construction and Lemma 5.37,
the morphisms (5.38.3) are ∆Σ,Λ-equivariant and Frobenius-equivariant, so they give rise to the
Frobenius-equivariant morphisms of complexes

K
D

(m)
Σ,Λ

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d)→ KA(m)
cris (RΣ,Λ,∞)

((δσ − 1)σ∈Σ, (δλ, i − 1)λ∈Λ, 16i6d).

After applying the functor η(µ), these morphisms compose with those constructed in
Proposition 5.34 to give rise to the desired Frobenius-equivariant comparison map of complexes:(

lim−→m>p

(
K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)))̂
→

(
lim−→m>p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂
, (5.38.4)

where the direct limits and the p-adic completions are formed termwise and, for brevity, we let
τ range over the indices ‘σ’ for σ ∈ Σ and ‘(λ, i)’ for λ ∈ Λ and i = 1, . . . , d.

The source (respectively, the target) of the map (5.38.4) is a term of the direct limit (5.32.1)
(respectively, (5.21.1)) and the formation of this map is compatible with enlarging Σ and Λ,
that is, with the transition maps of the direct limits (5.32.1) and (5.21.1). Moreover, if R′ is a
p-adically formally étale R-algebra equipped with data as in (5.17.1) for some sets Σ′ and Λ′,
then the map (5.38.4) and its analogue for R′ and the sets Σ∪Σ′, Λ∪Λ′ (and the induced closed
immersion (5.17.1)) are compatible with the maps between their sources (respectively, targets)
discussed in §§ 5.21 and 5.32.

In conclusion, by taking the filtered direct limit of the maps (5.38.4) over all the closed
immersions (5.17.1) for varying Σ and Λ (but a fixed R), we obtain a comparison map from
the complex (5.32.1) to the complex (5.21.1), and the formation of this map is compatible with
replacing R by a formally étale R-algebra R′. The following proposition implies that this map is
a quasi-isomorphism.

Proposition 5.39. The Frobenius-equivariant comparison map (5.38.4) is a quasi-isomorphism.

Proof. The proof is similar to that of [BMS18, 12.9], and the idea is to reduce to the case of a
single coordinate morphism settled in Proposition 5.16. More precisely, for m > p, let

Spec(R/p) ↪→ Spf(D
(m)
Σ,Λ)

be the closed immersion induced by its analogue for DΣ,Λ, that is, by the first map in (5.22.2). For
each λ0 ∈ Λ, the ideal of A�Σ,Λ⊗Z[Q] Z[Pλ0 ] that cuts out R/p (see (5.27.5)) is finitely generated.
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Consequently, for each m > p, the ideal of D
(m)
Σ,Λ that cuts out R/p is also finitely generated

and, hence, due to divided powers, it is also p-adically topologically nilpotent. Thus, fixing a

λ ∈ Λ and, for m > p, letting A
(m)
cris (R)λ denote the ring A

(m)
cris (R) of § 3.27 constructed using the

coordinate morphism R�λ → R, we may use the p-adic formal étaleness of A
(m)
cris (R�λ )→ A

(m)
cris (R)λ

(see § 3.14) to obtain the unique indicated lifts in the commutative diagram

Spec(RΣ,Λ,∞/p)
� _

θ
��

// Spec(R/p)
� _

��

// Spf(A
(m)
cris (R)λ)

��

Spf(A(m)
cris (RΣ,Λ,∞))

33

(5.38.3)
// Spf(D

(m)
Σ,Λ)

77

// Spf(A
(m)
cris (R�λ ))

in which the bottom right horizontal map results from the fact that, by construction, each D
(m)
Σ,Λ

is both an A(R�λ )-algebra and an A
(m)
cris -algebra. By the uniqueness of such lifts, the resulting

maps

A
(m)
cris (R)λ→ D

(m)
Σ,Λ (5.39.1)

are compatible as m varies, ∆Σ,Λ-equivariant, where ∆Σ,Λ acts on A
(m)
cris (R)λ through the

projection ∆Σ,Λ � ∆λ, and are compatible with the maps from its source and target to

A(m)
cris (RΣ,Λ,∞). By construction, the maps (5.39.1) are also compatible with the derivations

∂
∂ log(Xλ, i)

for i = 1, . . . , d discussed in §§ 5.10 and 5.31. Consequently, the diagram

K
A

(m)
cris (R)λ

(
∂

∂ log(Xλ, 1) , . . . ,
∂

∂ log(Xλ, d)

)
(5.39.1)

��

(5.16.2) // η(µ)

(
KA(m)

cris (Rλ,∞)
(δλ, 1 − 1, . . . , δλ, d − 1)

)
��

K
D

(m)
Σ,Λ

((
∂

∂ log(Xτ )

)
τ

)
5.34 and (5.38.3) // η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)
(5.39.2)

commutes, where the index τ ranges over ‘σ’ for σ ∈ Σ and ‘(λ′, i)’ for λ′ ∈ Λ and i = 1, . . . , d.
By Proposition 5.16, for m > p2, the top horizontal map in (5.39.2) is a quasi-isomorphism and,
by Lemma 3.7 and Remark 3.35, so is the right vertical map. By Proposition 5.13 and (5.31.5),
the left vertical map in (5.39.2) becomes a quasi-isomorphism after applying lim−→m>p

and forming

the termwise p-adic completion. These operations turn the bottom horizontal map in (5.39.2)
into the comparison map (5.38.4), so we conclude that the latter is also a quasi-isomorphism, as
desired. 2

5.40 Proof of Theorem 5.4
By § 5.38 and Proposition 5.39, the functorial in R complexes (5.21.1) and (5.32.1) define
canonically and Frobenius-equivariantly quasi-isomorphic complexes of presheaves on a basis
for the topology of Xét. Their associated complexes of sheaves on Xét are then also canonically
and Frobenius-equivariantly quasi-isomorphic. By §§ 5.21 and 5.32, these complexes of sheaves

Frobenius-compatibly represent AΩX ⊗̂
L
Ainf

Acris and Ru∗(OXOC/p/Acris
), respectively, so that, in

conclusion, Proposition 5.39 supplies a Frobenius-equivariant isomorphism

Ru∗(OXOC/p/Acris
)
∼−→ AΩX ⊗̂

L
Ainf

Acris, (5.40.1)

which gives the desired identification (5.4.1). 2
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K. Česnavičius and T. Koshikawa

We have obtained two ways to identify the de Rham specialization of AΩX: we may either use
(4.17.1) or combine (5.40.1) with the fact that the logarithmic crystalline cohomology of XOC/p
over OC is computed by Ω•X/OC , log. For use in § 8, we now check that these two identifications
agree.

Proposition 5.41. The following diagram commutes:

Ru∗(OXOC/p/Acris
)

''

∼
(5.40.1) // AΩX ⊗̂

L
Ainf

Acris

(4.17.1)ww
Ω•X/OC , log

(5.41.1)

where the unlabeled map results from the identification

Ru∗(OXOC/p/Acris
) ⊗̂L

Acris, θ
OC ∼= Ω•X/OC , log

of [Bei13a, (1.8.1) and (1.11.1)] (compare with Remark 5.24).

Proof. The overall argument is similar to that given in the smooth case in [BMS18, proof of 14.1].
The claim is local, so we assume the setup of § 5.17. Then d log(Xσ) and d log(Xλ, i) generate

the differential graded algebra Ω•DΣ,Λ/Acris, log,PD over DΣ,Λ (see Proposition 5.23), so, since the

terms of Ω•Spf(R)/OC , log are p-torsion free and each tσ and tλ, i is a unit in R[1
p ], there is at most

one map of differential graded algebras

Ω•DΣ,Λ/Acris, log,PD→ Ω•Spf(R)/OC , log with DΣ,Λ
(5.22.3) // // R in degree 0. (5.41.2)

By Proposition 5.23, the unlabeled map of (5.41.1) is identified with this unique map, so we need
to show that so is the composition in (5.41.1).

We recall from the proof of Theorem 4.17 that the right diagonal map in (5.41.1) is defined
by composing the Frobenius of AΩX, the reduction modulo ϕ(ξ), and the canonical identification
supplied by [BMS18, 6.12] of (Lη(ϕ(ξ))(AΩX))/ϕ(ξ) with the complex14 H•(AΩX/ϕ(ξ)) that is
a posteriori identified with Ω•Spf(R)/OC , log and whose differentials are a priori given by Bockstein

homomorphisms (defined in [BMS18, 6.12] using AΩX/(ϕ(ξ))2). Letting τ range over the usual
indices (see § 5.31), we may also apply this construction to the complex

η(µ)(KAinf(RΣ,Λ,∞)((δτ − 1)τ )).

Frobenius maps it isomorphically to η(ϕ(µ))(KAinf(RΣ,Λ,∞)((δτ − 1)τ )), for which the reduction
modulo ϕ(ξ) map is

η(ϕ(µ))(KAinf(RΣ,Λ,∞)((δτ − 1)τ ))→ H•((η(µ)(KAinf(RΣ,Λ,∞)((δτ − 1)τ )))/ϕ(ξ)).

Moreover, due to the isomorphism (4.2.2) and Remarks 3.10 and 3.21,

(η(µ)(KAinf(RΣ,Λ,∞)((δτ − 1)τ )))/ϕ(ξ)
∼−→ η(ζp−1)(KRΣ,Λ,∞((δτ − 1)τ )).

14 For notational simplicity, we suppress the twists inherent in the construction H•(−) of [BMS18, 6.12].
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The cited remarks and Theorem 4.11 (with Remark 4.5) imply that this describes the de Rham
specialization map AΩX→ Ω•X/OC , log in terms of the complex η(µ)(KAinf(RΣ,Λ,∞)((δτ − 1)τ )).

We now describe the right diagonal map of (5.41.1) in terms of η(µ)(KA(m)
cris (RΣ,Λ,∞)

((δτ−1)τ )),

which is a variable term that comprises the target of the comparison map (5.38.4). Namely, we

first let ϕ(A(m)
cris (RΣ,Λ,∞)) be the analogue of the ring A(m)

cris (RΣ,Λ,∞) built using the element ϕ(ξ)

instead of ξ, so that the Frobenius gives the isomorphism A(m)
cris (RΣ,Λ,∞)

∼−→ ϕ(A(m)
cris (RΣ,Λ,∞)).15

Then the Frobenius maps the complex η(µ)(KA(m)
cris (RΣ,Λ,∞)

((δτ − 1)τ )) isomorphically to the

complex η(ϕ(µ))(Kϕ(A(m)
cris (RΣ,Λ,∞))

((δτ − 1)τ )), for which the reduction modulo ϕ(ξ) map is

η(ϕ(µ))(Kϕ(A(m)
cris (RΣ,Λ,∞))

((δτ − 1)τ ))→ H•(η(µ)(Kϕ(A(m)
cris (RΣ,Λ,∞))

((δτ − 1)τ ))/ϕ(ξ)). (5.41.3)

Via a morphism induced by θ ◦ ϕ−1 : ϕ(A(m)
cris (RΣ,Λ,∞)) � RΣ,Λ,∞, the target of (5.41.3) maps

to

H•(η(ζp−1)(KRΣ,Λ,∞((δτ − 1)τ )))
3.10 and 4.11∼= Ω•Spf(R)/OC , log

because, since each H i(η(ζp−1)(KRΣ,Λ,∞((δτ − 1)τ ))) is p-torsion free, the agreement of
the Bockstein differentials may be checked after inverting p by using the fact that

(Ainf(RΣ,Λ,∞)/ϕ(ξ)2)[1
p ] is an algebra over ϕ(A(m)

cris (RΣ,Λ,∞)) via a map that lifts θ ◦ ϕ−1.
The resulting composition

η(µ)(KA(m)
cris (RΣ,Λ,∞)

((δτ − 1)τ ))→ H•(η(ζp−1)(KRΣ,Λ,∞((δτ − 1)τ ))) ∼= Ω•Spf(R)/OC , log (5.41.4)

is the promised description of the right diagonal map of (5.41.1). In addition, by construction and
[BMS18, 6.13], this composition is a morphism of differential graded algebras16 that in degree 0
is given by the map θ of (5.19.4).

On the other hand, the comparison map

Ω•DΣ,Λ/Acris, log,PD
∼= KDΣ,Λ

((
∂

∂ log(Xτ )

)
τ

)
(5.38.4)
−−−−→

(
lim−→m>p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂
would be a map of differential graded algebras if in the formula

log([ε]) ·
∑

n>0

(
(log([ε]))n

(n+1)!

(
∂

∂ log(Xτ )

)n)
that describes the morphism (5.34.1) in degree 1 we could disregard the terms with n > 1.
However, log([ε]) and µ are unit multiples of each other (see § 5.14) and θ(µn/(n+ 1)!) = 0 in
OC for n > 1, so we can indeed ignore these terms if we are only interested in the composition

Ω•DΣ,Λ/Acris, log,PD→

(
lim−→m>p

(
η(µ)

(
KA(m)

cris (RΣ,Λ,∞)
((δτ − 1)τ )

)))̂
5.41.4−−−→ Ω•Spf(R)/OC , log

that describes the composition in (5.41.1). In conclusion, this composition is a morphism of
differential graded algebras that, due to (5.38.2), in degree 0 is the map DΣ,Λ� R from (5.22.3).
Therefore, as desired, it is the unique morphism (5.41.2). 2

We now use Theorem 5.4 to analyze the crystalline specialization of RΓ(Xét, AΩX).

15 Composing with the map ϕ(A(m)
cris (RΣ,Λ,∞))→ A(m)

cris (RΣ,Λ,∞) recovers the Frobenius of A(m)
cris (RΣ,Λ,∞).

16 The differential graded algebra structure on the Koszul complex K∗((δτ − 1)τ ) that computes continuous group
cohomology is described in [BMS18, 7.5] and its proof.
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5.42 The crystalline specialization map
The Witt vector functoriality gives the surjection

Ainf �W (k), the crystalline specialization map of Ainf .

Since ξ maps to p in W (k), this surjection factors through Acris as follows: Ainf ↪→ Acris�W (k).
We equip W (k) with the pullback of the log structure (5.2.1) on Acris. Explicitly, the resulting

log structure on W (k) is associated to the prelog structure Q>0
0 6= q 7→ 0, 0 7→ 1−−−−−−−−−→W (k).

Corollary 5.43. For quasi-compact and quasi-separated X, we have Frobenius-equivariant
identifications

RΓ(Xét, AΩX) ⊗̂L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX) ⊗̂L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)).
(5.43.1)

For OC-proper X, we have Frobenius-equivariant identifications

RΓ(Xét, AΩX)⊗L
Ainf

Acris
∼= RΓlog cris(XOC/p/Acris),

RΓ(Xét, AΩX)⊗L
Ainf

W (k) ∼= RΓlog cris(Xk/W (k)),
(5.43.2)

and the cohomology modules of RΓ(Xét, AΩX)⊗L
Ainf

Acris[
1
p ] are finite free over Acris[

1
p ].

Proof. By [BMS18, 4.9(i)], a finitely presented Ainf/p
n-module is perfect as an Ainf -module.

Consequently, any Ainf/p
n-module M is a filtered direct limit of perfect Ainf -modules, so, by

[SP, 0739],
RΓ(Xét, AΩX ⊗L

Ainf
M) ∼= RΓ(Xét, AΩX)⊗L

Ainf
M.

This applies to M = Acris/p
n, so the first identification in (5.43.1) follows from Theorem 5.4.

For each finite subextension of C/(W (k)[1
p ]), we consider its ring of integersO ⊂OC equipped

with the (fine) log structure associated to O ∩ (O[1
p ])× ↪→ O. By using étale local semistable

coordinates (1.5.1) and Claims 1.6.1 and 1.6.3, we employ limit arguments to find such an O
and a quasi-compact and quasi-separated, fine, log smooth log scheme X over O/p that descends
XOC/p and is of Cartier type (see [Kat89, 4.8]). Then the base change theorem [Bei13a, (1.11.1)]
applies17 and shows that

RΓlog cris(XOC/p/Acris)⊗̂
L
Acris

W (k) ∼= RΓlog cris(Xk/W (k)), (5.43.3)

so the second identification in (5.43.1) follows from the first.
If X is OC-proper, then, by Corollary 4.20, the object RΓ(Xét, AΩX) is quasi-isomorphic to a

bounded complex of finite free Ainf -modules, so the identifications in (5.43.2) follow from those in
(5.43.1). Moreover, then X is O-proper and [Bei13a, 1.18, Theorem] proves that the cohomology
groups of

RΓlog cris(XOC/p/Acris)⊗L
Acris

Acris

[
1
p

]
, and hence also of RΓ(Xét, AΩX)⊗L

Ainf
Acris

[
1
p

]
,

are finite free Acris[
1
p ]-modules. 2

17 In [Bei13a, (1.11.1)], the map f of fine log schemes is quasi-compact and separated. One may relax this to
quasi-compact and quasi-separated: once Y there is affine, the iterated intersections of opens in an affine cover
of Z are quasi-compact and separated over Y , so the Čech technique (compare with [SP, 08BN]) reduces to the
original assumptions.
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Remarks.

5.44. In the preceding proof, the special fiber Xk is a descent of Xk to a fine, log smooth log
scheme of Cartier type over k equipped with the log structure associated to

N>0
1 7→ 0, 0 7→ 1−−−−−−−→ k

(the base change map is a ‘change of log structure’ self-map of k determined by the
map N>0 → Q>0 that sends 1 to the valuation of a uniformizer of O). Given such a
descent, the base change theorem [Bei13a, (1.11.1)] gives the further Frobenius-equivariant
identification

RΓlog cris(Xk/W (k)) ∼= RΓlog cris(Xk/W (k)), (5.44.1)

where the W (k) on the left (respectively, right) is equipped with the log structure

associated to Q>0
0 6= q 7→ 0, 0 7→ 1−−−−−−−−−→ W (k) (respectively, N>0

1 7→ 0, 0 7→ 1−−−−−−−→ W (k)). Likewise, if
Xk is k-smooth, then [Bei13a, (1.11.1)] gives the Frobenius-equivariant identification

RΓlog cris(Xk/W (k)) ∼= RΓcris(Xk/W (k)). (5.44.2)

5.45. The identification (5.43.3) expressesRΓlog cris(Xk/W (k)) in terms ofRΓlog cris(XOC/p/Acris).
Further results from [Bei13a] imply a converse for proper X after extending coefficients to
B+

st , see (9.2.2) below (when Xk is k-smooth, Acris[
1
p ] in place of B+

st suffices, see [BMS18,

13.21]).

6. The comparison to the B+
dR-cohomology

The main goal of this section is to prove in Theorem 6.6 that for OC-proper X, we have

RΓlog cris(XOC/p/Acris)⊗L
Acris

B+
dR
∼= RΓcris(X

ad
C /B

+
dR), (6.0.1)

where the definition of RΓcris(X
ad
C /B

+
dR), the ‘crystalline cohomology of Xad

C over B+
dR’, was given

in [BMS18, § 13] (see § 6.2 for a brief review). This definition is purely in terms of Xad
C and was

engineered in [BMS18, § 13] to be compatible with RΓlog cris(XOC/p/Acris) when X is smooth.
Thus, for (6.0.1), we only need to check that a slightly more general definition that uses the
étale topology and more general embeddings than those furnished by annuli leads to the same
cohomology (see §§ 6.2–6.3). For this, we adapt the arguments of [BMS18, § 13]; in fact, our C
is (W (k)[1

p ])̂ (see § 1.5), so we may simplify the descent to a discretely valued base aspects of
these arguments by taking advantage of a result of Huber on the local structure of étale maps
of adic spaces (see § 6.3).

6.1 The ring B+
dR

Since ξ is not a zero divisor in Ainf [
1
p ] and generates Ker(θ[1

p ]), the (Ker(θ[1
p ]))-adic completion

of Ainf [
1
p ] is a complete discrete valuation ring B+

dR with ξ as a uniformizer and C as the residue

field. By Proposition 5.36, both Ainf and Acris are subalgebras of B+
dR. By the ‘glueing of flatness’

[RG71, II.1.4.2.1], the ring B+
dR is flat as an Ainf -algebra. We set

BdR := Frac(B+
dR).

Our Ainf is a W (k)-algebra (see § 2.1), so, by the infinitesimal lifting, B+
dR is a W (k)[1

p ]-algebra.
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6.2 The B+
dR-cohomology using the étale topology

In [BMS18, § 13], Bhatt–Morrow–Scholze used the analytic topology of a smooth adic C-space
X to define the ‘B+

dR-cohomology’ of X,

RΓcris(X/B
+
dR) ∈ D>0(B+

dR).

We now review their construction and show that it may also be carried out in the étale topology.
By [Hub96, 1.6.10, 2.2.8], the analytic (respectively, étale) topology of X has a basis of

affinoids Spa(A,A◦) each of which admits a map

Spa(A,A◦)→ TdC := Spa(C〈T±1
1 , . . . , T±1

d 〉,OC〈T
±1
1 , . . . , T±1

d 〉) for some d > 0 (6.2.1)

that is a composition of a rational embedding, a finite étale map, and a rational embedding. By
localizing further, we refine the basis to consist of those Spa(A,A◦) as above for which there is
a finite subset Ψ ⊂ (A◦)× such that the following map is surjective:

C〈(X±1
u )u∈Ψ〉

Xu 7→u−−−−→ A. (6.2.2)

Then, by endowing each Ainf/ξ
n with the p-adic topology, each (Ainf/ξ

n)[1
p ] with the unique ring

topology for which Ainf/ξ
n is an open subring, setting

B+
dR〈(X

±1
u )u∈Ψ〉 := lim

←−n>0
((B+

dR/ξ
n)〈(X±1

u )u∈Ψ〉), (6.2.3)

and composing the projection onto the n = 1 term with (6.2.2), we obtain the surjection

s : B+
dR〈(X

±1
u )u∈Ψ〉� A and set DΨ(A) := lim

←−n>0
((B+

dR〈(X
±1
u )u∈Ψ〉)/(Ker s)n).

By the Leibniz rule, any (B+
dR〈(X

±1
u )u∈Ψ〉)-valued derivation of B+

dR〈(X
±1
u )u∈Ψ〉 induces a

DΨ(A)-valued derivation of DΨ(A). Thus, the commuting derivations ∂
∂ log(Xu) := Xu · ∂

∂Xu
give

rise to the Koszul complex

Ω•
DΨ(A)/B+

dR

:= KDΨ(A)

((
∂

∂ log(Xu)

)
u∈Ψ

)
that is functorial in enlarging Ψ. The resulting complex

Ω•
A/B+

dR

:= lim−→Ψ
(Ω•

DΨ(A)/B+
dR

) (6.2.4)

is contravariantly functorial in Spa(A,A◦). Consequently, by varying Spa(A,A◦), we obtain a
complex of presheaves on the basis described above for the analytic (respectively, étale) topology
of X. The hypercohomology of the associated complex of sheaves is, by definition, the B+

dR-
cohomology of X:

RΓcris(X/B
+
dR) (respectively, its variant for the étale topology RΓcris(Xét/B

+
dR)).

By [BMS18, 13.12(ii), 13.13], if Spa(A,A◦) is fixed and Ψ is sufficiently large, then DΨ(A) is
ξ-torsion free and ξ-adically complete, Ω•

DΨ(A)/B+
dR

maps quasi-isomorphically to Ω•
A/B+

dR

, and,

in the derived category, we have a canonical identification

Ω•
DΨ(A)/B+

dR

/ξ ∼= Ω•, cont
A/C , so also Ω•

A/B+
dR

/ξ ∼= Ω•, cont
A/C .
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Consequently, by [BMS18, 9.15] (which we also used for proving Corollary 4.6), our definition of
RΓcris(X/B

+
dR) agrees with that of [BMS18, § 13] (where one skips the sheafification step),

RΓcris(X/B
+
dR) and RΓcris(Xét/B

+
dR) are derived ξ-adically complete, (6.2.5)

and their (derived) reductions modulo ξ are canonically and compatibly identified with the de
Rham cohomology objects RΓ(X,Ω•, cont

X/C ) and RΓ(Xét,Ω
•, cont
X/C ), respectively, for instance:

RΓcris(X/B
+
dR)⊗L

B+
dR

C ∼= RΓ(X,Ω•, cont
X/C ) =: RΓdR(X/C). (6.2.6)

Thus, since, by the Hodge-to-de Rham spectral sequence and [Sch13a, 9.2(ii)], the formation of
the de Rham cohomology is insensitive to passage to the étale topology, we have

RΓcris(X/B
+
dR)

∼−→ RΓcris(Xét/B
+
dR) (6.2.7)

via pullback. In addition, if X is proper over C and there is a complete, discretely valued subfield
K ⊂ C with a perfect residue field and a proper, smooth adic space X0 over K equipped with
an isomorphism X ∼= X0⊗̂KC, then, by [BMS18, 13.20], there is a canonical identification

RΓcris(X/B
+
dR) ∼= RΓdR(X0/K)⊗K B+

dR, where RΓdR(X0/K) := RΓ(X0,Ω
•, cont
X0/K

). (6.2.8)

In this situation, by the proof of [BMS18, 13.20], the reduction modulo ξ of the identification
(6.2.8) recovers the identification (6.2.6) under the base change identification

RΓdR(X/C) ∼= RΓdR(X0/K)⊗L
K C.

6.3 The B+
dR-cohomology using more general embeddings

To relate RΓcris(Xét/B
+
dR) to the absolute crystalline cohomology of § 5.3, we now mildly

generalize the construction of the former.
The étale topology of X has a basis of affinoids Spa(A,A◦) each of which admits an étale

map

Spa(A,A◦)→ Spa(C〈T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq),

OC〈T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq))

(6.3.1)

for some d> r > 0 and q ∈Q>0 (we have seen in § 6.2 that even those with r = 0 would suffice). By
[Hub96, 1.7.3(iii)]18 and limit arguments, there is a finite subextensionW (k)[1

p ]⊂K ⊂ C with the

ring of integers O containing pq and a finite-type (O[T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]/(T0 · · ·Tr − pq))-

algebra A0 that is étale after inverting p, flat over O, normal, and such that the morphism (6.3.1)
is the C-base change of an étale Spa(K,O)-morphism

Spa
(
Â0

[
1
p

]
, Â0

)
→ Spa(K〈T0, . . . , Tr, T

±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq),

O〈T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − pq)).

(6.3.2)

18 Noncomplete A are allowed in [Hub96, 1.7.3(iii)], so we choose

A+ := W (k)[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]/(T0 · · ·Tr − pq) and A� := A+

[
1
p

]
.
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By also using the reduced fiber theorem [SP, 09IL], we enlarge K to ensure that, in addition,

A0⊗̂OW (k) ∼= A◦. (6.3.3)

The connected components of Spec(A0) on which p is a unit do not contribute to Â0, so we lose
no generality by assuming that Spec(A0) has no such components.

By working locally on Spa(Â0[1
p ], Â0), we refine the basis above to consist of those Spa(A,A◦)

for which, in addition, there are finite subsets Ψ0 ⊂ (Â0)× and Ξ0 ⊂ Â0 ∩ (Â0[1
p ])× such that

the map

K〈(x±1
u )u∈Ψ0 , (xa)a∈Ξ0〉

xu 7→u, xa 7→a−−−−−−−−→ Â0

[
1
p

]
(6.3.4)

is surjective. Then there are finite subsets Ψ ⊂ (A◦)× and Ξ ⊂ A◦ ∩A× such that the map

C〈(X±1
u )u∈Ψ, (Xa)a∈Ξ〉

Xu 7→u,Xa 7→a−−−−−−−−−→ A (6.3.5)

is also surjective. Defining the ring B+
dR〈(X

±1
u )u∈Ψ, (Xa)a∈Ξ〉 analogously to (6.2.3), so that the

map (6.3.5) gives rise to the surjection

s : B+
dR〈(X

±1
u )u∈Ψ, (Xa)a∈Ξ〉� A,

we set

DΨ,Ξ, n(A) := (B+
dR〈(X

±1
u )u∈Ψ, (Xa)a∈Ξ〉)/(Ker s)n and DΨ,Ξ(A) := lim

←−n>0
DΨ,Ξ, n(A).

By [BMS18, 13.4(ii)], eachDΨ,Ξ, n(A) is a complete, strongly Noetherian Tate ring (in the sense of
[Hub93, § 1]), with the image of (Ainf/ξ

n)〈(X±1
u )u∈Σ, (Xa)a∈Ξ〉 endowed with its p-adic topology

as a ring of definition. By construction, DΨ,Ξ, n(A) is a nilpotent thickening of DΨ,Ξ, 1(A) ∼= A.
The ring B+

dR is a K-algebra (see § 6.1), so we let (B+
dR/ξ

n)0 ⊂ B+
dR/ξ

n for n > 0 be the
(module-finite) Ainf/ξ

n-subalgebra generated by the image of O. The proof of [BMS18, 13.11]

shows (with RA there replaced by our Â0[1
p ])19 that the B+

dR-algebra

B+
dR⊗̂K

(
A0

[
1
p

])
:= lim
←−n>0

(
((B+

dR/ξ
n)0⊗̂OA0)

[
1
p

])
(6.3.6)

has no nonzero ξ-torsion and is ξ-adically complete with(
B+

dR⊗̂K
(
A0

[
1
p

]))
/ξ ∼= A and, more generally,(

B+
dR⊗̂K

(
A0

[
1
p

]))
/ξn ∼= ((B+

dR/ξ
n)0⊗̂OA0)

[
1
p

]
.

The argument of footnote 19 shows that the map (B+
dR/ξ

n+1)0⊗̂OA0 → (B+
dR/ξ

n)0⊗̂OA0 is
surjective for n > 0 (with the kernel of square zero, as may be seen after inverting p), so the
subring

lim
←−n>0

((B+
dR/ξ

n)0⊗̂OA0) ⊂ B+
dR⊗̂K

(
A0

[
1
p

])
surjects onto OC⊗̂OA0

(6.3.3)∼= A◦. (6.3.7)

Moreover, we have the following analogue of [BMS18, 13.12(ii)] whose proof will be given in § 6.4.

19 In fact, in our case the argument is simpler, and we sketch it here. Since Spec(A0) has no connected components
on which p is a unit, by [RG71, I.3.3.5] and [SP, 0593], the ring A0 is free as an O-module. Thus, the nth term of the
inverse limit in (6.3.6) is a p-adically completed direct sum of copies of (Ainf/ξ

n)[ 1
p
]. This makes the multiplication

by ξm map on this nth term explicit and the desired claims follow by passing to the inverse limit over n.
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Lemma 6.3.8. If Spa(A,A◦) is an element of the refined basis for Xét described above, Ψ⊂ (A◦)×

(respectively, Ξ ⊂ A◦∩A×) contains the images of the Ti for r+1 6 i 6 d (respectively, 1 6 i 6 r)
under a coordinate morphism as in (6.3.1), and Ψ and Ξ are large enough (see the proof for the
precise meaning), then

DΨ,Ξ(A) ∼=
(
B+

dR⊗̂K
(
A0

[
1
p

]))
J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K. (6.3.9)

where ã ∈ lim
←−n>0

((B+
dR/ξ

n)0⊗̂OA0)⊂B+
dR⊗̂K(A0[1

p ]) is a fixed lift of a (see (6.3.7)). In particular,

for large Ψ and Ξ, the B+
dR-algebra DΨ,Ξ(A) has no nonzero ξ-torsion and is ξ-adically complete.

Similarly to § 6.2, for any Ψ and Ξ as in (6.3.5), the derivations ∂
∂ log(Xa) := Xa · ∂

∂Xa
with

a ∈ Ψ ∪ Ξ extend to DΨ,Ξ(A), and we may define the Koszul complex

Ω•
DΨ,Ξ(A)/B+

dR

:= KDΨ,Ξ(A)

((
∂

∂ log(Xu)

)
u∈Ψ

,
(

∂
∂ log(Xa)

)
a∈Ξ

)
that is functorial in replacing Ψ and Ξ by larger Ψ′ and Ξ′. Since a ∈ A× for a ∈ Ψ∪Ξ, the proof
of [BMS18, 13.13] shows that for Ψ and Ξ to which Lemma 6.3.8 applies,

Ω•
DΨ,Ξ(A)/B+

dR

/ξ ∼= Ω•, cont
A/C in the derived category, (6.3.10)

compatibly with enlarging Ψ and Ξ. In particular, due to the derived ξ-adic completeness supplied
by Lemma 6.3.8, for such large enough Ψ and Ξ, the map

Ω•
DΨ,Ξ(A)/B+

dR

→ Ω•
DΨ′,Ξ′ (A)/B+

dR

is a quasi-isomorphism.

Thus, if the element Spa(A,A◦) of the refined basis above also belongs to the basis considered
in § 6.2, that is, if it has an étale coordinate map as in (6.2.1) and a surjection (6.2.2), then we
obtain the functorial in Spa(A,A◦) quasi-isomorphism with the complex Ω•

A/B+
dR

of (6.2.4):

Ω•
A/B+

dR

∼−→ lim−→Ψ,Ξ
(Ω•

DΨ,Ξ(A)/B+
dR

). (6.3.11)

Such Spa(A,A◦) still form a basis for Xét (see the parenthetical remark after (6.3.1)), so we
conclude that the hypercohomology of the sheafification of the complex of presheaves furnished
by the target of (6.3.11) is identified with RΓcris(Xét/B

+
dR). In conclusion, we may summarize

informally:

the complexes Ω•
DΨ,Ξ(A)/B+

dR

also compute the B+
dR-cohomology RΓcris(X/B

+
dR) (6.3.12)

and the maps (6.3.10) recover the identification (6.2.6).

6.4 Proof of Lemma 6.3.8
We adapt the proof of [BMS18, 13.12(ii)] as follows. In addition to the coordinate morphism
(6.3.1) and its descent (6.3.2) used in the statement, we fix subsets

Ψ0 ⊂ (Â0)× and Ξ0 ⊂ Â0 ∩ (Â0

[
1
p

]
)×

such that, as in (6.3.4), the map

s0 : K〈(x±1
u )u∈Ψ0 , (xa)a∈Ξ0〉

xu 7→u, xa 7→a−−−−−−−−→ Â0

[
1
p

]
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is surjective and Ψ0 (respectively, Ξ0) contains the images of the Ti for r + 1 6 i 6 d

(respectively, 1 6 i 6 r) under the map (6.3.2). We require that Ψ (respectively, Ξ) contains the

image of this Ψ0 (respectively, Ξ0) in A◦; this is the meaning of ‘large enough’ in the statement.

We set

D0, n := K〈(x±1
u )u∈Ψ0 , (xa)a∈Ξ0〉/(Ker s0)n for n > 0 and D0 := lim

←−n>0
D0, n.

The continuous map K → B+
dR (see § 6.1) gives a continuous map compatible with s0 and s:

K〈(x±1
u )u∈Ψ0 , (xa)a∈Ξ0〉

xu 7→Xu, xa 7→Xa−−−−−−−−−−→B+
dR〈(X

±1
u )u∈Ψ, (Xa)a∈Ξ〉, so also D0, n→DΨ,Ξ, n(A).

By the K[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-étaleness of A0[1

p ], the map

A0

[
1
p

]
→ Â0

[
1
p

]
lifts to a map A0

[
1
p

]
→ D0 with Ti 7→ xTi . (6.4.1)

By [GR03, 7.3.15], for each n > 0, the subring D◦0, n ⊂ D0, n of powerbounded elements is the

preimage of its counterpart (Â0[1
p ])◦ ⊂ Â0[1

p ]. Thus, the lift (6.4.1) maps A0 to D◦0, n, so also to

some ring of definition of D0, n. By composing with the map D0, n→ DΨ,Ξ, n(A), we obtain the

map A0→ DΨ,Ξ, n(A) whose image lies in some ring of definition, so, as n varies, also the map

B+
dR⊗̂K

(
A0

[
1
p

])
→ DΨ,Ξ(A) that is compatible with the maps to A.

This gives rise to the continuous map y in the diagram(
B+

dR⊗̂K
(
A0

[
1
p

]))
J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K

y

��

Xa 7→ a

(( ((
B+

dR〈(X
±1
u )u∈Ψ, (Xa)a∈Ξ〉

//

XTi 7→Ti 11

A

DΨ,Ξ(A)

z

XX

44 44

whose maps ‘XTi 7→ Ti’ and z are defined as follows.

• To define the map ‘XTi 7→ Ti’, one first forms the inverse limit over N of the maps

(Ainf/ξ
n)〈(X±1

u )u∈Ψ, (Xa)a∈Ξ〉
XTi 7→Ti−−−−−→ ((B+

dR/ξ
n)0⊗OA0/p

N )J(Xa− ã)a∈(Ψ∪Ξ)\{T1,...,Td}K

defined by using the fact that each ũ with u ∈ Ψ is a unit in (B+
dR/ξ

n)0⊗̂OA0 (see the

sentence around (6.3.7)) and the identity X−1
u = ũ−1(1− ũ−1(Xu− ũ)+ ũ−2(Xu− ũ)2−· · · ).

Then one inverts p and forms the inverse limit over n.

• The continuous map z is defined by combining the top part of the diagram, the ξ-adic

completeness of B+
dR⊗̂K(A0[1

p ]) (see § 6.3), and the definition of DΨ,Ξ(A).

By construction, the diagram commutes, so y ◦ z = id. By K[T1, . . . , Tr, T
±1
r+1, . . . , T

±1
d ]-

étaleness of A0[1
p ], the K[T1, . . . , Tr, T

±1
r+1, . . . , T

±1
d ]-algebra endomorphism z ◦ y of the pro-

thickening (B+
dR⊗̂K(A0[1

p ]))J(Xa − ã)a∈(Ψ∪Ξ)\{T1,...,Td}K of A is the identity on A0[1
p ], so also

on (B+
dR⊗̂K(A0[1

p ])). It also fixes every Xa, so it must be the identity. Thus, z is the desired

isomorphism (6.3.9). 2
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6.5 The map from the absolute crystalline cohomology
Returning to the X of § 1.5, our next goal is to use the preceding discussion to exhibit a map

RΓlog cris(XOC/p/Acris)→ RΓcris(X
ad
C /B

+
dR) over Acris

§ 6.1−−→ B+
dR. (6.5.1)

For this, we use the basis of Xét consisting of the affine opens Spf(R) as in the ‘all possible
coordinates’ setting of § 5.17 and adopt the subsequent notation of §§ 5.17–5.40. To relate to
§ 6.3, we set

A := R
[

1
p

]
, Ψ := {tσ}σ∈Σ∪

⋃
λ∈Λ{tλ, rλ+1, . . . , tλ, d}, and Ξ :=

⋃
λ∈Λ{tλ, 1, . . . , tλ, rλ} (6.5.2)

(so that A◦ ∼= R and tλ, 0 are omitted). We may descend the étale map (5.17.3) for λ ∈ Λ to
the ring of integers of a finite subextension W (k)[1

p ] ⊂ K ⊂ C (see (1.5.2)) and then obtain the

descended coordinate map (6.3.2) on the generic fiber. In addition, by enlarging K and using the
closed immersion (5.17.2), we may ensure that the descent has a closed immersion (6.3.4) (with
Ξ0 = ∅); we then enlarge Ψ by adjoining the image in (A◦)× of the resulting Ψ0. Thus, the above
choices of A, the enlarged Ψ, and Ξ satisfy the assumptions of § 6.3: specifically, Spa(A,A◦) is
an element of the (refined) basis of (Xad

C )ét considered there, Ψ (respectively, Ξ) contains tλ, i for
rλ + 1 6 i 6 d (respectively, 1 6 i 6 rλ), and Lemma 6.3.8 applies to (the enlarged) Ψ and Ξ. In
conclusion, with these choices, the entire § 6.3 applies.

By using descents and [GR03, 7.3.15] as in the proof of Lemma 6.3.8, we see that the elements
[(p1/p∞)qλ ]/(Xtλ, 1 · · ·Xtλ, rλ

) of DΨ,Ξ, n(A) lie in (DΨ,Ξ, n(A))◦. Thus, each (DΨ,Ξ, n(A))◦, so also

DΨ,Ξ(A), is naturally an algebra over the ring A�Σ,Λ defined in (5.22.1). In fact, since each
DΨ,Ξ, n(A) is a Q-algebra in which ξm vanishes for m > n and each Xa is a unit in DΨ,Ξ(A),
the universal relations (5.26.3) and (5.27.3) imply that each (DΨ,Ξ, n(A))◦, so also DΨ,Ξ(A), is
naturally an algebra over

(A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ] for λ0 ∈ Λ,

compatibly with the maps

(A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ]
(5.26.4) and (5.27.4) // // R and (DΨ,Ξ, n(A))◦→ A◦ ∼= R (6.5.3)

and the ‘change of λ0’ isomorphisms (5.26.7). The resulting algebra structure map factors through
some (necessarily p-adically complete) ring of definition (DΨ,Ξ, n(A))0:

(A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ]→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A),

so the map (DΨ,Ξ, n(A))0 → R is surjective. In addition, by [SP, 07GM], the kernel of the map
(DΨ,Ξ, n(A))◦ � R/p has a unique divided power structure, so we obtain a map

Djλ0
→ (DΨ,Ξ, n(A))◦ (6.5.4)

from the divided power envelope Djλ0
defined in § 5.28. For a fixed n and modulo the ξm/m!

with m > n, the kernel of the map (A�Σ,Λ ⊗Ainf
A0

cris) ⊗Z[Q] Z[Pλ0 ] � R/p is finitely generated

and, due to the surjectivity of (A�Σ,Λ ⊗Ainf
A0

cris) ⊗Z[Q] Z[Pλ0 ] � R, the generating set may be
arranged to consist of p and a finite set of elements that vanish already in R. Thus, since Djλ0

is

generated as an ((A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ])-algebra by the divided powers of the elements
of this kernel, by enlarging (DΨ,Ξ, n(A))0 we may factor the map (6.5.4) as follows:

Djλ0
→ (DΨ,Ξ, n(A))0 ↪→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A).
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Consequently, we obtain continuous maps that are independent of λ0 and compatible as n varies:

D̂jλ0

(5.29.1)∼= DΣ,Λ→ (DΨ,Ξ, n(A))◦ ↪→ DΨ,Ξ, n(A), so also DΣ,Λ→ DΨ,Ξ(A). (6.5.5)

Via the last map, the Djλ0
-valued derivations ∂

∂ log(Xσ) for σ ∈ Σ and ∂
∂ log(Xλ, i)

for λ ∈ Λ and

1 6 i 6 d of Djλ0
are compatible with the corresponding DΨ,Ξ(A)-valued derivations of DΨ,Ξ(A)

(see (6.5.2) and §§ 5.31 and 6.3). Thus, due to the density of Djλ0
in DΣ,Λ, the same compatibility

holds for the map DΣ,Λ→ DΨ,Ξ(A), to the effect that we obtain a map of complexes

KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

)
→ KDΨ,Ξ(A)

((
∂

∂ log(Xa)

)
a∈Ψ∪Ξ

)
.

Its formation commutes with enlarging Σ and Λ (and, respectively, Ψ and Ξ), so we obtain
the map

lim−→Σ,Λ

(
KDΣ,Λ

((
∂

∂ log(Xσ)

)
σ∈Σ

,
(

∂
∂ log(Xλ, i)

)
λ∈Λ, 16i6d

))
→ lim−→Ψ,Ξ

(
Ω•
DΨ,Ξ(R[ 1

p
])/B+

dR

)
.

(6.5.6)
The formation of this map is compatible with replacing R by a p-adically formally étale R-algebra
R′ equipped with data as in § 5.17. The resulting map of complexes of presheaves gives rise
to the map of complexes of sheaves on Xét from the complex whose RΓ(Xét,−) is identified
with RΓlog cris(XOC/p/Acris) (see (5.23.3) and § 5.32) to the pushforward of the complex whose

RΓ((Xad
C )ét,−) is identified with RΓcris(X

ad
C /B

+
dR) (see § 6.3 and (6.3.12)). Thus, by applying

RΓ(Xét,−), we obtain the desired map (6.5.1):

RΓlog cris(XOC/p/Acris)→ RΓcris(X
ad
C /B

+
dR).

In addition, by its construction and Lemma 5.29, the map DΣ,Λ → DΨ,Ξ(R[1
p ]) of (6.5.5) is

compatible with the maps to R[1
p ] (see (6.5.3)). Thus, [BMS18, 13.13] used to obtain (6.3.10)

implies that the map (6.5.6) is compatible with the maps in the derived category to Ω•, cont

R[ 1
p

]/C

described in the last display of § 5.32 and (6.3.10). In conclusion, the map (6.5.1) fits into the
following commutative square.

RΓlog cris(XOC/p/Acris)

(5.23.2)

��

(6.5.1)// RΓcris(X
ad
C /B

+
dR)

(6.2.6)

��
RΓlog dR(X/OC) // RΓdR(Xad

C /C)

(6.5.7)

Having constructed the map (6.5.1), we are ready for the following extension of [BMS18,
13.23].

Theorem 6.6. If X is OC-proper, then the map (6.5.1) induces the identification

RΓlog cris(XOC/p/Acris)⊗L
Acris

B+
dR
∼= RΓcris(X

ad
C /B

+
dR) (6.6.1)

and the cohomology modules of RΓcris(X
ad
C /B

+
dR) are finite free over B+

dR. In particular, then

RΓ(Xét, AΩX)⊗L
Ainf

B+
dR
∼= RΓcris(X

ad
C /B

+
dR), (6.6.2)

compatibly with the identifications modulo ξ with RΓdR(Xad
C /C) given by (4.18.1) and (6.2.6).
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Proof. By Corollaries 4.20 and 5.43, the object RΓlog cris(XOC/p/Acris) of D(Acris) is perfect and
its cohomology modules become finite free after inverting p. Therefore, due to (5.24.1) and the
derived p-adic completeness, we have the identification

RΓlog cris(XOC/p/Acris)⊗L
Acris
OC ∼

(5.23.2) // RΓlog dR(X/OC).

Consequently, both sides of (6.6.1) are derived ξ-adically complete (see (6.2.5)) and, due to
(6.2.6) and the commutativity of the diagram (6.5.7), the map (6.5.1) identifies their reductions
modulo ξ. In conclusion, (6.5.1) induces the desired identification (6.6.1) and the B+

dR-freeness
claim follows from the first sentence of the proof. The combination of (5.43.2) and (6.6.1) gives
(6.6.2) and the asserted compatibility follows from Proposition 5.41 and the commutativity of
(6.5.7). 2

6.7 The B+
dR-cohomology and the étale cohomology

For any proper, smooth adic space X over C, in [BMS18, 13.1] Bhatt–Morrow–Scholze
constructed the functorial in X identification

RΓcris(X/B
+
dR)⊗B+

dR
BdR

∼= RΓét(X,Zp)⊗Zp BdR. (6.7.1)

Due to the identification (6.2.8), when X ∼= X0⊗̂KC for a proper, smooth adic space X0 defined
over a complete, discretely valued subfield K ⊂ C that has a perfect residue field, the inverse of
(6.7.1) supplies the functorial in X0 de Rham comparison isomorphism

RΓét(X0⊗̂KC,Zp)⊗Zp BdR
∼= RΓdR(X0/K)⊗K BdR. (6.7.2)

If C ∼= K̂, then, by transport of structure, the identification (6.7.2) is Gal(K/K)-equivariant
(with Gal(K/K) acting trivially on RΓdR(X0/K)) and, by [BMS18, 13.1], it recovers the
isomorphism constructed in [Sch13a, 8.4]. In particular, in this case, (6.7.2) is compatible
with filtrations, where BdR is filtered by its discrete valuation and RΓdR(X0/K) (respectively,
RΓét(X0⊗̂KC,Zp)) is equipped with the Hodge (respectively, trivial) filtration.

For proper X, we now have two ways to identify

RΓ(Xét, AΩX)⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp)⊗L

Zp BdR :

we can either base change (2.3.1) to BdR or combine (6.6.2) and (6.7.1). We now prove that the
two ways give the same identification; this will be important in the proof of Theorem 8.7.

Proposition 6.8. If X is OC-proper, then the map RΓcris(X
ad
C /B

+
dR)→ RΓ(Xad

C ,Zp)⊗ZpB
+
dR of

[BMS18, proof of 13.1] that underlies the identification (6.7.1) for X = Xad
C makes the diagram

RΓlog cris(XOC/p/Acris)

o (5.40.1)

��

(6.5.1) // RΓcris(X
ad
C /B

+
dR)

��
RΓ(Xét, AΩX)⊗L

Ainf
Acris

[BMS18, 6.10] // RΓét(X
ad
C ,Ainf,Xad

C
)⊗L

Ainf
B+

dR RΓ(Xad
C ,Zp)⊗L

Zp B
+
dR∼

(2.3.2)oo

commute; in particular, the identification of RΓ(Xét, AΩX)⊗L
Ainf

BdR with RΓét(X
ad
C ,Zp)⊗L

ZpBdR

that results from (2.3.1) (and is encoded by the bottom part of the above diagram) agrees with
the identification that results from (6.6.2) and (6.7.1) (and is encoded by the top part of the
diagram).
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Proof. Since ϕ−1(µ) lies in W (m[) and is a unit in B+
dR, the discussion after Theorem 2.3 implies

that the map labeled ‘(2.3.2)’ in the diagram is an isomorphism. In particular, due to [Sch13a,

5.1], the object RΓét(X
ad
C ,Ainf,Xad

C
) ⊗L

Ainf
B+

dR of D(B+
dR) is perfect. We will now review the

definition given in [BMS18, proof of 13.1] of the composition f of the right vertical map with

this map ‘(2.3.2)’.

Let Spa(A,A◦) be an element of the basis for the analytic topology of Xad
C discussed in § 6.2.

For a large enough set Ψ as in § 6.2, we consider the surjection C〈(X±1
u )u∈Ψ〉

Xu 7→u−−−−→ A from

(6.2.2), as well as the perfectoid (
∏

Ψ Zp(1))-cover C〈(X±1/p∞
u )u∈Ψ〉 of C〈(X±1

u )u∈Ψ〉. Granted

that Ψ contains the images of the Ti under some étale coordinate map (6.2.1), the base change

of this cover to Spa(A,A◦) is a perfectoid (
∏

Ψ Zp(1))-cover

Spa(AΨ,∞, A
+
Ψ,∞)→ Spa(A,A◦). (6.8.1)

Each u ∈ Ψ has a canonical system u1/p∞ of p-power roots in A+
Ψ,∞, which gives the unit

[u1/p∞ ] in the B+
dR-algebra B+

dR(A+
Ψ,∞) (see Proposition 5.36). Since B+

dR(A+
Ψ,∞) may be viewed

as a pro-(infinitesimal thickening) of AΨ,∞, the map Xu 7→ [u1/p∞ ] extends to a continuous

B+
dR-morphism

DΨ(A)→ B+
dR(A+

Ψ,∞) over A→ AΨ,∞. (6.8.2)

By construction, for each u ∈ Ψ, this morphism intertwines exp
(

log([ε]) · ∂
∂ log(Xu)

)
defined by the

formula (5.15.1) and viewed as a ring endomorphism of DΨ(A) with the action of the generator

[ε] of the uth copy of Zp(1) on B+
dR(A+

Ψ,∞). In particular, letting γu denote this generator, we

may use the same formula as in (5.16.1) to define the morphism of complexes

Ω•
DΨ(A)/B+

dR

= KDΨ(A)

((
∂

∂ log(Xu)

)
u∈Ψ

)
→ KB+

dR(A+
Ψ,∞)((γu − 1)u∈Ψ), (6.8.3)

whose formation is functorial in Ψ and, after passing to the direct limit over all Ψ, also in

Spa(A,A◦). The almost purity theorem identifies the cohomology of the sheaf of complexes

determined by the target of (6.8.3) with RΓét(X
ad
C ,Ainf,Xad

C
) ⊗L

Ainf
B+

dR (see [BMS18, proof of

13.1]). The cohomology of the sheaf of complexes determined by the source of (6.8.3) is, by

definition, RΓcris(X
ad
C /B

+
dR) (see § 6.2). Therefore, by passing to the direct limit over all Ψ,

sheafifying, and forming cohomology, the maps (6.8.3) produce the aforementioned composition

f defined in [BMS18, proof of 13.1].

The same construction gives the morphisms (6.8.3) for the objects Spa(A,A◦) of the basis

of the étale topology of Xad
C considered in § 6.2. Due to (6.2.7), this leads to the same map f . In

addition, we may generalize the construction of the morphisms (6.8.3) further by using the basis

for the étale topology of Xad
C considered in § 6.3: the cover (6.8.1) gets replaced by the cover

Spa(AΨ,Ξ,∞, A
+
Ψ,Ξ,∞)→ Spa(A,A◦)

that is the base change of the perfectoid(∏
Ψ Zp(1)×

∏
Ξ Zp(1)

)
-cover C〈(X±1/p∞

u )u∈Ψ, (X
1/p∞
a )a∈Ξ〉 of C〈(X±1

u )u∈Ψ, (Xa)a∈Ξ〉

for large enough Ψ ⊂ (A◦)× and Ξ ⊂ A◦∩A×, and the rest is (mildly) modified accordingly. Due

to (6.3.12), this variant of the construction gives the same map f .
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In conclusion, since the construction of f may be carried out in the setting of § 6.3 and follows
the same pattern as the construction of the map (5.40.1), namely, is based on the map as in
(5.16.1), all we need to check is that, in the notation of § 6.5, the following diagram commutes.

DΣ,Λ

(5.38.1)

��

(6.5.5) // DΨ,Ξ(A)

6.8.2
��

Acris(RΣ,Λ,∞)
(5.36.1) // B+

dR(A+
Ψ,Ξ,∞)

(6.8.4)

For this desired commutativity, we may first replace B+
dR(A+

Ψ,Ξ,∞) by B+
dR(A+

Ψ,Ξ,∞)/ξn for a

variable n > 0, then replace DΣ,Λ by Djλ0
for some λ0 ∈ Λ, and, finally, since B+

dR(A+
Ψ,Ξ,∞)/ξn

is a Q-algebra and Djλ0
is generated by divided powers, replace Djλ0

by

(A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ].

However, each Xτ of (5.19.2) with either τ = σ for σ ∈ Σ or τ = (λ, i) for λ ∈ Λ and 1 6 i 6 d

maps to the unit [X
1/p∞
τ ] ∈ (B+

dR(A+
Ψ,Ξ,∞))× under either of the two maps from

(A�Σ,Λ ⊗Ainf
A0

cris)⊗Z[Q] Z[Pλ0 ] to B+
dR(A+

Ψ,Ξ,∞)/ξn

supplied by the diagram (6.8.4), so these two maps indeed agree, as desired. 2

7. The Ainf -cohomology modules Hi
Ainf

(X) and their specializations

In this section, we define and analyze the Ainf -cohomology groups H i
Ainf

(X) of an OC-proper

X. We show that each H i
Ainf

(X) is a Breuil–Kisin–Fargues module (see Theorem 7.4) and

deduce that, loosely speaking, the p-adic étale cohomology of Xad
C has at most the amount

of torsion contained in the logarithmic crystalline cohomology of Xk or the logarithmic de Rham
cohomology of X (see Theorems 7.9 and 7.12). Most of these results are variants of their analogues
established in the smooth case in [BMS18]. Their proofs, granted inputs from § 2 and §§ 4–5, are
generally similar to those of [BMS18] and in large part rely on commutative algebra over Ainf .

7.1 Properness of X

Throughout § 7, we assume that X is proper and Xk is purely d-dimensional.

7.2 The Ainf -cohomology RΓAinf (X)
We use the object AΩX ∈ D>0(Xét, Ainf) of § 2.2 to set

RΓAinf
(X) := RΓ(Xét, AΩX) ∈ D>0(Ainf) and H i

Ainf
(X) := H i(RΓ(Xét, AΩX)) for i ∈ Z.

Since Lη commutes with pullback along a flat morphism of ringed topoi (see [BMS18, 6.14]),
the object RΓAinf

(X) is contravariantly functorial in X: an OC-morphism X′ → X induces a
morphism

RΓAinf
(X)→ RΓAinf

(X′) in D>0(Ainf), so also H i
Ainf

(X)→ H i
Ainf

(X′) for i ∈ Z.

Corollary 4.20 ensures that RΓAinf
(X) is perfect, that is, isomorphic to a bounded complex

of finite free Ainf -modules. Moreover, by (2.3), (4.18.1), and (5.43.2), we have the following
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identifications:

RΓAinf
(X)⊗L

Ainf
Ainf

[
1
µ

] ∼= RΓét(X
ad
C ,Zp)⊗L

Zp Ainf

[
1
µ

]
;

RΓAinf
(X)⊗L

Ainf , θ
OC ∼= RΓlog dR(X/OC);

RΓAinf
(X)⊗L

Ainf
W (k) ∼= RΓlog cris(Xk/W (k)).

(7.2.1)

If Xk is k-smooth, then we may drop ‘log’ from the subscripts (compare with (5.44.2)).
The Frobenius morphism (2.2.5) gives rise to the Frobenius morphism

RΓAinf
(X)⊗Ainf , ϕ Ainf → RΓAinf

(X) in D>0(Ainf)

that becomes an isomorphism after inverting ϕ(ξ) (see (2.2.6)). Consequently the cohomology
modules H i

Ainf
(X) come equipped with the Ainf -module morphism

ϕ : H i
Ainf

(X)⊗Ainf , ϕ Ainf → H i
Ainf

(X)

that becomes an isomorphism after inverting ϕ(ξ). We will prove in Theorem 7.4 that these
morphisms make each H i

Ainf
(X) a Breuil–Kisin–Fargues module in the following sense of [BMS18,

4.22].

7.3 Breuil–Kisin–Fargues modules
A Breuil–Kisin–Fargues module is a finitely presented Ainf -module M equipped with an
Ainf [

1
ϕ(ξ) ]-module isomorphism

ϕM : (M ⊗Ainf , ϕ Ainf)
[

1
ϕ(ξ)

] ∼−→M
[

1
ϕ(ξ)

]
such that M [1

p ] is Ainf [
1
p ]-free. By [BMS18, 4.9(i)], any such M is perfect as an Ainf -module, that

is, M has a finite resolution by finite free Ainf -modules. A morphism of Breuil–Kisin–Fargues
modules is an Ainf -module morphism that commutes with the isomorphisms ϕM .

Theorem 7.4. Each (H i
Ainf

(X), ϕ) is a Breuil–Kisin–Fargues module which vanishes unless

i ∈ [0, 2d]. In particular, each H i
Ainf

(X) is perfect as an Ainf -module and each (H i
Ainf

(X))[1
p ] is

Ainf [
1
p ]-free.

Proof. Due to the relation with RΓét(X
ad
C ,Zp), each (H i

Ainf
(X))[ 1

pµ ] is a free Ainf [
1
pµ ]-module.

Moreover, by Corollary 5.43, the cohomology modules of RΓAinf
(X) ⊗L

Ainf
Acris[

1
p ] are free over

Acris[
1
p ]. Therefore, [BMS18, 4.20] applies and proves that each H i

Ainf
(X) is a finitely presented

Ainf -module that becomes free after inverting p, so (H i
Ainf

(X), ϕ) is a Breuil–Kisin–Fargues
module.

Since RΓAinf
(X) is perfect, its top degree cohomology is finitely presented and of formation

compatible with base change. Thus, by the de Rham specialization of (7.2.1) and the Nakayama
lemma, H i

Ainf
(X) = 0 for i > 2d. The same holds for i < 0 because RΓAinf

(X) ∈ D>0(Ainf). 2

For completeness sake, we mention the following corollary, which may also be proved more
directly.

Corollary 7.5. For each i ∈ Z, the rank of the finitely presented Zp-module H i
ét(X

ad
C ,Zp) is

equal to the rank of the finitely presented W (k)-module H i
log cris(Xk/W (k)), and is also equal

to the rank of the finitely presented OC-module H i
log dR(X/OC) := RiΓ(Xét,Ω

•
X/OC , log) (see also

(7.10.1) below).
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Proof. The finite presentation assertions follow, for instance, from the perfectness of RΓAinf
(X),

the comparisons (7.2.1), and the coherence of the ring OC . Due to Theorem 7.4 and the
comparisons (7.2.1), all the ranks in question are equal to the rank of the free Ainf [

1
p ]-module

(H i
Ainf

(X))[1
p ]. 2

7.6 Base change for individual Hi
Ainf

(X)

Since Ainf [
1
µ ] is Ainf -flat, equation (7.2.1) implies that

(H i
Ainf

(X))
[

1
µ

] ∼= H i
ét(X

ad
C ,Zp)⊗Zp Ainf

[
1
µ

]
for each i ∈ Z. (7.6.1)

In particular, since µ is a unit in W (C[) and W (C[) is Ainf -flat (the localization of Ainf at the
prime ideal (p) is a discrete valuation ring whose completion is W (C[))

H i
Ainf

(X)⊗Ainf
W (C[) ∼= H i

ét(X
ad
C ,Zp)⊗Zp W (C[). (7.6.2)

A similar de Rham comparison consists of the following exact sequences that result from (7.2.1)
and [SP, 0662]:

0→ H i
Ainf

(X)⊗Ainf , θ OC → H i
log dR(X/OC)→ (H i+1

Ainf
(X))[ξ]→ 0 for each i ∈ Z. (7.6.3)

Similarly, by Theorem 7.4 and [BMS18, 4.9], we have a Frobenius-equivariant exact sequence

0→ H i
Ainf

(X)⊗Ainf
W (k)→ H i

log cris(Xk/W (k))→ Tor1
Ainf

(H i+1
Ainf

(X),W (k))→ 0 (7.6.4)

for each i ∈ Z. In particular, we have the top degree base changes

H2d
Ainf

(X)⊗Ainf , θ OC ∼= H2d
log dR(X/OC) and H2d

Ainf
(X)⊗Ainf

W (k) ∼= H2d
log cris(Xk/W (k)).

Due to Theorem 7.4, the injections in the sequences (7.6.3)–(7.6.4) become isomorphisms after
inverting p. The same holds without inverting p in the case when H i+1

Ainf
(X) is Ainf -free. For such

freeness, we have the following consequence of Theorem 7.4 and [BMS18, § 4.2].

Proposition 7.7. For each i ∈ Z, the OC-module H i
log dR(X/OC) is p-torsion free (equivalently,

free) if and only if the W (k)-module H i
log cris(Xk/W (k)) is p-torsion free (equivalently, free), in

which case H i
Ainf

(X) is free as an Ainf -module and H i
ét(X

ad
C ,Zp) is free as a Zp-module.

Proof. Due to Theorem 7.4, we may apply [BMS18, 4.18] and combine it with (7.2.1) to conclude
that H i

log dR(X/OC) is p-torsion free if and only if so is H i
log cris(Xk/W (k)). When these conditions

hold, the freeness of H i
Ainf

(X) and H i
ét(X

ad
C ,Zp) follows from [BMS18, 4.17] and (7.6.1). 2

Remark 7.8. As was observed by Jesse Silliman and Ravi Fernando during the Arizona Winter
School 2017, the first assertion of Proposition 7.7 may be strengthened as follows: for each i ∈ Z,

dimk(H
i
log dR(X/OC)tors ⊗OC k) = dimk(H

i
log cris(Xk/W (k))tors ⊗W (k) k), (7.8.1)

that is, H i
log dR(X/OC) and H i

log cris(Xk/W (k)) have the same number of cyclic summands

(in the sense of (7.10.1) below). Indeed, by Corollary 7.5, the ranks of H i
log dR(X/OC) and

H i
log cris(Xk/W (k)) agree and, by [Bei13a, (1.8.1)], so do the k-fibers of RΓlog dR(X/OC) and

RΓlog cris(Xk/W (k)), so the claim follows by descending induction on i from the following exact
sequences supplied by [SP, 0662]:

0→ Hi
log dR(X/OC)⊗OC k → Hi(RΓlog dR(X/OC)⊗L

OC k)→ TorOC1 (Hi+1
log dR(X/OC), k)→ 0,

0→ Hi
log cris(Xk/W (k))⊗W (k) k → Hi(RΓlog cris(Xk/W (k))⊗L

W (k) k)→ Hi+1
log cris(Xk/W (k))[p]→ 0.
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The following variant of [BMS18, 14.5(ii)] strengthens the relationship between the freeness
of H i

ét(X
ad
C ,Zp) and that of H i

log cris(Xk/W (k)) supplied by Proposition 7.7.

Theorem 7.9. For every i ∈ Z and n ∈ Z>0, we have

lengthZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) 6 lengthW (k)((H
i
log cris(Xk/W (k))tors)/p

n),

lengthZp(H
i
ét(X

ad
C ,Z/pnZ)) 6 lengthW (k)(H

i
log cris(Xk/Wn(k))).

(7.9.1)

Proof. The proof of the first inequality is analogous to the proof of [BMS18, 14.5(ii)]. Namely,
by Corollary 7.5, we may drop the subscripts ‘tors’ and, by Theorem 7.4, (7.6.2), and [BMS18,
4.15(ii)], we have

lengthZp(H
i
ét(X

ad
C ,Zp)/pn) 6 lengthW (k)((H

i
Ainf

(X)⊗Ainf
W (k))/pn). (7.9.2)

Since lengthW (k)(Q/p
n) = lengthW (k)(Tor

W (k)
1 (Q,W (k)/pn)) for every W (k)-module Q that is

finite and torsion, the short exact sequence (7.6.4) yields the inequality

lengthW (k)((H
i
Ainf

(X)⊗Ainf
W (k))/pn) 6 lengthW (k)(H

i
log cris(Xk/W (k))/pn),

and the first inequality in (7.9.1) follows. Due to the short exact sequences

0→ H i
ét(X

ad
C ,Zp)/pn → H i

ét(X
ad
C ,Z/pnZ)→ (H i+1

ét (Xad
C ,Zp))[pn]→ 0,

0→ H i
log cris(Xk/W (k))/pn → H i

log cris(Xk/Wn(k))→ (H i+1
log cris(Xk/W (k)))[pn]→ 0

that result from [SP, 0662], the second inequality in (7.9.1) follows from the first. 2

The de Rham analogue of Theorem 7.9 is Theorem 7.12 below and uses the following
formalism.

7.10 The normalized length
Let o be a valuation ring of rank 1 and mixed characteristic (0, p). We normalize its valuation
valo by requiring that valo(p) = 1. By the structure theorem [SP, 0ASP] (see also [GR03, 6.1.14]),
every finitely presented o-module M is of the form

M ∼=
⊕n

i=1 o/(ai) with ai ∈ o. (7.10.1)

If M is, in addition, torsion, to the effect that the ai are nonzero, then we set

valo(M) :=
∑n

i=1 val(ai).

More intrinsically, valo(M) is the valuation of any generator of the 0th Fitting ideal Fitt0(M) ⊂ o
of M , so it depends only on M . If o is a discrete valuation ring for which p is a uniformizer, then
valo(M) = lengtho(M). In general, valo has the advantage of being invariant under the extension
of scalars to a larger o. Any short exact sequence

0→M1→M2→M3→ 0

of finitely presented, torsion o-modules gives rise to the equality Fitt0(M2) = Fitt0(M1) Fitt0(M3)
(see [GR03, 6.3.1 and 6.3.5(i)]), so the assignment valo(−) satisfies

valo(M2) = valo(M1) + valo(M3). (7.10.2)

The following lemma is the de Rham version of [BMS18, 4.14], which gave the inequality
(7.9.2).
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Lemma 7.11. For a finitely presented Wn(O[C)-module M for some n > 1, we have

valW (C[)(M ⊗Ainf
W (C[)) = valOC (M/ξM)− valOC (M [ξ]). (7.11.1)

Proof. Since the ring Wn(O[C) is coherent (see [BMS18, 3.24]), the Wn(O[C)-module M [ξ] is
finitely presented. Moreover, due to (7.10.2), the flatness of Ainf → W (C[) (see § 7.6), and the
snake lemma, both sides of (7.11.1) are additive in short exact sequences. Therefore, we may
assume that n = 1 and, due to the structure theorem [SP, 0ASP], that M = O[C/(x) for some
x ∈ O[C .

If x = 0, then both sides of (7.11.1) are equal to 1. If x 6= 0, then the left-hand side vanishes,
and so does the right-hand side because M [ξ] ∼= Tor1

O[C
(M,OC/p) and the following sequence is

exact:

0→ Tor1
O[C

(O[C/(x),OC/p)→ OC/p
θ([x])
−−−→ OC/p→M/ξM → 0. 2

Theorem 7.12. For every i ∈ Z and n ∈ Z>0, we have (recall from § 7.10 that valZp = lengthZp)

valZp((H
i
ét(X

ad
C ,Zp)tors)/p

n) 6 valOC ((H i
log dR(X/OC)tors)/p

n),

valZp(H
i
ét(X

ad
C ,Z/pnZ)) 6 valOC (RiΓ(XOC/pn, ét,Ω

•
XOC/pn/(OC/p

n), log)).
(7.12.1)

Proof. The proof is analogous to that of Theorem 7.9. Namely, by Corollary 7.5, we may drop
the subscripts ‘tors’ and, by Theorem 7.4, (7.6.2), and Lemma 7.11, we have

valZp(H
i
ét(X

ad
C ,Zp)/pn) 6 valOC (H i

Ainf
(X)/(pn, ξ)).

The presentation (7.10.1) implies that valOC (Q/pn) = valOC (TorOC1 (Q,OC/pn)) for every finitely
presented, torsion OC-module Q, so the short exact sequence (7.6.3) yields the inequality

valOC (H i
Ainf

(X)/(pn, ξ)) 6 valOC (H i
log dR(X/OC)/pn).

This proves the first inequality in (7.12.1) and, analogously to the proof of Theorem 7.9, the
second inequality follows from the first. 2

The results above, specifically, (7.8.1) and Theorems 7.9 and 7.12 prompt the following
question.

Question 7.13. Are there examples of OC-proper X satisfying the assumptions of § 1.5 for which

valW (k)(H
i
log cris(X/W (k))tors) 6= valOC (H i

log dR(X/OC)tors)?

8. A functorial lattice inside the de Rham cohomology

To a proper, smooth scheme X over a complete, discretely valued extension K of Qp with a
perfect residue field, in Example 8.6 we functorially associate an OK-lattice

LidR(X) ⊂ H i
dR(X/K) for every i ∈ Z.

In fact, LidR(X) functorially depends only on H i
ét(XK ,Zp) and its construction, which relies

on the theory of Breuil–Kisin–Fargues modules, proceeds along familiar lines of integral p-adic
Hodge theory; compare, for instance, with [Liu18, § 4]. The work of the preceding sections allows
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us to interpret LidR(X) geometrically: we show in Theorem 8.7 that if X has a proper, flat,
semistable OK-model X for which H i

log dR(X/OK) and H i+1
log dR(X/OK) are OK-free, then

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K).

We do not know whether the same holds ‘modulo torsion’ if one drops the OK-freeness
assumption.

8.1 The base field K

Throughout § 8, we assume that C ∼= K̂ for a fixed complete, discretely valued field K that is of
mixed characteristic (0, p) and has a perfect residue field k0. We set

G := Gal(K/K),

so that G acts continuously on C, and hence also on Ainf . The continuous maps ϕ and θ are
G-equivariant, and the ideals (ξ), (ϕ(ξ)), and (µ) of Ainf are G-stable (see § 2.1).

If X is a p-adic formal OK-scheme for which X := X⊗̂OKOC satisfies the assumptions of § 1.5,
then, by the functoriality of RΓAinf

(X) (see § 7.2), G acts Ainf -semilinearly on each H i
Ainf

(X).

8.2 The Fargues equivalence
By [BMS18, 4.26], for any Breuil–Kisin–Fargues module (M,ϕM ) (see § 7.3), its étale realization,
namely,

Mét := (M ⊗Ainf
W (C[))ϕM⊗ϕ= 1,

is a finitely generated Zp-module that comes equipped with an identification

M ⊗Ainf
W (C[) ∼= Mét ⊗Zp W (C[) under which M ⊗Ainf

Ainf

[
1
µ

] ∼= Mét ⊗Zp Ainf

[
1
µ

]
.

Thus, Mét is Zp-free if M is Ainf -free and, for any (M,ϕM ), we have M⊗Ainf
BdR

∼= Mét⊗ZpBdR,
so that Mét comes equipped with a B+

dR-sublattice (recall that M [1
p ] is Ainf [

1
p ]-free, see § 7.3)

M ⊗Ainf
B+

dR ⊂Mét ⊗Zp BdR.

By a theorem of Fargues [BMS18, 4.28], the category of Ainf -free Breuil–Kisin–Fargues modules
(M,ϕM ) is equivalent to that of pairs (T,Ξ) consisting of a finite free Zp-module T and a
B+

dR-lattice Ξ ⊂ T ⊗Zp BdR via the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR).

8.3 Breuil–Kisin–Fargues G-modules
Due to the origin of our C (see § 8.1), we may consider Breuil–Kisin–Fargues G-modules, that
is, Breuil–Kisin–Fargues modules (M,ϕM ) equipped with an Ainf -semilinear G-action on M for
which ϕM is G-equivariant. A morphism of Breuil–Kisin–Fargues G-modules is a G-equivariant
Ainf -module morphism that commutes with the isomorphisms ϕM .

For instance, if an X as in § 8.1 is proper, then each H i
Ainf

(X) is a Breuil–Kisin–Fargues
G-module (see Theorem 7.4). The étale realization Mét of a Breuil–Kisin–Fargues G-module
(M,ϕM ) carries the induced Zp-linear G-action.

Proposition 8.4. The category of Ainf -free Breuil–Kisin–Fargues G-modules (M,ϕM ) is
equivalent to that of pairs (T,Ξ) consisting of a finite free Zp-module T equipped with a
G-action and a G-stable B+

dR-lattice Ξ ⊂ T ⊗Zp BdR via the functor

(M,ϕM ) 7→ (Mét,M ⊗Ainf
B+

dR).

Proof. The claim follows from the Fargues equivalence reviewed in § 8.2. 2
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8.5 An étale lattice determines a de Rham lattice
Let T be a finite free Zp-module endowed with a continuous G-action for which the G-
representation T [1

p ] is de Rham, so that there is a G-equivariant identification

T ⊗Zp BdR
∼= DdR(T )⊗K BdR, where DdR(T ) := (T ⊗Zp BdR)G.

For such T , the B+
dR-lattice DdR(T ) ⊗K B+

dR is evidently G-stable in T ⊗Zp BdR. Thus, by
Proposition 8.4, the pair (T,DdR(T )⊗KB+

dR), so T , determines an Ainf -free Breuil–Kisin–Fargues
G-module

(M(T ), ϕM(T ))

that depends functorially on T . The de Rham realization

M(T )dR := M(T )⊗Ainf , θ OC of (M(T ), ϕM(T ))

is an OC-lattice in

(M(T )⊗Ainf
B+

dR)/ξ ∼= (DdR(T )⊗K B+
dR)/ξ ∼= DdR(T )⊗K C.

Therefore, functorially in T , we obtain the OK-lattice

(M(T )dR)G inside the K-vector space DdR(T ).

Example 8.6. We fix a K-scheme X (or even a K-rigid space, which we view as an adic space,
see [Hub96, 1.1.11(d)]) that is proper and smooth, and set

Liét(X) := H i
ét(XK ,Zp)/H

i
ét(XK ,Zp)tors

∼= H i
ét(XC ,Zp)/H i

ét(XC ,Zp)tors for i > 0.

As is well known and follows from (6.7.2), the G-representation (Liét(X))[1
p ] is de Rham and

DdR(Liét(X)) ∼= (Liét(X)⊗Zp BdR)G
(6.7.2)∼= (H i

dR(X/K)⊗K BdR)G ∼= H i
dR(X/K) (8.6.1)

functorially in X. Thus, using the discussion of § 8.5, we obtain the OK-lattice

LidR(X) := (M(Liét(X))dR)G ⊂ H i
dR(X/K)

that is functorial in X (even in Liét(X)). Its definition implies that for a finite Galois
extension K ′/K,

LidR(X) = (LidR(XK′))
Gal(K′/K) inside H i

dR(X/K) = (H i
dR(XK′/K

′))Gal(K′/K).

If X extends to a proper, flat, semistable OK-scheme X such that H i
log dR(X/OK) and

H i+1
log dR(X/OK) are OK-free (where X is endowed with the log structure OX , ét ∩ (OX , ét[

1
p ])×),

then, by the following Theorem 8.7 (and GAGA techniques, similarly to Remark 4.19),

LidR(X) = H i
log dR(X/OK) inside H i

dR(X/K);

in particular, if X ′ is another such OK-model of X, then

H i
log dR(X/OK) = H i

log dR(X ′/OK) inside H i
dR(X/K). (8.6.2)
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Theorem 8.7. Let X be a proper, flat p-adic formal OK-scheme endowed with the log structure
OX , ét ∩ (OX , ét[

1
p ])× such that X has an étale cover by affines U each of which has an étale

morphism

U → Spf(OK{t0, . . . , tr, tr+1, . . . , td}/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0} (8.7.1)

(where d, r, and π depend on U). If H i
log dR(X/OK) and H i+1

log dR(X/OK) are OK-free, then

LidR(X ad
K ) = H i

log dR(X/OK) inside H i
dR(X ad

K /K); (8.7.2)

in fact, then, setting X := X⊗̂OKOC , we have the identification

M(Liét(X ad
K )) ∼= H i

Ainf
(X) (8.7.3)

of Breuil–Kisin–Fargues G-modules.

Proof. By working locally on U , in the target of (8.7.1) we may replace each ti by t±1
i for

r+ 1 6 i 6 d, so X satisfies the assumptions of § 1.5. Moreover, by the Grothendieck comparison
theorem and flat base change (compare with Remark 4.19), for j = i and j = i+ 1, we have

Hj
log dR(X/OC) ∼= Hj

log dR(X/OK)⊗OK OC , so Hj
log dR(X/OK) ∼= (Hj

log dR(X/OC))G. (8.7.4)

Thus, by Proposition 7.7, the Breuil–Kisin–Fargues G-modules H i
Ainf

(X) and H i+1
Ainf

(X) (see § 8.3)
are Ainf -free. By (7.6.2), we have the G-equivariant identification of the étale realization:

(H i
Ainf

(X))ét
∼= H i

ét(X ad
C ,Zp),

which, consequently, is Zp-free. By Proposition 6.8, the BdR-base change of this identification
agrees with the identification H i

Ainf
(X) ⊗Ainf

BdR
∼= H i

ét(X ad
C ,Zp) ⊗Zp BdR that results by

combining

H i
Ainf

(X)⊗Ainf
B+

dR

(6.6.2)∼= H i
cris(X ad

C /B+
dR)

(6.2.8)∼= H i
dR(X ad

K /K)⊗K B+
dR

and

H i
dR(X ad

K /K)⊗K BdR

(6.7.2)∼= H i
ét(X ad

C ,Zp)⊗Zp BdR.

This compatibility and § 8.5 (see also (8.6.1)) supply the desired G-equivariant identification
(8.7.3):

M(Liét(X ad
K )) ∼= H i

Ainf
(X).

Under this identification, by Theorem 6.6 and the sentence after (6.2.8), the identifications

M(Liét(X ad
K ))⊗Ainf , θ C

(8.6.1)∼= H i
dR(X ad

C /C) and H i
Ainf

(X)⊗Ainf , θ C
(4.18.1)∼= H i

dR(X ad
C /C)

agree. Thus, (7.6.3) implies the following equality inside H i
dR(X ad

C /C):

M(Liét(X ad
K ))dR = M(Liét(X ad

K ))⊗Ainf , θ OC = H i
Ainf

(X)⊗Ainf , θ OC = H i
log dR(X/OC),

which, together with the second identification in (8.7.4), gives the desired (8.7.2). 2
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Remark 8.8. In the proof above, we have seen that both H i
Ainf

(X) and H i+1
Ainf

(X) are Ainf -free,
so, by (7.6.4), we have the G-equivariant and Frobenius-equivariant identifications

H i
Ainf

(X)⊗Ainf
W (k) ∼= H i

log cris(Xk/W (k))
(5.44.1)∼= H i

log cris(Xk/W (k)),

and hence also the Frobenius-equivariant identification

(H i
Ainf

(X)⊗Ainf
W (k))G ∼= H i

log cris(Xk0/W (k0)). (8.8.1)

In particular, (8.7.3) and (8.8.1) show that, under the assumptions of Theorem 8.7, the integral
p-adic étale cohomology H i

ét(X ad
C ,Zp) endowed with its Galois action functorially determines the

integral logarithmic crystalline cohomology H i
log cris(Xk0/W (k0)) endowed with its Frobenius.

9. The semistable comparison isomorphism

Our final goal is to deduce the semistable comparison isomorphism for suitable proper,
‘semistable’ formal schemes (see Theorem 9.5). This extends [BMS18, 1.1(i)], which treated
the good reduction case (see also [TT15, 1.2] for a result ‘with coefficients’ over an absolutely
unramified base), and is similar to the semistable comparison established by Colmez–Niziol
[CN17, 5.26]. More precisely, [CN17, 5.26] also includes cases in which the log structures are not
‘vertical’.

9.1 The ring Bst

We consider the log PD thickenings Acris/p
n of OC/p (see § 5.2) and set

Jn := Ker(Acris/p
n � OC/p) and J := lim

←−n>1
Jn ∼= Ker(Acris � OC/p).

The element p ∈ OC \ {0} belongs to the log structure of OC/p (see § 1.6 (1)), so its preimage
in the log structure of Acris/p

n is a (1 + Jn,×)-torsor, which is necessarily trivial20 (compare
with [Bei13a, § 1.1, Exercises, (iii)]). Consequently, as n varies, these torsors comprise a trivial
(1 +J,×)-torsor τ0, whose base change along the logarithm map (1 +J,×)→ (J,+) ⊂ (Acris,+)
furnished by the divided power structure on J is a trivial (Acris,+)-torsor τ , the Fontaine–Hyodo–
Kato torsor (compare with [Bei13a, § 1.15, p. 23]). The functor which to anAcris-algebraA assigns
the underlying set of the (A,+)-torsor τ ×(Acris,+) (A,+) is represented by the Acris-algebra Ast,
so Ast is the initial Acris-algebra over which the Fontaine–Hyodo–Kato torsor is canonically
trivialized.

We may noncanonically trivialize τ0 (for instance, [p1/p∞ ] is a trivialization, see (5.2.1))
to obtain an isomorphism Ast ' Acris[T ], which, upon adjusting the trivialization by an a ∈
1 + J , gets postcomposed with the Acris-automorphism Acris[T ]

T 7→T+log(a)
−−−−−−−−→ Acris[T ]. The Acris-

derivation −d/dT respects these automorphisms, so it induces a canonical Acris-derivation, the
monodromy operator,

N : Ast→ Ast for which (Ast)
N=0 = Acris

20 Quasi-coherent cohomology of affine schemes vanishes, so, for a finitely generated, and hence nilpotent, ideal
J ′ ⊂ Jn of Acris/p

n, the étale sheaf on Spec(Acris/p
n) associated to (1 + J ′,×) has no nontrivial torsors. The

filtered direct limit of these sheaves is the analogous sheaf associated to (1 + Jn,×), so it, too, has no nontrivial
torsors.
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(our N agrees with that of [Bei13a], see [Bei13a, § 1.15, Remarks (i)]; compare also with [Tsu99,

4.1.1]).

By [Bei13a, (1.15.2)], the Frobenius pullback of τ0 is isomorphic to the p-fold self-product of

τ0, and hence likewise for the base change τ of τ0 to (Acris,+). Thus, we have an Acris-semilinear

Frobenius

ϕ : Ast→ Ast (9.1.1)

that in terms of an isomorphism Ast ' Acris[T ] obtained by trivializing τ0 is described by T 7→ pT .

The interaction of ϕ and N is described by the formula Nϕ = pϕN .

Since µ and log([ε]) are unit multiples of each other in Acris (see § 5.14) and

ϕ(log([ε])) = p log([ε]),

the Frobenius (9.1.1) and, evidently, also the derivation N induce their counterparts on

B+
st := Ast

[
1
p

]
and Bst := Ast

[
1
pµ

]
.

The relation Nϕ = pϕN continues to hold for B+
st and Bst. As is explained in [Bei13a, § 1.17],

the Acris-algebras B+
st and Bst reviewed above agree with those constructed in [Fon94, § 3].

For us, the significance of the period ring B+
st lies in the following comparison between the

logarithmic crystalline cohomology of Xk over W (k) and of XOC/p over Acris (compare with

[BMS18, 13.21]).

Proposition 9.2. If X is OC-proper, then

RΓlog cris(Xk/W (k))⊗L
W (k) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st , (9.2.1)

where the log structures are those of §§ 1.6 (2), 5.2, and 5.42. In particular, if X is OC-proper

and Y is a descent of XOC/p to a proper, log smooth, fine log O/p-scheme of Cartier type for

some discrete valuation subring O ⊂ OC with a perfect residue field k0 and C ∼= (O[1
p ])̂ (where

O/p is equipped with the log structure associated to the chart O\{0}→ O/p), then we have the

following identification that is compatible with the actions of ϕ and N (described in the proof):

RΓlog cris(Yk0/W (k0))⊗L
W (k0) B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st , (9.2.2)

where W (k0) is endowed with the log structure associated to N>0
1 7→ 0, 0 7→ 1−−−−−−−→W (k0).

Proof. A descent Y exists (see the proof of Corollary 5.43), so (9.2.2) follows from [Bei13a,

(1.16.2) and (1.18.5)] and, due to (5.44.1), it implies (9.2.1). On the left-hand side of (9.2.2), the

operator N combines the monodromy of RΓlog cris(Xk0/W (k0)) and B+
st , so is ‘N ⊗ 1 + 1 ⊗ N ’;

on the right-hand side, N is the monodromy of B+
st . On both sides of (9.2.2), the Frobenius ϕ

acts on both factors. 2

Remark 9.3. One may eliminate the dependence of (9.2.2) on the choice of Y by forming a direct

limit over all the possible Y, see [Bei13a, § 1.18, Remarks (i)].
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9.4 The base field K

For the rest of § 9, we assume that C = K̂ for a fixed complete, discretely valued subfield K ⊂ C
with a perfect residue field k0, set G := Gal(K/K), and endow OK (respectively, OK/p) with
the log structure associated to the chart OK \ {0} ↪→ OK (respectively, its base change). By
functoriality, G acts on Acris, Ast, B

+
st , and, since the ideal (µ) does not depend on the choice of ε

(see § 2.1), also on Bst. These G-actions commute with ϕ and N . When O of Proposition 9.2 is our
OK , the identification (9.2.2) is G-equivariant granted that G acts on both sides by functoriality.

Theorem 9.5. Let X be a proper p-adic formal OK-scheme that has an étale cover by affines U
each of which has an étale OK-morphism

U → Spf(OK{t0, . . . , tr, tr+1, . . . , td}/(t0 · · · tr − π)) for some nonunit π ∈ OK \ {0},

(where d, r, and π depend on U) and endow X with the log structure OX , ét∩ (OX , ét[
1
p ])×. There

is the following natural, G-equivariant isomorphism compatible with the actions of ϕ and N :

RΓét(X ad
C ,Zp)⊗L

Zp Bst
∼= RΓlog cris(Xk0/W (k0))⊗L

W (k0) Bst, (9.5.1)

whereW (k0) is endowed with the log structure associated to N>0
1 7→ 0, 0 7→ 1−−−−−−−→W (k0). In particular,

the G-representation H i
ét(X ad

C ,Qp) is semistable for every i ∈ Z.

Proof. We set X := X⊗̂OKOC , so that X meets the requirements of § 1.5. By Claims 1.6.1 and
1.6.3 and [Kat89, 4.8], the base change XOK/p is fine, log smooth, and of Cartier type over OK/p,
so Proposition 9.2 applies to it and gives the G-equivariant (see § 9.4) identification

RΓlog cris(Xk0/W (k0))⊗L
W (k0)B

+
st
∼= RΓlog cris(XOC/p/Acris)⊗L

Acris
B+

st

(5.43.2)∼= RΓ(Xét, AΩX)⊗L
Ainf

B+
st

that is compatible with ϕ and N . In addition, by (2.3.1), we have the G-equivariant identification

RΓ(Xét, AΩX)⊗L
Ainf

Bst
∼= RΓ(Xad

C ,Zp)⊗L
Zp Bst

∼= RΓ(X ad
C ,Zp)⊗L

Zp Bst

that is trivially compatible with N and is compatible with ϕ by the discussion after Theorem 2.3.
The desired (9.5.1) follows by combining the displayed identifications. 2

Remark 9.6. The isomorphism (9.5.1) is compatible with filtrations in the following sense: by
[Fon94, § 4.2], there is a (noncanonical) Acris-algebra homomorphism Bst → BdR and, by the
proof above and Proposition 6.8, the BdR-base change of the isomorphism (9.5.1) is identified
with the de Rham comparison isomorphism (6.7.2) (with X0 = X ad

K ) that is compatible with
filtrations.
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