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ABSTRACT

For a proper, smooth scheme X over a p-adic field K, we show that any proper, flat,
semistable Og-model X of X whose logarithmic de Rham cohomology is torsion free
determines the same Of-lattice inside H'z(X/K) and, moreover, that this lattice
is functorial in X. For this, we extend the results of Bhatt—Morrow—Scholze on the
construction and the analysis of an Aj,s-valued cohomology theory of p-adic formal,
proper, smooth Oz-schemes X to the semistable case. The relation of the Aj-
cohomology to the p-adic étale and the logarithmic crystalline cohomologies allows
us to reprove the semistable conjecture of Fontaine—Jannsen.
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1. Introduction

1.1 Integral relations between p-adic cohomology theories

For a proper, smooth scheme X over a complete, discretely valued extension K of QQ, with a
perfect residue field &k, comparison isomorphisms of p-adic Hodge theory relate the p-adic étale, de
Rham, and, in the case of semistable reduction, also crystalline cohomologies of X . For instance,
they show that for i € Z, the Gal(K /K )-representation H} (X7, Q,) functorially determines the
filtered K-vector space Hir(X/K). Even though the integral analogues of these isomorphisms
are known to fail in general, one may still consider their hypothetical consequences, for instance,
one may ask the following.

e For proper, flat, semistable Ox-models X and X’ of X endowed with their standard log
structures, do the images of Hfong(X/(’)K) and Hfong(X’/(’)K) in Hi(X/K) agree?
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One of the goals of the present paper is to show that the answer is positive if the logarithmic
de Rham cohomology of the models X and X’ is torsion free (see (8.6.2) and Theorem 8.7):
in this case, both Hféng(X/OK) and Hfong(X’/(’)K) agree with the Of-lattice in Hig(X/K)
that is functorially determined by H} (X7, Zp). The good reduction case of this result may be
derived from the work of Bhatt—Morrow—Scholze [BMS18] on integral p-adic Hodge theory, and
our approach, as well as the bulk of this paper, is concerned with extending the framework of
[BMS18] to the semistable case.

1.2 The Aj,s-cohomology in the semistable case

To approach the question above, we set C := K, let Ay := W((’)bc) be the basic period ring
of Fontaine, and, for a semistable Ox-model X of X, similarly to the smooth case treated in
[BMS18], construct the Ajn¢-cohomology object

RT 4 (X) e D[0,2dim(X)](Amf)

inf

that is quasi-isomorphic to a bounded complex of finite free A r-modules and has finitely
presented cohomology Hj (X). We show that base changes of RI', (&) recover other
cohomology theories:

RT 4, (X) @5, W(C) = RUa( X5, Z,) ®5 W(C?),
RU 4, (X) @Y%y Oc = Rliogar(X/Ok) ®p, Oc, (1.2.1)
RT 4, (X) @5, W(R) 2 RTiogcris (X /W (k) @4y W (F),

see §7.2; here RI'ogcris denotes the logarithmic crystalline (that is, Hyodo-Kato) cohomology,

W (k) (respectively, Og) carries the log structure associated to Nxg Sndilind W (k)
(respectively, Ok \ {0} — Og), and X} is endowed with the base change of the standard
log structure Oy ¢ N (O‘){?ét[%])x of X.

If the cohomology of RI'iogdr (X /Of) is torsion free, then each Hf;linf()( ) is Ajne-free and the
base changes (1.2.1) hold in each individual cohomological degree (see § 7.6 and Proposition 7.7).
In this case, the Fargues equivalence for Breuil-Kisin—Fargues Gal(K /K )-modules allows us to
prove that

the Gal(K/K)-representation Hét(X?, Zp) determines Hi‘inf(X )

(see Theorem 8.7). Then HY (X, Z,) also determinesleong(X/(’)K) (and Hfogcris(Xk/W(k)))
and, since the same reasoning applies to another model X”’, the result claimed in § 1.1 follows.

The base changes (1.2.1) also allow us to extend the cohomology specialization results
obtained in the good reduction case in [BMS18]. Qualitatively, in Proposition 7.7 we show that
Hjy, qr(X/Ok) is torsion free if and only if Hj,, . (Xk/W(k)) is torsion free, in which case
H} (X%, Zp) is torsion free. Quantitatively, in Theorems 7.9 and 7.12 we show that for every
n = 0, we have

lengtth((Hét(X?, Zp)tors)/P") < lengthW(k)((Hliogcris(xk/w(k))torS)/pn)a

. 1 .
1 hy, (H: (X3, Zp)tors)/P"™) < -1 h H| X is)/P").
engt Zp<( et( K> p)to s)/p ) lengthOK (OK/p) engt Ok (( long( /OK)tO S)/p )

! The implicit functor is nonexact, as it must be: there exists a nonexact sequence of abelian schemes over Zs that
is short exact over Q2 (see [BLR90, 7.5/8]), so there is no ezact functor F with F(Hélt((—)@27 7)) = Hig(—/Z2).
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1.3 The semistable comparison isomorphism

The analysis of R[4 (&X), specifically, its relation to the p-adic étale and the logarithmic
crystalline cohomologies, permits us to reprove in Theorem 9.5 the semistable conjecture of
Fontaine-Jansen [Kat94a, Conjecture 1.1]:

Rrét(Xfa Zp) ®HZP Bst = erogcris(Xk/W(k)) ®%/(k) Bst' (131)

Other proofs of this conjecture have been given in [Tsu99|, [Fal02], [Niz08], [Bhal2], [Beil3a],
and [CN17], whereas [BMS18] used RI'4, ,(X) to reprove the crystalline conjecture. Similarly
to [CN17], we establish (1.3.1) for p-adic formal Op-schemes X that are proper, flat, and
‘semistable’.

A key result that leads to (1.3.1) is the absolute crystalline comparison isomorphism

RFAinf (X) ®%inf Acris = erog cris(XO?/p/Acris) (132)

of Corollary 5.43, whose construction in §5 forms the technical core of this paper. This
construction is based on an ‘all possible coordinates’ technique that is a variant of its analogue
used to establish (1.3.2) in the smooth case in [BMS18, §12]. The presence of singularities and
log structures creates additional complications that do not appear in the smooth case and are
examined in §5.

Using the absolute crystalline comparison isomorphism, in Theorem 6.6 we compare the
Ajnr-cohomology of X with the BJR-Cohomology of X defined by Bhatt—Morrow—Scholze in
[BMS18, §13]:

RT 4, (X) ®%  Bip = RTeis(X&/BJp). (1.3.3)

inf

The identification (1.3.3) is important for ensuring that the semistable comparison (1.3.1)
is compatible with the de Rham comparison proved in [Sch13a], and hence that it respects
filtrations.

As for the question posed in §1.1, even though it only involves the étale and the de Rham
cohomologies, the resolution of its torsion-free case outlined in §1.2 uses both (1.3.2) and
(1.3.3) (so also the bulk of the material of this paper). This is because we need to ensure
that the determination of Hip(X/K) by Hf (X7, Qp) via the de Rham comparison of p-adic
Hodge theory is compatible with the determination of Hf'Ong(X/OK) and Hfong(é’C"/(’)K)
by H} (X3, Zy,) via Ajye-cohomology and Breuil-Kisin-Fargues modules. In fact, to show that
the cohomology modules of RI'4, ,(X) are Breuil-Kisin-Fargues, we already use the absolute
crystalline comparison (1.3.2).

1.4 The object A2y and its base changes

Even though we have so far focused on schemes, the construction and the analysis of RT' 4, .(—)
works for any p-adic formal Oc-scheme X that is semistable in the sense described in §1.5 (see
(1.5.1)) and that, whenever needed, is assumed to be proper. Specifically, for such an X, in
§2.2 we use the (variant for the étale topology of the) definition of Bhatt—-Morrow—Scholze from
[BMS18] to build an object

AQx € D?%(X4, Aing)  and to set RT 4, (%) := RT'(Xs, AQx).

inf

As in the smooth case of [BMS18], the relation of RI' 4, . (X) to the p-adic étale cohomology
of the adic generic fiber X%! of X follows from the results of [Sch13a] (see §2). In turn, the
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relations to the logarithmic de Rham and crystalline cohomologies are the subjects of §§4 and
5, respectively, and rest on the following identifications established in Theorems 4.17 and 5.4:

~Y L] A]L ~Y
AQx @ 900 2 050 1y and  AQx B4 Acis = Rux(Ox,, , /4): (1.4.1)

where u: (Xp,, /p /Acris )1og cris = X¢t is the forgetful map of topoi. The arguments for (1.4.1) build
on the same general skeleton as in [BMS18] but differ, among other aspects, in how they handle
the interaction of the Deligne—Berthelot—Ogus décalage functor Ln used in the definition of AQy
with the intervening base changes and with the almost isomorphisms supplied by the almost
purity theorem. Namely, for this, the nonflatness over the singular points of X of the explicit
perfectoid proétale covers that we construct makes it difficult to directly adapt the arguments
from [BMS18]. Instead, we take advantage of several general results about Ln from [Bhals8].
Verifying their assumptions in our case amounts to the analysis in §3 of continuous group
cohomology modules built using the aforementioned perfectoid cover. The typical conclusion of
this analysis is that these modules have no nonzero ‘almost torsion’ and that the element p € Aj,¢
kills their ‘nonintegral parts’.

Further and more specific overviews of our arguments are given in the beginning of each
section that follows. In the rest of this introduction, we fix the precise notational setup for
the remainder of the paper (see §1.5), discuss the logarithmic structure on X that we later use
without notational explication (see § 1.6), and review the relevant general notational conventions
(see §1.7).

1.5 The setup
In what follows, we fix the notational setup.

e We fix an algebraically closed field k of characteristic p > 0, let C' be the completed algebraic
closure of W(k')[%], and let m C O¢ be the maximal ideal in the valuation ring of C.

e For convenience, we fix an embedding p@ C O, that is, for every prime ¢, we fix a system
of compatible £"-power roots p'/¢™ := (p'/"),>0 of p in O¢.

e We fix a p-adic formal scheme X over O¢ that in the étale topology may be covered by
open affines {l which admit an étale Og-morphism

= Spf(R) — Spf(R”) with R”:=0Oc{to,....tr,t; 01, ....t5 }/(to - t, —p?) (1.5.1)
for some d > 0, some 0 < r < d, and some ¢ € Q¢ (where d, r, and ¢ may depend on l).

For example, C could be the completed algebraic closure of any discretely valued field K of
mixed characteristic (0,p) with a perfect residue field. In addition, no generality is gained by
allowing p? in (1.5.1) to be any nonunit = € O¢ \ {0}. The role of the embedding p@ C C is to
simplify arguments with explicit charts for the log structure on X (defined in §1.6); this is
particularly useful in § 5, especially in §§5.25-5.26. Our C'is less general than in [BMS18], where
any complete algebraically closed nonarchimedean extension of Q, is typically allowed. One of
the main reasons for this is that we want to be able to apply, especially in §5, certain auxiliary
results from [Beil3a] (in any event, relations ¢ - - - ¢, — 7 in which 7 has a nonrational valuation
go beyond ‘semistable reduction’).

The existence of étale local semistable coordinates (1.5.1) implies that each X, /pn is flat
and locally of finite presentation over O¢ /p™ and X%“; Jpn is dense in Xo, /pn- By [SP, 04D1] and

limit arguments, equation (1.5.1) is the formal p-adic completion of the W (k)-base change of an
étale O-morphism

U — Spec(Olto, ..., tr 4, 6571/ (to - - tr — p7)) (1.5.2)
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for some discrete valuation subring O C W (k) that contains p?. The references [SP, 04D1] and
[GRO3, 7.1.6(i)] also imply that R is RP-flat. In addition, if R ®¢_ k is not k-smooth, then R
determines ¢.?

Any smooth p-adic formal Og-scheme X meets the requirements above: indeed, then the
cover {4} exists already for the Zariski topology with » = 0 and ¢ = 1 for all 4, see [FKI18,
1.5.3.18]. Another key example is

X = Xo,. (1.5.3)

for some discrete valuation subring O C O¢ with a perfect residue field and a uniformizer = € O
and a locally of finite type, flat O-scheme X that is semistable in the sense that Xp /. is a normal
crossings divisor in X (as defined in [SP, 0BSF]), so that, in particular, X’ is regular at every
point of Xp /Tr.3 Moreover, if X is even strictly semistable in the sense that Xp/, is even a strict
normal crossings divisor in X’ (as defined in [SP, 0BI9]), then the étale maps (1.5.4) exist even
Zariski locally on X', and so the cover {4} also exists already for the Zariski topology of X.

e We let X%! denote the adic generic fiber of X. By (1.5.1) and [Hub96, 3.5.1], the adic space
x%«d is smooth over C'; by [Hub96, 1.3.18 ii)], if X is O¢-proper, then %%d is C-proper.

e We let (x%(«i)proét denote the proétale site of }%d (reviewed in [BMS18, §5.1] and defined in
[Sch13a, 3.9] and [Schl16, (1)]) and let

v (X5 roet — Xat (1.5.5)

be the morphism to the étale site of X that sends any étale 41 — X to the constant pro-system
associated to its adic generic fiber. By [SP, 00X6], this functor indeed defines a morphism of
sites: by [Hub96, 3.5.1], it preserves coverings, commutes with fiber products, and respects
final objects. Thus, v induces a morphism of topoi (v, v,) (see [SP, 00XC]).

1.6 The logarithmic structure on X
Unless noted otherwise, we always equip

(1) the ring Oc¢ (respectively, O¢/p™ or k) with the log structure O¢ \ {0} — Oc¢
(respectively, its pullback);

(2) the formal scheme X (respectively, Xp,, /pn OF Xy) with the log structure given by the
subsheaf associated to the subpresheaf? Ox ¢ N (Ox}ét[%])x — Ox, ¢ (respectively, its
pullback log structure).

2 The following argument justifies this. Choose an n € Z~, and let A be the local ring of Spec(R/p™) at some
singular point. Without loss of generality, all the ¢; with 0 < ¢ < r are noninvertible in A, so, in particular, r > 1.
The dth Fitting ideal Fittd(QgRD/p")/(Oc/p")) C RD/p" is generated by the r-fold partial products to---t; - -t
with 0 < ¢ < r, so the same holds for Fittd(Qh/(oc/pn)) C A (see [SGA T, VI, 5.1(a)]). Consequently, the quotient

(RD/p”)/(Fittd(QzRD/pn>/(oc/p,”))) is faithfully flat over Oc¢/(p?), and hence so is A/(Fittd(ﬂi‘/(oc/pn))). It
follows that (p?) C Oc is the preimage of Fitta(Q}4 (o, /pn)) C A, to the effect that R determines q.

3 To justify that any X as in (1.5.3) meets the requirements, we first note that étale locally on X there exists
a regular sequence such that the product its » + 1 first terms cuts out Xp .. Thus, since any finite extension
of O/7 is separable, the miracle flatness theorem [EGA IVy, 6.1.5] ensures that every € Xp,, has an étale
neighborhood U — X that admits an étale O-morphism U — Spec(Olto, ..., tq]/(to - tr — 7)) or, equivalently,
an étale morphism

U — Spec(Olto, . .-y try b1, s 03]/ (to - - tr — 1))). (1.5.4)

4 The subpresheaf and its associated subsheaf necessarily agree on every quasi-compact object 8 of Xg.
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Both (1) and (2) determine the same log structure on Spf(O¢), so the map X — Spf(O¢) is
that of log formal schemes. Moreover, étale locally on X, the log structure may be made explicit:
in the presence of a coordinate morphism (1.5.1), Claims 1.6.1 and 1.6.3 below give an explicit
chart for the log structure of 4, namely, the chart (1.6.2) in which we replace O by O¢, replace
U by 4, and set 7 := p?. This chart shows, in particular, that & and O¢ may be endowed with
fine log structures whose base changes along a ‘change of log structure’ self-map of O¢ recover
the log structures described in (1)—(2) (for example, the fine log structure on O¢ could be that

q\a
determined by the chart N> M Oc¢, in which case the ‘change of log structure’ self-map of

Oc is the identity on the underlying scheme Spec(O¢) and is determined on the log structures

by the map of charts N> ilad iR Oc¢ \ {0}). Since many common properties of maps of log
schemes are stable under base change, in practice this means that we may often deal with the
log structures in (1)—(2) as if they were fine and, in particular, we may cite [Kat89] for certain
purposes.

By the preceding discussion, all the log structures above are quasi-coherent and integral.
Moreover, by [Kat89, 3.7(2)], each Xo,, /p» is log smooth over O¢/p", so that, by [Kat89, 3.10],
the Ox-module Q;e /06, log of logarithmic differentials is finite locally free. We set

i — AtOL
Q%/OCWIOg T /\ Q%/00710g’

let Q% O, log denote the logarithmic de Rham complex, and set

RTogar(X/Oc) := RI'(Xet, %04, 10g)-

CrLAamM 1.6.1. For a valuation subring O C W (k) and an O-scheme U that has an étale morphism
U— Spec(O[to, . ,tr,tf_&l, . ,tzltl]/(to ety — 7r)) for some nonunit 7 € O\ {0},
the log structure on U associated to Oy, ¢ N (Op, ét[%])x has the chart
NZH! Ui, (O {0}) = T(U, Op) (1.6.2)
given by (ai)o<i<r = [lo<icr ti' 0D Ng{)l, the diagonal N>g — Ng{)l and Nxg Lindii (O\{0})
on N>, and the structure map (O \ {0}) — I'(U,Oy) on O\ {0}.

Proof. Without loss of generality, U is affine, so, by a limit argument, we may assume that O is
discretely valued. Then U, endowed with the log structure associated to (1.6.2), is logarithmically
regular in the sense of [Kat94b, 2.1] (compare with [Beil2, §4.1, proof of Lemma]). Therefore,
since the locus of triviality of this log structure is U [%], the claim follows from [Kat94b, 11.6]. O

Cram 1.6.3. For O as in Claim 1.6.1, a flat O-scheme U (respectively, and its formal
p-adic completion {) endowed with the log structure associated to Oy ¢ N (OU,ét[%])X

(respectively, Oy ¢ N (O, ét[%bx),
the formal p-adic completion morphism j: 4 — U of log ringed étale sites is strict. (1.6.4)

Proof. For a geometric point % of i, due to [SP, 04D1], the stalk map Oy.z 2 7~ 1(Op.z) = Ou.z
induces an isomorphism Oy, z/p™ = Oy z/p" for every n > 0. We consider the stalk map

Ov,uN (Oval3]) =257 (Ovan (Oval2])*) = Owa N (Ouuld])” (1.6.5)
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Every element z of the target of (1.6.5) satisfies the equation xy = p™ for some n > 0. We choose
an 7 € Op,z congruent to z modulo p"*1, so that Ty = p" + p" 1% for some 7,2 € Op 7. Since
1+pZz € O 5, we adjust g to get Ty = p", which shows that 7 € OUﬁﬁ((’)Uﬂ[%])X and (p") C (7).
Thus, the image of  in Oy 3 and = generate the same ideal, and hence are unit multiples of
each other. Conversely, if 21,22 € Oy, N (OUﬁ[%])X are unit multiples of each other in Oy z,
then, by reducing modulo p™ for a large enough n, we see that they generate the same ideal in
Oy, w, so are unit multiples of each other already in Oy, 5. In conclusion, the map (1.6.5) induces

an isomorphism
(Ov,an (Oua[3])") /00w = (Ouwn (Oual3]))/Of w
to the effect that the map (1.6.4) is indeed strict, as claimed. O

1.7 Conventions and additional notation
For a field K, we let K be its algebraic closure (taken inside C if K is given as a subfield of C).
If K has a valuation, we let O be its valuation subring and write O for the integral closure
of Ok in K. In mixed characteristic, we normalize the valuations by requiring that v(p) = 1.
We let (—)*™ denote the smooth locus of a (formal) scheme over an implicitly understood base.
For power series rings, we use {—} to indicate decaying coefficients. For a topological ring R, we
let R° denote the subset of powerbounded elements.

We let W(—) (respectively W, (—)) denote p-typical Witt vectors (respectively, their length
n truncation), and let [~] denote Teichmiiller representatives. We let Z,) be the localization of
Z at p, let p,n be the group scheme of p"th roots of unity, and let (,» denote a primitive p"th

root of unity. For brevity, we set Z,(1) := l(iLn(,upn(C)). We let M denote the (by default, p-adic)

completion of a module M and, similarly, let @ denote the completion of a direct sum. Unless
specified otherwise, we endow a p-adically complete module with the inverse limit of the discrete
topologies.

We use the definition of a perfectoid ring given in [BMS18, 3.5] (the compatibility with prior
definitions is discussed in [BMS18, 3.20]). Explicitly, by [BMS18, 3.9 and 3.10], a p-torsion-free
ring S is perfectoid if and only if S is p-adically complete and the divisor (p) C S has a p-power

root in the sense that there is a w € S with (@?) = (p) and S/wS ;pTNzP) S/pS. In particular, for

such an S, any p-adically formally étale S-algebra S’ that is p-adically complete is also perfectoid.

For a ring object R of a topos 7, we write D(.7, R), or simply D(R), for the derived category
of R-modules. For an object M of a derived category, we denote its derived p-adic completion
by

M := Rlim, (M ®% Z/p"Z), and also set *® — = Rlim, ((+ ®* —) ®L Z/p"Z)  (1.7.1)

(see [SP, 0940] for the definition of Rlim). For a morphism f of ringed topoi, we use the
commutativity of the functor Rf, with derived limits and derived completions, see [SP, 0AQ7
and 0944].

For a profinite group H and a continuous H-module M, we write R cont(H, M) for the
continuous cochain complex. Whenever convenient, we also view RI¢ont(H, —) as the derived
global sections functor of the site of profinite H-sets (see [Schl3a, 3.7(iii)] and [Sch16, (1)]).

For commuting endomorphisms fi,..., f,, of an abelian group A, we recall the Koszul
complezx:
Ka(fi,- oo fa) =A@y . o) iy (221, . .. 20] => L1, ..., 24)), (1.7.2)
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where A is regarded as a Z[z1,...,zy]-module by letting x; act as f;, the tensor products are
over Z[x1,...,xy], and the factor complexes are concentrated in degrees 0 and 1.

For an ideal I of a ring R and an R-module complex (M*,d®) with M7 = 0 for j < 0, the
subcomplex

nr(M®) C M*® is defined by (n7(M®))! :={m € PM’|d(m) € P M1} (1.7.3)

We will mostly (but a priori not always, see Proposition 5.34) use n7(M?®) as in [BMS18, 6.2],
namely, when I is generated by a nonzero-divisor and the M7 have no nonzero I-torsion.

A logarithmic divided power thickening (or, for brevity, a log PD thickening) is an exact closed
immersion of logarithmic (often abbreviated to log) schemes equipped with a divided power
structure on the quasi-coherent sheaf of ideals that defines the underlying closed immersion of
schemes.

2. The object AQx and the p-adic étale cohomology of X

As in the case when X is smooth treated in [BMS18], the eventual construction of the Ajn¢-
cohomology modules of X rests on the object Ay that lives in a derived category of Ajys-module
sheaves on X. In this short section, we review the definition of AQ% in §2.2 and then, in the case
when X is proper, review the connection between Ay and the integral p-adic étale cohomology
of %%d in Theorem 2.3. We begin by fixing the basic notation that concerns the ring Aj,s of
integral p-adic Hodge theory. The setup of §§2.1-2.2 will be used freely in the rest of the paper.

2.1 The ring Ajnr
We denote the tilt of O¢ by

b T . . ~ . _ b
Op == l(iny._)yp((’)c/p), so that, by reduction mod p, @yﬁyp(’)g — Llr_nyHyP(Oc/p) =0Op

as multiplicative monoids (see [Sch12, 3.4(i)]). We regard p'/P* fixed in §1.5 as an element of
O%. Due to the fixed embedding p@>0 C O, this element comes equipped with well-defined
powers (p'/P™ )4 ¢ Obc for g € Q. For each x € O%, we let (...,z(1), z(9)) denote its preimage
in l(i_rilyﬁyp Oc¢. The map = — valp, (2(9)) makes (’)% a complete valuation ring of height 1 whose

fraction field C” := Frac(02,) is algebraically closed (see [Sch12, 3.4(iii), 3.7(ii)]). We let m’
denote the maximal ideal of O%.
The basic period ring Aj,s of Fontaine is defined by

Aipg = W(O%) and comes equipped with the Witt vector Frobenius ¢: Ajns —> Ajps.

We equip the local domain Aj,¢ with the product of the valuation topologies via the Witt
coordinate bijection W(Obc) =3 | ) Obc. Then Aj,s is complete and its topology agrees with the
(p, [x])-adic topology for any nonzero nonunit z € 0. We fix (once and for all) a compatible
system € = (..., (p2,(p, 1) of p-power roots of unity in O¢, so that € € (’)bc, and set

=[] — 1 € A (2.1.1)

Since (p, 1) = (p, [e—1]), the topology of A, is (p, p)-adic. By forming the limit of the sequences

0 — Wn(0g) = Wi (Op) > Wa(Op) /1 — 0, (2.1.2)
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we see that Ay,¢/p is p-adically complete and that the ideal (1) C Ajys does not depend on the
choice of € (use the fact that the valuation of ¢, — 1 does not depend on ().
The assignment [z] — 2 extends uniquely to a ring homomorphism

0: Aie — O¢, the de Rham specialization map of Ajyg, (2.1.3)

which is surjective, as indicated, and intertwines the Frobenius ¢ of A,y with the absolute
Frobenius of O¢ /p. Its kernel Ker() C Ajy¢ is principal and generated by the element

€= Y0 [e7] (2.1.4)

(see [BMS18, 3.16]). Analogues of the sequences (2.1.2) show that each Ajn¢/&™ is p-adically
complete. In fact, the map 0 identifies A;,¢/€"™ with the initial p-adically complete infinitesimal
thickening of O¢ of order n — 1, see [SZ18, 3.13]. The composition

0o cp_l: Aing > O¢  is the Hodge—Tate specialization map of Aj,e,

and its kernel is generated by the element ¢(§) = Zf:_ol [€7].
Due to the nature of our C (see § 1.5), the ring O¢/p is a k-algebra, so Ajy¢ is a W (k)-algebra.

2.2 The object AQx
The operations that define (’)bc and A;,r make sense on the proétale site (%%gl)proét: namely, as in
[Sch13a, 4.1, 5.10, and 6.1], we have the integral completed structure sheaf

/p™), its tilt 052 :=1lim (OF /D). (2.2.1)

xad Ty yP %%d , proét

0L, = lim (O

XE xgd, proét

and the basic period sheaf

Ay, x = ((’);3 )-

For brevity, we often denote these sheaves simply by O, 0", and Ayye. Affinoid perfectoids

form a basis for (X29) 0 (see [Sch13a, 4.7]) and the construction of the map 6 of (2.1.3) makes

sense for any perfectoid Oc-algebra (see [BMS18, §3]). In particular, A xad COMeES equipped
with the map

Hxad: A,

inf,

xa = OF (2.2.2)

xad )

which, by construction, is compatible with the map 6: Amf — O¢, intertwines the Witt vector
Frobenius ¢ of A; ¢ x2d with the absolute Frobenius of Oxmi /p, and, by [Sch13a, 6.3 and 6.5], is

surjective with Ker(ﬂx%d) € Ajyp, xaa (in addition, & is not a zero divisor in Amf’xdcd)
The key object that we are going to study in this paper is

AQyx = LT](M) (RV* (Ainf, %%d)) S D>O(:{ét, Ainf)7 (2.2.3)

where the décalage functor Ln of [BMS18, §6] is formed with respect to the ideal (u) of
the constant sheaf A, of Xg; (the definition of Ln,) builds on the formula (1.7.3) for 7,)). The
formula (2.2.3) may also be executed with the Zariski site Xz,, as the target of v, and it then
defines the object

Ay, € D" (Xzar; Ainf), (2.2.4)

which is the AQy that was used in [BMS18]. We will only use AQy,  in Corollary 4.21 (and in
some results that lead to it) for comparison with AQjy.
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Since ¢ (1) = @(&)p, by [BMSI18, 6.11], we have Ln,(.)) = L)) © L1, so the Frobenius
automorphism of A ¢ xad gives the Frobenius morphism

[BMS18, 6.10 and 3.17(ii)]

AQy ®£infﬂ@ Ajng = L?](Lp(g))(AQx) AQy in DZO(.%ét, Aing), (2.2.5)

which, by [BMS18, 6.14], induces an isomorphism

(AQ%x @4, Aint) [5ig] — (A922) [Fg]- (2.2.6)

In addition, by loc. cit., we also have

A @Y Ain [£] = (Rua (A x20)) @5, A [ 1] (2.2.7)

so a result of Scholze [BMS18, 5.6] supplies the following relation to integral p-adic étale
cohomology.

THEOREM 2.3. If X is proper over O¢, then there is an identification

RT (X4, AQx) ©ff | Aine[51] = RUe (X%, Zp) @5 At [;]- (2.3.1)

In broad strokes, the proof of Theorem 2.3 given in [BMS18, 5.6] goes as follows: one considers
the map

RTe (X, Zp) ®7, At = RUproee(XE, Zp) @7, Aint = RUproee (X8, Ajyp, xan) (2.3.2)

induced by the inclusion Aj,; — Ainf, xad and deduces from the almost purity theorem with, for
instance, Lemma 3.17 below that the ideal

W(m’) := Ker(W(O%) — W(k)) of A (2.3.3)

kills the cohomology of its cone. Since p lies in W (m?) and we have the identification (2.2.7), it
follows that the map (2.3.2) induces the identification (2.3.1).

Remark 2.4. In practice, X often arises as the formal p-adic completion of a proper, finitely
presented Oc-scheme X. In this situation, %%d agrees with the adic space associated to X (see
[Con99, 5.3.1 4.], [Hub94, 4.6(i)], and [Hub96, 1.9.2 ii)]) and, by [Hub96, 3.7.2], we have

RT& (X3 Z,) = RU(Xc, Zy).

3. The local analysis of AQx

Even though the definition of the object AQx given in (2.2.3) is global, the key computations
that will eventually relate it to the logarithmic de Rham and crystalline cohomologies are local
and are presented in this section. Under the assumption that X has a coordinate morphism as
in (1.5.1) (or (3.1.1) below), their basic goal is to express the cohomology of the proétale sheaf
Ainﬂx%d, at least after applying L7(,), in terms of continuous group cohomology formed using

an explicit perfectoid proétale cover .’f?foo of .’{251 (see Theorem 3.20). The basic relation of
this sort is supplied by the almost purity theorem, so the key point is to explicate the appearing
group cohomology modules well enough in order to eliminate the ‘almost’ ambiguities inherent in
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this theorem with the help of Lemma 3.18 below that comes from [Bhal8]. We first carry out this
program for the simpler sheaf @;r%d, and then build on this case to address Ainf’x%d.

In comparison with the local analysis carried out in the smooth case in [BMS18], one
complication is that the perfectoid cover of X that gives rise to %‘Z?} « 1s not flat over the singular
points of Xj. This makes it difficult to transfer various arguments with ‘g-de Rham complexes’
across the coordinate morphism (3.1.1). In fact, we avoid g-de Rham complexes altogether and
instead phrase the intermediate steps of the local analysis purely in terms of continuous group

cohomology modules.

3.1 The local setup
We assume throughout §3 that X = Spf(R) and for some d > 0, some 0 < r < d, and some
q € Qso, there is an étale Spf(O¢)-morphism as in (1.5.1):

X =Spf(R) — Spf(R”) = X~ with R":=Oc{to,... tr, 01, .., 5"}/ (to - t. —p?). (3.1.1)
Due to our assumptions from § 1.5, a general X is of this form on a basis for its étale topology.

3.2 The perfectoid cover 3536‘,‘% oo
For each m > 0, we consider the RM-algebra,

m

Ry = Oc{ty™ .ot a2 P —pP"),and RE = (lim R
where, as always unless mentioned otherwise (see §1.7), the completion is p-adic. Explicitly, we
have the p-adically completed direct sum decomposition

O ~ n
R = @(ao,...,ad>e(Z[%}>o)@<r+1>@(2[§b@<d-r>, Oc - 15 -+t (3.2.1)

aj =0 forsome 0 <j<r

which shows that RS is perfectoid (see §1.7) and that, for each m > 0, the map R, — RY is
an inclusion of an R)-module direct summand composed of those summands O¢ - " - - - ty of
(3.2.1) for which p™a; € Z for all j.

The corresponding R-algebras are

Ry = R®pa Ry, and  Reo:= (lim Rpn)” = (R@po RL)

Each R,, (respectively, Ry,) is a p-torsion-free p-adically formally étale R -algebra (respectively,
RY -algebra). In particular, R is perfectoid (see § 1.7). By [GRO03, 7.1.6(ii)], each R,, is p-adically
complete.

The summands in (3.2.1) with a; ¢ Z for some 0 < j < d comprise an RP-submodule M5
of R, and we set M., := R®po MY. Thus, we have the RF-module (respectively, R-module)
decomposition

RY = RP @ MY (respectively, Roo = R® My). (3.2.2)

The profinite group

A = {(60, ..., €4) € (lim (Mpm(OC)))EB(dH) ‘

R ~ 7®d
im €0 Ep 1} ~7

p

acts RP-linearly on RL) by scaling each t}/ P by the p,m-component of ¢;. The induced actions
of A on R, and R4 are continuous, compatible, and preserve the decompositions (3.2.1) and
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(3.2.2). In terms of the element € fixed in § 2.1, A is topologically freely generated by the following
d elements:

8 = (e71,1,...,1,¢,1,...,1) fori=1,...,r where the Oth and ith entries are nonidentity;
0; =(1,...,1,¢1,...,1) fori=r+1,...,d where the ith entry is nonidentity.
After inverting p, for each m > 0, we have

ZIOE

R I
@al,...,ade{o,ﬁ,...,pjﬁl R [p] tl td ’

S0 RTDH[%] is the RD[%]—algebra obtained by adjoining the (p™)' roots of t1,...,tq € (RD[%])X,
and hence is finite étale over RD[%]. Therefore, h_n)1m(RT':,’L[%]) is a pro-(finite étale) A-cover of
RD[%]. The explicit description (3.2.1) implies that RS = (REZ[%])O, so the pro-object

(X)el . ==1imSpa(R,[1], R,,) which determines the perfectoid space Spa(Rg[7], R3).

is an affinoid perfectoid pro-(finite étale) A-cover of the adic generic fiber (XF)2! of Spf(R");

in particular, (%D)ac‘]}oo is an affinoid perfectoid object of the proétale site ((XF)2), 06

Consequently, the %%d—base change of (%D)%(? o+ Namely, the tower

}%5}00 = l(i_IESpa(Rm [%] , Rm) which determines the perfectoid space Spa(ROO [%] , Roo),

is an affinoid perfectoid pro-(finite étale) A-cover of %%51, so, in particular, is an affinoid perfectoid
object of (x%(«i)proét.
By [Sch13a, 4.10(iii)], the value on :{ac%oo of the sheaf (’);Cd reviewed in (2.2.1) is Reo.

3.3 The cohomology of O+ and continuous group cohomology
By [Sch13a, 3.5, 3.7(iii) and its proof, 6.6] (see also [Sch16]), the Cech complex of the sheaf O;ad

C
with respect to the pro-(finite étale) affinoid perfectoid cover

%, — %

is identified with the continuous cochain complex RTcont(A, Rx). In particular, by using

[SP, 01GY], we obtain the edge map to the proétale cohomology of (5;%9:

e: RTcont (A, Roo) = RUprogt (X2, 07F), (3.3.1)

which on the level of cohomology is described by the Cartan—Leray spectral sequence (see [SP,
01GY] or [SGA 411, V.3.3]). By the almost purity theorem [Sch13a, 4.10 (v)], the maximal ideal
m C O¢ kills the cohomology groups of Cone(e).

We will show in Theorem 3.9 that Ln,_1)(e) is an isomorphism, so that

Lﬂ(gp—n (Rrproét (}:3617 6+))
is computed in terms of continuous group cohomology. For this, we will use the following lemma.
LEMMA 3.4 [BMS18, 8.11(i)]. An O¢-module map f: M — M’ with
M
and both Ker f and Coker f killed by m induces an isomorphism

M ~ M’
MG=1] — MG-1" =
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In order to apply Lemma 3.4, we will check in Proposition 3.8 that the cohomology modules
Hi (A, Ry) have no nonzero m-torsion. This will use the following general lemmas.

LEMMA 3.5. For an inclusion o C O of a discrete valuation ring into a nondiscrete valuation ring
of rank 1, if N is an o-module and 9 C O denotes the maximal ideal, then (N ®, O)[9] = 0.

Proof. The o-flatness of O reduces us to the case when N is finitely generated, so it suffices to
observe that (O/(a))["M] = 0 whenever a € O. O

LEMMA 3.6. Fix an i € Zxq, let H be a profinite group, let {M;};c; be p-adically complete,
p-torsion-free, continuous H-modules, and suppose that either:

(i) the group H!...(H,M;) is p-torsion free for every j; or

(ii) some p™ kills H.,,(H, M;) for every j.

cont

Then the following map is injective:

ot (H, @JEJM) = [les i nt(H, M;) where the completion is p-adic.

In particular, in the case (i) (respectively, (ii)), H¢ . (H, @je M) is p-torsion free (respectively,
killed by p™).

Proof. Let ¢ be a continuous (@ e M;)-valued i-cocycle that represents an element of the kernel.
For each j, let ¢; be the ‘jth coordinate’ of c. We discard the j with ¢; = 0 and, for each remaining
J, we choose the maximal n; € Z>q such that ¢; is (p"i M;)-valued, so that the function j — n;
is finite-to-one. Since each M; is p-torsion free, each p~"¢; is an Mj-valued continuous i-cocycle.

In the case (i), the class of p~"c; in HY, . (H, M;) vanishes, so each c¢; is the coboundary of
a (p" Mj)-valued continuous (i — 1)-cochain b;. In the case (ii), p" kills H¢,(H, M;), so c; is
the coboundary of a (p™~"M;)-valued continuous (i — 1)-cochain b; whenever n; > n.

In both cases, the b; exhibit ¢ as a continuous coboundary. O

LEMMA 3.7 [BMS18, 7.3(ii)]. Let H be a profinite group isomorphic to Z?d for some d > 0,
and let M = 1<1Lnn>1Mn be a continuous H-module with each M,, a discrete, p"-torsion, continuous

>

H-module. For any ~1,...,74 € H that topologically freely generate H, there is a natural

identification
RUcont(H, M) = Kpp(y1 —1,...,7a—1), soalso H?  (H M) H (Ky(y—1,...,74—1)),
in the derived category (see § 1.7 for the notation). O

PROPOSITION 3.8. The element (, — 1 kills the Oc-modules H:, (A, My,). Moreover, for each

b € Oc¢, the Oc-modules Ry, /b and Hi, (A, Ry /b) have no nonzero m-torsion.

Proof. Let S := O¢-t;°---t;* be a summand of (3.2.1). By Lemma 3.7, the O¢-module
Hi w(A,S) is the ith cohomology of the Oc¢-tensor product of d complexes of the form

Oc C—> O¢ for suitable p-power roots of unity . Moreover, since the d complexes may be
defined over some discrete valuation subring of O¢, Lemma 3.5 ensures that

H! (A, S) has no nonzero m-torsion. (3.8.1)
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If S contributes to My, that is, if a; € Z for some j, then some ( is not 1, and the corresponding
factor complex is quasi-isomorphic to O¢/(¢ — 1). Thus, in this case,

¢—1 andhence also ¢, —1, kills H . (A,S). (3.8.2)

For m > 0, let ML denote the p-adically completed direct sum of those summands O - 0 -ty

of (3.2.1) for which m is the smallest nonnegative integer with p™ - (ag,...,aq) € Z®(@HD),
Lemma 3.6 and (3.8.1)—(3.8.2) imply that the Oc-module

H! (A, M) has no nonzero m-torsion and is killed by ¢, — 1. (3.8.3)
Since R is RP-flat and R ®pgoO MY} is p-adically complete (see §§1.5 and 3.2), Lemma 3.7 gives

cont(A R®RD MD) R®R':l cont(A MD) (3'8'4)

Since My, = @ (R ®zo ML), equations (3.8.3)—(3.8.4) and Lemma 3.6 imply that ¢, — 1 kills
v:ont(A M )
Since R /b is p-adically complete and each of the summands of the decomposition

Roo/ (0,9") 2 R/(b,5") & @,10(R @ ME)/(b,p") for n >0

may be defined over a suitably large discrete valuation subring of O¢, Lemma 3.5 ensures that
Rs /b has no nonzero m-torsion. In addition, the A-action on each summand may be defined
over a possibly larger such subring, so, by Lemmas 3.5 and 3.7, in the case b # 0 each

H (A (R®po MIY/b) soalso H!

cont (A, M. /b),  has no nonzero m-torsion.

This conclusion extends to the case b = 0 because the ({, — 1)-annihilation of H{ (A, M)
supplies the injection HE (A, Moo) — Hl (A, Moo /(¢p — 1)). It remains to observe that the
Oc¢-module Cont(A, R/b) also has no nonzero m-torsion: A acts trivially on R/b, so Lemma 3.7

ensures that H (A, R/b) is a direct sum of copies of R/b. O

cont
THEOREM 3.9. The edge map e defined in (3.3.1) induces the isomorphism
Ln(cp—l) (6): Ln(Cp—l) (RFCODt(A7 ROO)) — Ln(§p—1) (RFproét(xadv 6+))

Proof. Proposition 3.8 ensures that the Oc-modules H:_ (A, Rs) have no nonzero m-torsion

and that
cont(A ROO) Cont (A R)

Honi (A, Roo)[Gp—1] ™ Hioni (A, R)[Gp—1]"
Since A acts trivially on R, this last quotient is a finite direct sum of copies of R (see Lemma 3.7),
so, by Proposition 3.8, it has no nonzero m-torsion. Consequently, since m kills the kernel and
the cokernel of each map

IIZ

Hl<e) cont(A R ) - Hl<xac('iv(/l)\+)
(see §3.3), Lemma 3.4 applies to these maps and gives the desired conclusion. O

Remark 3.10. Theorem 3.9 extends as follows: for any profinite group A’ equipped with a
continuous surjection A" — A and any pro-(finite étale) affinoid perfectoid A’-cover

Spa (R, [%] ,RL) — Spa(R[%} ,R) = X% that refines the A-cover %g‘foo — X2 of §3.2
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compatibly with the surjection A’ — A, the edge map €’ defined analogously to (3.3.1) induces
the isomorphism
Ln(gp—l)(el): Ln(gp—l)(RFcont(Ala R)) — Ln(gp—l)(RFproét (%aéi’ @+>)

Indeed, by the almost purity theorem [Sch13a, 4.10(v)], the ideal m kills the cohomology of
Cone(e’) (in addition to that of Cone(e)), so the octahedral axiom (see [BBD82, 1.1.7.1]) ensures
that it also kills the cohomology of the cone of the map RTcont(A, Reo) — Rlcont(A’, RL);
Lemma 3.4 then applies to this map and combines with Theorem 3.9 to give the claim.

The main goal of this section is an analogue of Theorem 3.9 for the sheaf A xad (see

Theorem 3.20). To prepare for it, in §§3.11 and 3.14 we describe the values of the sheaves o’

x
and Ainﬂ xad On %%d o
3.11 The tilt R’
Thanks to the explicit description (3.2.1) of the perfectoid ring RS, its tilt
(RR) :=lim _ (R/p)
is described explicitly by the identification
~ (1: 1/p™ 1/p™ +1/p™ +1/p™ 1/p™ 1/p™ oo m ~
(R = (i, (Oplag™" a7 a7 g™y (7))

~ P b a a
= @(ao,...,ad)E(Z[%}>0)@(r+1)@(Z[%D@(diw, OC . :L'OO P ;Edd’
a; =0 for some 0 < j < r
m m—+41 m
where x;/ P™ corresponds to the p-power compatible sequence (... ,til /p ,tg/ P7) of elements of
REO, the completions are p'/?™ -adic, and the decomposition is as (’)bc—modules. Thus,

. b R T . .
the tilt RZ := l(iny'_)yp (Roo/p) of the perfectoid ring R

is identified with the p'/?”-adic completion of any lift of the étale RY /p-algebra Rs/p to an
étale (R ) -algebra (such a lift exists, see [SP, 04D1]). By [Sch13a, 5.11(i)], the value on %acc}oo

of the sheaf O1:] reviewed in (2.2.1) is the ring R’ .

x4
By functoriality, the group A acts continuously and O%—linearly on (RY)” and R?_. Explicitly,
A respects the completed direct sum decomposition and an (ep,...,€q) € A scales $?j by

€l e
J c

Our analysis in §3.14 of the value on %%d oo Of the sheaf A; ¢ xad will hinge on the following
lemmas.

LEMMA 3.12. Both R’ /b and H:, (A, R’ /b) for each b € 0%\ {0} have no nonzero m’-torsion.

o0

Proof. We may assume that b € m’, so, by using Frobenius, that b|pl/1”c><> in O%. Then

Proposition 3.8 and the A-isomorphism RI’Oo /b= R/ b for some bt € O¢ gives the claim. O
LEMMA 3.13. For any affinoid perfectoid Spa(Rf)o[%}, R._) over Spa(C, O¢), the ring
Apne(RL) = W((Rloo)b) (respectively, Au(RL.)/ 1)

is (p, u)-adically complete (respectively, p-adically complete). Moreover, for any n,n’ > 0, the
sequence (p", ™) is Ain(R.,)-regular and the Ay, /(p", u™)-algebra Ain(RL.)/(p™, w™') is flat.
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Proof. By its definition, the perfect O%-algebra (R..)" := l(iLny._)yp (R._/p) has no nonzero p*/P™-

torsion (that is, it is O%-flat), so the regular sequence claim follows from [SP, 07DV]. The formal
criterion of flatness [Bou, Ch. III, §5.2, Theorem 1(i)<(iv)] then implies the Aje/(p™, ™ )-
flatness of Apr(RL)/(p", u™) (even with n/ = 0). In addition, the short exact sequences (2.1.2)
with (R..) in place of O, imply the p-adic completeness of Ai,(RL,)/ -

Analogously to the case of Ajyr discussed in § 2.1, we use the Witt coordinate bijection and the
p-adic topology on (R.)” to topologize Aint(RL,) = 102, (R..)” and we see that this topology
agrees with the (p, p)-adic topology. Thus, Ajns(RL) is (p, u)-adically complete. O

3.14 The ring Ajnr(Roo)
By [Sch13a, 6.5(i)], the value on %%?Oo of the sheaf A; ¢ xad 1 the ring

Aint(Reo) := W(R%).

By Lemma 3.13 and the formal criterion of flatness, Ay f(Rs) is (p, 1)-adically formally flat as
an Ajyp-algebra and (p, p)-adically formally étale as an Aj,¢( RS )-algebra. By using, in addition,
Lemma 3.12, we see that each quotient

Ain(Roo)/ (™, 1), so also  Ajne(Roo)/pt, has no nonzero W (m”)-torsion. (3.14.1)

In general, for a perfect [F,-algebra A, the Witt ring W(A) is the unique p-adically complete
p-torsion-free Z,-algebra A equ1pped with an 1somorph1sm A/p ~ A (see [Bhal8, 2.5]). For an
a € A, the Teichmiiller [a] € A is hm (ap ) where @, € A is any lift of a’/?" (see [Bhal8, 2.4]).

Therefore,
Ainf(REO) o (h_r)nmAinf[Xé/pm, o ’XTl/pm’XriJrll/pm’ . 7X;t1/p’”]/(H::0 Xz,l/pm _ Kpl/poo)q/pm]))A

.....

ag)€(Z[3]50) 2D @(z[1]) 0@, A - X350 - X34,

aj =0 for some 0 < j < r
where the completions are (p, u)-adic, the decomposition is as Aj,r-modules, and, in terms of

§3.11, we have Xz-l/ - [3311 /p m]. The summands for which a; € Z for all ¢ comprise a subring

ARY) 2 Apel{Xo, -, Xo, XN X/ (Xo - X = [(0MP7)9) inside  Ajn(RS), (3.14.2)

where the convergence is (p, u)-adic. The remaining summands, that is, those for which a; & Z
for some i, comprise an A(R"Y)-submodule NI C Ay¢(RY).

On sections over %2?} > the map @ from (2.2.2) is identified with the unique ring
homomorphism

0: Ajnt(Roo) = Roo  such that [z] — x(o),

is surjective with the kernel generated by the regular element ¢ (see [BMS18, 3.10, 3.11]), and
intertwines the Witt vector Frobenius of Ajf(Rs) with the absolute Frobenius of Ry /p. Thus,

0: A(RY) - RY is described by X, > t;. (3.14.3)

We use the surjection (3.14.3) to uniquely lift the étale RP/p-algebra R/p to a (p, p)-adically
complete, formally étale A(R™)-algebra A(R). By construction, we have the identification

Ain(Roo) = Aint(R5) ® 4(poy A(R), (3.14.4)
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where the completion is (p, u)-adic. Therefore, by setting No, := NI & ArD) A(R), we arrive at
the decompositions of Ainf(REO) and Aj,r(R~) into ‘integral” and ‘nonintegral’ parts:

Aine(RY) =2 ARP) @ NY  and  Ajne(Roo) = A(R) ® Nyo. (3.14.5)

Modulo Ker 6 (that is, modulo &), these decompositions reduce to the decompositions (3.2.2).

The Witt vector Frobenius of Aj,¢(R5) preserves A(R"); explicitly: it is semilinear with
respect to the Frobenius of Aj,¢ and raises each Xil/ P" to the pth power. By construction,
A(R) inherits a Frobenius ring endomorphism from A(RY), and the identification (3.14.4) is
Frobenius-equivariant.

The natural A-action on Aj¢(Rs) is continuous and commutes with the Frobenius.
Explicitly, A respects the completed direct sum decomposition and an (eg,...,€e7) € A scales
X;lj by [6?7] € Ajyr. The A-action on A(R") lifts uniquely to a necessarily Frobenius-equivariant
A-action on A(R). In particular, A acts trivially on A(R)/u. The identifications (3.14.4) and
(3.14.5) are A-equivariant.

3.15 The cohomology of Aj,r and continuous group cohomology
Similarly to §3.3, the Cech complex of the sheaf A, xad with respect to the pro-(finite

étale) affinoid perfectoid cover X%S}OO — X& is identified with the continuous cochain complex
RT cont (A, Ajnf(Rso)). Thus, by using [SP, 01GY], we obtain the edge map to the proétale
cohomology of A ¢ Xl

e: RTcont (A, At (Roo)) = RT proct (X5, Ajnr). (3.15.1)

By the almost purity theorem, more precisely, by [Sch13a, 6.5(ii)], the subset [m’] C Ay, that
consists of the Teichmiiller lifts of the elements in the maximal ideal m’ C (92; kills all the
cohomology groups of Cone(e). Since u € W (m) (see (2.3.3)), it will be useful to strengthen this
annihilation as follows.

LEMMA 3.16. The ideal W(m’) C Apy defined in (2.3.3) kills each H'(Cone(e)).

Proof. We argue similarly to [BMS18, proof of Theorem 5.6]. Both the source and the target of e
are derived p-adically complete (see § 1.7), so, by [BS15, 3.4.4 and 3.4.14], each H*(Cone(e)) is also
derived p-adically complete. Thus, the desired conclusion follows from the following lemma. O

LEMMA 3.17. If [mb]Ainf kills a derived p-adically complete Aj,s-module H, then so does W (m’).
Proof. By the derived p-adic completeness, any free Aj,¢-module resolution F'® of H satisfies
H = Coker (1(i_111n(F_1/p”) — l(i_@n(Fo/p”)).
Moreover, for every n > 1 the ideals [m’] - W,,(0%) and W, (m°) := Ker(W,,(0%) — W, (k)) of
W, (0%) agree. Thus, the ([m’]Ajys)-annihilation of H implies that W, (m’) kills both
H/p" = HY(F* @, Aine/p") and  Tori™ (H, Ape/p") = H N (F® @4, Amne/D").

Thus, since [m’]2 = [m’] and Fy/p™ has no nonzero m-torsion for every nonzero m € [m’],
any element & € Wiy 1(m®)- (Fy/p"t!) may be lifted to Wiy,1(m®) - (F_1/p"*!), compatibly
with a specified lift of its image Z € Wy (m")- (Fy/p") to Wy,(m’)-(F_1/p"). In particular,

W(mP) - (l(inn(FO/p")) lies in the image of LiLnn(F_l/p”), that is, W (m”) kills H, as desired. O
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We will show in Theorem 3.20 that L7, (e) is an isomorphism, so that continuous group
cohomology computes L7, (RFproét(%%d, Ainr)). For this, we will use the following lemma.

LEMmMA 3.18. If B b Bisa morphism in D(Aj,t) such that each H'(B ®%inf Aing/p) has no
nonzero W (m”)-torsion and W (m®) kills each H*(Cone(b)), then Ln,)(b) is an isomorphism.

Proof. Since L7 is not a triangulated functor, the fact that Ln,)(Cone(b)) = 0 does not a priori
suffice. Instead, the ideal (W (m?))? kills the cohomology of Cone(b) ®HAM Aing/ 11, so the sequences

0— H(B®Y5  Awt/p) — H (B &Y% . Ant/p) - H(Cone(b) @5 Apne/p) — 0

are short exact. By the Bockstein construction (see [BMS18, 6.12]), as ¢ varies, they comprise a
short exact sequence whose terms are complexes that compute L, (B) ®%mf Aing/ p, ete. Thus,
the vanishing of Ln(u)(Cone(b)) implies that (Ln,(b)) L

inf

Ajpg/p is an isomorphism. It follows
that Cone(Ln,)(b)) ®HAI Aint/p1n =20, so p acts invertibly on the cohomology of Cone(Ln(, (b))
But then, as we see after applying — ®& A Amf[ |, this cohomology vanishes. O

We now verify that the edge map e defined in (3.15.1) also meets the first assumption of
Lemma 3.18.

PROPOSITION 3.19. For each i € Z, the Ajy-module HE (A, Ains(Roo)/p) is p-torsion free and
p-adically complete; moreover, the following natural maps are isomorphisms:

Cont(A Alnf( OO)/M) ®Ainf Aiﬂf/pn ; Cont<A Alnf(R )/(Mapn)) fOI‘ n>0 (3191)

and

cont(A Alrlf( OO)/:“) ; hm ( Cont(A Alnf(R )/(M:pn))) (3192)
In addition, H: (A, Aint(Reo)/(1t,p")) and Hlop (A, Aing(Roo)/p) have no nonzero W(m’)-
torsion.

Proof. Since A(R)/p is p-adically complete and has a trivial A-action (see Lemma 3.13
and §3.14), Lemma 3.7 implies that H{ (A, A(R)/p) is a direct sum of copies of A(R)/u, and
likewise for H! (A, A(R)/(u,p")). Consequently, since, by (3.14.1), the rings A(R)/(u,p")
and A(R)/p have no nonzero W (m”)-torsion, the analogues of all the claims with A(R) in place
of Ajnr(Roo) follow. Thus, due to (3.14.5), we only need to establish these analogues with N, in
place of Ajf(Ro)-

To prepare for treating Noo, we start by building on the ideas of [Bhal8, proof of Lemma 4.6]
to analyze a single summand S := Ajy¢- X§°--- Xj? that, as in §3.14, contributes to NG,

We set
bj:=a;—ay for 1<j<r and bj:=a; for r+1<j<d, (3.19.3)

and let m € Z-o be the minimal such that p™b; € Z for all j. Lemma 3.7 applied with the
topological generators 41, ...,dq of A defined in § 3.2 gives an Aj,s-isomorphism

cont(A S/:u) Hi(c.)v
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where C*® is the (Ajn/p)-tensor product of the d complexes

eJ] 1 .
[Aint/ 1t —— Ajut/p] = inf/({ebj] -1) ®%mf Ajnt/ - (3.19.4)

By reordering the b;, we may assume that for all j we have b;/b, € Z(p), so that by ¢ Z and both
(€] — 1][e%] — 1 and [¢"'] — 1| p. Then the object (3.19.4) with j = 1 is given by the complex

[Aine/([e2] — 1) 5 Aine/([€"*] — 1)] and, by using the left-hand sides of (3.19.4) for the factors
with j # 1, we see that C*® is quasi-isomorphic to a direct sum of shifts of

Aint /([€M] = 1) = Aun /™™ ().
Thus, for i € Z,

Hiw(AS/w) ~ @ Aing/e ™ (u) for some set I, and hence HE (A, S/p)[p] = 0.
(3.19.5)
By Lemma 3.7 and [SP, 061Z, 0662], this implies that

Héont(A7 S/M) ® A Ainf/pn — Héont(Av S/(Mvpn)) (3196)

We now analyze NZ. Since A ¢(RY)/p is p-adically complete, §3.14 gives the A-
decomposition

—_—

mf( )/H @ ao,...,ad)E(Z[%];0)@(””)69(2[%])@(51*7), Ainf/,u, . Xgo - chlld

aj =0 for some 0 < j < r

in which the completion is p—adic. Lemma 3.6 (i) then combines with (3.19.5) to prove that
(A, N /u)[p] =0 for each i€ Z.

cont

Analogously to (3.19.6), this, in turn, implies that

Hone (A N/ 1) @ e Ain /9" = Heone (A, N/ (1, 9™)).- (3.19.7)
Finally, we analyze N... The identification

Noo/(1:9") = NG/ (1, P™) @ g0y A(R)

is A-equivariant and A(R)/(u, p") is (A(RY)/(u,p"))-flat, so Lemma 3.7 gives the identifications

cont(A NOO/(M p )) cont(A ND/(Mvpn)) ®A(RD) A(R) for n > 17 (3198)

which are compatible as n varies. Consequently, for n > 1, the sequences

0— Héont(A7N00/(:u7pn))[ ] - Héont(A? NOO/(:uﬁpn)) - H(Z:ont(Aa NOO/(M>pn_1)) -0 (3199)

are short exact because, by (3.19.5) and (3.19.7), so are their analogues with N in place of Nu.
By taking the inverse limit of these sequences for varying n and using [SP, 0D6K], we obtain

Hone (A, Noo/p) — 1im, (Hione (A, Noo/ (1, p™)), (3.19.10)

which is the sought analogue of (3.19.2). The p-torsion-freeness of H{_ (A, Noo /) follows from

cont
(3.19.9)—(3.19.10) and, as in (3.19.6), it implies that
Héont(A7 NOO/M) ®Ainf Ainf/pn % Hcont(Av NOO/(Mapn))

It remains to show that each H’. (A, Noo/(1t,p™)) has no nonzero W (m”)-torsion.
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The surjectivity aspect of the short exact sequences (3.19.9) implies that the sequences

n—1
0 = Noo/(1,p) *— Noo/ (1;9") = Noo/(p1,p" ") = 0
(A,—). Thus, H¢ (A, No/(u,p")) is a successive
extension of copies of H:, (A, Noo/(1t,p)). Consequently, it has no nonzero W(m’)-torsion
because, by Lemma 3.12, neither does H{ (A, Noo/(1,p)) (note that Noo/(i,p) is a direct
summand of Aine(Roo)/ (11, 1) = RY/10). O

remain short exact after applying H{,

THEOREM 3.20. The edge map e defined in (3.15.1) induces the isomorphism
Ly (€) s L) (RTeont (A, Aint(Roo))) = L1y (BT proge (X&', Ay, xaa))-
Proof. By the projection formula [SP, 0944],
RT cont (A, Aing(Roo)) @4, Aine /1t = RTcont (A, Ain(Roc) /1), (3.20.1)

so Proposition 3.19 implies that the cohomology modules of RIcont (A, Ajnt(Roo)) ®sz1in Ajng/ 1t
have no nonzero W (m”)-torsion. Thus, the claim follows from Lemmas 3.16 and 3.18. o

Remark 3.21. Analogously to Remark 3.10, Theorem 3.20 extends as follows: for any pro-(finite
étale) affinoid perfectoid A’-cover

Spa(Rgo[%],R’oo) — Spa(R[%],R) >~ x2  that refines 3‘%%00 — xa

subject to the same conditions as in Remark 3.10, the edge map e’ defined analogously to (3.15.1)
induces the isomorphism

Ly (€): Ly (Rl cont (A, Aing (RL))) = L) (RTproct (X&', Ay, xa0)).

Indeed, as in Remark 3.10, by the almost purity theorem and the octahedral axiom, [mb]Ajnf
kills the cohomology modules of the cone of the map

eo: Rl cont (Aa Ainf(}%oo)) — chont(A,a Ainf(R,oo))

and, by [BS15, 3.4.4 and 3.4.14], these modules are derived p-adically complete; thus, by
Lemma 3.17, even W(m") kills them, to the effect that Lemma 3.18 applies to the map eg
and proves the claim.

As a final goal of § 3, we wish to show in Theorem 3.34 that even the maps L7, (e @Hjmf A(m))

cris
g’fs) reviewed in § 3.26 below. This extension of Theorem 3.20

will be important for relating AQy to logarithmic crystalline cohomology in §5. Our analysis of

are isomorphisms for A, s-algebras A

L (e @HAM A(m)) will use the following further consequences of the proof of Proposition 3.19.

cris
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3.22 The decomposition of N,
For m > 0, let N. be the (p,u)-adically completed direct sum of those summands
Aing - X0 -+ - X3¢ that contribute to Ain(RE) in §3.14 for which m is the smallest nonnegative

[e.e]

integer such that p™a; € Z for all j (equivalently, in the notation of (3.19.3), such that
p™b; € Z for all j). For varying m > 0, the A(RP)-modules NS and the A(R)-modules
Ny, :=NI® A(rD) A(R) comprise the (p, p)-adically completed direct sum decompositions

NI =@, .o NY and Ne =@, Nom- (3.22.1)

For a fixed i, Lemma 3.7 and (3.19.5)—(3.19.6) imply that
HE(ANE /(u,p™) ~ @ Aine/ (7 ™(n),p")  for some set I’ and every n > 0. (3.22.2)
COROLLARY 3.23. For all i and n,m > 0,
H (A Ny /(p,p™)) s killed by o™ () and s a flat Aye/(0~ ™ (1), p™)-module.

Proof. If R = RY, then (3.22.2) suffices. In addition, by Lazard’s theorem, A(R)/(u,p") is a
filtered direct limit of finite free A(R™)/(u,p")-modules. Thus, the general case of the claim
follows by using (3.19.8) and its analogue for Ny and NJ. O

We wish to supplement Proposition 3.19 with Proposition 3.25 that analyzes the cohomology
of Ny without reducing modulo . Its proof will use the following base change result for Ln.

LEMMA 3.24 [Bhal8, 5.16]. For a ring A, elements f,g € A with g a nonzero-divisor, and a
K € D(A), if the modules H'(K ®% A/ f) have no nonzero g-torsion, then the natural map

Ly (K) oL Alg — Ln(?)(K @Y% A/g) where f denotes the image of f in A/g,
is an isomorphism. O
PROPOSITION 3.25. The element y kills every HE (A, No).

Proof. Let 61,...,d4 be the free generators of A fixed in §3.2. By Lemma 3.7, we need to prove

that

Ly (KN (01— 1,...,64 — 1)) = 0. (3.25.1)
The key point, with which we start, is to prove the vanishing (3.25.1) modulo ¢(&). The
isomorphism

KNOO((51 — 1,...,(5(1—1) ®HAinf Ainf/ﬂgKNoo/,u(él —1,...,5d—1),

Lemma 3.7, and Proposition 3.19 show that the cohomology of Kn__ (61 —1,...,04— 1)(@%inf Ajng/ 1
is p-torsion free. Therefore, Lemma 3.24 supplies the identification

Ln(ﬂ) (KNoo (61 — 1, ceey 5d_ 1)) ®ainf Ainf/(p(g) = Ln(Cp—l) (KNoo/sD(f) ((51 — 1, e ,(Sd— 1)) (3252)

The inverse Frobenius ¢~ maps N5 isomorphically onto a direct summand of N5, so it maps

N isomorphically onto a direct summand of Nu.. Thus, ¢! maps Nuo /(&) isomorphically onto
a direct summand of N /§ = M (see (3.14.5)). In particular, by Lemma 3.7 and Proposition 3.8,
¢p — 1 kills the cohomology of K __ /,(¢)(01 —1,...,d4 — 1), so both sides of (3.25.2) are acyclic.

Since N is (p, p)-adically complete, it is also ¢(&)-adically complete (see [SP, 090T]). Thus,
Kn_(01—1,...,05 — 1) is derived ¢(§)-adically complete, and [BMS18, 6.19] implies the same
for Lng) (KN, (61 —1,...,0q — 1)). The established acyclicity of the left-hand side of (3.25.2)
therefore implies the desired vanishing (3.25.1). O

2059

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


http://stacks.math.columbia.edu/tag/090T
http://stacks.math.columbia.edu/tag/090T
http://stacks.math.columbia.edu/tag/090T
http://stacks.math.columbia.edu/tag/090T
https://doi.org/10.1112/S0010437X1800790X

K. CESNAVICIUS AND T. KOSHIKAWA

3.26 The Aj,r-algebras A( ™)

cris

For m € Z>;, we let A e the p-adic completion of the Aj,s-subalgebra A% o Amf[ ]

cris cris

generated by the elements £°/s! with s < m. In particular, A

( ) cris

o) the p-adic and (p, u)-adic topologies of A

& A for m < p. In contrast,

(m)

cris

if m > p, then, since uP/p! € A" agree. By its

definition, Agrls) is p-torsion free; in fact, although we will not use this, Proposition 5.36 below

implies that A" is even a domain. The map 6 of (2.1.3) extends to A,

cris Cris

9: A" - Oc. (3.26.1)

Cris

(m)

cris?

Due to the ‘finite-type nature’ of the Aj,s-algebra A.’ more precisely, due to [BMS18,

12.8(ii)], the systems of ideals
\ nr € p”AEnS)}) >1 of A" are intertwined.

cris

P"A"),; and  ({z € A

Cris cris

Equivalently,
for every m >1, the map (Ag?fs)/p”/)[ | — ms /p vanishes for large n' >n. (3.26.2)

Therefore, by taking the inverse limit over n of the sequences

0 — (AT ")l — ALY jpr B ATy AT (™) — 0, (3.26.3)
we conclude that

A(m)

cris

is u-torsion free and A /p s p-adically complete. (3.26.4)

cris

The Frobenius automorphism of Aj,¢ preserves the subring A% - Ainf[%]Z indeed, for

cris

m > p, since & = Y02 }[ei/?] and €P € pA (™) we have p(&) = S a[€] and @(€) € pAY: (),

Cris cris
Thus, the Frobenius induces a ring endomorphism

or A, gl

Cris Cris ’?

which, via the map 6, intertwines the absolute Frobenius of O¢/p (compare with (2.1.3)).

3.27 The A(R)-algebras Acms (R)
The ‘relative version’ of AEHS) (respectively, a ‘highly ramified cover’ of this relative version) is

the A(R)-algebra (respectively, Ain¢(Roo)-algebra)

ATN(R) == A(R) ®a,, ALY (respectively, AT (Roc) i= Aune(Roo) S, A,
where the completion is (p, u)-adic (equivalently, p-adic if m > p). In the case m < p, due to

Lemma 3.13 and §3.26, we have Alm )(R) >~ A(R) and AlT )(R ) = Ajnf(Roo)-

cris cris

Due to the decomposition (3.14.5), the subring Al -)(R) C A(m)(ROO) is an A" )(R)—

Cris Cris cris

module direct summand. Explicitly, the decomposition of Ay,+(R5.) described in §3.14 gives
the decomposition

Agms) (RY) = @(QO’._’%)G(Z[%}>O)®(r+1)@(Z[%D@mﬂ)7 A((:rls) XG50 - Xg’i, (3.27.1)

a; =0 for some 0 < j<r

2060

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800790X

THE Aj,f-COHOMOLOGY IN THE SEMISTABLE CASE

where the completion is (p, u)-adic (equivalently, p-adic if m > p), and AM )(R ) is (p, p)-adically

cris

formally étale over Alm )(RD) (see §3.14). In particular, (3.26.2) holds with A replaced by

cris cris

A(m)(RD ), and hence also by A R). Consequently, the generalization of (3.26.4) holds too:

Cris cris (

A(m)(Roo) is p-torsion free and Ams( 00)/p is p-adically complete. (3.27.2)

Cris

In addition, by (3.27.1) and the formal étaleness, each A )(ROO) is p-torsion free. By §§3.14

cris

and 3.26, the rings Alm )(R) and A(m)(Roo) come equipped with compatible A( )—semlhnear

cris Cris
Frobenius endomorphisms that are compatible as m varies.

The group A acts continuously, Frobenius-equivariantly, and A( ) -linearly on A((ms) (R) and

A (Rso)- For each 0 € A, the Ajy-module endomorphism 571 of A(R) induces an A" -module

Cris cris

51 (m) : _ o1 -
endomorphlsm e of A/ (R) that satisfies § = 1 + - - In particular, A acts trivially on

3.28 The A _base change of the edge map

cris

(m)
cris?
(3.15.1), we suppose that m > p. Then, for each n > 0, we have ACm /p" = Agfs)/( p") for every
large enough n’ > 0 (see §3.26). Consequently, smce (p™, ™) is an Apg(Roo)- regular sequence
with Ainr(Roeo)/(p", 1) flat over Ajne/(p™, p") (see Lemma 3.13), the projection formula

[SP, 0944] and Lemma 3.7 imply that

Since A" & Ainr for m < p, for the sake of analyzing the map e@ﬂg LA where e is as in

cris

A" > BT (A, AT (RL)).

Cris Cris

~L
RFcont (Av AiIlf (ROO ) ) ®Ainf

Consequently, the edge map e defined in (3.15.1) gives rise to the map

A" R ot (A, AU (Ry)) = RTproee (X351, Apng) @5 AU (3.28.1)

inf Cris cris inf Cris

~L
€®A

Since [m’] kills each H*(Cone(e)) (see §3.15) and [m’]?> = [m’], by using a free Ajy-
module resolution of Ag?s /p and the definition [SP, 064M], we see that [m’] also kills
each H'(Cone(e) ®} CHS /p ). Consequently, by [SP, 0D6K], the ideal [m’]Aj, kills each

H'(Cone(e) @iinf A(m)), to the effect that, by Lemma 3.17 (and [BS15, 3.4.4 and 3.4.14]), so

Cris
does W (m®). In conclusion,

W (m") kills the cohomology modules of ~Cone(e @iinf A(m)) ~ Cone(e) @HAM A (3.28.2)

Cris Cris

By applying Lemma 3.18, we will show in Theorem 3.34 that Lun,)(e @HA A(“?)) is an

inf Cris
isomorphism. Thus, we need to know that the Aj-modules HE (A, Agfs)( R)/p) have no
nonzero W (m®)-torsion (compare with Proposition 3.19 for Ain¢(Reo)/s). The following result is

a step in that direction.

PROPOSITION 3.29. Each AérlS)(Roo)/(u,p") and also A&ms)( Roo)/1 have no nonzero W(m’)-
torsion.

Proof. By the p-adic completeness of A™(R o)/ 1 (see (3.27.2)), we may focus on the rings

Cris (

A (Roo)/(it,p™). The argument for the latter is similar to that of [BMS18, 12.8(iii)] and uses

Cris
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approximation by Noetherian rings. Namely, by the (p, o ~!(u))-adic completeness of Ay, the
assignment

T — [P —1 defines a Z,-algebra morphism Z,[T] — A (3.29.1)

By [BMS18, 4.31], this makes Ajy¢ a faithfully flat Zp[[T]]-algebra Thus, letting M be the mod
((T+1)P—1, p") reduction of the Z,[T']-subalgebra of Z, [[T]][ ] generated by the (37~ (T—H) s
with s < m, we have the identification

Ag:s)(Roo)/(an) = M @z, [11/((T+1)p—1,p7) Ainf(Roo) / (11, P")-

The (Z,[T]/((T + 1) — 1,p"))-flatness of Ain¢(Roo)/(11,p™) ensures that the ¢ ~!(u)-torsion
submodule of A(m)(ROO) /(1,p™) is the base change of the T-torsion submodule M[T] C M.

Cris

p
Consequently, since ¢~ () € W(m’), the consideration of the p-adic filtration of M|[T] reduces
us to proving that

Fp @z, 117/((7+1)p—1,pn) Aint (Roo)/ (1, p") = R’ /o () has no nonzero m’-torsion,

which follows from Lemma 3.12. O

To relate H{ (A, Ams( wo)/1) to HE (A, Aing(Reo)/p) in Proposition 3.33, we will use

the following general result about exactness properties of p-adically completed tensor products.

(m)

For concreteness, we state it for Aj,¢ and its algebra Ams,

choices.

but the proof is not specific to these

LEMMA 3.30. For a fixed m > p, consider the following condition on an Aj,s-module L:

for j > 0, {Tor nf(L, A /") }ns0  Is Mittag—Leffler with vanishing eventual images, (%)

Cris

which means that for every j,n, the map Torj1inf (L, ASZLS) /pY) — Tor; At (1, ACZLS) /p") vanishes
for some n’ > n. For a bounded complex

M= > M5 p
of Aing-modules, if each M* and each H'(M?®) satisfy (x), then, for every i, we have

HY(M® @ a,,, AT 2 0im (H(M® @4, AL Jp) 2 HI(M®) @4, AL (3.30.1)
Proof. For an inverse system {0 — I/, — I, — I/ — 0},>¢ of short exact sequences of abelian
groups, {I,}n>0 is Mittag—Leffler with vanishing eventual images if and only if so are both
{I] }n>0 and {I/'},,>0. Therefore, the short exact sequences

0 — Ker(d') - M* - Im(d’) - 0 and 0— Im(d""!) - Ker(d') — H'(M®) - 0 (3.30.2)

imply, by descending induction on 4, that each Ker(d') and each Im(d?) satisfy (x). Consequently,
A 46 the effect that the flanking

cris?

terms of (3.30.1) get identified. By construction, this identification is compatible with the

these sequences remain short exact after applying — @4,

inf

canonical maps to 1(1_111n(H {(M*®4,, Ag:s) /p™)), so it remains to establish the second identification
n (3.30.1).
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By [SP, 0662 and 0130], the spectral sequences associated to a double complex give the
following spectral sequences that converge to H'*7(M*® ®£inf A((:le) /p"):

MEY = Hi(E (M*) @Y AT /p") and VET = BI(M &Y AUy,

where the differential on the ™ E-page is H(d ®ginf A((:?fg /p"). As n varies, both families of
spectral sequences form inverse systems. Moreover, by assumption, the systems {(”) E;j Fn>0 with
i #0and {(")' Eij }n>0 with j # 0 are Mittag—Leffler with vanishing eventual images. This persists
to the subsequent pages: namely, by the first sentence of the proof, to the systems {(”)Eéj tn>0
with 7 # 0 and {(")’Eéj}nw with j # 0 for any s < oo. Consequently, the edge maps

H(M*) @ AU jp — B (M* @Y AT /p) and  H(M®* @~ AT /p") — HI(M® @ AT /p)

Cris Cris
become isomorphisms after applying the functor 1(1_1_11“ It remains to note that then so does their

composition, which is the canonical map H'(M®) ® 4 /p — H{(M®*®a,, A((::?S /p"). O

inf CI‘lS
To make Lemma 3.30 practical, we now establish its condition (x) in several key

cases.

LEMMA 3.31. For a fixed m > p, the condition (%) holds in any of the following cases:

(i) for any n,n’ > 0, the sequence (p™, ') is L-regular and L/(p", ") is A /(p", "' )-flat;
(ii) the module L has no nonzero p-torsion and each L/p" is a filtered direct limit of direct
sums of Ajg-modules of the form Ajue /(¢ (1), p") for variable s > 0.
Thus, (%) holds for Apt(Rs) and Apg(Reo)/u, and for each HE
cont(A Alnf< OO)/M)

Proof. If (i) holds, then, by the regular sequence aspect, L ®% Aine/ (P, )= L/ (p", 1), so

(A,Ns) and

by the flatness aspect, L ®HA1 . Cns /p is concentrated in degree 0. Thus, in the case (i), the
inverse systems in (%) vanish termwise.
If (ii) holds, then each L ®ginf Ajng/p™ is concentrated in degree 0, so

{Tor (L, AT /p™) } o 2 {Tor! ™ /P (L/p", AT /p™) Yo (3.31.1)

for every j > 0. In addition, since ¢~ *(u) | 1 for s > 0 and each Aj;p¢/p™ has no nonzero pu-torsion,
the assumption on L/p™ in (ii) ensures that the right-hand side of (3.31.1) vanishes termwise for
j > 1. In contrast, for 7 = 1 and every n > 0, there is an n’ > n such that the transition map
between positions n’ and n in the right-hand side system of (3.31.1) vanishes: this follows from
the identification

Tor ™7™ (A /(0 (1), ), AT p) 2 (AT /5 )0~ ()]

and (3.26.2). Consequently, (ii) implies (x), as claimed.

By Lemma 3.13, (i) holds for Ajn(R) and then, by Lazard’s theorem, (ii) holds for
Ainf(Roo) /1. Likewise, Proposition 3.19, Corollary 3.23, and Lazard’s theorem imply that (ii)
holds for each H{ (A, Apyr(Roo)/pt). By Lemma 3.7, Cont(A, Noo) vanishes for large ¢ and, by
Proposition 3.25, we have the short exact sequences

0— H'

cont

(A, Noo) = Hgnt (A, Noo/p) = Higi(A, Noo) — 0.

cont
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Therefore, due to the first sentence of the proof of Lemma 3.30, descending induction on 4 shows
that () for Hi (A, Apng(Roo) /) implies (x) for HE (A, Noo). O

Thanks to Lemma 3.31, we may draw the following concrete consequences from Lemma 3.30.

PRrROPOSITION 3.32. For every m > p and i € Z, we have the identifications

cont(A N ®A1nf Agns)) = hm ( con‘c(A N ®A1nf crls /p ))
o (3.32.1)
=H cont(A N, ) Aint Acris :
In particular, p kills every Hl (A, Noo @, A((;?S) ).

Proof. By Lemma 3.7, the Koszul complex M*® of N, with respect to d1,..., 04 satisfies

4™

inf Ccris )

A Ny) and H(M*®A™) =~ Hl (A No®a,

HZ(M.) — Cris

cont (

as well as '
HZ(M. A(m /p ) con‘c(A N ®A£:?S/p )

Cris

for every n > 0. Moreover, by Lemma 3.31, each M* and each H(M*®) satisfy (x). Thus, (3.32.1)
is a special case of (3.30.1). By Proposition 3.25, p kills every HE (A, Noo), so, by (3.32.1), it

also kills every HZ (A, Noo ® 4, A O

inf ©7cris ) .

ProposITION 3.33. For every m > p and i € Z, we have the identifications

Hion (A, ALY (Roo) /1) 2 lim (Hioe (A, AT (Roo) /(1 ™))

= Héont (A, Ainf( OO)//L) ®Ainf ASXS)

(A, AT )( Roo)/ ) has no nonzero W (m’)-torsion.

cris

Moreover, the Aj,e-module HE .

Proof. Similarly to the proof of Proposition 3.32, Lemma 3.30 applies to the Koszul complex of
Ainf(Roo) /1 and, due to (3.27.2), gives the identifications. Thus, it suffices to show that each

. 19.1)
cont(A Alnf( 00)/“) ®Ainf A((;ns?/p g cont(A Alnf(l% )/(M7pn)) ®Ainf/p" ACI‘IS /p

has no nonzero W(m’)-torsion. Since A acts trivially on A(R)/(u,p"), Lemma 3.7 and

Proposition 3.29 imply that each H, (A, A(R)/ (11, 0™)) @ 4,1 /pm Agfs) /p™ has no nonzero W (m”)-
torsion. Consequently, due to the decomposition (3.22.1), it suffices to show that for j > 0, the
module

i (A N /(1) ® o AT 102 HE (AN (1) @t i .5 AT /(679 (1), 7)

has no nonzero W (m’)-torsion. For this, similarly to the proof of Proposition 3.29, we will
approximate by Noetherian rings. More precisely, similarly to (3.29.1), the assignment

T [e]l/ P 1 defines a Zp-algebra morphism  Zpy[T] — Aint,

for which Ajys is Z[T]-flat. In terms of this morphism, the Aj,-algebra A [0 (1), p") is

cris

the Ains/(¢ ™7 (1), p")-base change of the mod (T, p") reduction M of the Z,[T]-subalgebra of
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Ly [[T]][%] generated by the elements é(Zf;ol (T +1)P ") with s < m. Consequently, we need
to show that

Hiont (A, Nj / (1, 0™)) @, 101/ 1, o) M

has no nonzero W(m")-torsion. By Corollary 3.23, the module

cont(A N; /(,u p )) is Zp[[T]]/(T, p”)—ﬂat.

Thus, by p-adically filtering M, we reduce to showing that H’, . (A, N;/(u, p™))/p has no nonzero
W (m®)-torsion. This, in turn, follows from Proposition 3.19 and Lemma 3.12. O

With Proposition 3.33 in hand, we are ready for the promised claim about L, (e @g, A(".L)).

inf Cris

THEOREM 3.34. For each m > p, the map e (/25 A(m) from (3.28.1) induces the isomorphism

Cris

~IL m ~ ~IL m
Ln(u)(e ®a A( )) ( )(R]-jcont(A A( )(R ))) - Ln(,u)(RFproét(%%’daAinf) XA A( ))

inf Cris cris inf Cris

Proof. By (3.28.2), the ideal W (m?) C Ay kills the cohomology of Cone(e @HAM A((:m)) By

Proposition 3.33 (and the projection formula [SP, 0944] with (3.27.2)), the cohomology modules
of

]%Fcont(A A(m) (Roo)) ®HAinf Ainf/u

Cris

have no nonzero W(mb)—torsion. Thus, Lemma 3.18 applies and gives the desired conclusion. O

Remark 3.35. Analogously to Remark 3.21, we may extend Theorem 3.34 to any affinoid
perfectoid A’-cover that refines ﬁ{acc} o = %?}1 and is subject to the same conditions as in
Remark 3.10: more precisely, with the notation used there, we have

~L m ~ a =L m
LT/(M) (6/ ®Ainf A( )) (,u) (chont(A A( )(Rcl)o))) - Ln(u) (RFproét(%C(’iaAinf) @4, A( ))a

Cris cris inf Cris

where A" )(Rgo) = Aing(RL) ®2 A" Tndeed, as there (see also §3.28), the ideal W (m )

cris inf cris *
kills the cohomology of the cone of the map RT cont(A, Ag?s) (Rx)) = RTcont (A, A((:ZLS) (R)), s
Lemma 3.18 applies to this map and gives the claim.

4. The de Rham specialization of AQx

With the local analysis of § 3 at our disposal, we turn to relating AQy to the logarithmic de Rham
complex of X in Theorem 4.17. The key steps for this are the identification and the analysis of the
Hodge—Tate specialization of A2y in Theorems 4.2 and 4.11. These steps were also used in the
smooth case in [BMS18, §§8 and 9] but, due to the difficulties mentioned in the beginning of § 3,
we carry them out differently. Namely, we rely on the analysis of group cohomology presented in
§3 and, in the identification step, we use Lemma 3.24 (which comes from [Bhal8]). Nevertheless,
similarly to [BMS18, §9.2], we will take advantage of the following formalism of presheaves.
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4.1 The presheaf version AQI;Sh

In addition to the étale site Xs, we consider the site .’{Etsh whose objects are those connected
affine opens of X4 that have an étale coordinate map (1.5.1) and coverings are the isomorphisms.
Thus, the topology of .’{gfh is the coarsest possible and any presheaf is already a sheaf. Since the

objects of XL " form a basis of Xet, there is a morphism of topoi
_ h
(&7 hu): Xep > G

for which ¢, is given by restricting sheaves on Xg to %gfh and ¢! is given by sheafifying.
In particular, since any sheaf is the sheafification of its associated presheaf, ¢! o ¢, = id. We let

h d h
VP = gov: (X )prost — .%‘Sts

be the indicated composition of morphisms of topoi (with v defined in (1.5.5)) and set

AQE™ i= Ly (RUE™ (Ajyg, o)) € D7 (XL, Anr)- (4.1.1)

ét

Since Ln commutes with pullback under flat morphisms of ringed topoi (see [BMS18, 6.14]),

¢THAQRT) = AQy. (4.1.2)
Moreover, AQI;Sh may be described explicitly: for every object i of Z{Ié’tsh, we have
shy ~ a
R (4, AQE™) = L) (BT (48 proét Apng, ) (4.1.3)

In particular, since, by [BMS18, 6.19], the functor Ln preserves derived completeness when used
in the context of a replete topos (such as that of sets), we see from (4.1.3) that AQFx’Sh is derived
¢-adically (and also p(&)-adically) complete (compare with Corollary 4.6 below).

Armed with the formalism of §4.1, we now identify the Hodge-Tate specialization of AQx.

THEOREM 4.2. We have the identification
AQx @Y o1 Oc — Ln(gp_l)(RV*((’);r%d)), (4.2.1)

where in the target Ln is with respect to the ideal sheaf (¢, —1)Ox ¢ C Ox,4t. If the coordinate
morphisms (1.5.1) exist Zariski locally on X, then (4.2.1) also holds for AQy,, (defined in (2.2.4)).

Proof. The kernel of s o e 1 A
§2.2), so the projection formula [SP, 0944] provides the identification

inf, xad @;%d is generated by the nonzero-divisor ¢(&) (see

Ry, (Ainf,X%d) ®HAinf,6‘ogo*1 OC = RV*(O;%d)
Since (f o ~1) (1) = (, — 1, this induces the map (4.2.1) and, likewise, also its presheaf version

AR L Oc Ln(cp_l)(Rd)*(Ru*(@;%d))). (4.2.2)

Due to (4.1.2), the map ¢! brings (4.2.2) to (4.2.1), so we seek to show that (4.2.2) is an
isomorphism.

For every object 4 = Spf(R) of %g:h equipped with an étale morphism as in (1.5.1), the
discussion and the notation of §3 apply. In particular, Proposition 3.19 and (3.20.1) ensure
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that the cohomology of RI¢ont (A, Aint(Ro)) ®HAM Ajng/p is p-torsion free. Thus, since we have
©(&) =pmod (p) (see §2.1), Lemma 3.24 implies that

(u)(RFcomt(A Amf(R ))) ®Hjinf,90¢—l Oc — Lﬁ(gp—l)(RFcont(A7 Roo))~
Since the edge maps (3.3.1) and (3.15.1) are compatible, Theorems 3.9 and 3.20 then imply that
Ly (RT (U proce, Aint)) @34, gag—1 Oc = Liig,—1) (RT(UE)proce, O1)).

Consequently, (4.2.2) is an isomorphism on every i, as desired. O

4.3 The object ﬁx
To proceed further, we need to analyze the right-hand side of (4.2.1), namely,

Oy = L77(<,,—1)(RV*((9xad)) € D7%(Ox,e1), (4.3.1)
where, as in Theorem 4.2, the functor Ly is formed with respect to the ideal sheaf (¢, —1)Ox, t.

PROPOSITION 4.4. For ¢ > 0, the Ox ¢-module Hi(Qx ) is locally free of rank (dim”(xk)) at

a variable closed point x of Xj, (in particular, each H'(Qx)/p" is a quasi-coherent Ox 6t/p"-
module). Moreover,

V' Ox,e0 —> 1.(0F,) sothat H(Qx) = Ox . (4.4.1)

C

Proof. The claims are étale local (see [SP, 058S]), so we assume that X = Spf(R), that X is
connected, and that there is an étale Spf(O¢)-morphism as in (1.5.1):

X = Spf(R) — Spf(RY) = X7 with R”:=0c{to,....tr,t0 1, t5 "} (to -t —p?), (4.4.2)

so that the discussion and the notation of §3 apply. In particular, since R is R--flat (see §1.5)
and A acts trivially on RY and R, Lemma 3.7 and Proposition 3.8 imply that

RO(Y) ~

(AR )®RDR% cont(AR )

~ cont(A Roo)
Ao (A, Ry —1] ©RT B — (4.4.3)

cont Com(A Roo)[Cp_l}

Thus, since the edge maps e of (3.3.1) are compatible for R and R™, Theorem 3.9 shows that

Hi((xﬂ)ad 6+) Hi(x%d’é\-ﬁ-)

G, 001 OF B e ohig-1) (44.4)
is an isomorphism of free R-modules of rank (f) Consequently,
HH(X0)¢, O) o, Rwn(©h) o
@ o Ospt(r),ét — T O LT = Hi(Qx), (4.4.5)

Hi(xD)g!, 04)[¢p—1]

to the effect that H?(Qx) is free of rank (Cl.l), as desired. For (4.4.1), by § 3.3, we need to show that

R =5 (Rs)?. This map is an inclusion of a direct summand whose complementary summand
MOAO is both p-torsion free and, by Proposition 3.8, killed by ¢, — 1, so the claim follows. O
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Remark 4.5. The proof of Proposition 4.4, specifically, (4.4.4) and (4.4.5), shows that if
X is affine, connected, and admits a coordinate map as in (1.5.1), then the presheaf
assigning H(X24, Ot /H i(xad OM)[¢ — 1] to a variable X-étale affine X' is already a sheaf.
In particular, if the coordinate maps (1.5.1) exist Zariski locally on X (for instance, if X is
Oc¢-smooth or arises as in (1.5.3) from a strictly semistable X), then the sheaves H*(€x) may
be computed using the Zariski topology: more precisely, then the object ﬁxzm defined by the
formula (4.3.1) using the Zariski topology of X satisfies

H(Qx,, ) —> (H(Qx))|x,, for every i. (4.5.1)

COROLLARY 4.6. The object AQdy is derived &-adically complete and

psh ~ (4QL2) -1 psh
AP 25 RGL(AQx) = R (AQE™M)). (4.6.1)

Proof. For the derived ¢-adic completeness, since ¢! o R, = id, it suffices to show that the
map

AQx — Rhmn(AQx ®%inf Ainf/é.n)

becomes an isomorphism after applying R¢,. Thus, since AQE’:h is derived &-adically complete
(see §4.1), it suffices to establish the adjunction isomorphism (4.6.1). For this, by the definition
of %Sts h given in §4.1, we may assume that X is affine, connected, and admits an étale morphism

1.5.1). In addition, since AQR™ is derived ¢(&)-adically complete, the X2*"-analogue of [BMS18,
X ét
9.15] reduces us to proving that

AQE" &5 Aue/(0(€)") = Réw(0™ (AQF" @, Aunt/(2(O)")).
By the five lemmas, we may assume that n = 1 and, by the proof of Theorem 4.2,
sh ~ A sh
AR @ Aing/(0(8)) = L, 1) (Row(Rr(Oaa))) =1 Q.
It remains to recall from Remark 4.5 that the cohomology presheaves of Qg’:h are sheaves. O

Our next task is to identify the vector bundles H ’(ﬁx) with the twists of the bundles given
by logarithmic diffgrentials (see Theorem 4.11). For this, in Proposition 4.8, we first express
Hi(Qx) as \' H'(2x), and then, in (4.10.2), construct a map that relates H'(Q2x) to Kihler
differentials.

4.7 The cup product maps
By the same arguments as in [SP, 068G], there are product maps

Rv.(0F) @0y, B'v4(0F) == HI*'(Ru,(O*) @5, , Ru(O"))
that satisfy 2 Uy = (=1)7'y Uz (see [SP, 0BYT]). By [SP, 0B6C], there is a cup product map
Rv,(07) ®%, , Rv.(OF) > Rv,(OT).

These maps combine to give the ‘cup product map’ (where the tensor product is over Ox ¢t)

®R1V*(@+) — R'v,(O%) for each i > 0. (4.7.1)

s=1
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PROPOSITION 4.8. For each ¢ > 0, the map (4.7.1) induces the isomorphism

i Rly, (OF) ) ~ AT ~ iS5\~ R (Oh)

A (Rlu*(éﬂ[cpfu =N H () — Hi( ) = 5 550 5y (48.1)
Proof. By Proposition 4.4, each H’(ﬁx) has no nontrivial 2-torsion, so the antisymmetry of
the map (4.7.1) in each pair of variables indeed induces the Ox ¢-module map (4.8.1). For the
isomorphism claim, we may work étale locally, so we put ourselves in the situation (4.4.2).
The edge maps

e: Héont(AvROO) - Hi(%aCdﬂ 6+)

of (3.3.1) are compatible with cup products: to check this, one identifies H i(%g@,@*) with
the direct limit of the ith Cech cohomology groups of O+ with respect to a variable proétale
hypercovering of %acd (see [SP, 01HO]) and uses the hypercovering construction of the cup product
(see [SP, 01FP]). Due to Theorem 3.9 and (4.4.3), it then remains to argue that via the cup
product the identification

Hl

cont

which follows from [BMS18, 7.3 and 7.5]. O

. 3.7 .
(A, R) J R? induces H (A R) =2 NY(RY),

To relate H 1(@35) to Kahler differentials, we now review the needed material on cotangent
complexes.

4.9 The completed cotangent complex Iﬁ@ +/7,
Affinoid perfectoids form a basis of (X28) 06t (see [Sch13a, 4.7]). Therefore, [BMS18, 3.14] ensures
that for the sheaf of rings (’)%ad,

which gives an object of D<0((9;d

whose terms are OF -flat and

the cotangent complex Lz, 10 xad

), satisfies

H_J ~Y o Y
Lé*/(’)c ®7 Z/pZ =0, and, hence, also L5+/OC =~ 0.
Consequently, the derived p-adic completion turns the canonical morphism
Loe/z, ®oc (’);%d — L@+/Zp into an isomorphism (Lo, /7, ®0c (’);d) AN H“O+/Zp
in the derived category. By [GR03, 6.5.12(ii)], the complex Lo, /7, is quasi-isomorphic to Q%,)C /7,
placed in degree 0. The p-divisibility of Q}Dc /7, then ensures that for every n > 0 we have

~ — ~ [Sch13a, 4.2(iii)]
LOC/ZP®H(50(O+/pn0+) (Q(’)C/Z [pn]®oco+)[l] = (QOC/Z [pn]®oc ((’)‘F/pn(/)‘i’))[l]’

where O abbreviates the integral structure sheaf OF, ;. Moreover, by [Fon82, Theorem 1'(ii)],?

_'{md

Oc{l} = Llnn pry(Qéf)C/Zp [p"]) is a free Oc-module of rank 1.

In conclusion, letting {1} abbreviate the Oc-tensor product with Oc{l}, we obtain an
isomorphism

(Log/z, G0 Ofe)™ = (0L {1DI, soalso Lo, = (OL DM, in D©OF,). (19.1)

® For passage from QZ o of [Fon82] to Q%?c/Zp’ one may use [GRO3, 6.5.20(i)] to conclude that QOC/ZP [pl=0
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4.10 The relation between (NZ;{ and Kahler differentials
The functoriality of the cotangent complex supplies the pullback morphism

_ . (4.9.1) _
Loz, = Fn(oiys) = (Ru(O 1)) (4.10.1)

To explicate its source, we note that, as in §4.9, the explicit description of L, /z, 8ives

(Log/z, @00 Ox,e)” = (Ox,a{1})[1], so H'(Loy ./z,) = H Loy ,j00)-

Moreover, the short exact sequence [SP, 0D6K] leads to the identification
HO(]LOx,ét/OC) = Q%E/Oc

(the R'lim term vanishes due to the description [I1171, I11.3.2.7]: each Xo/pr 18 a local complete
intersection over O¢/p"™ and, as may be seen using (1.5.1), no nonzero local section of a vector
bundle on Xo,, /pn vanishes on X5% /,pn). By [I171, II1.3.1.2], over X°™, this identification gives a
quasi-isomorphism between

H/:Oxsm,ét/oc and Qism/oc placed in degree 0.

Consequently, by applying H(—) to the map (4.10.1) and twisting by Oc{—1} we obtain the
first map in the following composition of O, ¢-module morphisms:

A Rlv, (Ot ~ ~
00 {1} = B (Og) = Gy = H' () (110.2)

By [BMSI18, 8.15 and its proof], the restriction of this composition to X*™ is an isomorphism
onto ((¢, —1) - H(2x))|xsm. Moreover, by Proposition 4.4, the Ox ¢-module H!(Qz) is a vector
bundle, so it has no nonzero (¢, — 1)-torsion and (H 1(Qx))/ ((p —1) has no nonzero local sections
that vanish on f{%’; J(Cp—1)" In conclusion, we may divide the composition (4.10.2) by (, — 1 to
obtain a map

Q%{/Oc{_l} — H'(Qy) that is an isomorphism over X*™. (4.10.3)

THEOREM 4.11. The restriction of the map (4.10.3) to X" extends uniquely to an Ox s-
isomorphism

le/(’)c,log{_l} = Hl(QZ{)) (4111)
which, by (4.4.1) and Proposition 4.8, induces an Oy, ¢-module identification
k100 10gl—1} = H'(Qx)  for every i > 0. (4.11.2)

The proof of Theorem 4.11 will use the formal GAGA and Grothendieck existence theorems.
The Noetherian cases of these theorems proved in [EGA 111y, §5] have been extended to suitable
non-Noetherian settings by K. Fujiwara and F. Kato (with important inputs by O. Gabber).
The following theorem summarizes the relevant to our aims special case of this extension.

THEOREM 4.12 (Fujiwara—Kato). For a valuation ring V of height 1, a nonzero nonunit a € V
such that V is a-adically complete, and a proper, finitely presented V -scheme Y, the functor

F > (F/a"Fnso (4.12.1)

is an equivalence from the category of finitely presented Oy -modules F to that of sequences
(Fn)n>o of finitely presented Oy, -modules F,, equipped with isomorphisms Fpn+1lvy,),n = Fn.
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Proof. The claim is a special case of [FK18, 1.10.1.2]. In order to explain why [FK18, 1.10.1.2]
implies our assertion, we first reinterpret our source and target categories.

By a result of Gabber [FK18, 0.9.2.7], the ring V is ‘a-adically topologically universally
adhesive’, so, by [FK18, 0.8.5.25(2)], it is also ‘topologically universally coherent with respect to
(a)’. In particular, by [FK18, 0.8.5.24], every finitely presented V-algebra is a coherent ring and,
hence, by [FK18, 0.5.1.2], the Oy-module Oy is coherent (in the sense of [FK18, 0.4.1.4(2)] or
[EGA I, 0.5.3.1]). In particular, by [FK18, 0.4.1.8], an Oy-module F is finitely presented if and
only if F is coherent, and likewise for Oy;, Jan -modules for n > 0.

By [FK18, 0.8.4.2 and 0.8.5.19(3)], the formal a-adic completion ¥ of Y is covered by
open affines whose coordinate rings are ‘topologically universally adhesive’ and, hence, by
[FK18, 0.8.5.18], also ‘topologically universally Noetherian outside (a)’. In particular, by [FK18,
[.2.1.1(1) and I1.2.1.7], the topological ring V' is ‘topologically universally rigid-Noetherian’ and
the formal scheme Y is ‘universally rigid-Noetherian’. In addition, by [FK18, 0.8.4.5], the formal
scheme Y is locally of finite presentation over Spf(V'). Thus, [FK18, 1.7.2.2] applied with A =V
and [FK18, 1.7.2.1] imply that Y is ‘universally cohesive’. Then, by [FK18, 1.7.2.4 and 1.3.4.1],
the functor (F,,) — l(ir_n]—'n is an equivalence from the target category of (4.12.1) to the category
of coherent Ogp-modules.

In conclusion, our claim is that the quasi-coherent pullback ¢* along the morphism ¢: Y >V
of locally ringed spaces induces an equivalence between the category of coherent Oy-modules
and that of coherent Op-modules. This is a special case of [FK18, 1.10.1.2] (see also [FK18,
1.§9.1]). O

Remarks.

4.13. In Theorem 4.12, if each F, is locally free, then the Oy-module F that algebraizes the
sequence (Fy)n>0 is also locally free. Indeed, it is enough to argue that the stalks of F at
the points of Yy, are flat, so, since i is flat by [FK18, 1.1.4.7(2), 0.8.5.8(2), 0.8.5.17], it
suffices to note that the Op-module i*F = lim F;, is locally free because the Nakayama
lemma ensures that F, 11 is locally trivialized by any lifts of local sections that trivialize F,,.

4.14. Remark 4.13. and the proof of Theorem 4.12 also show that ¢ is flat and that the functor
(Fn) — 1(ir_n]-'n is an equivalence to the category of finitely presented Op-modules.

4.15 Proof of Theorem 4.11

As we observed in §4.10, no nonzero local section of a vector bundle on X vanishes on X°™.
Thus, the desired isomorphism (4.11.1) is unique if it exists. Consequently, we may assume that
X = Spf(Oc{to, - -, tr,tﬂl, e ,t?l}/(to -+ t, —p?)) with r, d, and ¢ as in (1.5.1). In this case, X
is an open subscheme of the formal p-adic completion of some proper, flat W (k)-scheme X that
Zariski locally has étale ‘coordinate morphisms’ as in (1.5.2) with O there replaced by W (k).
Thus, finally, we may drop the previous assumptions and assume instead that X = X with X as
above. We equip X with the log structure Oy N ((’)X[%])X, so that X is log smooth over W (k)
(see §1.6, especially, Claim 1.6.1) and the map X — X of log ringed étale sites is strict (see
Claim 1.6.3). By Theorem 4.12, the map (4.10.3) algebraizes to an Oxy-module map

By Proposition 4.4 and Remark 4.13., the Oy-module H is locally free. By (4.10.3) and the
Nakayama lemma, f is surjective at every point of A7™.
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CrAM 4.15.1. There is an isomorphism Ho ~ Qi(C/C'

Proof. By the adic GAGA (see [Schl3a, 9.1(i)]), it suffices to find an analogous isomorphism
after pullback to (Xg)2d = %%}9. On the one hand, such a pullback of H¢ is isomorphic to

(RIV*(@\;FM)) [%] On the other hand, [Sch13b, 3.23-3.24 and their proofs] supply an isomorphism
C
between (Rlz/*((’);%d))[%] and the pullback of Q}YC/C to (Xc)ad, O

Claim 4.15.1 ensures that fo is a generically surjective morphism between isomorphic vector
bundles on X¢. Since X¢ is proper and smooth, every global section of the structure sheaf of
each connected component of X is constant, so det(f¢) is an isomorphism, and hence f¢ is also
an isomorphism. In conclusion, f|ysm is a surjection between vector bundles of the same rank,

SO
Flasm: Qam s, {—1} = Hlxom. (4.15.2)

Since X'\ A%™ is of codimension >2 in X, limit arguments and [EGA IVa, 5.10.5] ensure that H
is the unique vector bundle extension of H|ysm to X'. The isomorphism (4.15.2) then leads to an
isomorphism 2}, /0c log{—1} = M whose formal p-adic completion gives the desired (4.11.1). O

Remark 4.16. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then, by (4.5.1),
the identifications of Theorem 4.11 hold already for the Zariski topology; more precisely, then

H(Qx,,. ) = ;/Oc,log{_i} as Ox,, -modules for every i > 0.

We are ready to relate the de Rham specialization of AQy to differential forms by combining
the results above with the argument from the proof of [BMS18, 14.1].

THEOREM 4.17. There is an identification
AQx @5, 9 Oc = Q% )0, 10 (4.17.1)
If the coordinate morphisms (1.5.1) exist Zariski locally on X, then (4.17.1) also holds for AQx,, .
Proof. Since ¢(u) = (&) (see §2.1), [BMS18, 6.11] gives the second identification in
AQx @O0 = AQx @7, o Aint @ gop1 Oc = (Lny(e)) (AD2)) O o1 Oc.

By [BMS18, 6.12], since Aine/((€)) = Oc via §o !, the object (L) (AQx)) @Y%
is identified with the complex whose ith degree term is

Oc

inf» 9090_ 1

i (421 _ _ i
)® ( z )HZ(Qx) Q0. <%)®
and the differentials are given by Bockstein homomorphisms.

Since O% is perfect, L Aime/Zp, = 0. Moreover, (4.9.1) applied with X = Spf(O¢) implies that
Loz, = (Oc{1})[1]. Thus, Lo, 4, = (Oc{1})[1], where O is an Aj-algebra via §o =", In
particular, due to [I1171, 111.3.2.4(iii)], we have Ker(fo¢~1)/(Ker(fo 1)) = Oc{1}.

In conclusion, by (4.11.2) and the preceding discussion, AQy ®%inf’9 Oc¢ 1is identified with

i er(fop—1
H'(AQx @3 o1 Oc) ®0c ((Iid(eosfi-l))v

the complex whose ith degree term is QZE 106 and the differentials are certain Bockstein

i ,log

homomorphisms. Each /O, log is a vector bundle, so the agreement of the Bockstein

differentials with those of 25 /06, log DAY be checked over X*™ (compare with the argument
C7 Og

for (4.10.3)), where it follows from [BMS18, 14.1(ii)] (or [Bhal8, proof of Proposition 7.9]).
Due to Remark 4.16, the proof for Ay,  is the same. ]
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COROLLARY 4.18. The de Rham specialization of RI'(X¢;, AQx) may be identified as follows:
RT(Xe, AQx) @1, ¢ O = RTlogar(%/0c). (4.18.1)
Proof. The claim follows from Theorem 4.17 and the projection formula [SP, 0944]. O

Remark 4.19. In the case when X = X for a proper, flat W (k)-scheme X that étale locally

has étale coordinate morphisms (1.5.2) with O there replaced by W (k), we have the further
identification

R (Xet, 23, 555 108) vy 00— BU(Xet: D/0,, 105) = Rl 1og ar(X/O0),

where X' is endowed with the log structure Ox ¢ N (O X}ét[%])x (whose pullback to X is the log
structure Ox ¢ N (Ox, ét[%])x of X, see Claim 1.6.3) and W (k) is endowed with the log structure
associated to W (k) \ {0} — W (k). Indeed, the pullback map between the E;-spectral sequences

HY (Xoo, Xy, 10c105) = H™ (BT (Xet, 2, /00 108)):

HI(X,9% 10, 10g) = H'T (RT10gar (X/O0))
is an isomorphism because, by the Grothendieck finiteness and comparison theorems [EGA 111y,

3.2.1 and 4.1.7] (combined with limit arguments, which use Claim 1.6.1 and the fact that X’ is
necessarily finitely presented, see [SP, 053E]; alternatively, directly by [FK18, 1.9.2.1]),

HI (XOC,Q;OC JOe1og) — HI (X, Q% J0e 1og)  Tor all i, j.
COROLLARY 4.20. If X is proper over O¢, then RT(X¢, AQx) is a perfect object of DZ0(Ajpnt);

in other words, then RI'(Xe, AQx) is quasi-isomorphic to a bounded complex of finite free
A;p-modules.

Proof. By the Grothendieck finiteness theorem [Ull95, 5.3] and the spectral sequence as in
Remark 4.19, the Oc-modules H7 (R0 ar (X/O¢)) are finitely presented and, hence, also perfect
(see [SP, 0ASP]). Thus, by Corollary 4.18 and [SP, 066U}, the object

RT (Xer, AQx) @, At/ (€)

of DZ°(O¢) is perfect. Moreover, by Corollary 4.6, the object RT'(X4, AQgx) is derived &-adically
complete. Therefore, by [SP, 09AW], it is perfect as well, as desired. a

We close the section by comparing RI'(X¢, AQx) with its analogue defined using the Zariski
topology.

COROLLARY 4.21. If the coordinate morphisms (1.5.1) exist Zariski locally on X, then the coho-
mology RI'(X4, AQx) may be computed using the Zariski topology of X; more precisely, then

RT(X7a:, AQx,. ) —> RI'(Xg, AQx). (4.21.1)
Proof. By Theorem 4.17 and Corollary 4.18, the reduction of (4.21.1) modulo ¢ is identified with
RP(:{Za“ .%/Oc,log) L RP(:{ét? %/Oo,log)ﬂ

and, hence, is an isomorphism as indicated. Thus, since, by Corollary 4.6 (and its Zariski
analogue), RI'(Xzar, AQx,, ) and RI'(X¢, AQx) are derived &-adic complete, (4.21.1) is an
isomorphism. O

Ezample 4.22. By §1.5, Corollary 4.21 applies to any O¢-smooth X and, more generally, to any
X that Zariski locally arises from a strictly semistable scheme defined over a discrete valuation
ring.

2073

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


http://stacks.math.columbia.edu/tag/0944
http://stacks.math.columbia.edu/tag/0944
http://stacks.math.columbia.edu/tag/0944
http://stacks.math.columbia.edu/tag/0944
http://stacks.math.columbia.edu/tag/053E
http://stacks.math.columbia.edu/tag/053E
http://stacks.math.columbia.edu/tag/053E
http://stacks.math.columbia.edu/tag/053E
http://stacks.math.columbia.edu/tag/0ASP
http://stacks.math.columbia.edu/tag/0ASP
http://stacks.math.columbia.edu/tag/0ASP
http://stacks.math.columbia.edu/tag/0ASP
http://stacks.math.columbia.edu/tag/066U
http://stacks.math.columbia.edu/tag/066U
http://stacks.math.columbia.edu/tag/066U
http://stacks.math.columbia.edu/tag/066U
http://stacks.math.columbia.edu/tag/09AW
http://stacks.math.columbia.edu/tag/09AW
http://stacks.math.columbia.edu/tag/09AW
http://stacks.math.columbia.edu/tag/09AW
https://doi.org/10.1112/S0010437X1800790X

K. CESNAVICIUS AND T. KOSHIKAWA

5. The absolute crystalline comparison isomorphism

In Theorem 4.17, we identified the O¢-base change along 6 of the object AQx with Q5 /06, log"
The goal of this section is to similarly identify the A.s-base change of AQyx with an object that
computes the logarithmic crystalline (that is, Hyodo-Kato) cohomology of Xo,, /p OVer Acris (see
Theorem 5.4). This is more general because, on the one hand, 0 factors through the morphism
Aint —> Aecris, while, on the other hand, Q% 10¢, log computes the log crystalline cohomology
of X, /p over Oc¢. In fact, even the map Ay — Ape/p factors through Ay — Acpis, SO
the identification of the A.s-base change of AQy will capture the entire = 0 locus of Ajus
(in contrast, the comparison with the p-adic étale cohomology captured the p # 0 locus, see
Theorem 2.3).

In comparison with the case when X is smooth treated in [BMS18, §12], controlling the
interaction of the functor Ly, with the relevant base changes seems more subtle. To overcome
this, we resort to the analysis of continuous group cohomology carried out in §3. Another
major complication is the presence of log structures. Specifically, not knowing the existence
of logarithmic divided power envelopes of certain nonexact logarithmic closed immersions in
mixed characteristic, we are forced to devise slightly indirect arguments when analyzing the
relevant divided power envelopes. For this, we rely on the results and arguments from [Kat89]
and [Beil3b];® the latter reference is especially useful for us because some log structures that we
use are not coherent (only quasi-coherent).

5.1 The ring Acpis
Using the generator ¢ of the kernel of §: Ay — O¢, we let A°

cris

generated by the divided powers % for n > 1. The induced map 0: A%.. — O identifies A°

cris cris
with the divided power envelope of 0: Ay — O¢/p over (Zy, pZ,) equipped with the unique
divided powers on pZ,, see [Tsu99, A2.8]. Since 0(u) = 0, we have u? € pA%.., so the p-adic
topology of A agrees with the (p, u)-adic topology. We set

cris

be the A;pe-subalgebra of Ainf[%]

Agis == (A2.)"  where the completion is p-adic (equivalently, (p, u)-adic).
The induced map 6: A.is = O identifies Agis with the initial p-adically complete divided power
thickening of O¢ over Z, (see [Tsu99, A1.3 and A1.5]). By Proposition 5.36 below (or by [Tsu99,
A2.13] and [Bri06, 2.33]), the map A%, — A is an injection into an integral domain.
Analogously to §3.26, the ring Acis comes equipped with the Frobenius endomorphism ¢
that intertwines the absolute Frobenius endomorphism of O¢/p via the map 6. The identification

0, (m)
cris  ?

0

cris

(m))/\

Acris = (im A which results from the evident A (5.1.1)
—>m

Zlim A
—>m
is Frobenius equivariant and compatible with the maps 6.

5.2 The log structure on Acyis

For each n > 0, the ring Aqis/p™ is a divided power thickening of O¢/p over Z/p™. Therefore,
by [Beil3b, §1.17, Lemma)l, every quasi-coherent, integral log structure ' on O¢/p for which
N/(O¢/p)* is uniquely p-divisible lifts uniquely to a quasi-coherent, integral log structure on
Acris/p". Thus, letting N be the default log structure §1.6 (1) on O¢/p, for which

N/(Oc/p)* = Qxo,

8 We are citing the post-publication arXiv version of the article, which slightly differs from the published version.

2074

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800790X

THE Aj,f-COHOMOLOGY IN THE SEMISTABLE CASE

we obtain compatible, quasi-coherent, integral log structures on the rings A.is/p", to the effect
that each Agis/p™ becomes a log PD thickening of O¢/p. Explicitly, these log structures are the
pullbacks of the log structure on Acs associated to the prelog structure

ObC \ {0} - Acris; X = [CL‘] (521)
In what follows, we always equip:

e cach Agis/p", as well as Agis, with the log structure described above;
e cach Z/p"Z with the standard divided powers on pZ/p"Z and the trivial log structure.

For every divided power thickening Z over Z/p"Z of an O¢/p-scheme Z, the morphism

Z 5 Spec(O¢/p) extends uniquely to a PD morphism AN Spec(Acris/p™) (see the proof of
[Tsu99, A1.5]). If, in addition, Z is equipped with a quasi-coherent, integral log structure for
which z is enhanced to a morphism z* of log schemes, then, by [Beil3b, §1.17, Exercise], the
morphism z? extends uniquely to a PD morphism 2z*: 7 — Spec(Aeris/p™) of log schemes.

5.3 The absolute crystalline cohomology of Xo /p
We let

(%(’)C/p/Zp)log cris

be the log crystalline site of X¢,, /, over Z, defined as in [Beil3b, §1.12]: the objects are the étale

X0 /p-schemes Z equipped with a divided power thickening 7 over some Z/p"Z such that Z is,
in turn, equipped with a quasi-coherent, integral log structure whose pullback to Z is identified
with the pullback of the log structure of X, (which is defined in §1.6 (2)); the coverings are
the jointly surjective étale log PD morphisms. The universal property of Acs reviewed in the
last paragraph of §5.2 gives the following identification of sites:

(%OC/p/Zp)log cris = (%Oc/p/Acris)log cris»
where (X, /p/AcriS)logcriS is the log crystalline site of X/, over Acis defined analogously to

the site (X0, /p/Zp)iogeris Teviewed above (simply replace Z/p"Z by Acis/p™). The absolute
logarithmic crystalline cohomology of Xo,/p is the cohomology of the structure sheaf:

Rliog eris (X0 p/ Acris) 7= BU (X0 /p/Acrisog eriss Oxo, p/Acris)-
We consider the morphism of topoi
u: (Xog /p/ Acris)logeris = (X0 /p)et = X
that “forgets the thickenings Z’ (see [Beil3b, §1.5]), and we use it to obtain the identification
Rlog eris (X0 fp/ Acris) = R (Xat, Rue (O jaci,))-
By the functoriality discussed in [Beil3b, §1.5, Corollary], the absolute Frobenius of X, /p

(which is the multiplication by p on log structures) and the Frobenius of Agis induce the Agpis-
semilinear Frobenius endomorphisms of Ru,(Ox 0w Aens) AN R 1og cris (X0, /p/ Acris) -

The main goal of this section is the following identification of the Ags-base change of AQx.
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THEOREM 5.4. There is a Frobenius-equivariant identification
~L ~
AQ}: ®Ainf ACI‘iS = Ru*(oxOc/p/Acris)ﬂ (541)

where the Frobenii result from those discussed in §§ 2.1, 2.2, 5.1, and 5.3 and, consistently with
the notation (1.7.1), we have AQx @Hjinf Agris = Rlim, (AQx ®H;1mf Acris/p").

We will first prove a version of Theorem 5.4 in the presence of fixed semistable coordinates.
We will then complete the proof by using ‘all possible coordinates’ to globalize the argument.
This overall strategy is similar to that used in [BMS18, §12] in the smooth case.

5.5 The local setup
For the local argument, we assume until §5.17 that X = Spf(R), that X is connected, and that
for some 0 < r < d and g € Q~¢ there is an étale Oc-morphism

X =Spf(R) — Spf(RY) with R”=0c{to,....tr,t:1, ..., 5"/ (to--tr —p?). (5.5.1)

We use the rings RS and R, the group A, and its generators ¢; introduced in §3.2, the rings
At (RY), Ainf(Rs), A(RY), and A(R) and the modules N and N, introduced in §3.14, the
rings A((:ZLS) (Roo) and A((:ZLS) (R) introduced in §3.27, and the object Angh introduced in §4.1.

Roughly speaking, with the coordinates above, we will access the right-hand side of (5.4.1)
through the logarithmic de Rham complex of an explicit log smooth lift Spf(Aeis(R)) over
Spf(Acis) of Xp,,p over Spec(O¢/p) (see Proposition 5.13). This complex may be made explicit
by expressing its differentials in terms of the A-action on Aqis(R) (see Lemma 5.15). In contrast,
results from § 3, namely, Theorem 3.20 and (3.25.1), make the left-hand side of (5.4.1) explicit.
Once both sides are explicit, one identifies them and establishes (the presheaf version of) the
local case of Theorem 5.4.

However, this relatively short local proof, whose detailed version in the good reduction case is
given in [BMS18, 12.5], is ill-suited for globalization. This is because it appears difficult to extend

the implicit exchange of the order of the functors Lng,y and — @Hjmf Acgis in this argument to
general perfectoid covers that appear in the ‘all possible coordinates’ technique. For instance, one
may attempt to use the almost purity theorem and Lemma 3.18 to reduce such commutativity
to the ‘base case’ of R, but this requires understanding the W(mb)—torsion in the groups

Hgont<A7 (Aint(Roo) ®Ainf Acris)/ 1)

that seem difficult to access due to pathologies of the ring Aeyis/p.
Similarly to [BMS18, §12.2], to overcome this difficulty we will use the rings A yeviewed

cris
in §3.26 that retain better finite-type properties over A;,¢ than Ag.s. In particular, we use the
(m)

work of §3 to commute the functors L, and — @HAM A, in the following proposition.

PROPOSITION 5.6. In the local setting of § 5.5, for every m > p, we have
L0 (RT prost (X2, Aine)) 85 A 25 Lo (RT proes (X351, Agng) &5, A™) 5.6.1
M) ( proct (XCs Ainf)) ® 4 - 77(,u)< proét (XEs Ainf) ® 4 )- (5.6.1)

inf *cris inf *cris

Proof. The map (5.6.1) exists because its target is derived p-adically complete (see [BMS1S,
6.19]). Moreover, by Theorems 3.20 and 3.34, it suffices to prove that

~L m) ~ m
LT](M) (chont(A7Ainf(ROO))) ®Ainf A( : - Ln(u) (RFCOHt(A)A( )(Roo)))

cris cris

2076

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800790X

THE Aj,f-COHOMOLOGY IN THE SEMISTABLE CASE

By Propositions 3.25 and 3.32, the ‘nonintegral’ part N, does not contribute, so it suffices to
show:
~L m m
Ly (Rl coms (A, A(R))) @4, AT 25 Ly (R cons (A, AT (R))). (5.6.2)

Cris Cris
In turn, (5.6.2) follows from the triviality of the A-action on A(R)/p and AEHS (R)/p (see §§3.14

and 3.27): namely, due to Lemma 3.7 and this triviality, the left-hand (respectively, right-hand)
side of (5.6.2) becomes

: 61—1 0g—1
inf A((;LS) (respectlvely, KA(m>(R)( lu e du )),

cris

K (5L, ) B

where the completed tensor product is nonderived (that is, termwise) because each p", u”’ is an
A(R)-regular sequence with A(R)/(p", ") flat over Ai,¢/(p", ") (see Lemma 3.13); the two
Koszul complexes may then be identified termwise (see §3.27). O

Continuing to work in the local setting, we now express the (presheaf version of the) left-hand
side of (5.4.1) in the form that will be convenient for the ‘all possible coordinates’ technique.

COROLLARY 5.7. In the local setting of § 5.5, there is a Frobenius-equivariant identification

~

(01 = 1,.w5d—1)») (5.7.1)

(see (4.1.1) for AQ™) where, on the right-hand side, the direct limit and the p-adic completion
are termwise.

~L
RO, AQE™) @3, Acris = (T, () (K o)

Cris

Proof. The A-equivariant Frobenii of the rings AEHS) (R~ ) are compatible as m varies (see § 3.27),

so, due to the divisibility u|@(u), they induce the Frobenius on the right-hand side of (5.7.1).
Proposition 5.6 and Theorem 3.34 give the Frobenius-equivariant identification

S shy sL m
RT (:{StthQI; h) ®Ainf A( ) 77(“)( A(m)(Roo)((s 1,...,(5(1— 1)),

Cris
cris

so it remains to pass to the direct limit and to form the p-adic completion. O

We turn to the right-hand side of (5.4.1) and begin by constructing a log smooth lift Agis(R)
of R/p.

5.8 The ring Acpis(R)
The ‘relative version’ of Ais (respectively, a ‘highly ramified cover’ of this relative version) is
the A(R)-algebra (respectively, Aiys(Roo)-algebra)

Acris(R) = A(R> ®A' Acris (TespeCtively, Acris(Roo> = Ainf(Roo) ®Ainf Acris)a

inf

where the completion is p-adic (equivalently, (p, u)-adic, see §5.1). Due to the decomposition
(3.14.5), the subring A is(R) C Acris(Roo) 18 an Agis(R)-module direct summand. The maps 6
from §§3.14 and 5.1 induce compatible surjections

0: Auis(R) » R and  0: Agis(Roo) —» Reo
We let AV (R.) be the Ajnt(Roo )-subalgebra of Ajy¢(Roso) [%] generated by the elements £" /n! for

CrlS
n > 1. By [Tsu99, proof of A2.8], letting Ainf(Roo)[%}n>1 denote the divided power polynomial
algebra over Ay (R~ ) in one variable, we have

Agrls(R ) = (Ainf(ROO) [%]ngl)/(T - g) so also AgriS(ROO) = Ainf(R ) Ajnt AO

cris*
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Consequently, since ¢ generates Ker(0) C Ajnr(Roo), the ring A2, (Roo) is identified with the
divided power envelope of (Ainf (R ), Ker(0)+pAins (Roo)) over (Z,, pZy). By the previous display,
Acris (R ) (AO (R ))A

cris

By §3.14, the ring Agis(Roo) (respectively, Aeis(R)) is p-adically formally étale as an Ais(R5)-
algebra (respectively, Aes(R7)-algebra) and p-adically formally flat as an Acgis-algebra. In
particular, Agis(Roo) inherits p-torsion freeness from Agis. Moreover, even though we will not
use this, Aqis(Roo) is also p-torsion free, as follows from Proposition 5.36 below (contrast this
with an argument for (3.27.2)).

The rings Aeis(R) and Agis(Roo) come equipped with Agis-semilinear Frobenius endomor-

phisms that are compatible with their counterparts for Agng(R) and Ag:s) (Rs) discussed in
§3.27. The profinite group A acts continuously, Frobenius-equivariantly, and Acs-linearly on
Acris(R) and Agis(Rso). As in §3.27, the induced A-action on Agis(R)/p is trivial.

We will endow Ayis(R) with a log structure, which will, in fact, come from A(R).

5.9 The log structure on A(R)
Provisionally, we consider the (fine) log structures on Aj,s and A(R) associated to the prelog

structures

aw [(pt/
N> M A and N’;{)

1 (ai)—T1X;" A(R)

Then, under the diagonal map N>¢ — N’;Bl, the ring A(R) is a (p, u)-adically formally log smooth

Ajn-algebra (see (3.14.2) and [Kat89, 3.5-3.6]). To eliminate the dependence on ¢, we always,
unless noted otherwise, equip Aj,¢ with the log structure associated to the prelog structure

O\ {0} = Awr, o> [a]. (5.9.1)

Likewise, we always equip A(R) with the log structure that is the base change of the fine log
structure on A(R) described above along the ‘change of log structure’ self-map of A;,¢ determined

ar (/P70 .. . . :
by N>g ————— O\ {0}. Explicitly, this log structure is associated to the prelog structure

NZG L., (O \ {0}) — A(R) (5.9.2)

that embeds N5 diagonally into N;‘Bl, sends an a € Nxg to ((p'/P™)9)%, and sends the ith

standard basis vector of N;Sl (respectively, an x € O% \ {0}) to X; (respectively, to [z]).

These latter ‘default’ log structures on Aj,s and A(R) are quasi-coherent and integral and,
by base change, with them A(R) is (p, u)-adically formally log smooth over Aj.¢. In fact, via the
map 0, the ring A(R) over Aj,s becomes a (p, u)-adically formally log smooth thickening of R/p
over O¢/p (where R/p is endowed with the log structure discussed in §1.6).

The Frobenii of Ajs and A(R) extend to the log structures by letting them act as
multiplication by p on Nggl and N3¢ and as the pth power map on (’)"C \ {0}. Consequently,
the Frobenius of the log Ajys-algebra A(R) lifts the absolute Frobenius of the log O¢/p-algebra
R/p.

The Frobenius-equivariant A-action on the Ajy-algebra A(R) (see §3.14) extends to a
Frobenius-equivariant A-action on the log Aj,s-scheme Spec(A(R)): indeed, a § € A sends each
X; with 0 <1 < r to us, ;- X; for some Teichmiiller unit us ; € A(R)* (see §3.14) and the prelog
structures

N (e > I et (@)= Tl - X0
—_———>
=0 20

A(R) and

A(R)
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determine the same log structure on Spec(A(R)), namely, the one associated to the prelog
structure

(), (@) = [Tz’ - T X
Zr+ x NGt d A(R).

5.10 The logarithmic de Rham complex

With a slight abuse of notation, we let
AR/ Avnt o

be the (global section complex of the) logarithmic de Rham complex of Spf(A(R)) over Spf(Ains).

More precisely, Q;‘( R)/Asne, log is the (termwise) inverse limit over n,n’ > 0 of the logarithmic

de Rham complexes of A(R)/(p", ") over Apg/(p", ™) (described, for instance, in [Ogul8,
V.2.1.1]). Due to the formal log smoothness of A(R) over Aj,, each Qi&(R)/Amf log 18 a free

A(R)-module: indeed, the logarithmic differentials
dlog(X1),...,dlog(Xy)

form an A(R)-basis of QA(R)/AM log- WVe let

aroaxy  AR) = A(R) for i=1,....d (5.10.1)
denote the dual basis of log Aj,s-derivations (we do not notationally explicate the accompanying
homomorphisms from the log structure to A(R)). These satisfy the following explicit formulas
that are derived using the relation dlog(Xg) + - - - + dlog(X,) = 0:

0 if0<j#i X, if0<i<r
0 ’ o )
W(Xj):{xi if j =i and alog(xn(XO):{o i (5.10.2)

The 78105(&) also define an isomorphism QA(R) /A o A(R)@d7 which extends to an

_ { inf, log
isomorphism

° ~/ 8 6
QA(R)/Amf,log = KA(R) (Blog(Xl)’ Tt 8log(X,i)) (5.10.3)
that may be considered canonical because its construction only uses data determined by the local
coordinate map (5.5.1). The Frobenius of the log Aj,s-algebra A(R) multiplies each dlog(X;) by

p, so its effect on the right-hand side of (5.10.3) is given in each degree j by p’ times the Frobenius
of A(R).

5.11 The log structure on A.is(R)
Unless specified otherwise, we equip the A(R)-algebras Acis(R) and Agis(R)/p™ for n > 0 with
the pullback of the log structure on A(R) determined by (5.9.2). Thus, since the log structures
(5.9.1) on Ajyr and (5.2.1) on Ags agree, Aeis(R) is p-adically formally log smooth over Ags.
Letting the completion be p-adic, we set

— QO S .
QAcris(R)/Acris: log "™ QA(R) /Ainf’ log ®Ainf Acrls’

which is the (global sections of the) logarithmic de Rham complex of Spf(Aeis(R)) over
Spf(Acris)~

We use the p-adic completeness of Aqis(R) and its p-adic formal flatness over Ags (see §5.8)
to extend the divided power structure of Agis to Acris(R) (see [SP, 07TH1]). In effect, Acyis(R) over
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Acris becomes a p-adically formally log smooth log PD thickening of R/p over O¢/p (compare
with §5.9).

Through results of [Beil3b], the following lemma will be key for relating the right-hand
side of (5.4.1) to the logarithmic de Rham cohomology of Spf(Acis(R)) over Spf(Acis) in
Proposition 5.13.

LEMMA 5.12. For each n > 1, the log smooth log PD thickening Aeis(R)/p"™ over Agis/p™ of
R/p over O¢/p is PD smooth in the sense of [Beil3b, § 1.4] (see the proof for the definition).

Proof. The PD smoothness is the claim that for every log PD thickening U — U over the log
PD scheme Acs/p™ such that U is affine and the log structure of U (and, hence, also of U) is
integral and quasi-coherent, the indicated diagonal log PD morphism exists in every commutative

diagram
U — Spec(R/p)—— Spec(Acuis(R)/p")
[ log PD_ -~~~ llog PD
U= log PD Spec(Acris/p™)

of log schemes and log (or log PD where indicated) scheme morphisms over Agis/p" (see [Beil3a,
§1.4]).

This sought property of Aqis(R)/p™ is invariant under base change that changes the log
structure on Acs/p™, so we may assume that Agis/p™ and Aqis(R)/p™ are instead equipped
with the pullbacks of the ‘provisional’ fine log structures defined in §5.9. Moreover, since the PD
structure of Agis(R)/p™ is extended from Acyis/p™, the log PD thickening

Spec(R/p) — Spec(Aeris(R)/p")

over Agis/p™ is its own log PD-envelope over Ais/p™ (in the sense of [Beil3b, §1.3]). Thus, the
log smoothness of Auis(R)/p"™ over Aqis/p™ and [Beil3b, §1.4, Remarks (ii)] give the claimed
PD smoothness. O

PROPOSITION 5.13. In the local setting of § 5.5, letting ﬁ(x-): AEZZS) (R) — Ag’fs)(R) denote

the AEZLS) -derivations induced from (5.10.1) by base change, we have Frobenius-equivariant

identifications

(5.10.3) ~
~ O ~ : a d
erog“is(oxoc/p/f‘cm) = QAcr;s(R)/Acr;s,log = (lir_r)1m>p (KA"”)(R) (810g(X1)’ T Blog(Xd))))

cris

(the Frobenius action on the last term is analogous to that described after (5.10.3)).

Proof. By Lemma 5.12, each Agyis(R)/p™ over Agis/p™ is a PD smooth thickening of R/p over
O¢/p, so [Beil3b, (1.8.1)] gives the Frobenius-equivariant identification”

erogcris(oxoc /p/Acris) = Rlet (Spf(Acris(R)), épf(Ams(R))/ Spf(Acris),log)'

" Equation (1.8.1) of [Beil3a] uses the logarithmic PD de Rham complex, that is, the quotient of
Q8 pt(Aria (R))/ SpE(Acric), log DY the PD relations d(ul™) = um=Ydu, see [Beil3b, §1.7]. In our situation, there
is no difference: since the PD structure of Acris(R)/p™ is extended from the base Acis/p™, the PD relations hold
already in 8564y, (R))/ Sp(Acrio). log-
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Since the sheaves Qépf( Aeria(R))/ Spf(Awsic), log A€ locally free and, in particular, quasi-coherent,
they are acyclic for I (Spf(Acris(R)), —) (see [FK18, 1.1.1.23(2)]), so we have

RFét (Spf(Acrls(R)) ) Qépf(Acris(R))/ Spf(Acris), 10g) = Fét (Spf(Acris (R) )7 Qépf(Acris(R))/ Spf(Acris), log) .

It remains to observe that the latter complex is identified with Q:‘lcris (R)/Acsis, log" O

Having expressed the presheaf versions of both sides of (5.4.1) in the desired forms in
Corollary 5.7 and Proposition 5.13, we now seek to exhibit an isomorphism between them in
Proposition 5.16.

5.14 The element log([e])
Fix an m > p?. By the proof of [BMS18, 12.2],8 each u™/(n + 1)! € A(m)[ | withn > 1 lies in A

Cris cris ?

is p-adically topologically nilpotent there, and p-adically tends to 0 as n — oco. Consequently,
recalling that pu = [e] — 1, we may define

3

log([e) ;= p— 2+ — . in A

Cris ’?

so that the Frobenius maps log([¢]) to p - log([e]). By [BMS18, 12.2],° the elements log([e]) and

(m) (log([e))™ D) (m)
e

@ are unit multiples of each other in A", so lies in A:", is topologically nilpotent if

cris? cris?

(m)

cris

n > 1, and p-adically tends to 0 in A_ -/ as n — oo.

(m)

cris

induced on A" )(R) by base change from the derivations (5.10.1).

cris

The following lemma describes the A-action on A’ (R) in terms of the derivations ﬁ(}(-)

LEMMA 5.15. Form > p?, a§; € A withi=1,...,d (see §3.2) acts on A(m)(R) as the series

Cris

0 L log([€]))™ ) n
eXP(log([E])'W(Xi)) = En>0( gg!])) (Blog(Xi)) : (5.15.1)
In particular, for m and © as above, we have the following description of the ‘q-derivative’ ‘SiT*l:
=1 _ __ 90 log([e])" 9 n—1 (m) (m)
w 0log(Xy) (Zn}l ( ;g;([rl')) (810g(X1-)) ) as maps Acns (R) - Acris (R)7 (5152)

(m )—]mear additive automorphism of Alm )(R).

where the parenthetical factor defines an A, oria

Proof. The argument is similar to that of [BMS18, 12.4]. First, W tends to 0 in the p-
adic topology of A (see §5.14), so the series (5.15.1) does define an AEZLS) -linear additive

cris
endomorphism of A((:rls) (R). This endomorphism is also multiplicative because, by the Leibniz
rule,

(log([e]))™ ) n _ N\ (log([e]))’ il J (log([e])™~7 ) n—j
o ((?log(Xi)) (ab>_zj:0( gj! (Blog(Xi)) (a)- g(nfj)! (alog(Xi)) (b))-

8 The argument is as follows. Since p, ué is an Ajns-regular sequence, u? — uéP € puéAing, so uP~'/p = &7 /p —|— .fa
with a € Ains. Thus, since (p?)!/pP € pZ, we have (uP~' /p)? € A(m) so uP~! /p is topologically nilpotent in Al

cris )

pln/®=D) ¢ 7, the elements p™/(n + 1)! tend to 0 in the p-adic topology of A" and are

cris

cris *

In effect, since (n+11)!
topologically nilpotent.

 The argument is as follows. By the previous footnote, D onsp (77111? " lies in pA((:m) . Thus, since each :1 with

(=D"p" log([e]) (m)
=1 - In conclusion, =27~ is a unit in A ;.

0 < n < p is topologically nilpotent in ACrls7 so is anl
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Therefore, in the case R = R, the desired equality

cris Cris

6; = exp(log([e]) - ﬁ(&)) of endomorphisms Alm )(RD) — A(m)(RD) (5.15.3)

follows by noting that both of its sides agree on every X;: indeed, due to the formulas (5.10.2),
they send X; to [€] X, fix each X; with 0 < j # 4, and send X to [e71]Xo if i < 7 and to X if
r <1.

In the general case, since p, and hence also &, divides each (bg%ﬂ with n > 1 (see §5.14),
both sides of the equality (5.15.3) induce the trivial action modulo (p, &) (see §3.27). Therefore,
due to the formal étaleness of Ag?g (R) over Ag?s) (RY) and the settled R = R" case, the sides
agree.

Since A" )(R) is p-torsion free (see (3.27.2)) and | M in A the equality (5.15.2)

cris Cris’?

follows from (5.15.3). Since (loi(_# is a unit for n =1, is topologlcally nilpotent for n > 1 (see
§5.14), and p-adically tends to 0 as n — oo, the parenthetical factor of (5.15.2) is indeed an
automorphism. O

We are ready to settle the (presheaf version of the) local case of Theorem 5.4.

PROPOSITION 5.16. In the local setting of § 5.5, for m > p? and i = 1,...,d, the morphism

AT (R) 2= AL (R))

Cris Cris
(5.16.1)

of complexes in degrees 0 and 1 is Frobenius equivariant, granted that the usual Frobenius action

on the copy of Agrls) (R) in degree 1 of the source is multiplied by p (compare with the description

after (5.10.3)). For m > p?, these morphisms induce a Frobenius-equivariant quasi-isomorphism

L
dlog(X

n n—1
A(m)(R)> (id, 5y Q80 (55255)" ) (

Cris

(A(”}) (R)

Cris

0 0 ~
Ky iy (a1 o) — Moo (Eyon gy O1 =L da= 1), (5.162)

cris

which, as m varies, induces the Frobenius-equivariant identification (a local version of (5.4.1)):
RTiog eris(Osgy_ ), /o) = BU(XE", AQR™) 84 Acris. (5.16.3)
Proof. The Frobenius-equivariance of (5.16.1) follows from the equations
Tl ¥ =P (0 grgxy)  and  w(log([)) = p- log([e])
(see §§5.10 and 5.14). Since A acts trivially on ACHS( )/ (see §3.27), the subcomplex

(k) (KAEZQ(R)((sl —1,...,04 — 1)) - KA<m)(R)(61 —1,...,0q— 1)

cris

is obtained by letting its jth term be the submodule of the jth term of

K yomy (01 = 1,04 — 1)

crls

(R)

composed of the p/-multiples (see (1.7.2) and (1.7.3)); since u|@(p), this subcomplex is
Frobenius-stable. Thus, Lemma 5.15 implies that the morphisms (5.16.1) induce an isomorphism

0 0 ~
K oy (5ireys a1y ) — Mo (K pm gy 01 = 1180 =1)). (5.16.4)

cris
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Proposition 3.32 (with Lemma 3.7) implies that the natural inclusion of the target of (5.16.4)
into the target of (5.16.2) is a quasi-isomorphism, and (5.16.2) follows. The maps (5.16.2) are
compatible as m varies, so, by passing to their limit over m, forming the termwise p-adic
completions, and applying Corollary 5.7 and Proposition 5.13, we obtain the desired identification
(5.16.3). O

Proposition 5.16 concludes the ‘single coordinate patch’ part of the proof of Theorem 5.4, so
we turn to the ‘all possible coordinates’ technique that will globalize the argument. For this, the
key steps are, for a small enough affine X, to build in §5.21 a functorial in X explicit complex
that computes the presheaf version of the left-hand side of (5.4.1), to then build in §5.32 such
a complex for the right-hand side of (5.4.1), and, finally, to build in § 5.38 and Proposition 5.39 a
natural quasi-isomorphism between these complexes. Each of these steps will use our work in
the setting of § 5.5 discussed so far.

5.17 More general coordinates

Continuing to work locally, we now assume until the final part of the proof of Theorem 5.4
given in §5.40 that X = Spf(R) is affine and nonempty, that every two irreducible components
of Spec(R ®o,, k) meet (so that X is connected), and that we have:

e 2 finite set X that indexes the coordinates of the formal Og-torus
RS = Oc{tf'|o e =},
e a nonempty finite set A and, for each A € A, an O¢-algebra
O + + .
R)\ = Oc{t)\70, - ,t>\7r/\,t>\71m+1, - ,t)\71d}/(t)\70 el — qu) with ¢y € Qsg;

e a closed immersion

X = Spf(R) — Spf(RY) x [T,ca SPE(RY), (5.17.1)
where the products are formed over Spf(O¢), subject to the requirements that already
X = Spf(R) — Spf(RF) is a closed immersion (5.17.2)

and, for each A € A, the induced map
X = Spf(R) — Spf(RY) is étale. (5.17.3)

By (5.17.3), for each A € A, the irreducible components of Spec(R ®o, k) are a priori
identified with the connected components of | |, Spec((R ®o,, k)/(tx,i)). Thus, our assumption
on Spec(R ®o, k) implies that each irreducible component of Spec(R ®o, k) is cut out by a
unique ty ; with 0 <7 < 7).

By §1.5, if R®o,, k is not k-smooth, then R determines gy, which therefore does not depend
on A. On the other hand, if R®¢p,, k is k-smooth, then gy may depend on A. This, together with
the possibility that ry > 0, complicates matters in the ‘simpler’ smooth case but is crucial to
allow in order for the eventual ‘all possible coordinates’ constructions to be functorial in R.

For any X, the data above exist on a basis for X4;: indeed, a coordinate map (5.17.3) exists
étale locally on X (see §1.5), and then R is the p-adic completion of a finite-type Oc-algebra, so
the Zariski topology of Spf(R) has a basis whose elements embed into some (variable) G,.

Each (5.17.3) is an instance of the local setting of §5.5, so the discussion between §5.5 and
the present section applies to it. Another instance is the identity map Spf(RY) — Spf(RS) (with
r =0 and d = #X), so the indicated discussion also applies to the ring Rg in place of R".

Our first aim in this setup is to reexpress the (presheaf version of the) left-hand side of (5.4.1)
in §5.21.
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5.18 The perfectoid Rx A,
For each \ € A, we set

A= { (e i) € (1, m (O))
and let
Spa(Rx, 0[], Baoc) = Spa(R[;], R) and  Spa(RY ,[}], By &) — Spa(RY[;] RY)

be the affinoid perfectoid pro-(finite étale) Ay-covers defined as in §3.2 using the coordinate

map Spf(R) ——> (5.173) ——> Spf(RY). Similarly, we set
)
As = (m (4 (00))) =75
and let

Spa(Rs o 3]s s, o) = Spa(Rs 3], R5)

be the affinoid perfectoid pro-(finite étale) Ax-cover defined as in § 3.2 using the coordinate map
Spf (Rg) — Spf(Rg), so that, explicitly,

~

~ [1: +1
RS = (i, (Oc{tz"" |0 € )
By forming products over Spa((’)c[ |, Oc¢) and setting
Asx A = Ax X [[er A,
we obtain the affinoid perfectoid pro-(finite étale) Ay, p-cover
Spa(Rs, o 3] RS, o) X Thien SPa(BS o [3] BY ) = Spa(R3 (3], B5) * [xea Spa(BY [ ], BY)
which we abbreviate as
Spa(Rz A, oo[ I, Rz A, o) = Spa(Rg,A[%]’Rg,A)‘
Its base change along the generic fiber of (5.17.1) is the pro-(finite étale) Ay, s-cover

Spa(Rs, A, 00 [5], B, A, 00) = Spa(R[}], R), (5.18.1)

which contains each Spa(Rj, Oo[ |, R, 00) = Spa(R[p],R) as a subcover. Thus, by the almost
purity theorem [Sch12, 7.9(iii)], the Oc-algebra Ry, p o defined by (5.18.1) is perfectoid (the
notions of ‘perfectoid’ used here and in [Sch12] agree by [BMS18, 3.20]).

The topological generators for Ay, and Ay fixed in §3.2 are

0o :=(1,...,1,61,...,1) for o € ¥, where the oth entry is nonidentity,
and

Sni=(e41,...,1,61,...,1) fori=1,...,7\, where the Oth and ith entries are nonidentity;
Oxi:=(1,...,1,¢,1,...,1) fori=ry+1,...,d, where the ith entry is nonidentity.

Jointly, the d, and d) ; topologically freely generate Ay .
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5.19 The rings Ajn¢(Rx, A, 0) and Ag’lls) (R, A, 00)
Similarly to §3.14, we set
Ainf(‘RE,A,oo) = W(RbE,A,OO)'

By Lemma 3.13, for n,n’ > 0, the sequence (p", u™ ) is Ajnt(Ry A, 00)-Tegular,

Aint(Rs, A, 00)/ (0™ 1)

is Ainf/(pn,,u”,)—ﬂat, and Ajnf(Rx A 00)/p is p-adically complete. As in §3.14, we have the
surjection

0: Aint(Rs, A, 00) = Bx, A, 00 (5.19.1)
that intertwines the Witt vector Frobenius of Ai,s(Rx A,o0) with the absolute Frobenius of
Rs A oo/p and whose kernel is generated by the regular element . To fix further notation,
we let

A(RS) & Aine{ X2 o € 3}, (5.19.2)
0) o .19.

ARY) = Ane{ X005 Xaoms Xow 1o Xt/ (a0 Xy — [(0V/77)D])

be the isomorphisms (3.14.2) for R% and RE. Similarly to §3.27, for an m € Z>1, we set

A (R0, 0) 1= Aine (R, 00) Bt A (5.19.3)
where the completion is (p, )-adic (equivalently, p-adic if m > p). Since Aint(Rx, A, o0) is (s pt)-

adically formally flat over Aj.¢, the ring AW (Rs;, A, o0) inherits p-torsion freeness from Alm By

cris cris *

also using the short exact sequences (3.26.3) and the vanishing (3.26.2), we see that
(m)

cris

A (Rs, A, 00) is p-torsion free and A

cris

(Rs, A, 00)/1t  is p-adically complete.

As in §3.27, the rings AEZLS) (Rs, A, 00) come equipped with Ag?;s)—semilinear Frobenius
endomorphisms that are compatible as m varies. The maps (3.26.1) and (5.19.1) give rise

to the surjection
0: A (Rs; A 00) = Ry, A, oo- (5.19.4)

(m)

cris

The actions of the profinite group Ay o on Ajyf(Ry A, 00) and A
continuous, and Frobenius-equivariant.

The following consequence of Remark 3.35 will help us build a desired functorial complex in
§5.21.

(Rs, A, 00) are compatible,

PROPOSITION 5.20. In the local setting of § 5.17, for every m > p, the analogue for Ry, A o of
the edge map (3.15.1) induces the Frobenius-equivariant identification

~ h shy L m
M) (KAEI?S’(RZ,A,OO)«(S” —1)pes, (0r,i — 1)AeA,1<i<d)) — RO(XE, AQY™) ®4,,, A((:ris)' (5.20.1)

In particular, we have the following Frobenius-equivariant identification in the derived category:

~

. ~ S S. A]L
(h_n)lm <77(u) (KAW(RE,A,W)((&” —1oes, (0r,i — 1),\eA,1<i<d)>)> 5 RD(XD", AQR™) ® 4, Acris,

cris

where the direct limit and the p-adic completion of the complexes in the source are formed
termwise.
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Proof. Proposition 5.6 gives the Frobenius-equivariant identification

S S m) ~ a ~L m
RU(XP" AQR™ &5 AT o Ly (RT g (X288, Ain) 85, AUY).

ét cris inf ~Cris

Therefore, since the pro-(finite étale) affinoid perfectoid Ay a-cover Spa(Rs a, Oo[ |, R, A, 00)
of Spa(R[l],R) contains Spa(R), OO[ |, Rx o) as a subcover (see §5.18), Remark 3.35 applies

and (with Lemma 3.7) gives (5.20.1). The remaining assertion follows: each AT )(Rg, A, oo) 18

cris
p-torsion free, so the termwise p-adic completion of the source there agrees with the derived

p-adic completion. O

5.21 A functorial complex that computes RI‘(%gfh, QpSh) ®A ¢ Acris
For a fixed R, we form the filtered direct limit over the closed immersions (5.17.1) for varying >
and A to build the complex

hng’A((h_r)nm% (”(u) (KM"’)(RE,AW)((‘SO — Dgex, (6x,i — l)AeA,lgigd))))A)7 (5.21.1)

cris

where the direct limits and the p-adic completion are termwise. By its construction, this
complex comes equipped with an Agg-semilinear Frobenius endomorphism. The isomorphisms
of Proposition 5.20 are compatible with enlarging > and A, so they show that in the derived
category the complex (5.21.1) is canonically and Frobenius-equivariantly identified with

ét

RI’ (%psh AQpSh) ®A fAcris-

Moreover, if R’ is a p-adically formally étale R-algebra equipped with data as in §5.17 for some
sets X' and A’, then the term indexed by ¥, A (and by the closed immersion (5.17.1)) of the
direct limit (5.21.1) maps to the term indexed by X UX/, AU A’ (and by a closed immersion of
Spf(R')) of the analogous direct limit for R’, compatibly with the transition maps in (5.21.1)
and with the Frobenius. Thus, the complex (5.21.1) equipped with its Frobenius is functorial in

R, and so is its identification with RF(%pSh AQPSh) ®H;1 e Acris.
Our next aim is to similarly reexpress the (presheaf version of the) right-hand side of (5.4.1)
in §5.32.

5.22 The completed log PD envelope Ds A
By §5.9, the maps 0: A(RY) — RY of (3.14.3) are compatible with log structures. Thus, they
give rise to a Frobenius-equivariant closed immersion

Spec(R/p) = Spf(A(RS)) x [Tren SPE(A(RT)) =: Spf(Af ,) (5.22.1)

of (p, pu)-adic formal log schemes, where the products are over the (p, u)-adic formal log scheme
Spf(Ainf). By [Kat89, 4.1, 4.4], for n,n’ > 0, the quasi-coherent log structure of

Spec(AS A /(p", 1))

and the log scheme map

Spec(AS A/ (0", ™)) — Spec(Aint/(p", k"))

are integral.

2086

https://doi.org/10.1112/50010437X1800790X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1800790X

THE Aj,f-COHOMOLOGY IN THE SEMISTABLE CASE

For n,n’ > 0, by [Beil3b, 1.3, Theorem|, the A,/ (p”,,u”’)—base change of the closed
immersion (5.22.1) has a log PD envelope

Spec(Dx, A, n,n’) over (Z/p"Z,pZ/p"7Z),

which, in particular, is a nil thickening of Spec(R/p), so is affine as indicated (see [SP, 01ZT]).
In fact, Dy, A n,n is supplied already by [Kat89, 5.4] because the closed immersion (5.22.1) is
the base change of a similar closed immersion of fine formal log schemes along a ‘change of log
structure’ self-map of Aj¢ (see §5.9).1°

If n/ is large enough relative to n, so that p” € p™Aeis, then, by §§5.1-5.2, Spec(Aeis/p")
is identified with the log PD envelope of the exact log closed immersion

Spec(O¢/p) — Spec(Ainf/(p”,,u,"/)) over (Z/p"Z,pZ/p"Z).

Thus, for such n, n/, the envelope Spec(Dx A pn, n/) comes equipped with a canonical log PD
morphism to Spec(Acris/p™) that identifies it with the log PD envelope of

Spec(R/p) — Spec(A%’A ® A, Acris/P")  over  Spec(Oc¢/p) — Spec(Aeris/p™).

Thus, letting Dy, A, be this log PD envelope, that is, the common Dy, A ,, , for large n’, we have
D5 A.n/P" ' 2 Ds A n—1 for n > 1 and obtain a p-adic formal log Spf(Ays)-scheme Spf(Ds )
that fits into a factorization

Spec(R/p) = Spf(Ds, ) — Spf(AcriS(Rg)) X TTxea Spf(AcriS(RE)) = Spf(Ag,A,cris)a (5.22.2)
where the products are formed over the p-adic formal log scheme Spf(Acis) and we have

O ~ A0 =
AE,A, cris — AE,A ® Ay Acris-

inf
By functoriality, Spf(Dx, A) comes equipped with an Agis-semilinear Frobenius. In addition,
since, for each n > 0, the ideal defining the exact closed immersion Spec(R/p) < Spec(R/p™)
inherits divided powers from Z/p", the universal property of Dy, p supplies the factorization

Spec(R/p) — Spf(R) — Spf(Dsx,a) over Spec(Oc/p) — Spf(Oc) — Spf(Aais). (5.22.3)

The profinite group Ay, A acts continuously and Frobenius-equivariantly on Ag, A over Aiye (see
§3.14) and, due to the last paragraph of § 5.9, this action extends to a Ay, s-action on the (p, p)-
adic formal log scheme Spf (Ag’ A)- Thus, since the closed immersion (5.22.1) is Ay p-equivariant,
Ay A acts Agis-linearly and Frobenius-equivariantly on each Dy, 5, and also on Dy 4.

The main practical deficiency of Dy j is its inexplicit nature, for instance, we do not know
whether Dy; 5 is p-torsion free. In contrast, its utility for us manifests itself through the following
proposition.

PROPOSITION 5.23. In the local setting of §5.17, the complex (where the inverse limit is
termwise)

Qs := lim Q° O nD
Ds;, A /Acris, log, PD (—n>0( (Ag,A,cris/pn)/(ACI'iS/pn)7IOg ®A2,A,cris/p Z,A,n)

10 The two references characterize the log PD envelope differently, but they give the same Spec(Ds, A, n,n’), In
essence because the image of any monoid morphism M — M’ with M finitely generated is finitely generated.
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is canonically and Frobenius-equivariantly identified in the derived category as follows:
RPlOg Cris(OxOC/p/Acris) = Q.DEV/\/Acris,log, PD- (5231)

Under this identification, the map

(5.22.3)

Rliogeris(Oxo, /p/Acis) = Bl1ogar(X/O0c) is Qb /4 10g,PD — L8pi(R) /06, log*
(5.23.2)
In particular, we have a Frobenius-equivariant identification
. ~ o) o)
RPIOgCHS(O%Oc/P/A“iS) = KDy 4 (<310g(Xo)>aeE, (810g(X)\,i)))\eA,1<i<d> (5.25.3)

where the ﬁ()@) (respectively, ﬁxu)) are as in (5.10.1) with RS (respectively, RY) in place

of R and the Frobenius acts in degree j on the right-hand side as p’ times the Frobenius of Dy A
(compare with § 5.10).

Proof. By §5.11, each Ag’ A, cris/P" 18 a log smooth thickening of R/p over Acis/p". Therefore,
by [Beil3a, 1.4, Remarks (ii)] (and the second paragraph of §5.22), the log PD thickening
Ds; A of R/p is PD smooth over Auis/p" (see the proof of Lemma 5.12). Thus, as in the
proof of Proposition 5.13 above, [Beil3a, (1.8.1)] ensures that the logarithmic PD de Rham

complex Dss. ./ (Acsia /D), log, PD Frobenius-equivariantly computes RI'og cris(Ox 00w/ (Actis /pn))-
By [Beil3a, 1.7, Exercises, (i)],
(5.23.4)

D Aurie/p"), log, PD = 040 n /) log DAL n Dx A, n,
E,A,n/( C”S/p )7 08; (AZ,A,cris/p )/(ACYIS/p )710g E,A,cris/p e

o0 (5.23.1) follows. Then, since each R/p" is a log smooth log PD thickening of R/p over O¢/p™,
analogous reasoning applies to

[Beil3a, (1.8.1)]

RT'ogar(X/Oc¢)

IR

RFlog cris (an@c /p/Oc )

(compare with the proof of Proposition 5.13) and gives (5.23.2).
Finally, the identification (5.23.3) results from (5.23.1) and the Frobenius-equivariant
identifications

% =K (75557 e (0357
(A5 A, exis/P™)/ (Acris/P™), log AS A, eris/P" 9108(X0) ) gy ? \O108(Xx0) ) e n 1<i<d

supplied by (5.10.3). O
Remark 5.24. By [Beil3a, (1.11.1)], the first map in (5.23.2) induces the identification

RTiogcris(Oxo, jy/Acris) @y, Oc /P = Rlogar(X/Oc) ®6,, Oc/p (5.24.1)

cris

in the derived category, so the same holds for the second map:

° L A~ °
Ds. o/ Acria. log, PD @A O0/P = QR0 100 /), 10g
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To make the identification (5.23.3) analogous to the identification in Proposition 5.20, we will
express Dy, o as a completed direct limit of rings D(Em/)\ that ‘are generated by divided powers
of degree at most m’, see (5.30.1). For this, we will build on the ideas from the proof of [Kat89,
4.10(1)] to identify Dy, o with the p-adic completion of the (nonlog) divided power envelope of
an ezact closed immersion in Lemma 5.29.'" This will also make Dy, A more explicit and easier

to analyze.

5.25 A chart for A%,A
To express Dy, a as the p-adic completion of a usual (nonlog) divided power envelope, in §§ 5.25—
5.27 we build a chart for the (fine version) of the log closed immersion

Spec(R/p) — Spec(A%’A). (5.25.1)
For this, we fix the unique g € Q~¢ for which
Z - q = Z)\EA Z - ax inside Q,

so that ¢y/q € Z~g for every A (and even ¢\ = ¢ in the case when R ®¢,, k is not k-smooth, see
§5.17). We endow O¢/p and Ajy¢ with the compatible via € fine log structures determined by

Nsog — Oc/p with 1+ p? and Nsg— A with 1 [(p/?7)].
For each A\ € A, we consider the submonoid
@x C L llocicr, N2o generated by  []o<;<,, N>o and the diagonal (%, L),

so that the chart

Qx — A(RE) given by Hogz‘gm Nyy ———= A(RE) and (q%, e i) = [(p1/poo)q]
makes Spec(A(RY)) a fine log Spec(Ainf)-scheme. We let

Q= (e @)/ (o) = (e ),

be the quotient monoid obtained by identifying the diagonal elements (¢/qy,- .., q/qy), so that
the map
Q— A%A that results from the charts Q) — A(RE)

is a chart for the target Spec(A%’ A) of a fine version of the log closed immersion (5.25.1). In
terms of this chart, the Frobenius of A% A multiplies each element of Q by p (see §5.9).

5.26 A convenient chart in the smooth case
We consider the case when R ®o, k is k-smooth, so that for each A € A there is a unique
0 < iy <y with £y 3, € R*, and build the monoids

Py, = (N20 % Tlocicr, izin, Z) % Tagag ((Toicr, Z)/2Z)  for Ao € A, (5.26.1)

' The arguments below would become more direct if we could ‘uncomplete’ Dx o by constructing the log PD
envelope of the (possibly nonexact) log closed immersion Spec(R/p) — Spec(Ag’ A)- Neither [Kat89, 5.4] nor
[Beil3a, 1.3, Theorem] gives this hypothetical envelope because p is not nilpotent in Ag, A-
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where each Z by which we quotient is embedded diagonally. For each (A,7) with 0 < i <7y,
tri= ()™ i-vy,; in R forunique ny; € Zsy and vy; € R™; (5.26.2)
explicitly, ny ;, = % and ny ; = 0 for ¢ # ¢y. In particular, Hogz‘gm vy,; = 1 for each A\. The map
Py, = R/p givenby N33 1= pl,  Zp;) 310 vy,

where the subscript (A, 4) indicates the factor Z of (5.26.1) being considered, is a chart for the
source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this chart,
the Frobenius of R/p multiplies each element of Py, by p.

Due to (5.26.2), knowing the indices i), we may evidently express the image of every generator
of ) under Q — Ag’ A — R/p in terms of the images of elements of P\, without knowing
the ‘values’ of these images. Thus, the log closed immersion (5.25.1) has a natural Frobenius-
equivariant chart

Q — Py, = (Nxo x H0<i<m0,i7ﬁixo Z) x [T, ((Hoéiém Z)/z)

that, for instance, sends 1 € (Nxq), to the element (¢y,/q¢, —1,...,—1) of

)\Oviko)
N0 X [ocicry, izin, £
each (q¢/qx,--.,q/qn) to 1 € Ny, each 1 € (Nxg)(x4) with i # iy to 1 € Zy;), etc.
More precisely, the resulting A% A-algebra
0
As p ®z(Q) Z[Py]

comes equipped with an A% a-semilinear Frobenius and is initial among the A% A-algebras B
equipped with a unit V) ; € B* for each (\,4) with 0 < i < ) subject to the relations

Xni= [((Pl/poo)q)m’i] Vi Hogz’gm Vai=1 (5.26.3)
In particular,
R is naturally an (A%A ®z(q) Z[Pxo])-algebra  (with V) ; = vy ;). (5.26.4)
A fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as follows:

J q
Spec(R/p)“—> Spec(AS , @z1q) Z[P,]) —+ Spec(AT ,), (5.26.5)

where Spec(A%, A ®ziq) Z[Py,]) is equipped with the log structure determined by Py,. By
construction, jy, is an exact closed immersion and, by [Kat89, 3.5], the projection g, is log
étale.

The relations (5.26.3) do not depend on the choice of Ay, so neither does the factorization
(5.26.5). More precisely, for another A\[ € A, we have a natural isomorphism over @ of charts for

R/p: N

Py, — Py, (5.26.6)
which gives rise to the vertical Frobenius-equivariant isomorphism in the following commutative
diagram.

o, SPeelAS  ©zig ZPw) oy
Spec(R/p)g) ) e Spec(A§ ). (5.26.7)
2 Spec(AgvA ®z(Q) Z[P)\é]) 2
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5.27 A convenient chart in the nonsmooth case

We now consider the case when R®o,, k is not k-smooth, so that ¢y = ¢ and Q) = Hogigm N>g
for every A € A. Letting Ay C @) be the diagonal copy of N>, we can then describe the chart
Q for a fine version of Spec(A%’ ) as follows:

Q= (H)\GA (Hogiém N>0>)/ (Ax = A)‘2)>\17'f>\2 :

By §5.17, each ty ; ¢ R* cuts out a unique irreducible component {y, ;} of Spec(R ®o, k).
Its generic point yy ; determines the ideal (t) ;) C R: indeed, (p?) C (t) ;) in R and the ideal
(tr,i)/(p?) C R/(p?) is the kernel of the localization map R/(p?) — (R/(p?))y, ;» as may be seen
over RE. Conversely, for each generic point y of Spec(R®o. k) and A € A, a unique t) ;, () with

0 < ix(y) <7y cuts out {y} (see §5.17). Consequently, for each y and X, A\g € A,
tris(y) = UA Ao,y Ero,ing(y) 11 R foraunique wuy gy € R*. (5.27.1)

Letting ) denote the set of the generic points of Spec(R ®o,, k), for A\g € A we build the monoid

Pro += (T N0 * Mpocicray ing ) ) * Mairy (Mocicrs ) / (B2 = Ax)azn (5:27:2)

where the quotient means that for every A # Ay we are identifying every diagonal element of
Hogigm 7 with the corresponding diagonal element of H{Kiémo}\ixo ) L (interpreted to be 0 if

the indexing set is empty). The assignment (as in §5.26, subscripts indicate factors in (5.27.2))

(Ngo)y 51— tAo,iAO(y)’ Z()\,i) 31+ t)\7i if ¢ ¢ ’L'/\(y), Z(A,i) 31—~ UA, Mo,y if 1= Z)\(y)

determines a chart
P)\o - R/p

for the source Spec(R/p) of a fine version of the log closed immersion (5.25.1). In terms of this
chart, the Frobenius of R/p multiplies each element of Py, by p.

Due to the relation (5.27.1), the images in R/p of the generators of () are evidently expressible
in terms of the images of the elements of Py, (without knowing the ‘values’ of these images), so,
as in the smooth case, there is a natural Frobenius-equivariant chart for a fine version of (5.25.1):

Q — Py,

that, for instance, for A # Ao and y € Y, sends 1 € (Nxq)(x,i,(y)) t0 (1,1) € (Nx0)y X Z(» iy (y))-
The resulting A% A-algebra

AS A ®ziq) Z[Py,]

comes equipped with an A% a-semilinear Frobenius endomorphism and is initial among the
A% A-algebras B for which X ; € B* when i ¢ i)\(Y) and that are equipped with, for each
y€Yand A€ A, aunit Uy y,,, € B* subject to the relations

Xninw = Unnoy Xnosing ) Uroro,y =1, and

(5.27.3)
[Tyey Unroy = (H{Ogigmo}\ixo()}) XAOJ)/(H{Ogigr,\}\i,\(y) XM) for AeA.
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For a \j € A, we may set U/\nyy = U,\7)\0,y~U/\761’>\07y
U, o, y> SO, Up to a canonical Ag’ A-isomorphism, Ag, A ®z[Q] Z[Py,] does not depend on .
Moreover,

to express the Ux xy,y In terms of the

R is naturally an (A%A ®z1q) Z[Pxo])-algebra  (with Uy x,,y = ux 2, y)- (5.27.4)

As in the smooth case, we equip Spec(A%y A ®z(q] Z[P»,]) with the log structure determined
by P,, so a fine version of the log closed immersion (5.25.1) factors Frobenius-equivariantly as

follows:
q

Jx A
Spec(R/p) 2% Spec(AD.  @zig) ZIPr]) % Spec(48, ), (5.27.5)
where jy, is an exact closed immersion and, by [Kat89, 3.5], the projection g, is log étale. As in
§5.26, we have natural isomorphisms Py, > Py, over  and the compatibility diagram (5.26.7).
We now use the charts Q — Py, to build a (nonlog) PD envelope whose p-adic completion
is DZ,A-

5.28 The divided power envelope of jj,

For A\g € A, we let DjAo be the divided power envelope over (Zy, pZy,) of the closed immersion jy,
defined in (5.26.5) and (5.27.5). The universal property of A%.. (see §5.1) identifies Dj,, with
the divided power envelope of the closed immersion

Jro,crist Spec(R/p) = Spec((AS s @4y, Adris) ®2(q) ZIPao]) over  Spec(Oc/p) — Spec(Al)

(compare with §5.22). Since jy, underlies an ezact closed immersion of log schemes, we may,
in addition, identify DjAo endowed with the log structure determined by P\, with the log PD
envelope of jy, over Zy, or of jx, ais over A, (compare with [Kat89, 5.5.1]). For A\ € A, the
vertical isomorphism in (5.26.7) induces an isomorphism

D, =D

, -
.7>\0

(5.28.1)

jAO
By functoriality, Dho comes equipped with an Agris—semilinear Frobenius endomorphism, and

the isomorphisms (5.28.1) are Frobenius equivariant. Due to (5.26.4) and (5.27.4), there is a map

Dj,, — R thatlifts Dy, — R/p; (5.28.2)

its formation is compatible with the isomorphisms (5.28.1).
By the universal property of A%A ®z(Q) Z[P,] (see (5.26.3) and (5.27.3)), the continuous
Ay, p-action on AgA extends to a (p, p)-adically continuous Ay, s-action on A%A ®71Q] Z[Pxo),

so it induces an AY, -linear Ay p-action on Dj,,- As an (A%A ®z(q) Z[Px,))-algebra, Dj,  is

generated by the divided powers of the elements of the ideal of jy,, so this action is p-adically
continuous.

LEMMA 5.29. For A\g € A, the map g, induces Frobenius- and Ay, y-equivariant isomorphisms
Dy, an = Dy, /p" for n >0 (respectively, D,y = 17];) (5.29.1)

that are Acis-linear and compatible with divided powers, maps to R/p™ (respectively, R; see
(5.22.3) and (5.28.2)), and the isomorphisms (5.28.1). In particular, Ds, a is p-adically complete,

DZ7A/pn AN DZ,A7n for n>0

and the Ay, p-action on Dy, A is p-adically continuous.
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Proof. We may identify Dy, a , with the log PD envelope of
Spec(R/p) = Spec(AX, p is/P") over  Spec(Oc/p) < Spec(Acis/p")

defined using fine log structures (see §5.22). On the other hand, we may identify Dj,, /p" with
the (log) divided power envelope of jx,, cris ® 40 AV /p", that is, of

cris

Spec(R/p) — Spec((Agym eris/P") @zjQ) Z[Pyo]), over  Spec(Oc/p) — Spec(Acris/p")
(see §5.28 and [SP, 07HB]). Consider a commutative square

Ty —— SPGC((A%A, aris/P") ®2]Q) Z[Pxo])

7

—

?/ -~ \LQ)\O(X)AianCris/pn (5292)

= 81)60(14%,/\7 cris/pn)

of log schemes over Agis/p™ in which Ty < T is a log PD thickening such that the log structure
Nr of T (and, hence, also N, of Tp) is integral and quasi-coherent and the log structures
of Spec((A%A’Cris/p") ®z(q) Z[Py,]) and Spec(A%A’mS/p") are determined by the charts Py,
and @, respectively (see §§5.25-5.27). By [Beil3a, 1.1 Exercises (iii)], for any ¢,t' € I'(T, N7) and
ug € Op with t|z, = ug - t'|1, there exists a unique lift u € OF of ug such that ¢ = ut’. Thus,
by the construction of Py, and the universal property described by (5.26.3) and (5.27.3), there
is a unique log morphism indicated by the dashed arrow in (5.29.2) that makes the diagram
commute. Consequently, g, induces an isomorphism between the log PD envelopes:

Dj,, /p" = Ds; a.n, and, by letting n vary, also 5;?0 = Dy A

Functoriality implies the claimed compatibilities, and (5.29.1) implies the ‘in particular’ assertion.
O
We now use Lemma 5.29 to define the rings D(Emj)X that are analogous to the rings AEZLS) (R)

of §3.27.

5.30 The rings nglz)\

For \g € A, the divided powers of the elements of the ideal of j,, generate Djxo as an algebra over
AQ A ®7(Q] Z[Py,]. In turn, for a fixed m € Z>1, the divided powers of degree at most m generate
a Frobenius-stable (A% A ®z(Q) Z[Py,])-subalgebra

(m) ‘
D ing C D

g

and D;,,=U D™

m21 j)\o
Since Dj,, is naturally and Frobenius-semilinearly an AY . -algebra (see §5.28), Dj(-in) is naturally
0
: o . 0, (m) .
and Frobenius-semilinearly an algebra over the subring A"~ C AY.  defined in §3.26. By
Lemma 5.29,

(5.

1)
the image D%A of Dj, in Dsa

IR &2

Ej; is Frobenius-stable and independent of A,

and the same holds for the image D%’ (/(n) C D% A of DJ(.:n) in Dy a. For m > p, the p-adic
b I 0
completion
D(Zm/)\ = (D%y(f\n))/\ is naturally an algebra over A((:ZLS)
m)
ri

<-semilinear Frobenius.

and comes equipped with an Ag
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By Lemma 5.29, the composition Dj,, — D% A = Dx, A induces an isomorphism modulo p"

0, (m)

and, hence, so do both maps that comprise it. Thus, since DOZ A=U Dy '\, we have

mzp

Dy 2 (DY 0)" 2 (tim, DY)~ over Acrs (5.30.1)
compatibly with the Frobenii. In what follows, D%’ A Plays the role of the ring that underlies the
hypothetical log PD envelope of the log closed immersion (5.25.1) (see footnote 11).

By Lemma 5.29, the Ax; p-action on Dy  respects the subrings DOE”(;\”) C Dy A. The induced

Ag?fs)—linear Ay p-action on D(Em[)X is p-adically continuous and compatible as m varies. The

identifications in (5.30.1) are Ay p-equivariant.

5.31 The derivations ﬁ(x)
For brevity, let 7 denote either the index ‘o’ for some o € ¥ or the index ‘A, 4’ for some A € A
and i = 1,...,d. The log derivations ﬁ(x) defined in (5.10.1) with R5 or RY in place of R
give rise to the log Aj,¢-derivations
o . 4D 0

dlog(X,) Ag = Asa (5.31.1)
(as in §5.10, we do not explicate the accompanying homomorphisms from the log structure).
These, in turn, induce the divided power Ags-derivations

(x| Pza = Ds,a (5.31.2)

(compare with Proposition 5.23 and its proof, especially (5.23.4)), where a divided power Acis-
derivation 9 is required to satisfy d(zI™) = z[™~19(x) for divided powers z!"™ with m > 1, in
addition to the Acs-linearity and the Leibniz rule.

Since ¢y, is log étale (see §§5.26-5.27), the derivations (5.31.1) uniquely extend to log Ajn¢-
derivations

78105()(7) : A%,A ®Z[Q] Z[P)\O] — A%,A ®Z[Q} Z[P/\U] for every )\0 € A. (5.31.3)

These, in turn, induce divided power AY. -derivations (see [SP, 07THW])

cris

2]

atoex) " Pirg = Ding- (5.31.4)

(m)

cris ~

By construction, the derivations (5.31.2) and (5.31.4) are compatible, so they induce A
derivations m) )
o) . m m
W(‘XT)'D,A—)DEJ\ for m}p
that are compatible as m varies and recover (5.31.2) under the identification
Dy, o = (lim D)™

Consequently, we may reexpress the identification (5.23.3) as the Frobenius-equivariant
identification

~ : 0
Rl uogeris(Oxo, 1 dens) = (hi>nm>p (KD‘;?A ((mm)>)> ’ (5:315)

where in degree j of K o) ((#(XT))T) the Frobenius acts as p’ times the Frobenius of D(Zm/)\
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5.32 A functorial complex that computes RIogcris(X0e/p/Acris)

ing DOZ A» and D( /)\ and the morphisms jy,
and gy, is compatible with enlarging ¥ and A, and the same holds for the identification (5.31.5).
Thus, we may form the filtered direct limit over all the closed immersions (5.17.1) for varying ¥
and A to build the complex

h_rr)127 A ( <1£>nm>p (KD(ZTTL/)\ ((W()(U)) UEE’ (m) )\EA, 1<Z§d> )) ) ’ (5321)

where the direct limits and the p-adic completion are termwise. By construction, this complex
comes equipped with an Aygs-semilinear Frobenius endomorphism (see the end of §5.31) and,
by (5.31.5), in the derived category it is canonically and Frobenius-equivariantly identified with

For a fixed R, the formation of the rings Dy A, D;

RFlog cris (Oxoc/p/AC!‘iS ) .

Moreover, if R’ is a p-adically formally étale R-algebra equipped with data as in §5.17 for some
sets X' and A’, then the term indexed by X, A (and by the closed immersion (5.17.1)) of the
direct limit (5.32.1) maps to'? the term indexed by ¥ U Y/, AU A’ (and by a closed immersion
of Spf(R’)) of the analogous direct limit for R, compatibly with the transition maps in (5.32.1)
and with the Frobenius. Thus, the complex (5.32.1) equipped with its Frobenius is functorial in
R, and so is its identification with RI'og cris(Ox oc/e! Auria)-

Since the formation of the maps (5.23.2) is compatible with enlarging ¥ and A, and then also
with replacing R by R/, the map erogcris(oxoc/p//x ) = Rlogar(X/Oc¢) is identified with a
map

cris

h—r>nE,A<<h—I>nm>p <KD(£7% <(ﬁ(xo))gez’ (‘MM)AEAJ@@)))A) = Dpr() /0 log

whose formation is compatible with replacing R by R'.

Having constructed the functorial complexes (5.21.1) and (5.32.1), we seek to exhibit a
natural map between them and to prove that it is an isomorphism. These tasks, which will be
completed in § 5.38 and Proposition 5.39, are the last stepping stones to the proof of Theorem 5.4
given in §5.40. We begin with the following variants of Lemma 5.15 and Proposition 5.16.

LEMMA 5.33. For m > p?, the element §, € Ay a, where the index T is either ‘o’ for some 0 € ¥
or ‘i’ for some A\ € A andi=1,...,d (see §5.18), acts on D( j)\ as the endomorphism

Zn>0 (IOgg!ﬁ]))n (610g(‘2X.r))n7 (5331)

where % lies in A" and p-adically tends to 0 (see §5.14).

cris

Proof. Analogously to the proof of Lemma 5.15, the series (5.33.1) a priori defines an Agyis-
algebra endomorphism of Dy, A. Moreover, by Lemma 5.15, the action of ¢, on the ring Ag A cris
defined in (5.22.2) is given by (5.33.1). Thus, due to the universal properties (5.26.3) and (5.7277.3),
the same holds for the action of §, on

Ag,/\, cris ®Z[Q] Z[Pko] = ((A%,A ® A Agris) ®Z[Q} Z[PAO])A

2 One uses the universal properties described in (5.26.3) and (5.27.3) and keeps in mind the case when R ®o,, k
is not k-smooth but R’ ®o,, k is.
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(see (5.31.3)), where the completion is p-adic. Then, by the universal property of Dj,, (see §5.28)

and (5.29.1), the element ¢, acts on Dy, 5, and hence also on D% (f\n) and Dgn[)\, by the series
(5.33.1). O

PROPOSITION 5.34. In the local setting of § 5.17, for m > p?, the additive morphisms

__9
0log(Xr)

( ) (m) (1d7 Zn?l (loggn[j]))n (alog:?Xq—))n_l) (m) 6r—1 (m)
(pn pi") (D& == p{) (5.34.1)
of complexes in degree 0 and 1, where the index T ranges over ‘o’ for o € ¥ and ‘A,i’ for A € A
andi=1,...,d, define a Frobenius-equivariant morphism (whose target is defined as in (1.7.3))

P
KD(’" ((3log(X ))aez’ (810g(X>\,i)))\EA, 1<i<d) = N (KD;TK((% —Does, (0r,i — Daea, 1<i<d))

where in each degree j of the source the Frobenius acts as p’ times the Frobenius of D(zmz)x

Proof. By Lemma 5.33, the morphism (5.34.1) is well defined. Moreover, the image of its degree

cris

tends to 0. The rest of the claim then follows from the definitions (1.7.2) and (1.7.3), granted
that one argues the Frobenius-equivariance as in the proof of Proposition 5.16. O

1 component lies in - D( ) because, by §5.14, the element (loi([e]))n lies in A" and p-adically

Proposition 5.34 reduces the task of exhibiting a natural map from the complex (5.32.1) to
the complex (5.21.1) to exhibiting a natural Ay, p-equivariant ring morphism

D(E m) o pm )(RE,A,oo)-

cris

To build the latter, we will realize AT )(Rg A, o0) inside the following ring Acis(Ry:, A, 00)-

cris

5.35 The ring Acris(Rx, A, o)
For an affinoid perfectoid Spa(Rf)o[I%], R..) over Spa(C,O¢) (such as that with R = Ry, A, o),
we consider the Ay,¢(R.,)-subalgebra

AL (RL) C At (RL) [3]

cris

generated by the elements £"/n! for n > 1. Analogously to §5.8, by [Tsu99, proof of A2.8], w
have
A0

cris cris inf “*cris*

A (RL) = (At (RL) [Lr] o) /(T =€), so AL (RL) = Aing(RL) @a

Thus, analogously to §5.8, the ring A%, (R.) is identified with the divided power envelope of
(Ains(RL.), Ker(0) 4+ p- Ain(RL,)) over (Zy, pZy,), and

Ais(RL) = Aing(RL) @4, . Acris  is identified with (A (R.))".

inf

For an m € Zx1, we let Acn(s )(R’ ) € AL (RL.) be the Aje(R.,)-subalgebra generated by the

elements £"/n! with n < m (compare with §3.26). For a fixed m, the subalgebra

n

Bint (R ) [T ]zt © Bint(Bie) [T,y © (Bt (R [5])(T]
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is described by explicit lower bounds on the ‘p-adic valuations’ of the coefficients of TV for N > 1.
Thus, since the sequence (p, &) is Aj¢( R, )-regular (compare with Lemma 3.13), the quotient of
Ain(RL)[ET]n=1 by Ain(RL)[L7]msn>1 has no nonzero (T' — &)-torsion. Consequently,

AG (RLY) 2 (Aing(RL) [ L1, )/(T = ), (5.35.1)

to the effect that
AR

inf ““cris

AYI(RL) = Ae(RL,) @4

cris
Thus, by letting the completion be p-adic if m > p and (p, u)-adic if m < p, we obtain the
) _algebra A" )(Rgo) defined as in (5.19.3):

cris

following identification with the A(

(™ (B))™ = AN (R) = Aine(Rle) B A (5.35.2)
PROPOSITION 5.36. For an affinoid perfectoid Spa(R(’X)[%], R..) over Spa(C,O¢) and an m > 1,
the following ring homomorphisms are injective:

ARV (RL) = AUD(RL) > Aais(RL,) = BIR(BY) = (Aumr(RL)[2])” (5.36.1)

Cris Cris

where the completion is &-adic and the definition of the last map is explained in the proof. In
particular, the Ajn¢-algebras in (5.36.1) have no nonzero p-torsion.

Proof. The assertion about the p-torsion follows from the rest because p/€ is a unit in IB%:{R(RQO)
(see (2.1.1)-(2.1.4)) and B (R.,) inherits ¢-torsion freeness from Ajy(RL,).
The sequence (p,&) is Ajnr(RL)-regular and Aj(RL) is &-adically separated (see [SP,

090T]), so the ring Ainf(Rgo)[%] is also &-adically separated. Thus, we obtain the injection

Ainf(Rgo)[l] — B} (R..), and hence also A% )(R’ ) = BI: (RL),

cris

which, in particular, allows us to assume that m > p. For varying n > 0, the A;,¢ (R, )-submodules

(R.) generated by the S for n' >n

nt

Fil c A,

cris

form a decreasing filtration of AY. (R’ ) by ideals. By [Tsu99, A2.9(2)],'3 each

cris

A% (R.)/Fil is p-torsion free and p-adically complete. (5.36.2)

cris

Thus, the p-adic completions Fil, := (Fil%)” form a decreasing filtration of Aqis(R.,) by
ideals with
Aais(RL)/ Fil, = AV (RL,)/Fil? . (5.36.3)

The p-torsion freeness also supplies a decreasing filtration modulo p:

Fil, /pFily — Alio(Rbo)/PAckis(Rl)-

The isomorphism A%, (RL)) = (At (RL) [T /n)]nz1)/(T — €) gives the explicit description
0 / /N A ) P P . ij
ACI‘IS(ROO)/pACrIS(ROO) = (Roo/€ )[Ylv Ya,.. ]/(YI ’Y2 ’e. ) with }/j = T\ (5364)

(p7)!

13 Note that [Tsu99, A2.9(2)] is written in a different setting, but its proof continues to work if A there is replaced
by our RL.
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(compare with [BC09, 9.4.1(3)]), so the filtration {Fil2 /pFil®},~¢ is separated. Thus, since
Fil° /pFil° = Fil, /pFil, compatibly with A%, (R.)/pA% (R. ) = Auis(R..)/pAcis(R.,),

the p-adic separatedness of Aqis(RL,) and (5.36.2) force the filtration {Fil,, }»>0 to be separated

too:
(5.36.3)
Acris(Rle) = lim (Acris(Rh)/Fil,) = lim (A (RL,)/Fily).

cris

Moreover, we have the injection lim (A (RL)/Fil)) — Bi;(R..) that results from the
injections

Al (RL)/ Fill, — (AL (RL)/ Fil) [1] 22 (At (RL) []) /6" = BiR (RL) /€™
Thus, we obtain the desired natural injection Acyis(Rh,) < Big (RL) of A2, (RL,)-algebras.

cris

We turn to the remaining injection Ag?s) (RL,) = Aqis(RL,). For n > 0, we consider the ideal

Fily "™ 1= AQ T (RL) MFLG = Ker (ALY (RL) — (Aine(RL) [L]) /€7) € ASU(RL),

Cris cris Cris

so that {Fll m)}n>0 forms a filtration of Acrl(s )(R’ ). Explicitly, as an Aj,¢(RL,)-module, il ™
is generated by the products £t /nq!- - &™ /ng! with nj+- - -4ns > nand 0 < n; < m. By (5.36.2),
each

A% (R..)/Fil% (™ s p-torsion free, (5.36.5)

cris

so we again get the induced filtration modulo p:

Fills O /pFildy (™) s ALCV(RL) pAL™ (RL).

Cris cris

As in the case of {Fil% /pFil%},~0, the analogous to (5.36.4) description of
Aol (L) [pAg™ (L)

Cris

supplied by the isomorphism (5.35.1) shows that the filtration {Filg’ (m) /p Fily (m)}n>0 is
separated.
For each n > 0, there is a j, > 0 such that p/» kills
Ao (Rho) /(MG (Rb,) + Fil))

cris Cris

(for instance, j, := ord,(n!) has this property). Consequently, p/» kills the kernel of the map

A% ™ (R FiS (M) A (R..)/Fil®

CrlS cris

pi - (AS T (R ) FIS )y T pl - (AD(RL)/FILD)

Cris

for each j > 0,

so, for j > j,, every element of this kernel is a multiple of p’~7». The short exact sequences

0 Ry (5:365)  AG™(RL) A (R Fily ™
- Fily P ALTR) (AT (L) P )

then show that for each n > 0, every element of the kernel

m ~ . 0, (m
Ker(AJ (Rhy) — Aors(RL)) = Ker (lim _ (G0 (RL)/p) — lim _ (4%(Rh.)/p7))
(5.36.6)
lies in l(iLnj>0 (Filg’ (m) /P’ Fily, ™) ). In particular, this kernel maps to Fil5 ™) /p C A% ( RL)/p

cris
for each n > 0. However, by the previous paragraph, (1,~ (Filo (M) /p) =0, so the kernel (5.36.6)
lies in p - A((mg(R’ ). Since Ais(RL,) has no nonzero p-torsion and Af:?s) (R,) is p-adically
(m)

separated, this implies that the map Ams (RL,) = Aqis(RL,) is injective, as desired. O
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The following lemma is the final step to building the desired map D(m) — Ag?s) (Rs, A, 00) In
§5.38.

LEMMA 5.37. For \g € A, there is a Ay, p-equivariant divided power morphism
Dj, — A% (Rs. A o0) (5.37.1)

that is compatible with the isomorphisms Dj =~ D, , of (5.28.1) and is Frobenius-equivariant.

J,\/

Proof. By construction, Ai,¢(Rx A, o) is an Ag A-algebra. Moreover, since Ajpt(Ry A, o0) I8 &-
adically complete with Ajnf(Rs A o0)/& = RE,A,;O (see §5.19), if ¢y ; is a unit in R C Ry A, o0,
then X ; is a unit in Ajpe(Ry, A, 00) (see (3.14.3)). Thus, if R®e,, k is k-smooth, then equations
(5.26.3) have a unique solution in Ajn¢(Rs A, o), to the effect that, in this case, Ajnt(Rx, A, 00) IS
naturally and Ay, p-equivariantly an (A% A ®z(qQ]) Z[Py,])-algebra, compatibly with the ‘change of
Ao’ isomorphisms of (5.26.7), the maps (5.26.4) and (5.19.1) to R and Ry; A, o, and the Frobenii.

If R ®o, k is not k-smooth, then, in the notation of §5.27, for each m > 0 and a generic

point y € YV of Spec(R®0,, k), the element ¢ L™ @) is not a zero divisor in Rx; A, and is a unit

A0, i
in Ry, A, OO[ ]. Thus, since Ry A, is integrally closed in Ry, A, oo[l] we conclude from (5.27.1)
that
i/f;n /tiéplA € Rg ), forevery Xo,A€A, m>0.

In other words,

1/p™ MuD) 1/p™ : : (m) X
t)\,l.A(y) Uy o, tAo,iAO(y) in Ry Ao fora unique Uy No.y € RE,A,oo-

By the uniqueness, (ug\ ;1;) ug\m/\) Ly SO ug\ Aoy 1= (U g\ /\) yIm=0 € (R} A o) satisfies

Xxin(y) = [ug\,)\o,y]'X/\o,iAO(y) in  Ajn(Rs, A, 00)

(see §§3.11 and 3.14). Thus, since each X} ; is a nonzero-divisor in Ajut(Rx A, o), the [ug\y)\o’y]
solve the equations (5.27.3) in Ajnf(Rsx, A o), compatibly with the solution in R C Ry A oo Of
(5.27.4). Thus, in the nonsmooth case as well, Aijys(Ry A, 00) I8 Ay, p-equivariantly an algebra
over A%A ®z(Q) Z[P»,], compatibly with the change of Ao, the maps (5.27.4) and (5.19.1) to R
and Ryx A o, and the Frobenii.

In conclusion, in all the cases we obtain a commutative square which is compatible with the
change of \g:

Ix Ix
AS ) ®@ziq) Z[Py,) >R AS ) ®@ziq) Z[Pa,) ° >R
J/ L so also l l
Aint(Ryx A, 00) o Ry A, oo A%, (Rs A o) o Ry A, oo-

The universal property of Djko then supplies the desired divided power morphism (5.37.1). O
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5.38 The comparison map
The p-adic completion of the morphism (5.37.1) is the morphism

Ds A — Auis(Bs, A, 00) (5.38.1)
(see Lemma 5.29), which does not depend on \g. By construction, it makes the following diagram
commute.
Dy (5.22.3)
J{(5-38-1) (5.38.2)

0
Acris(I%E7 A, oo) — > RE,A, oo
1 . 0, (m) . . 0, (m) 5.36
ts restriction to Dy 'y of §5.30 lands in the subring A ;"' (R, A, 00) C Acis(R5, A, 0)s 50, by
passing to p-adic completions and using (5.35.2), we obtain the compatible morphisms

D(ﬂ — A" (Ry p,00) for m>p (5.38.3)

that recover (5.38.1) via the identifications (5.30.1) and (5.1.1). By construction and Lemma 5.37,

the morphisms (5.38.3) are Ay, p-equivariant and Frobenius-equivariant, so they give rise to the
Frobenius-equivariant morphisms of complexes

K (0 = Does, (0r,i = Daenicica) > Kyom (07 = Does, (015 = Diren,1<i<a)-

cris

After applying the functor ), these morphisms compose with those constructed in
Proposition 5.34 to give rise to the desired Frobenius-equivariant comparison map of complexes:

~ ~

i g (o) )] (51 (g 0 0)) G50

cris

where the direct limits and the p-adic completions are formed termwise and, for brevity, we let
7 range over the indices ‘o’ for 0 € ¥ and ‘(A7) for A\ € Aand i =1,...,d.

The source (respectively, the target) of the map (5.38.4) is a term of the direct limit (5.32.1)
(respectively, (5.21.1)) and the formation of this map is compatible with enlarging ¥ and A,
that is, with the transition maps of the direct limits (5.32.1) and (5.21.1). Moreover, if R is a
p-adically formally étale R-algebra equipped with data as in (5.17.1) for some sets ¥’ and A/,
then the map (5.38.4) and its analogue for R’ and the sets YUY/, AUA’ (and the induced closed
immersion (5.17.1)) are compatible with the maps between their sources (respectively, targets)
discussed in §§5.21 and 5.32.

In conclusion, by taking the filtered direct limit of the maps (5.38.4) over all the closed
immersions (5.17.1) for varying ¥ and A (but a fixed R), we obtain a comparison map from
the complex (5.32.1) to the complex (5.21.1), and the formation of this map is compatible with
replacing R by a formally étale R-algebra R’. The following proposition implies that this map is
a quasi-isomorphism.

PROPOSITION 5.39. The Frobenius-equivariant comparison map (5.38.4) is a quasi-isomorphism.

Proof. The proof is similar to that of [BMS18, 12.9], and the idea is to reduce to the case of a
single coordinate morphism settled in Proposition 5.16. More precisely, for m > p, let

Spec(R/p) — Spf(D(ZT’”/)\)

be the closed immersion induced by its analogue for Ds; A, that is, by the first map in (5.22.2). For
each A\g € A, the ideal of Ag,/\ ®7q] Z[Py,] that cuts out R/p (see (5.27.5)) is finitely generated.
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Consequently, for each m > p, the ideal of D(Zm/)\ that cuts out R/p is also finitely generated
and, hence, due to divided powers, it is also p-adically topologically nilpotent. Thus, fixing a
A € A and, for m > p, letting Alm )(R),\ denote the ring Alm )( R) of §3.27 constructed using the

cris cris

coordinate morphism Ry — R, we may use the p-adic formal étaleness of Ag?s) (RY) — A((:rls) (R)a

(see §3.14) to obtain the unique indicated lifts in the commutative diagram

Spec(Rs;, A, 0o/P) ——= Spec(R/p) — Spf(AT(R),)

Cris

-7 7
— -
— ~
0 - - - i
- ~
—_ ~

SPE(AGL (Rs,.)) 555 SPEDEY) ——> Spi(ALL (RS)

in which the bottom right horizontal map results from the fact that, by construction, each D(Em/)\

is both an A(RD) algebra and an Agrls)—algebra. By the uniqueness of such lifts, the resulting
maps

AU(R)) — DI (5.39.1)

Cris
are compatible as m varies, Ay p-equivariant, where Ay o acts on AEHS) (R)) through the
projection Ay o — Ay, and are compatible with the maps from its source and target to

AT )(RZ,A,OO)- By construction, the maps (5.39.1) are also compatible with the derivations

cris

oz ) fori=1,...,d discussed in §§5.10 and 5.31. Consequently, the diagram

e} 9 (5.16.2)
KAEZZ)( R)x (m"“’alog(xA,d)) () (KA<m>(R | )(5A 1 — L Ond— 1))

cris

l(5.39.1) l

Kpgn ((mof(x»)) sy (KA“”(RE,A,OO)((‘ST_”T))

cris

(5.39.2)
commutes, where the index 7 ranges over ‘o’ for 0 € ¥ and ‘(N,4) for N € Aand i =1,...,d.
By Proposition 5.16, for m > p?, the top horizontal map in (5.39.2) is a quasi-isomorphism and,
by Lemma 3.7 and Remark 3.35, so is the right vertical map. By Proposition 5.13 and (5.31.5),
the left vertical map in (5.39.2) becomes a quasi-isomorphism after applying h—H>1m>p and forming

the termwise p-adic completion. These operations turn the bottom horizontal map in (5.39.2)
into the comparison map (5.38.4), so we conclude that the latter is also a quasi-isomorphism, as
desired. 0

5.40 Proof of Theorem 5.4

By §5.38 and Proposition 5.39, the functorial in R complexes (5.21.1) and (5.32.1) define
canonically and Frobenius-equivariantly quasi-isomorphic complexes of presheaves on a basis
for the topology of Xg. Their associated complexes of sheaves on X4 are then also canonically
and Frobenius-equivariantly quasi-isomorphic. By §§5.21 and 5.32, these complexes of sheaves

Frobenius-compatibly represent AQy ® Ay Aeris and Ru*((’)xoc . Aue ) Tespectively, so that, in
conclusion, Proposition 5.39 supplies a Frobenius-equivariant isomorphism

~ ~L
Ru*(oxoc/p/Acris) — AQ% ®Ainf Acr157 (5401)

which gives the desired identification (5.4.1). O
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We have obtained two ways to identify the de Rham specialization of AQy: we may either use
(4.17.1) or combine (5.40.1) with the fact that the logarithmic crystalline cohomology of X,/
over O¢ is computed by 5. /0, log" For use in §8, we now check that these two identifications
agree.

PROPOSITION 5.41. The following diagram commutes:

(5.40.1) ~L
Ru, (Oxoc/p/Acris) ~ AQ% ®Ainf Acris
\ / (5'41-1)
(4.17.1)
Q%/Oa log

where the unlabeled map results from the identification

~L " e
Ru*(oxoc/p/Acris) @A, 0 OC = Qx/OcJOg

cris»

of [Beil3a, (1.8.1) and (1.11.1)] (compare with Remark 5.24).

Proof. The overall argument is similar to that given in the smooth case in [BMS18, proof of 14.1].
The claim is local, so we assume the setup of §5.17. Then dlog(X,) and dlog(X) ;) generate

the differential graded algebra sz,/\ /Auris, log, PD OVeT Dy 5 (see Proposition 5.23), so, since the
terms of Qépf( R)/Oc, log AT€ p-torsion free and each t, and t) ; is a unit in R[%], there is at most
one map of differential graded algebras

(5.22.3)

.DE,A/AmS,log,PD_)Qépf(R)/Oc,log with  Dx R in degree O. (5.41.2)

By Proposition 5.23, the unlabeled map of (5.41.1) is identified with this unique map, so we need
to show that so is the composition in (5.41.1).

We recall from the proof of Theorem 4.17 that the right diagonal map in (5.41.1) is defined
by composing the Frobenius of AQy, the reduction modulo ¢(&), and the canonical identification
supplied by [BMS18, 6.12] of (L)) (AQx))/¢(§) with the complex™® H®(AQx/¢(£)) that is
a posteriori identified with Qgpf( R)/Oc, log and whose differentials are a priori given by Bockstein

homomorphisms (defined in [BMS18, 6.12] using AQx/(p(€))?). Letting 7 range over the usual
indices (see §5.31), we may also apply this construction to the complex

() (KAinf(RE,A, o) ((5T - 1)7'))-

Frobenius maps it isomorphically t0 7, (u))(Ka;(Rs, . o) (07 — 1)7)), for which the reduction
modulo ¢(§) map is

Mp(12) K tsn (R, . 00) (O = D)r)) = H*(00) (K a5 (B3, 2, 00) (07 = 1)7))) /0(8))-

Moreover, due to the isomorphism (4.2.2) and Remarks 3.10 and 3.21,

(1) B as (s, n, 00) (07 = 1)) /0(€) = 1¢—1) (KR 5, o0 (67 = 1))

4 For notational simplicity, we suppress the twists inherent in the construction H®(—) of [BMS18, 6.12].
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The cited remarks and Theorem 4.11 (with Remark 4.5) imply that this describes the de Rham
specialization map AQx — Q% /0¢, 10g 10 terms of the complex 7, (K hine (R, a, o0) (67 = 1)7)).
We now describe the right dlagonal map of (5.41.1) in terms of 7,y (K A (R a. oo)((<5T—1)T)),
which is a variable term that comprises the target of the comparison map (5. 38 4) Namely, we
first let gp(A( )(RE A, o)) be the analogue of the ring AT )(Rg A, o0) built using the element ¢(&)

cris cris

instead of £, so that the Frobenius gives the isomorphism A((ms) (R A, 00) —> @(A(m) (Rs. A, 00))- 20

Cris

Then the Frobenius maps the complex 7, (K A (R )((57 — 1);)) isomorphically to the

complex 7)) (K

S(A (R x oo))((57 —1);)), for Wthh the reduction modulo ¢(§) map is

n(cp(,u))(K (ASJQ(RE ))((6‘1’ - 1)7‘)) — H.(’I’](u) (KSO(Ag?;S)(RE,A,oo))((éT - 1)7))/90(6)) (5413)
Via a morphism induced by 6 o o~ !: ¢(A(m)(R27A7m)) — Ry A, o0, the target of (5.41.3) maps

cris
to
3.10 and 4.11
~ L]

H’(”(Cp*l)(KRE,A,oo(((sT —-1)7))) = Qspf(R)/oC,log
because, since each Hi(n(cp,l)(K Ry a0 (07 — 1)7))) is p-torsion free, the agreement of
the Bockstein differentials may be checked after inverting p by using the fact that
(Ainf(R27A7oo)/g0(€)2)[%] is an algebra over @(Aém)(Rz,A,oo)) via a map that lifts § o o1
The resulting composition

) (K yom (O = 1)2)) = H (¢ 1) (K rs 5, oo (07 = 1)0))) = Q8 m) j0g 10 (0-41:4)

cris

is the promised description of the right diagonal map of (5.41.1). In addition, by construction and
[BMS18, 6.13], this composition is a morphism of differential graded algebras'® that in degree 0
is given by the map 6 of (5.19.4).

On the other hand, the comparison map

U sttonvsp = Ks s (o)) = (12, (100 (K (0 =10))

cris

~

would be a map of differential graded algebras if in the formula

10g([6]) : Zn>0 ( a?igi]g')n (Blog{zX-r) )n>

that describes the morphism (5.34.1) in degree 1 we could disregard the terms with n > 1.
However, log([e]) and p are unit multiples of each other (see §5.14) and §(u"/(n +1)!) =0 in
Oc¢ for n > 1, so we can indeed ignore these terms if we are only interested in the composition

ng A/ Acris, log, PD (h_IQ (”(u) ( AS’Q(RE’A’OO)(((ST - 1)7)>>>A R Qépf(R)/oc,log

that describes the composition in (5.41.1). In conclusion, this composition is a morphism of
differential graded algebras that, due to (5.38.2), in degree 0 is the map Dy, o — R from (5.22.3).
Therefore, as desired, it is the unique morphism (5.41.2). O

We now use Theorem 5.4 to analyze the crystalline specialization of RI'(Xg, AQx).

15 Composing with the map cp(A( )(Rz; A o0)) = A(m)(Rz; A, o) Tecovers the Frobenius of A )(Rg A, 00)-

cris Cris cris
16 The differential graded algebra structure on the Koszul complex K. ((6, —1),) that computes continuous group
cohomology is described in [BMS18, 7.5] and its proof.
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5.42 The crystalline specialization map
The Witt vector functoriality gives the surjection

Aing — W(k), the crystalline specialization map of Ajp¢.

Since £ maps to p in W (k), this surjection factors through Acs as follows: Ajus < Acris = W (k).
We equip W (k) with the pullback of the log structure (5.2.1) on Agis. Explicitly, the resulting

0 0,01
log structure on W (k) is associated to the prelog structure Qg Rlakindiiindy W (k).

COROLLARY 5.43. For quasi-compact and quasi-separated X, we have Frobenius-equivariant

identifications .
RF(}:étv AQ%) ®Ainf Acris = RFlog cris (:{Oc/p/Acris)a (5 43 1)
L 43.
R (Xat, AQx) @4, W(k) = RD\ogcris(Xk/W (k).
For O¢-proper X, we have Frobenius-equivariant identifications
RP(%étv AQX) ®HAM Acris = erog cris(%OC/p/Acris% (5432)

RP(%éty AQ%) ®HAinf W(k) = erogcris(%k/w(k))a
and the cohomology modules of RT'(X4, AQx) ®HAinf Acris[%] are finite free over Acris[%].

Proof. By [BMS18, 4.9(i)], a finitely presented Ajys/p™-module is perfect as an Aj,s-module.
Consequently, any Aj,¢/p™-module M is a filtered direct limit of perfect Aj,e-modules, so, by
[SP, 0739],
RT (X, AQx ®Y% M) = RT(Xe, AQx) @5 M.

This applies to M = Acis/p", so the first identification in (5.43.1) follows from Theorem 5.4.

For each finite subextension of C'/(W (k) [%]), we consider its ring of integers O C O¢ equipped
with the (fine) log structure associated to O N ((’)[%])X — . By using étale local semistable
coordinates (1.5.1) and Claims 1.6.1 and 1.6.3, we employ limit arguments to find such an O
and a quasi-compact and quasi-separated, fine, log smooth log scheme X over O/p that descends

Xo,/p and is of Cartier type (see [Kat89, 4.8]). Then the base change theorem [Beil3a, (1.11.1)]
applies'” and shows that

~L
RFlogcris(xoc/p/Acris)(g)AcrisW(k) = erogcris(%k/w(k>)7 (5433)

so the second identification in (5.43.1) follows from the first.

If X is O¢-proper, then, by Corollary 4.20, the object RI'(X¢, AQx) is quasi-isomorphic to a
bounded complex of finite free A;y-modules, so the identifications in (5.43.2) follow from those in
(5.43.1). Moreover, then X is O-proper and [Beil3a, 1.18, Theorem] proves that the cohomology
groups of

RTog cris (X0 /p/ Acris) ® . Acris[5],  and hence also of ~ RT(Xer, AQx) @7, Aeris[3],

are finite free Acris[%]—modules. O

'"In [Beil3a, (1.11.1)], the map f of fine log schemes is quasi-compact and separated. One may relax this to
quasi-compact and quasi-separated: once Y there is affine, the iterated intersections of opens in an affine cover
of Z are quasi-compact and separated over Y, so the Cech technique (compare with [SP, 08BN]) reduces to the
original assumptions.
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Remarks.

5.44. In the preceding proof, the special fiber X} is a descent of X to a fine, log smooth log
scheme of Cartier type over k equipped with the log structure associated to

1—0,0—1
N>o

=

k

(the base change map is a ‘change of log structure’ self-map of k determined by the
map N>g — Q¢ that sends 1 to the valuation of a uniformizer of O). Given such a
descent, the base change theorem [Beil3a, (1.11.1)] gives the further Frobenius-equivariant
identification

RTog cris (X1 /W () =2 RTog cris (X /W (K)), (5.44.1)

where the W (k) on the left (respectively, right) is equipped with the log structure

associated to Qxg 9742001 W (k) (respectively, N>g 200 ] W (k)). Likewise, if
X}, is k-smooth, then [Beil3a, (1.11.1)] gives the Frobenius-equivariant identification

RTog cris (Xk/W (k) & RT eyis(X1/ W (K)). (5.44.2)

5.45. The identification (5.43.3) expresses RI'og cris(Xx/W (K)) in terms of RTjog cris(X o /p/ Acris)-
Further results from [Beil3a] imply a converse for proper X after extending coefficients to
B, see (9.2.2) below (when X}, is k-smooth, Acris[%] in place of B suffices, see [BMS18,
13.21)).

6. The comparison to the BjR-cohomology

The main goal of this section is to prove in Theorem 6.6 that for Og-proper X, we have
erog cris(%OC/p/Acris) ®]I,4cris B(;FR = RFcris (%?/BJR), (601)

where the definition of Rfcris(f{%d / B(;FR), the ‘crystalline cohomology of f{%ﬁi over B$R’7 was given
in [BMS18, §13] (see §6.2 for a brief review). This definition is purely in terms of X! and was
engineered in [BMS18, §13] to be compatible with RTlogcris(Xo, /p/Acris) when X is smooth.
Thus, for (6.0.1), we only need to check that a slightly more general definition that uses the
étale topology and more general embeddings than those furnished by annuli leads to the same
cohomology (see §§6.2-6.3). For this, we adapt the arguments of [BMS18, §13]; in fact, our C
is (W(k)[%])/\ (see §1.5), so we may simplify the descent to a discretely valued base aspects of
these arguments by taking advantage of a result of Huber on the local structure of étale maps

of adic spaces (see §6.3).

6.1 The ring BIR

Since £ is not a zero divisor in Ainf[l%] and generates Ker(6 [%]), the (Ker(&[%]))—adic completion
of Ainf[%] is a complete discrete valuation ring B;{R with £ as a uniformizer and C as the residue
field. By Proposition 5.36, both A;,; and Acs are subalgebras of BGJ{R. By the ‘glueing of flatness’
[RG71, 11.1.4.2.1], the ring BJR is flat as an Ajy¢-algebra. We set

Bgr := Frac(BCTR).

Our Ay is a W (k)-algebra (see §2.1), so, by the infinitesimal lifting, By is a (k)[%]—algebra.
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6.2 The BIR-cohomology using the étale topology
In [BMS18, §13], Bhatt—-Morrow—Scholze used the analytic topology of a smooth adic C-space
X to define the ‘B(J{R—cohomology’ of X,

RTis(X/Bjg) € D?°(BiR).

We now review their construction and show that it may also be carried out in the étale topology.
By [Hub96, 1.6.10, 2.2.8], the analytic (respectively, étale) topology of X has a basis of
affinoids Spa(A, A°) each of which admits a map

Spa(A, A°) — T := Spa(C(TF!, ... ,Tjﬂ), Oc(TH, ... ,ch1>) for some d>0 (6.2.1)

that is a composition of a rational embedding, a finite étale map, and a rational embedding. By
localizing further, we refine the basis to consist of those Spa(A, A°) as above for which there is
a finite subset ¥ C (A°)* such that the following map is surjective:

CUXE)yew) 225 A, (6.2.2)

Then, by endowing each Aj,¢/¢™ with the p-adic topology, each (Ajs/E™) [%] with the unique ring
topology for which Ajn¢/£™ is an open subring, setting

Bip((Xguew) :==1lm _ ((Bar/€") (X uew)), (6.2.3)

<—n>0

and composing the projection onto the n = 1 term with (6.2.2), we obtain the surjection
5 Bipd(Xi)uew) » A and set Dy(A) == lim _ (Bpd(Xi)uew))/(Ker s)™).

By the Leibniz rule, any (Bjz{((X:I!)uew))-valued derivation of Bj;((XF')ucw) induces a
Dy (A)-valued derivation of Dy (A). Thus, the commuting derivations ﬁm =X, % give
rise to the Koszul complex

. o 9
Douayg, = Koe) <<8log(xu>>uew)
that is functorial in enlarging W. The resulting complex

Q.

e (6.2.4)

— 15 [ ]

T h—n>l\I/(QD\I,(A)/B;'R)
is contravariantly functorial in Spa(A, A°). Consequently, by varying Spa(A, A°), we obtain a
complex of presheaves on the basis described above for the analytic (respectively, étale) topology
of X. The hypercohomology of the associated complex of sheaves is, by definition, the BJR—

cohomology of X:
RTUis(X/Bjy) (respectively, its variant for the étale topology ~RTais(Xet/Big))-

By [BMS18, 13.12(ii), 13.13], if Spa(A, A°) is fixed and ¥ is sufficiently large, then Dy (A) is

&-torsion free and £-adically complete, QZ)\P (A)/BE, maps quasi-isomorphically to Q;l /B and,

in the derived category, we have a canonical identification

° ~ (®, cont ° ~ (O®,cont
QDq,(A)/BCTR/fng/C ,  so also QA/B'}R/g:QA/C )
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Consequently, by [BMS18, 9.15] (which we also used for proving Corollary 4.6), our definition of
RT ois(X/BJy) agrees with that of [BMS18, §13] (where one skips the sheafification step),

RI‘CﬁS(X/B:R) and chris(Xét/B;_R) are derived &-adically complete, (6.2.5)

and their (derived) reductions modulo & are canonically and compatibly identified with the de
Rham cohomology objects RT'(X, Q;(;gm) and RT(Xeg, Q;é;gnt), respectively, for instance:

RTeis(X/Big) @I;;R C = RI'(X, Q;;gnt) —: RI4r(X/0). (6.2.6)
Thus, since, by the Hodge-to-de Rham spectral sequence and [Sch13a, 9.2(ii)], the formation of
the de Rham cohomology is insensitive to passage to the étale topology, we have

RTis(X/BiR) — Rleris(Xer/BiR) (6.2.7)

via pullback. In addition, if X is proper over C' and there is a complete, discretely valued subfield
K C C with a perfect residue field and a proper, smooth adic space Xy over K equipped with
an isomorphism X = X ®xC, then, by [BMS18, 13.20], there is a canonical identification

RTais(X/BJg) = RUar(Xo/K) @k By, where RIar(Xo/K) = RT(Xo, Q%) (6.2.8)

In this situation, by the proof of [BMS18, 13.20], the reduction modulo ¢ of the identification
(6.2.8) recovers the identification (6.2.6) under the base change identification

RT4r(X/C) = RT4r(Xo/K) & C.

6.3 The B;‘R-cohomology using more general embeddings
To relate Rfcris(Xét/B;R) to the absolute crystalline cohomology of §5.3, we now mildly
generalize the construction of the former.

The étale topology of X has a basis of affinoids Spa(A, A°) each of which admits an étale
map

Spa(4, A°) — Spa(C(Ty, ..., T, T=Y, ..., I3 /(T - - T, — p9),

L I (6.3.1)
Oc(To, ..., Tr, TEY .. TEY(Ty- - T, — p))

for some d > r > 0 and ¢ € Qs (we have seen in § 6.2 that even those with r = 0 would suffice). By
[Hub96, 1.7.3(iii)]'® and limit arguments, there is a finite subextension W (k) [%] C K C C with the
ring of integers O containing p? and a finite-type (O[T, ..., T, Till, e ,Tfl]/(To T — p?))-
algebra Ay that is étale after inverting p, flat over O, normal, and such that the morphism (6.3.1)
is the C-base change of an étale Spa(K, O)-morphism

Spa(Ao[2], Ag) — Spa(K(Ty, ..., To, T3, ..., TF) /(T T, — p?),

. B (6.3.2)
O(Ty, ..., T, T2, ..., T, ) [ (To- - T — p9)).

8 Noncomplete A are allowed in [Hub96, 1.7.3(iii)], so we choose

AT =Wk [T, ..., T, TE . T /(To - T, —p?) and A” = AT[L].

1
p
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By also using the reduced fiber theorem [SP, 09IL], we enlarge K to ensure that, in addition,
AW (k) = A°. (6.3.3)

The connected components of Spec(Ag) on which p is a unit do not contribute to ;1?), so we lose
no generality by assuming that Spec(Ag) has no such components.

By working locally on Spa(Ao[%], Ap), we refine the basis above to consist of those Spa(A, A°)
for which, in addition, there are finite subsets Wy C (Ag)* and Zy C Ag N (AB[%])X such that
the map

Ty U, Ta>a

Ao[1] (6.3.4)

K((m:utl)ue‘l’m (xa)a650> P

is surjective. Then there are finite subsets ¥ C (A°)* and & C A° N A* such that the map

Xu—u, Xg—>a
—_———

C<(X1jf1)u6\lfv (Xa)a65>

is also surjective. Defining the ring B (XF")ucw, (Xa)acz) analogously to (6.2.3), so that the
map (6.3.5) gives rise to the surjection

A (6.3.5)

s: BJR((XfI)ue\I/, (Xa)acz) — A,
we set

Dy,z,n(A) = (Bip{(Xy"uew, (Xa)aez))/(Kers)” and Dy,=(A) :=lim _ Dy = n(A).

<—n>0

By [BMS18, 13.4(ii)], each Dy = ,(A) is a complete, strongly Noetherian Tate ring (in the sense of
[Hub93, §1]), with the image of (Aipe/E™) (X )ues, (Xa)aez) endowed with its p-adic topology
as a ring of definition. By construction, Dy = ,,(A) is a nilpotent thickening of Dy = 1(A4) = A.

The ring Bjg is a K-algebra (see §6.1), so we let (Biz/{™)o C Bir/E" for n > 0 be the
(module-finite) Ajn¢/E"-subalgebra generated by the image of O. The proof of [BMS18, 13.11]
shows (with R4 there replaced by our ;1\0[%])19 that the Bj,-algebra

B8k (Ao[2]) :=1lim _ ((Bip/¢")0B0A0)[3]) (6.3.6)

<—n>0

has no nonzero &-torsion and is &-adically complete with
(B(TR@K (A()[%]))/& =~ A and, more generally,
(Bir®x (Ao [5])) /€ = ((Bir/€™0®0Ao) HE
The argument of footnote 19 shows that the map (BérR ) ®Rpdy — (B;’R/(S")O@\)@AO is

surjective for n > 0 (with the kernel of square zero, as may be seen after inverting p), so the
subring

R _ , . (633)
1<ir_nn>0((Bd+R/§")o®vo)CB;R@)K(AO[%]) surjects onto Oc®pAy = A°. (6.3.7)

Moreover, we have the following analogue of [BMS18, 13.12(ii)] whose proof will be given in § 6.4.

191 fact, in our case the argument is simpler, and we sketch it here. Since Spec(Ap) has no connected components
on which p is a unit, by [RG71, 1.3.3.5] and [SP, 0593], the ring Ao is free as an O-module. Thus, the nth term of the
inverse limit in (6.3.6) is a p-adically completed direct sum of copies of (Ain¢ /5")[%] This makes the multiplication
by £&™ map on this nth term explicit and the desired claims follow by passing to the inverse limit over n.
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LEMMA 6.3.8. IfSpa(A, A°) is an element of the refined basis for X¢, described above, ¥ C (A°)*
(respectively, = C A°NA*) contains the images of the T; for r+1 < i < d (respectively, 1 <i <)
under a coordinate morphism as in (6.3.1), and ¥ and = are large enough (see the proof for the
precise meaning), then

Dy, =(A) = (Biz®k (Ao [%])) [(Xa — @)aeqwuzm)\qm,... 73] (6.3.9)

where a € l<i_1_nn>0((B;R/§”)o®vo) C Biz®k (Ao[%]) is a fixed lift of a (see (6.3.7)). In particular,
for large ¥ and =, the B;R—a]gebra Dy =(A) has no nonzero &-torsion and is -adically complete.

Similarly to §6.2, for any ¥ and = as in (6.3.5), the derivations ﬁ()@) = X, 8% with
a € ¥ UE extend to Dy, =(A), and we may define the Koszul complex

Oy =B, = KDu =) ((ﬁm)u@ ’ <ﬁ(x>)ae:)

that is functorial in replacing ¥ and Z by larger ¥’ and Z'. Since a € A* for a € WUZE, the proof
of [BMS18, 13.13] shows that for ¥ and = to which Lemma 6.3.8 applies,

e, cont

Q.D\I,7E(A)/BCTR/£ = QA/C in the derived category, (6.3.10)

compatibly with enlarging ¥ and =. In particular, due to the derived &-adic completeness supplied
by Lemma 6.3.8, for such large enough ¥ and =, the map

Q° - O is a quasi-isomorphism.
Dy, =(A)/ By Dys,=/(A)/Bly a p

Thus, if the element Spa(A, A°) of the refined basis above also belongs to the basis considered
in §6.2, that is, if it has an étale coordinate map as in (6.2.1) and a surjection (6.2.2), then we

obtain the functorial in Spa(4, A°) quasi-isomorphism with the complex Q% Bt of (6.2.4):
dR
Q;‘/BIR — h—rg\IJ,E(QZD\I,,E(A)/B;R)' (6.3.11)

Such Spa(A, A°) still form a basis for X (see the parenthetical remark after (6.3.1)), so we
conclude that the hypercohomology of the sheafification of the complex of presheaves furnished
by the target of (6.3.11) is identified with RTcris(Xe/Bjg)- In conclusion, we may summarize
informally:

the complexes 2% also compute the Bj-cohomology RTes(X/Bjg) (6.3.12)

Dy, =(A)/Bl;
and the maps (6.3.10) recover the identification (6.2.6).

6.4 Proof of Lemma 6.3.8
We adapt the proof of [BMS18, 13.12(ii)] as follows. In addition to the coordinate morphism
(6.3.1) and its descent (6.3.2) used in the statement, we fix subsets

Wy C (Ag)* and Ep C AgN (Ag[L])*

such that, as in (6.3.4), the map

s0: K{(#E ) uews, (Ta)aczy) —% (1]
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is surjective and Wy (respectively, Zp) contains the images of the T; for » + 1 < i < d
(respectively, 1 < ¢ < r) under the map (6.3.2). We require that ¥ (respectively, Z) contains the

image of this ¥ (respectively, Zg) in A°; this is the meaning of ‘large enough’ in the statement.
We set

Do n = K{((E) ey, (Ta)acz,)/(Kersg)® for n >0 and Dy:= lim Do, p.

The continuous map K — BSFR (see §6.1) gives a continuous map compatible with sy and s:

Ty Xy, Ta>Xa

K((xi:l)uell/oa (ma)aEEo> B$R<(Xqitl)u€q/’ (Xa)a€E>a so also DO,n - D\II,E,n(A)

By the K[T,... ,Tr,TriJrll, . ,Tfl]—étaleness of Ao[%], the map

Ao[%] — ;17)[%] lifts to a map AO[Z%] — Doy with T; — 7. (6.4.1)
By [GRO03, 7.3.15], for each n > 0, the subring Dg ,, C Do, p of powerbounded elements is the
preimage of its counterpart (1/4\0[%])0 C :4\0[%] Thus, the lift (6.4.1) maps Ag to Dg ,,, so also to
some ring of definition of Dy ,. By composing with the map Dy , - Dy, = n(A), we obtain the
map Ayg — Dy, = n(A) whose image lies in some ring of definition, so, as n varies, also the map

B;{R@U( (Ao [%]) — Dy =(A) that is compatible with the maps to A.

This gives rise to the continuous map y in the diagram

)(n/ﬂ) (BQFR@K (AO [%} )) [[(Xa - 2i)ae(\IIUE)\{Tl,...,Td}]] %j
Bc—li—R«Xz:Ltl)uE‘lfa (Xa)aeE> y< >z //
[ — Dy =(A)

whose maps ‘X7, — T;” and z are defined as follows.

A

e To define the map ‘X1, — T;’, one first forms the inverse limit over N of the maps

(At /E) (X ew, (Xa)aez) — (Bln/EM0®0 Ao/p™)[(Xa— @) ac oz 11,1

defined by using the fact that each u with u € ¥ is a unit in (B /€")o®0 Ao (see the
sentence around (6.3.7)) and the identity X, ! =a (1 —-u Y Xy, —a)+u 2(X,—u)?—---).
Then one inverts p and forms the inverse limit over n.

e The continuous map z is defined by combining the top part of the diagram, the &-adic
completeness of B(J{R@)K(Ao[%]) (see §6.3), and the definition of Dy =(A).

By construction, the diagram commutes, so y o z = id. By K[Tl,...,TT,TTED...,T[;H]—

étaleness of Ao[%], the K [Tl,...,Tr,Till,...,Tfl]—algebra endomorphism z o y of the pro-
thickening (BJR@)K(AO[Z%]))H(XG — @)ae(wuE\(T1,... T,3}) of A is the identity on AO[%], so also
on (BI® K(Ao[%])). It also fixes every X,, so it must be the identity. Thus, 2 is the desired

isomorphism (6.3.9). O
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6.5 The map from the absolute crystalline cohomology
Returning to the X of § 1.5, our next goal is to use the preceding discussion to exhibit a map

§6.1

RTogcris(Xo /p/ Acris) = Rlris(X5'/Blz)  over  Acis — Bjg. (6.5.1)
For this, we use the basis of X¢ consisting of the affine opens Spf(R) as in the ‘all possible
coordinates’ setting of §5.17 and adopt the subsequent notation of §§5.17-5.40. To relate to
86.3, we set

A:R[%], V= {tU}UEEUU)\GA{t)\7T)\+17‘"?t)\,d}7 and E::U)\EA{t)\,lv"'vt)\ﬂ”/\} (652)

(so that A° = R and t) o are omitted). We may descend the étale map (5.17.3) for A € A to
the ring of integers of a finite subextension W(k)[}%] C K C C (see (1.5.2)) and then obtain the
descended coordinate map (6.3.2) on the generic fiber. In addition, by enlarging K and using the
closed immersion (5.17.2), we may ensure that the descent has a closed immersion (6.3.4) (with
Zo = @); we then enlarge ¥ by adjoining the image in (A°)* of the resulting ¥y. Thus, the above
choices of A, the enlarged ¥, and Z satisfy the assumptions of §6.3: specifically, Spa(A, A°) is
an element of the (refined) basis of (X21)¢; considered there, ¥ (respectively, =) contains ¢, ; for
rx+1 < i< d (respectively, 1 <i < 7)), and Lemma 6.3.8 applies to (the enlarged) ¥ and Z. In
conclusion, with these choices, the entire §6.3 applies.

By using descents and [GR03, 7.3.15] as in the proof of Lemma 6.3.8, we see that the elements
[(pl/poo)‘“]/(XtA’ L Xy, ) of Dy = n(A) lie in (Dy,z,n(A))°. Thus, each (Dy,z,1(4))°, so also
Dy =(A), is naturally an algebra over the ring A%A defined in (5.22.1). In fact, since each
Dy = n(A) is a Q-algebra in which {™ vanishes for m > n and each X, is a unit in Dy =(A),
the universal relations (5.26.3) and (5.27.3) imply that each (Dy, = ,(A))°, so also Dy =(A), is
naturally an algebra over

(A%,A ®Ainf Agris) ®Z[Q] Z[P)\o] for /\0 € A7
compatibly with the maps

(5.26.4) and (5.27.4)

(A A © 4 Ais) Oziq) ZPao R and (Dy,zn(A))” > A°= R (6.5.3)

and the ‘change of Ay’ isomorphisms (5.26.7). The resulting algebra structure map factors through
some (necessarily p-adically complete) ring of definition (Dy = ,(A))o:
(AS, A ® Alris) @21Q) ZIPro] = (Dw,z,n(4))o = (Dy,z,n(4))° = Dy,z,n(A),

so the map (Dy, =z n(A))o — R is surjective. In addition, by [SP, 07GM], the kernel of the map
(Dy,= n(A))° - R/p has a unique divided power structure, so we obtain a map

inf

Dj,, = (Dw,z,n(4))° (6.5.4)

from the divided power envelope Dj,, defined in §5.28. For a fixed n and modulo the £™/m!
with m > n, the kernel of the map (A%A ®a,., A%.) ®z1q) Z[Px,] — R/p is finitely generated
and, due to the surjectivity of (A'iA R4, A% ®z(Q) Z[Px,] — R, the generating set may be
arranged to consist of p and a finite set of elements that vanish already in R. Thus, since Dj%o is

cris) @7]Q) Z[Py,])-algebra by the divided powers of the elements
of this kernel, by enlarging (D, = »(A))o we may factor the map (6.5.4) as follows:

D, — (D‘lhE,n(A))O —> (Dq/757n(A))o —> D\p757n(A).

Ixo

generated as an ((Agy A ®a,, AL
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Consequently, we obtain continuous maps that are independent of Ag and compatible as n varies:

_— (5.29.1)
Dj)\o = DZ,A — (D\I/757n(A))O — D\p75,n(A), so also DZ,A — D\I“E(A) (655)

Via the last map, the DjAO—Valued derivations ﬁ(&;) for o € ¥ and ﬁm for A € A and
1<i<dof Dj)\o are compatible with the corresponding Dy, =(A)-valued derivations of Dy, =(A)
(see (6.5.2) and §§5.31 and 6.3). Thus, due to the density of D;, in Dy, A, the same compatibility

holds for the map Ds; A — Dy, =(A), to the effect that we obtain a map of complexes

KDz ((awf(x@)aeg ’ (f%g(aX/\,i)>)\eA,1<i<d> = KDy =) <(ﬁ(xa))a€\PUE) '

Its formation commutes with enlarging ¥ and A (and, respectively, ¥ and E), so we obtain

the map
. 0 0 : .
h—r>nE,A <KDZ’A <(alog(Xv)>aez’ (alOg(XNi)))\eA,lgigd)) - h—n>1\I’7E(QDq/,5(R[%])/BIR)'

(6.5.6)
The formation of this map is compatible with replacing R by a p-adically formally étale R-algebra
R’ equipped with data as in §5.17. The resulting map of complexes of presheaves gives rise
to the map of complexes of sheaves on X¢; from the complex whose RI'(X¢,—) is identified
with RTog cris (X0 /p/Aeris) (see (5.23.3) and §5.32) to the pushforward of the complex whose
RU((X%)4t, —) is identified with Rqis(X%!/Bl;) (see §6.3 and (6.3.12)). Thus, by applying
RT'(X¢4t, —), we obtain the desired map (6.5.1):

erog cris (%Oc/p/Acris) - chris(xacsl/B;—R) .

In addition, by its construction and Lemma 5.29, the map Dy x — D@,E(R[%]) of (6.5.5) is

compatible with the maps to R[%] (see (6.5.3)). Thus, [BMS18, 13.13] used to obtain (6.3.10)

implies that the map (6.5.6) is compatible with the maps in the derived category to 2

e, cont
R[]/C
described in the last display of §5.32 and (6.3.10). In conclusion, the map (6.5.1) fits into the
following commutative square.

(6.5.1)

RFlog cris(xoc/p/Acris) - RFcris(xan/Bc—l’—R)
l(5.23.2) l(6.2.6) (6.5.7)
erog dR(x/OC> RFdR(%aC‘vd/C)

Having constructed the map (6.5.1), we are ready for the following extension of [BMS1S,
13.23].

THEOREM 6.6. If X is Oc-proper, then the map (6.5.1) induces the identification

erog cris (:{Oc/p/Acris) ®HA B;R = Rl cris (%%’d/B(J{R) (661)

cris

and the cohomology modules of RT ois(X%!/B1y) are finite free over BJ,. In particular, then
RT (X, AQx) @ Blp & RTois(X3'/BlR), (6.6.2)

compatibly with the identifications modulo & with RT qr(X%!/C) given by (4.18.1) and (6.2.6).
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Proof. By Corollaries 4.20 and 5.43, the object RI'ogcris(Xo, /p/Acris) of D(Acris) is perfect and
its cohomology modules become finite free after inverting p. Therefore, due to (5.24.1) and the
derived p-adic completeness, we have the identification

(5.23.2)
Oc ——> Rlogar(X/0¢).

RFlog cris (xOc/p/Acris) ®HA

cris

Consequently, both sides of (6.6.1) are derived &-adically complete (see (6.2.5)) and, due to
(6.2.6) and the commutativity of the diagram (6.5.7), the map (6.5.1) identifies their reductions
modulo ¢. In conclusion, (6.5.1) induces the desired identification (6.6.1) and the BJ,-freeness
claim follows from the first sentence of the proof. The combination of (5.43.2) and (6.6.1) gives
(6.6.2) and the asserted compatibility follows from Proposition 5.41 and the commutativity of
(6.5.7). O

6.7 The B:R-cohomology and the étale cohomology
For any proper, smooth adic space X over C, in [BMS18, 13.1] Bhatt—-Morrow—Scholze
constructed the functorial in X identification

chris(X/BérR) ®B:R Bgr = Rl“ét(X, Zp) ®Zp Bar. (671)

Due to the identification (6.2.8), when X 2 X(&xC for a proper, smooth adic space X defined
over a complete, discretely valued subfield K C C that has a perfect residue field, the inverse of
(6.7.1) supplies the functorial in Xy de Rham comparison isomorphism

RU(Xo®KC,Zy) @z, Bar = RUqr(Xo/K) @k Bar. (6.7.2)

If C = K, then, by transport of structure, the identification (6.7.2) is Gal(K /K )-equivariant
(with Gal(K/K) acting trivially on RIqr(Xo/K)) and, by [BMS18, 13.1], it recovers the
isomorphism constructed in [Sch13a, 8.4]. In particular, in this case, (6.7.2) is compatible
with filtrations, where Bgg is filtered by its discrete valuation and RT'4r(Xo/K) (respectively,
RT&(Xo®xC, Zy)) is equipped with the Hodge (respectively, trivial) filtration.

For proper X, we now have two ways to identify

RT(X4, AQx) @4, Bar with RUg (X8, Z,) @7 Bag:

we can either base change (2.3.1) to Bqr or combine (6.6.2) and (6.7.1). We now prove that the
two ways give the same identification; this will be important in the proof of Theorem 8.7.

PROPOSITION 6.8. If X is Oc-proper, then the map RT ois(X%!/Bi;) — RI(XX, Z)) @z, Bix of
[BMS18, proof of 13.1] that underlies the identification (6.7.1) for X = X! makes the diagram

(6.5.1)

erog cris (%OC /p/Acris) chris (%%d/B$R)

zJ{(5.40.1) l

[BMS18, 6.10] (2.3.2)
RF(%ét, AQ%) ®ainf Acris RT¢ (xacsi7 Ainf,%%d) ®g B(—ii_R DESE RF(%%d’ Zp) ®%p B‘—i‘rR

inf

commute; in particular, the identification of RT' (X, AQx)®HAi“f Bgr with RFét(%%d, Zp) ®Hip Bgr
that results from (2.3.1) (and is encoded by the bottom part of the above diagram) agrees with
the identification that results from (6.6.2) and (6.7.1) (and is encoded by the top part of the
diagram).
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Proof. Since ¢~ !(p) lies in W (m”) and is a unit in By, the discussion after Theorem 2.3 implies
that the map labeled ¢(2.3.2)" in the diagram is an isomorphism. In particular, due to [Sch13a,
5.1], the object RFét(%aéd,Ainﬁ x%d) ®%mf Bjz of D(BL) is perfect. We will now review the
definition given in [BMS18, proof of 13.1] of the composition f of the right vertical map with
this map ‘(2.3.2)".

Let Spa(A, A°) be an element of the basis for the analytic topology of ff%d discussed in §6.2.

For a large enough set ¥ as in §6.2, we consider the surjection C((XF1),cy) Xt A from

(6.2.2), as well as the perfectoid ([[y Zp,(1))-cover C’((quﬂ/poo)ueq,> of C{(XF")ew). Granted
that U contains the images of the T; under some étale coordinate map (6.2.1), the base change
of this cover to Spa(A4, A°) is a perfectoid (][ Zp(1))-cover

Spa(A\p’oo,A&C’oo) — Spa(A4, A°). (6.8.1)

Each u € U has a canonical system u'/?™ of p-power roots in A$, ~> Which gives the unit

[u!/P™] in the Bir-algebra BIR(AJ\IZ,OO) (see Proposition 5.36). Since IB%(J{R(AQOO) may be viewed

as a pro-(infinitesimal thickening) of Ay o, the map X, + [u}/?™] extends to a continuous
B;'R—morphism

Dy(A) — IBSIR(A;OO) over A — Ay . (6.8.2)

By construction, for each u € ¥, this morphism intertwines exp <log([e]) : %(Xu)) defined by the

formula (5.15.1) and viewed as a ring endomorphism of Dy (A) with the action of the generator
[e] of the uth copy of Z,(1) on BI;(Ag, ). In particular, letting ~, denote this generator, we
may use the same formula as in (5.16.1) to define the morphism of complexes

° . o
0, st = Koww (o ) oy) = Ko, (O = Duew). (683)

whose formation is functorial in ¥ and, after passing to the direct limit over all ¥, also in
Spa(A, A°). The almost purity theorem identifies the cohomology of the sheaf of complexes
determined by the target of (6.8.3) with RFét(%‘Zg,Ainf’x;&d) ®4 . Bix (see [BMS18, proof of
13.1]). The cohomology of the sheaf of complexes determined by the source of (6.8.3) is, by
definition, RTeys(X%!/BJ;) (see §6.2). Therefore, by passing to the direct limit over all U,
sheafifying, and forming cohomology, the maps (6.8.3) produce the aforementioned composition
f defined in [BMS18, proof of 13.1].

The same construction gives the morphisms (6.8.3) for the objects Spa(A, A°) of the basis
of the étale topology of }%d considered in §6.2. Due to (6.2.7), this leads to the same map f. In
addition, we may generalize the construction of the morphisms (6.8.3) further by using the basis
for the étale topology of .’{acd considered in §6.3: the cover (6.8.1) gets replaced by the cover

inf

Spa(Aq,,E,oo,/ﬁ ) — Spa(A4, A°)

U, =, 00

that is the base change of the perfectoid

(ITy Zp(1) % [Tz Zp(1))-cover  CUXa " Vuew, (X’ Daez) of CUXEuew, (Xa)acz)

for large enough ¥ C (A°)* and = C A°NA*, and the rest is (mildly) modified accordingly. Due
to (6.3.12), this variant of the construction gives the same map f.
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In conclusion, since the construction of f may be carried out in the setting of § 6.3 and follows
the same pattern as the construction of the map (5.40.1), namely, is based on the map as in
(5.16.1), all we need to check is that, in the notation of §6.5, the following diagram commutes.

6.5.5
Dy A 059 Dy =(A)

(5.38-1)l lﬁ.sz (6.8.4)

(5.36.1)
Acris(RE,A,oo) BIR(AJ‘IC,E,OO)

For this desired commutativity, we may first replace B (Ay = o) by Big (44 = . )/&" for a
variable n > 0, then replace Dsx; A by Dj,, for some A\g € A, and, finally, since IB%(J{R(A$ = o) /&
is a (Q-algebra and DjAo is generated by divided powers, replace DjAo by

(Ag,A © Ay Agris) ®Z[Q} Z[P/\o]‘

However, each X of (5.19.2) with either 7 =0 forc € ¥ or 7 = (\,i) for A€ Aand 1 <i<d
maps to the unit [XTl/poo] € (Bir(A4y

U=, 00)) " under either of the two maps from

(AS A ® A, Adis) ©2iq) Z[Pro]  to BIR(AY = 0)/¢"

supplied by the diagram (6.8.4), so these two maps indeed agree, as desired. O

7. The Aj,r-cohomology modules Hiinf (%) and their specializations

In this section, we define and analyze the Aj,s-cohomology groups Hf;lmf (X) of an O¢-proper
X. We show that each quinf(%) is a Breuil-Kisin—Fargues module (see Theorem 7.4) and
deduce that, loosely speaking, the p-adic étale cohomology of %2?1 has at most the amount
of torsion contained in the logarithmic crystalline cohomology of Xj or the logarithmic de Rham
cohomology of X (see Theorems 7.9 and 7.12). Most of these results are variants of their analogues
established in the smooth case in [BMS18]. Their proofs, granted inputs from §2 and §§4-5, are
generally similar to those of [BMS18] and in large part rely on commutative algebra over Ajus.

7.1 Properness of X
Throughout §7, we assume that X is proper and Xj is purely d-dimensional.

7.2 The Ajnr-cohomology RT 4, (%)
We use the object AQy € DZ0(Xg;, Apnr) of §2.2 to set

RT 4, (%) := RT (X4, AQx) € D*°(Aipg) and  HYy (%) := H'(RT(Xe, AQx)) for i € Z.

inf

Since Ln commutes with pullback along a flat morphism of ringed topoi (see [BMS18, 6.14]),
the object RT' 4, _.(X) is contravariantly functorial in X: an Oc-morphism ¥’ — X induces a
morphism

inf

RT 4 . (X) = RT4 (X)) in D?%(Auy), soalso Hf;lmf (X) —> Hf;,inf (X') for ie€Z.

Corollary 4.20 ensures that RI'4, (X) is perfect, that is, isomorphic to a bounded complex
of finite free Ajyr-modules. Moreover, by (2.3), (4.18.1), and (5.43.2), we have the following
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identifications:

RT 4, (%) @ Aine[ 5] = RUe(XE,Zp) @5 Aine[;];
RT4,,,(X) @% 9 Oc = Rlogar(X/O0c); (7.2.1)
RT 4,,,(X) @5, , W(k) 2 RTiogeris(Xr/W (k).
If X}, is k-smooth, then we may drop ‘log’ from the subscripts (compare with (5.44.2)).
The Frobenius morphism (2.2.5) gives rise to the Frobenius morphism

RT'4 (%) @ Ajn, @ Aing — RFAinf (x) in D>O(Ainf)

that becomes an isomorphism after inverting ¢(§) (see (2.2.6)). Consequently the cohomology
modules Hjali,,f (X) come equipped with the Aj,;-module morphism

inf nf»

@: Hy (%) @y, Aint = Hly (%)

that becomes an isomorphism after inverting ¢(¢). We will prove in Theorem 7.4 that these
morphisms make each Hj‘linf (X) a Breuil-Kisin-Fargues module in the following sense of [BMS18,
4.29].

7.3 Breuil-Kisin—Fargues modules
A Breuil-Kisin—Fargues module is a finitely presented Aj.r-module M equipped with an
Ainf[%]—module isomorphism

) 1 ~ 1
o (M ®a, o Aint) [5ig] — M 5]
such that M[%] is Ainf[%]—free. By [BMS18, 4.9(i)], any such M is perfect as an Ajp-module, that
is, M has a finite resolution by finite free Aj,s-modules. A morphism of Breuil-Kisin—Fargues
modules is an A -module morphism that commutes with the isomorphisms ¢;.

THEOREM 7.4. Each (HAM(%),@) is a Breuil-Kisin—Fargues module which vanishes unless
i € [0,2d]. In particular, each Hihnf(%) is perfect as an Ajs-module and each (Hf;lmf (%))[%] is

Aing [Z%] -free.
Proof. Due to the relation with RT¢ (X% 7Z,), each (Hzinf(f{))[#] is a free Ainf[#]—module.
Moreover, by Corollary 5.43, the cohomology modules of R4, (%) ®£mf Acris[%] are free over

Acris[%]. Therefore, [BMS18, 4.20] applies and proves that each Hj‘linf (X) is a finitely presented
Ajps-module that becomes free after inverting p, so (Hfginf(.’{),@) is a Breuil-Kisin—Fargues
module.

Since RI'4, ,(X) is perfect, its top degree cohomology is finitely presented and of formation

compatible with base change. Thus, by the de Rham specialization of (7.2.1) and the Nakayama
lemma, Hf;‘mf (X) = 0 for i > 2d. The same holds for i < 0 because R4, ,(X) € DZ%(Ajy¢). O

For completeness sake, we mention the following corollary, which may also be proved more
directly.

COROLLARY 7.5. For each i € 7Z, the rank of the finitely presented Z,-module Hét(%%d, Lyp) is
equal to the rank of the finitely presented W (k)-module Hfogcris(%k/W(k)), and is also equal

to the rank of the finitely presented Oc-module Hfog R (X/O¢) == RT (X4, Q%00 log) (Sce also
(7.10.1) below).
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Proof. The finite presentation assertions follow, for instance, from the perfectness of RI'4, (%),
the comparisons (7.2.1), and the coherence of the ring Oc. Due to Theorem 7.4 and the
comparisons (7.2.1), all the ranks in question are equal to the rank of the free Ainf[]%]—module

(HY,, ())[)- O

7.6 Base change for individual Hi‘inf (%)
Since Ainf[%] is Ajne-flat, equation (7.2.1) implies that

inf

(Hf;lmf (X)) [i] =~ H! (x4, Zy) @z, Ainf[i] for each i€ Z. (7.6.1)

In particular, since p is a unit in W(C’b) and W(Cb) is Ajpe-flat (the localization of Aj¢ at the
prime ideal (p) is a discrete valuation ring whose completion is W (C”))

Hiy, (%) ®a,, W(C") = HY (XK, Z,) @z, W(C?), (7.6.2)

inf

A similar de Rham comparison consists of the following exact sequences that result from (7.2.1)
and [SP, 0662]:

0— H};‘inf(%) R4, 00c — Hfong(%/(’)C) — (H:;}f(%))[ﬁ] — 0 foreach ie€Z. (7.6.3)

infs

Similarly, by Theorem 7.4 and [BMS18, 4.9], we have a Frobenius-equivariant exact sequence

0— Hpy () @50 W (k) = Higgeris(X/W (k) — Torj, (H (%), W(k)) >0  (7.64)

inf

for each i € Z. In particular, we have the top degree base changes
HAmf (%) ®Ainf70 OC = H120(é dR(x/OC) and Hicilnf (:{) ®Ainf W(k) = IOgCI‘Ib(%k/W( ))

Due to Theorem 7.4, the injections in the sequences (7.6.3)—(7.6.4) become isomorphisms after
inverting p. The same holds without inverting p in the case when H;;rl (X) is Ajpe-free. For such
freeness, we have the following consequence of Theorem 7.4 and [BMSlS §4.2].

PROPOSITION 7.7. For each i € Z, the Oc-module Hfong(%/OC) is p-torsion free (equivalently,
free) if and only if the W (k)-module H}

) log cris ’
which case Hy_ (X) is free as an Ajn¢-module and Hi (X%, 7,) is free as a Z,-module.

(Xp/W (k)) is p-torsion free (equivalently, free), in

Proof. Due to Theorem 7.4, we may apply [BMS18, 4.18] and combine it with (7.2.1) to conclude
that Hfog 4r(X/O¢) is p-torsion free if and only if so is Hlog eris (Xk/W(K)). When these conditions
hold, the freeness of HAM(%) and H (X24,7,) follows from [BMS18, 4.17] and (7.6.1). O

Remark 7.8. As was observed by Jesse Silliman and Ravi Fernando during the Arizona Winter
School 2017, the first assertion of Proposition 7.7 may be strengthened as follows: for each ¢ € Z,

dimk(HliOng(%/OC)torS ®oc k) = dimk(Hliogcris(%k/w(k))tors ®I/V(k) k)> (781)
that is, Hfong(%/Oc) and Hfogcrls(%k/W(k:)) have the same number of cyclic summands

in the sense o .10.1) below). Indeed, by Corollary 7.5, the ranks o A c) an
in th f (7 below). Indeed, by Coroll 7 h k foOng%O d
1Ogms(fa’Elrf/W( )) agree and, by [Beil3a, (1.8.1)], so do the k-fibers of RI'jozqr(X/O¢) and

R\ cris (X /W (K)), so the claim follows by descending induction on ¢ from the following exact
sequences supplied by [SP, 0662]:

0— Hi,qr(X/O0c) ®0c k = H'(RT0gar(X/0c) @6, k) = Tor{® (HLY 5 (X/0c), k) — 0,
0 = Hiogeris(Xe/W(K)) @w(x) k = H'(RT1og eris (X /W (K)) @y (1) k) = Hiol i (Xx /W (k) [p] — 0.

log cris
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The following variant of [BMS18, 14.5(ii)] strengthens the relationship between the freeness
of H (X,7,) and that of H{ . (Xx/W(k)) supplied by Proposition 7.7.

log cris

THEOREM 7.9. For every ¢ € Z and n € Zxq, we have

lengchp((Hgt(xaéda Zp)tOYS)/pn) < 1engthVV(k‘) ((Hliog cris(%k/W(k))torS)/pn)a (7 91)
<

lengchp (Hét (%aé’d7 Z/an)) lengthW(k) (Hliog cris (%k/Wn(k))) .

Proof. The proof of the first inequality is analogous to the proof of [BMS18, 14.5(ii)]. Namely,
by Corollary 7.5, we may drop the subscripts ‘tors’ and, by Theorem 7.4, (7.6.2), and [BMS18,
4.15(ii)], we have

lengths, (Hj (X2, 2,)/p") < lengthyy o (Hhy (X) @ WD/ (7.92)

Since lengthyy ;) (Q/p") = lengthyyx) (Tor?/(k)(Q,W(k)/p”)) for every W (k)-module ) that is
finite and torsion, the short exact sequence (7.6.4) yields the inequality

lengthW(k)((Hﬁmf(x) @Ay, W(k))/p") < lengthyy g (Hliogcris(%k/w(k))/pn)a

and the first inequality in (7.9.1) follows. Due to the short exact sequences

0 — Hi (X,Z,)/p" — Hi (X8, Z/p"Z) — (H (X3, Z,))[p"] — 0,

0= Hiygorig(X/W () /0" = Hipy oyis(X5/ Wi (k) = (Higl oris(Xn/W () [p"] — 0
that result from [SP, 0662], the second inequality in (7.9.1) follows from the first. O

The de Rham analogue of Theorem 7.9 is Theorem 7.12 below and uses the following
formalism.

7.10 The normalized length

Let 0 be a valuation ring of rank 1 and mixed characteristic (0, p). We normalize its valuation
val, by requiring that val,(p) = 1. By the structure theorem [SP, 0ASP] (see also [GR03, 6.1.14)),
every finitely presented o-module M is of the form

M =@ 0/(a;) with a;€o. (7.10.1)
If M is, in addition, torsion, to the effect that the a; are nonzero, then we set
valo(M) := > val(a;).

More intrinsically, val, (M) is the valuation of any generator of the Oth Fitting ideal Fitto(M) C o
of M, so it depends only on M. If 0 is a discrete valuation ring for which p is a uniformizer, then
valy (M) = length,(M). In general, val, has the advantage of being invariant under the extension
of scalars to a larger 0. Any short exact sequence

0—)M1—>M2—>M3—>0

of finitely presented, torsion o-modules gives rise to the equality Fitto(Mz) = Fitto(M7) Fitte(Ms)
(see [GR03, 6.3.1 and 6.3.5(1)]), so the assignment val,(—) satisfies

valo(Ms) = valo (M) + valo(Ms). (7.10.2)

The following lemma is the de Rham version of [BMS18, 4.14], which gave the inequality
(7.9.2).
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LEMMA 7.11. For a finitely presented W,,(O%)-module M for some n > 1, we have

valy ooy (M @4, W(C?)) = valo, (M/EM) — valo. (M[€]). (7.11.1)

inf

Proof. Since the ring W,(0%) is coherent (see [BMS18, 3.24]), the W, (02 )-module M[¢] is
finitely presented. Moreover, due to (7.10.2), the flatness of Ay — W(C”) (see §7.6), and the
snake lemma, both sides of (7.11.1) are additive in short exact sequences. Therefore, we may
assume that n = 1 and, due to the structure theorem [SP, 0ASP], that M = O, /() for some
z € 0.

If x = 0, then both sides of (7.11.1) are equal to 1. If x # 0, then the left-hand side vanishes,
and so does the right-hand side because M [¢] = Tor}gbc (M, O¢/p) and the following sequence is

exact:
0([x
0 — Torl, (O%/(x), Oc/p) > Oc/p YD, 00 /p — M/EM = 0. 0

THEOREM 7.12. For every i € Z and n € Zxq, we have (recall from § 7.10 that valz, = lengtth)

ValZp((Hgt(xacgvZp)torS)/pn) < Val(’)c((leong(%/OC)torS)/pn)v
<

o | (7.12.1)
valy, (Hg (X%, Z/p" 7)) < valo, (R'T(Xo, /pn, ét5 2

56oc/pn/(oc/lf‘%10g))'

Proof. The proof is analogous to that of Theorem 7.9. Namely, by Corollary 7.5, we may drop
the subscripts ‘tors’ and, by Theorem 7.4, (7.6.2), and Lemma 7.11, we have

valz, (Hi (X&', Zp) /p") < valoe (Hy,, (X)/(0",€))-

The presentation (7.10.1) implies that valp, (Q/p") = valo,, (Tor?c (Q,O¢/p™)) for every finitely
presented, torsion Oc-module @, so the short exact sequence (7.6.3) yields the inequality

Valoc (H}Ainf (x)/(pn7 5)) < Valoc (Hliog dR(x/OC)/pn)'

This proves the first inequality in (7.12.1) and, analogously to the proof of Theorem 7.9, the
second inequality follows from the first. O

The results above, specifically, (7.8.1) and Theorems 7.9 and 7.12 prompt the following
question.

Question 7.13. Are there examples of O¢-proper X satisfying the assumptions of § 1.5 for which

ValW(k) (Hliogcris(%/w(k))tors) # Valoc (Hliong(%/OC)tOFS)?

8. A functorial lattice inside the de Rham cohomology

To a proper, smooth scheme X over a complete, discretely valued extension K of Q, with a
perfect residue field, in Example 8.6 we functorially associate an Og-lattice

‘r(X) C Hig(X/K) for every i€ Z.

In fact, LSR(X ) functorially depends only on H ét(X?’ Zy) and its construction, which relies
on the theory of Breuil-Kisin—Fargues modules, proceeds along familiar lines of integral p-adic
Hodge theory; compare, for instance, with [Liul8, § 4]. The work of the preceding sections allows
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us to interpret Lip(X) geometrically: we show in Theorem 8.7 that if X has a proper, flat,

semistable Og-model & for which Hfong(X/OK) and HfjgldR(X/OK) are Ok-free, then
éR(X):Hliong(X/OK) inside HéR(X/K)'

We do not know whether the same holds ‘modulo torsion’ if one drops the Og-freeness

assumption.

8.1 The base field K

Throughout § 8, we assume that C' = K for a fixed complete, discretely valued field K that is of
mixed characteristic (0,p) and has a perfect residue field kg. We set

G = Gal(K/K),

so that G acts continuously on C, and hence also on Aj;,s. The continuous maps ¢ and 6 are
G-equivariant, and the ideals (£), (¢(£)), and (u) of Aj,s are G-stable (see §2.1).

If X is a p-adic formal O-scheme for which X := XY®p « Oc satisfies the assumptions of § 1.5,
then, by the functoriality of RT 4, ,(X) (see §7.2), G acts Ajps-semilinearly on each Hf;‘mf(.’{).

8.2 The Fargues equivalence
By [BMS18, 4.26], for any Breuil-Kisin—Fargues module (M, ¢ys) (see §7.3), its étale realization,
namely,
Mg = (M ®a,, W(C") P99 =1,
is a finitely generated Z,-module that comes equipped with an identification
M @ 4y, W(C) 2 Mgy @z, W(C?)  under which M @4y, Aine[};] & Mey ©z, Aint[1;].

Thus, My is Zy-free if M is Ajn¢-free and, for any (M, o), we have M ® 4, Bar = Mg @z, Bar,

so that Me; comes equipped with a Bjp-sublattice (recall that M[%] is Ainf[%]—free, see §7.3)

inf

M ®4

inf le_R C My 1z, Bqgr.
By a theorem of Fargues [BMS18, 4.28], the category of Aj,¢-free Breuil-Kisin—Fargues modules
(M, @) is equivalent to that of pairs (7, Z) consisting of a finite free Z,-module T" and a

BJR—lattice E C T ®z, Bgr via the functor

(MJ SOM) = (Mét7M®A BJ_R)

inf
8.3 Breuil-Kisin—Fargues G-modules
Due to the origin of our C' (see §8.1), we may consider Breuil-Kisin—Fargues G-modules, that
is, Breuil-Kisin—Fargues modules (M, ¢)r) equipped with an Aj,¢-semilinear G-action on M for
which ¢, is G-equivariant. A morphism of Breuil-Kisin—Fargues G-modules is a G-equivariant
Ajns-module morphism that commutes with the isomorphisms ¢py.

For instance, if an X’ as in §8.1 is proper, then each quimc(%) is a Breuil-Kisin—Fargues
G-module (see Theorem 7.4). The étale realization My of a Breuil-Kisin-Fargues G-module
(M, @nr) carries the induced Zjy-linear G-action.

PROPOSITION 8.4. The category of Ajn-free Breuil-Kisin-Fargues G-modules (M, pyr) is
equivalent to that of pairs (T,Z) consisting of a finite free Zy-module T equipped with a
G-action and a G-stable B;’R—lattice E C T ®gz, Bar via the functor

(Ma c»OM) = (Métv M @ Ajne BJR)'

Proof. The claim follows from the Fargues equivalence reviewed in §8.2. O
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8.5 An étale lattice determines a de Rham lattice
Let T be a finite free Z,-module endowed with a continuous G-action for which the G-
representation T[%] is de Rham, so that there is a G-equivariant identification

T ®z, Bar = Dar(T) ®k Bar, where Dyr(T) := (T ®z, Bqr)®.

For such T, the BJR—lattice Dgr(T) ®k B(;FR is evidently G-stable in T' ®z, Bgr. Thus, by
Proposition 8.4, the pair (T, Dqr(T) Q@K Bd+R), so T, determines an A;,¢-free Breuil-Kisin—Fargues
G-module

(M(T), r(1))

that depends functorially on T. The de Rham realization
M(T)ar := M(T) @4,,,0 Oc of (M(T), o1(1))
is an O¢-lattice in
(M(T) ®a,, Bar)/€ = (Dar(T) @x Byr)/& = Dar(T) @k C.
Therefore, functorially in T', we obtain the Og-lattice

(M(T)4qr)¢ inside the K-vector space Dggr(T).

Ezample 8.6. We fix a K-scheme X (or even a K-rigid space, which we view as an adic space,
see [Hub96, 1.1.11(d)]) that is proper and smooth, and set

Lfét(X) = Hgt(Xfa Zp)/Hét(X?> Zp)tors = Hgt(XcaZp)/Hgt(X(/‘?Zp)tors for i > 0.
As is well known and follows from (6.7.2), the G-representation (L (X))[2] is de Rham and

p

Dar(Ly (X)) & (L (X) 02, Ban)® 2 (Hin(X/K) ©x Ban)® = Hin(X/K)  (86.1)

functorially in X. Thus, using the discussion of §8.5, we obtain the Og-lattice
ir(X) = (M(L(X))ar)® C Hig(X/K)

that is functorial in X (even in L% (X)). Its definition implies that for a finite Galois
extension K'/K,

iR(X) = (Lip (X)) S E) inside  Hig (X/K) = (Hig (X /K')) G /K

If X extends to a proper, flat, semistable Og-scheme X such that Hfog ar(X/Ok) and

HfjgldR(X/OK) are O-free (where X is endowed with the log structure Oy ¢ N (O)aét[%})x)?

then, by the following Theorem 8.7 (and GAGA techniques, similarly to Remark 4.19),
ar(X) = Hﬁ)ng(X/OK) inside H(X/K);
in particular, if X’ is another such Og-model of X, then

Hfong(X/OK):Hfong(X’/(’)K) inside Hig(X/K). (8.6.2)
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THEOREM 8.7. Let X be a proper, flat p-adic formal Ok -scheme endowed with the log structure
Oy st N (O;\a,ét[%])x such that X has an étale cover by affines U each of which has an étale
morphism

U — Spf(Ox{to,...,trytrs1,... ta}/(to---t, —m)) for some nonunit 7€ Ok \ {0} (8.7.1)
(where d, v, and ™ depend on U). If Hfong(X/OK) and Hf;lclR(X/OK) are Ok-free, then
ar(XR) = Hiogqr(Y/Ok)  inside  Hig (X3 /K); (8.7.2)
in fact, then, setting X := X@oK Oc¢, we have the identification
M (L (X)) = Hy,, (%) (8.7.3)
of Breuil-Kisin—Fargues G-modules.

Proof. By working locally on U, in the target of (8.7.1) we may replace each t; by tfd for
r+1 <1 < d, so X satisfies the assumptions of § 1.5. Moreover, by the Grothendieck comparison
theorem and flat base change (compare with Remark 4.19), for j =4 and j =i + 1, we have

Hy qr(%/00) 2 Hpy 4o (X/OK) ®0, Oc, 50 Hpy g (X/Ok) = (Hi,, 4z (X/0c)C. (8.7.4)

Thus, by Proposition 7.7, the Breuil-Kisin—Fargues G-modules Hzi‘hnf (X) and Hf:irnlf (X) (see §8.3)
are Ajs-free. By (7.6.2), we have the G-equivariant identification of the étale realization:

(Hiy,e (0))er = Hiy (X, Z,p),

which, consequently, is Z,-free. By Proposition 6.8, the Bgr-base change of this identification
agrees with the identification H};‘inf(%) ® A Bar = Hi(X24,Z,) ®z, Bar that results by
combining

inf

. 6
Hxl4inf (%) ®AAinf B;R

2 ) (6.2.8) .
Ho (X&/Bip) = Hip(XE/K) @k Bl

C

e

and
7 ad (6}32) 7 ad
Hig (XK /K) @k Bar = Hg(XE, Zp) ®7, Bar-

This compatibility and §8.5 (see also (8.6.1)) supply the desired G-equivariant identification
(8.7.3):

M (L (X)) = Hiy,,, (%)

Under this identification, by Theorem 6.6 and the sentence after (6.2.8), the identifications

inf

(8

. 6.1) 4 (4.
M(Ly (X)) @0 C = Hgp(X&/C) and  Hy, (X)) @4

C

n o
Hap (X&/C)

R 5

inf» 0
agree. Thus, (7.6.3) implies the following equality inside Hip (X31/C):

M (L (XiED)ar = M(Lg (XR) @400 Oc = Hi, ((X) @ a4,,0 Oc = Higg qr(¥/Oc),

infs

which, together with the second identification in (8.7.4), gives the desired (8.7.2). a
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Remark 8.8. In the proof above, we have seen that both Hj;lmf (X) and Hi;irnlf (X) are Ajp¢-free,
so, by (7.6.4), we have the G-equivariant and Frobenius-equivariant identifications

. (5.
Wk) = Hiy oo (Ri/W(R))

IR &

1)

Hzinf(%) ®A Hliogcris(‘)(k/W(k))?

inf

and hence also the Frobenius-equivariant identification
(H, o (3) @ W) 22 Higgeri(Xio /W (ko). (8.8.1)

In particular, (8.7.3) and (8.8.1) show that, under the assumptions of Theorem 8.7, the integral
p-adic étale cohomology H, gt(é\,’ ad Zp) endowed with its Galois action functorially determines the
integral logarithmic crystalline cohomology H; (X, /W (ko)) endowed with its Frobenius.

og cris

9. The semistable comparison isomorphism

Our final goal is to deduce the semistable comparison isomorphism for suitable proper,
‘semistable’ formal schemes (see Theorem 9.5). This extends [BMS18, 1.1(i)], which treated
the good reduction case (see also [TT15, 1.2] for a result ‘with coefficients’ over an absolutely
unramified base), and is similar to the semistable comparison established by Colmez—Niziol
[CN17, 5.26]. More precisely, [CN17, 5.26] also includes cases in which the log structures are not
‘vertical’.

9.1 The ring Bgt
We consider the log PD thickenings Acis/p™ of O¢/p (see §5.2) and set

I = Ker(Agis/p™ — Oc/p) and J:= l(i_I_nn>1Jn =~ Ker(Auis = Oc/p).

The element p € O¢ \ {0} belongs to the log structure of O¢/p (see §1.6 (1)), so its preimage
in the log structure of Acys/p" is a (1 + J,, X )-torsor, which is necessarily trivial?’ (compare
with [Beil3a, § 1.1, Exercises, (iii)]). Consequently, as n varies, these torsors comprise a trivial
(1+ J, x)-torsor 79, whose base change along the logarithm map (14 J, x) — (J,+) C (Acris, +)
furnished by the divided power structure on J is a trivial (Aeis, +)-torsor 7, the Fontaine—Hyodo—
Kato torsor (compare with [Beil3a, § 1.15, p. 23]). The functor which to an A.is-algebra A assigns
the underlying set of the (A, +)-torsor 7 X (4. +) (A4, +) is represented by the Acs-algebra Ay,
so Ag is the initial A.gs-algebra over which the Fontaine-Hyodo—Kato torsor is canonically
trivialized.

We may noncanonically trivialize 7y (for instance, [p'/P™] is a trivialization, see (5.2.1))
to obtain an isomorphism Ag; ™~ Aeis[T], which, upon adjusting the trivialization by an a €

. . T—T+log(a)
1+ J, gets postcomposed with the Ags-automorphism Agis[T] —————— Acqis[T]- The Acpis-
derivation —d/dT respects these automorphisms, so it induces a canonical Ags-derivation, the
monodromy operator,

N: Ay — Ay for which (Ag)V ™0 = Acis

20 Quasi-coherent cohomology of affine schemes vanishes, so, for a finitely generated, and hence nilpotent, ideal
J' C Jp of Acis/p™, the étale sheaf on Spec(Acis/p™) associated to (1 + J', x) has no nontrivial torsors. The
filtered direct limit of these sheaves is the analogous sheaf associated to (1 + J,, X), so it, too, has no nontrivial
torsors.
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(our N agrees with that of [Beil3a], see [Beil3a, §1.15, Remarks (i)]; compare also with [Tsu99,
4.1.1]).

By [Beil3a, (1.15.2)], the Frobenius pullback of 7y is isomorphic to the p-fold self-product of
70, and hence likewise for the base change 7 of 7y to (Acis, +). Thus, we have an Ajs-semilinear
Frobenius

p: At = Agt (9.1.1)

that in terms of an isomorphism Ay ~ Ais[T] obtained by trivializing 7¢ is described by T'— pT.
The interaction of ¢ and N is described by the formula Ny = ppN.
Since p and log([e]) are unit multiples of each other in Agis (see §5.14) and

p(log([e])) = plog([e]),

the Frobenius (9.1.1) and, evidently, also the derivation N induce their counterparts on

B:t; = Ast [%] and Bst = Ast [i] .
The relation Ny = pp N continues to hold for BS"; and Bg. As is explained in [Beil3a, §1.17],
the Acis-algebras B;g and By reviewed above agree with those constructed in [Fon94, § 3].
For us, the significance of the period ring B lies in the following comparison between the

logarithmic crystalline cohomology of X over W (k) and of X/, over Auis (compare with
[BMS18, 13.21]).

ProposiTION 9.2. If X is O¢-proper, then
RFIOgCTiS(xk/W(k)) ®%V(k) Bst = erogcris(%oc/p/Acris) ®acris B:{, (921)

where the log structures are those of §§ 1.6 (2), 5.2, and 5.42. In particular, if X is O¢-proper
and ) is a descent of X/, to a proper, log smooth, fine log O/p-scheme of Cartier type for

some discrete valuation subring O C O¢ with a perfect residue field kg and C' = ((’)[%])A (where
O/p is equipped with the log structure associated to the chart O\ {0} — O/p), then we have the
following identification that is compatible with the actions of ¢ and N (described in the proof):

erogcris(yko/W(kO)) ®Hﬁ/(k0) Bs+t = erogcris(x(’)c/p/Acris) ®a BSJE, (9-2~2)

cris

. . . 1+ 0,01
where W (ko) is endowed with the log structure associated to N>q ks

W (ko).

Proof. A descent ) exists (see the proof of Corollary 5.43), so (9.2.2) follows from [Beil3a,
(1.16.2) and (1.18.5)] and, due to (5.44.1), it implies (9.2.1). On the left-hand side of (9.2.2), the
operator N combines the monodromy of RT'jog cris( Xk, /W (ko)) and B, sois ‘N ®@1+1® N;
on the right-hand side, N is the monodromy of B}. On both sides of (9.2.2), the Frobenius ¢
acts on both factors. O

Remark 9.3. One may eliminate the dependence of (9.2.2) on the choice of )V by forming a direct
limit over all the possible ), see [Beil3a, §1.18, Remarks (i)].
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9.4 The base field K

For the rest of §9, we assume that C' = K for a fixed complete, discretely valued subfield K C C
with a perfect residue field ko, set G := Gal(K/K), and endow O (respectively, Ok /p) with
the log structure associated to the chart Ok \ {0} — Ok (respectively, its base change). By
functoriality, G acts on Aeis, Ast, Bit, and, since the ideal (1) does not depend on the choice of €
(see §2.1), also on Bg;. These G-actions commute with ¢ and N. When O of Proposition 9.2 is our
Ok, the identification (9.2.2) is G-equivariant granted that G acts on both sides by functoriality.

THEOREM 9.5. Let X be a proper p-adic formal O -scheme that has an étale cover by affines U
each of which has an étale Ok -morphism

U — Spf(Ox{to, ... trytrs1,---sta}/(to---t, —m)) for some nonunit w € Ok \ {0},
(where d, r, and 7 depend on U ) and endow X with the log structure Ox ¢ N (Ox, ¢t]5])*. There

1
p
is the following natural, G-equivariant isomorphism compatible with the actions of ¢ and N:

RTe (X&', Zy) ®7% Bt 2 Rl logeris(Xiy /W (o)) @4 (1) Bst (9.5.1)

10,01 :
where W (ko) is endowed with the log structure associated to Nsg ————— W (ko). In particular,

the G-representation HY (X2,Q,) is semistable for every i€ Z.

Proof. We set X := X@oK Oc¢, so that X meets the requirements of §1.5. By Claims 1.6.1 and
1.6.3 and [Kat89, 4.8], the base change X0, /p 18 fine, log smooth, and of Cartier type over Ok /p,
so Proposition 9.2 applies to it and gives the G-equivariant (see §9.4) identification

(5.43.2)
RFlog cris(Xko/W(kO))@)HW(ko)B; = erog cris (:{Oc/p/Acris)(gHA BSJE = RF(:{ét’ AQ}I)®HAM Bs+t
that is compatible with ¢ and N. In addition, by (2.3.1), we have the G-equivariant identification

RT (X, AQx) ®, B = RT(X¥, Z,)) ®7 By = RU(XE,Z,) @7 By

cris

that is trivially compatible with N and is compatible with ¢ by the discussion after Theorem 2.3.
The desired (9.5.1) follows by combining the displayed identifications. O

Remark 9.6. The isomorphism (9.5.1) is compatible with filtrations in the following sense: by
[Fon94, §4.2], there is a (noncanonical) Agis-algebra homomorphism By — Bgr and, by the
proof above and Proposition 6.8, the Bgr-base change of the isomorphism (9.5.1) is identified
with the de Rham comparison isomorphism (6.7.2) (with X, = X3) that is compatible with
filtrations.
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