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A NONCOMMUTATIVE HALF-ANGLE FORMULA

GEORGE WILLIS

The half-angle formulae, familiar from trigonometry, can be used to compute the polar
decomposition of the operator on [2(Z) of convolution by &y + 6;. This calculation is
extended here to a non-commutative setting by computing the polar decomposition
of certain convolution operators on the spaces of square integrable functions of free

groups.

INTRODUCTION

It is shown here how to compute the polar decomposition of certain operators in
the reduced group C*algebra of a free group. When the free group has one generator,
that is, when we are dealing with the group of integers, the polar decomposition may be
computed, as explained in section 1, by taking the Fourier transform and appealing to
elementary formula from trigonometry. These are often called the ‘double-angle formula’
but the direction of the calculation makes ‘half-angle formule’ more appropriate here.

Motivating this computation is the desire to gain insight into noncommutative math-
ematics, [3, 4]. The group of integers and its dual, the circle, are elementary and basic
examples which are the source of a great deal of intuition and imagery in mathematics.
Our image of the circle comes from elementary geometry, as do the half-angle formuls
used to compute the polar decomposition in the one generator case. Now nonabelian free
groups are fundamentally important also but we have no readily available conception of
their duals which might be used to compute the polar decompositions. By computing
the polar decomposition in the noncommutative setting in some other way it may be
that something will be learned about the geometrical nature, if any, of the dual of a free
group.

The calculation of the polar decomposition is given in section 3. The answer is
intriguing and does suggest that there may well be some insight or interpretation behind
it. That insight does not seem to be provided by the method of calculation used here
however. Some ideas for using the polar decompositions to study the topological nature
of the dual of a free group are discussed at the end of the paper.
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1. THE COMMUTATIVE HALF-ANGLE FORMULA

The familiar half-angle formulee for trigonometric functions are the real and imagi-
nary parts of the single equation

. oy .
0 _ Y ,i(8/2)
(1.1) l1+e 2cos(2)e ,

which is just the polar form of the complex number 1 + €, if —7 < § < 7. When (1.1)
is represented in the complex plane (see Figure 1) it implies also a case of the theorem
from elementary geometry that the angle subtended by a chord at the circumference of
a circle is half the angle sull)tended by the chord at the centre of the circle.

+e'f

Figure 1.

Let T denote the circle group and parametrise T by 6, where —m < § < 7. Let
f be the continuous function on. T given by f(6) = 1 + €. Then multiplication by f
defines a bounded operator My of L?(T). Each operator on Hilbert space has a polar
decomposition as the product of a positive operator and a partial isometry, ([7, p. 68]).
The formula (1.1) describes the polar decomposition of M; thus:

(1.2) M; = M,M,,

where M, is the positive operator of multiplication by the continuous positive function
p(8) = 2cos(8/2), and M, is the unitary operator of multiplication by the discontinuous
but measurable function u(8) = e*¢/2),

Equations (1.1) and (1.2) are generalised in this paper in the form of their Fourier
transforms. The Fourier transforms of the functions f, p and u in the previous paragraph
are

- 1, ifnisOorl,
f(n) =

0, otherwise;

N _ (_1)n+1 A _ (_1)n+1
P = Sy "™ T w7y
The Fourier transform of (1.1) is
(1.3) f= u* P,
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where * denotes the convolution product. Convolution by f defines an operator T on
£2(Z) which is unitarily equivalent to M; under the Fourier transform. The operator T
belongs to the C*-algebra C;(Z) of the regular representation of Z on ¢2(Z). The polar
decomposition of T is just the Fourier transform of (1.2), that is,

(1.4) T =UP,

where P is the positive operator of convolution by p and U is the unitary operator of
convolution by %. Since p is continuous, P belongs to C?(Z). The operator U does not
belong to C7(Z) but does belong to the von Neumann algebra VN(Z) of the regular
representation of Z. Not every operator in C?(Z) has an explicitly computable polar
decomposition. It is the half-angle formule and Fourier transform which facilitate this
computation of the polar decompaosition of T'.

2. FREE GROUPS

For each discrete group G, define the convolution of two functions in £2(G) by

frg@@) =Y fWaly ),

yeG

where £ € G and f,g € £2(G). For each z € G, §, will denote the function on G defined

by
1, ifz=y,
0. (y) = {

0, otherwise.

Then the left regular representation of G on £?(G) represents an element z in G by
the unitary operator A(z): f = &; * f ((f € £2(G)). The C*algebra generated by
{Mz) | z € G} is the reduced C*algebra of G and will be denoted by C;(G). The von
Neumann algebra so generated will be denoted by VN(G). If S belongs to VN(G), then
S is equal to the operator of convolution by the function Sé,, where e denotes the identity
element of G. Elements of VN(G) and C:(G) may thus be represented by functions in
2(G).

Let k& be a positive integer and F, be the free group with generators z,, z,, ... zk.
If kK = 1, then F; is isomorphic to Z and we may suppose that z; is mapped by the
isomorphism to 1. In this case (1.4) describes the polar decomposition of the operator
A(e) + A(z1). Now, for general k, let

Then T has polar decomposition

(2.1) T =UP,
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where P := (T*T)Y? is a positive operator in C*(F;) and U is a unitary operator in
VN(F,). The operator U in the polar decomposition is generally a partial isometry only
and is not unique. However in this case T has zero kernel and dense range and it follows
that U is unitary and unique ([7]). Equation 2.1 is equivalent to

k
(2.2) e+ Y b, =TxP,
j=1
where p := P§, and u := U$, belong to £2(F}).

The equation (2.2) and the computation of p and u will constitute the non-
commutative half-angle formula. The justification for calling it a ‘half-angle formula’
is that the calculation proceeds by embedding Fi as a subgroup of index 2 in another
group. There are several ways in which this can be done, se¢ Section 4.2 below. In the
case of F; = Z, one such is the embedding Z — (1/2)Z which, from the point of view
adopted here, is why the half angles appear in equation (1.1). However a different group
must be used for the general case.

gl T [ T | T I T
UolUiUg UIUQ Uug € Uy UgU] UIUQUY

G,

Figure 2.

Let Gx = (uo,u1,...,u | ul = €,5 =0,1,...,k). It will be helpful to consider the
Cayley graph of Gi, which is the graph G, whose vertices are the elements of G, and
where z and y are joined by an edge if r = u;y for some j. Since Gy is isomorphic to
the free product of k + 1 copies of Z, = Z/2Z, G is a homogeneous tree of degree k + 1,
see Figure 2. For each j between 0 and k, the map z — u;z interchanges each vertex
of G, with one adjacent to it, while the map z — zu; is an automorphism of the tree
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which ‘reflects’ the graph about the midpoint of the edge joining e and u;. For each pair
of elements z and y in Gy, d(z,y) will denote the distance between the corresponding
vertices. Consider now the subgroup with index two in G; consisting of those elements
represented by words in ug, u1, - .., ux of even length. From the graphical point of view,
this subgroup consists of those vertices of Gy which are an even distance from e. This
subgroup is freely generated by the elements uou;,j = 1,2,...,u, and we shall identify
it with F; by identifying uou; with the generator z; in Fy for each j. With F; embedded
in G in this way, we have

k k
(2.3) be + Zéz,. =y, * (Z auj).
j=1 =0

This equation expresses the operator Ale) + Z A(z;) as the product of the unitary op-

erator Aup) and the operator .E’\ u;) on P(Gk) We now find the polar decomposition
of Z Auy).

j=

3. COMPUTATION OF THE POLAR DECOMPOSITION
k
Let k£ be a positive integer and let A := Z%/\(uj) in C;(Gk). Then, since u? = e
J=

for each j, A is self-adjoint and so the von Neumann algebra of operators on #*(Gy)
generated by A is commutative. This von Neumann algebra will be denoted by V N(A).
The polar decomposition of A is computed in the commutative algebra V.N(A) and for
this it is necessary to describe some details of the structure of this von Neumann algebra.
Calculations similar to those described here can be found in [5, 2, 9].

For each non-negative integer m, let E, := {z € Gx | d(e,z) = m}. Then Ey = {e},
E) = {ug,u1,...,ur} and, if m > 1, |E,| = (K + 1)k™ L. Let Ay := Y. A(z). Then A
is the identity operator, and A; = A. Since #€Em

Ad(y) = Me) + Y Auayy),
i£j

summing over all j yields
(3.1) A? =(k+ 1)A0 + A,.
If d(e,z) = m > 2, then z = u;y for some j, where d(e,y) = m — 1. Hence

A (uy) = A(y) + Z A(uiuzy),
i#j

and summing over all £ = u;y in E, gives

(3.2) AtAm = kAmo1 + Amsr, m=2,3,4...
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It follows that each power of A is a linear combination of the A,,’s and hence that each
operator, S, in VN(A) may be expressed in the form

(3.3) S= f: amAm

m=0
or each m, the function 4,4, in £2(Gy) is just the characteristic function of E,,, which
we shall denote by xm,. Since these characteristic functions are mutually orthogonal, the
coefficients in (3.2) may be found by

(S8e, Xm) _ 1
(Xm» Xm) km=1(k + 1)

where (-,-) denotes the inner product in £2(Gy).
A function f in £2(Gy) is called radial if the value f(z) depends only on the distance
of z from e. The characteristic functions x, are radial and so, if S belongs to VN(A),

then S48, = f: @mXm is a radial function in #(G;). Hence VIN(A) is an algebra of
operators of g)—vaolution by radial functions on G;. The subspace of all radial functions
in £2(G, ) will be denoted by £4(Gy ). This subspace is invariant under VN(A).

Since A is self-adjoint, the C*algebra generated by A is isomorphic via the Gelfand
representation to the algebra of continuous functions on the spectrum of A. This spectrum
is computed by Pytlik in (8] in the case when the homogeneous tree has even degree.
Essentially the same calculation applies to homogeneous trees of odd degree to yield that
the spectrum of A is the interval [-2v/k, 2vk). (Note that the k used here is 1 less than
twice the value of ‘k’ in [8].) It follows from (3.1) and (3.2) that each of the operators
A, is a polynomial in A and so is mapped by the Gelfand representation to a polynomial

function @, on [-2vk, 2vk]. From (3.2) we see that

$o(t) =1, &(t) =
and for any integer m > 2, ¢ (t) satisfies the recurrence relation
(3.5) Sm+1(t) = tdm(t) — kdm-1(2).

Note that ¢,, is an even function when m is even and an odd function when m is odd.
The map S — (S6.,8.) is a state on the C*algebra generated by A and thus
corresponds to a probability measure p on [—2\/1?, 2\/E] such that, for ¢ and ¥ in

C([-2vk,2Vk))

(34) am = (S(sc)Xm>:

(36) (S(A)50 B(A)S.) = f S()B(2) du(2).

Now C([-2Vk, 2Vk]) is dense in L?([-2v’%,2Vk], u) and
{o(a06. | ¢ € C(1-2vE, 2vR)) }
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is dense in ¢4(Gyx) because it contains sp{A4,,5.}. Hence the map ¢ — $(A)d, extends
to a unitary map U from L?([~2v%,2Vk], u) onto £4(Gs). This unitary defines an
equivalence between L®([—2v’k,2Vk], 1) and VN(A). Each S in VN(A) is equal to
¢(A) for some ¢ in L°°([—2\/E, 2\/79-],/1), where ¢(A) = U o My oU™!, M, being the
multiplication operator on L*([-2Vk, 2V/k], p) determined by ¢. It follows then from

(3.4) and (3.6) that, if S = ¢(A) belongs to VN(A), then S = f‘, CmAm, Where

m=0 °*
(3.7) O = m/ (t)dm(t) du(t).
The measure p is computed by Pytlik in [8, Theorem 5.1]. It is
k 32
(3.8) dufty = X1 V-

o (k+1)2- 2

Note that u is an even measure.
The polar decomposition of A can now be computed with the aid of the functional
calculus in VN(A). Thus

(3.9) A=VP,

or P = |A| (= (A*)'/?) and V = sgn(A), where

1, ift>0
(3.10) sgn(t) =<0, ift=0
-1, ift<0

By (3.7) and (3.8), V = E O Am, Where

m=0
am = k,,,lkﬂ)/ S0 (£) (1) dp(t)
if m is even
(3.11) = 1 2vk Vik =2

W ; d’m(t)m dt, if m is odd.

We now evaluate the integral in (3.11).
The functions ¢,, satisfy the récurrence relation (3.5). It follows that for m > 2,

¢m+2(t) = (t2 - 2k)¢m(t) - kzd’m—?(t)a
thus for odd m, that is letting m = 2n + 1,

(3.12) Gon+3(t) = (£ = 2k)Ban11(t) — K2Pan—1(2),
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for n 2 1. It can be shown by induction that, for » > 0,

(313)  Gonn(t) = —tz (12)f {(n+i+1)n—ik+ (nfj_’ )}( k)1

=0

where (g) =1 and (fl) = 0, for any integer a.
The change of variable ¢t = 2v/ks in the integral (3.11) yields

4 1 V1-—s?
Qonl = W,/(; ¢2n+1(2‘/];3) (k+1)2- 4k32ds‘

Under this change of variable (3.12) and (3.13) become
(3.14) dons3(2Vks) = (4ks? — 21<:)¢2,,+1 (2Vks) ~ k2¢on_1(2Vks), and
(3.15) dons1(2VEs) = -N’sE 4ks?) {(”*” 1)k+ (n"f” )}(—k)"““

= n-—1 -1-1

Now define

e (Fey N Ao S

1=0
and note that ¢on.1(2Vks) = 2vksP,(k, s). Then, by (3.14),
(3.16) Pri1(k, s) = (4ks® ~ 2k)P,(k,s) — k?P,_1(k, s).

Now we make a further change of variable, setting s = /1 — y2. Then

4 L P(k,s) >
Qop+l = sz"'l./; (k+1) ks 2\/l—s 2Vks ds

8VE [l Pu(k,/1—12

= Tk o (k —1)2+4ky

An induction argument using (3.16) shows that P,(k, \/1 — y?) = P,(—k,y). Hence

8vVk ' y2Pu(=k,y)
(3.17) Qo1 = Tk [ Tk = 1)2 + dky?

The next step in computing the integral (3.17) is polynomial long division, which
may be carried out inductively using (3.16), to yield

P~k y) _ n+i—-j7-—1 k"(k - 1)
(3.18) (k — 1)2 + dky? (Z( —4y%)’ Z( —i—3 )k —(k—1)2+4ky2)’
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-1 -1
where we take ( 0 ) = 1 and (a o ) =0 for alla > 1. We can now evaluate the
integral (3.17):

2 VEGRE (Y n+i-j-1) 1
02n+1—’7;< - ( n—i—j ‘k —(k—l)arctanﬁ)

ﬁ : zn: (.—4)'. (l ';i: 1) k"' — (k — 1) arctan ﬁ)

<

where l = n — j,
(RSS2 e )
<

2 u (1)l _ 1
== \/E-F\/Egmk ’—(I.c—l)arctanﬁ),

i (—4) (1+i-1\ (=14
e 2i+1\ -1 ) (2-1)(2+1)
forl 21
Note that the Laurent series expansion for ((1/z%) — 1) arctan z yields

)il -
(k - )arcta.n7=\/_+\/_z—2l_1)—2[+1)k !

and 50 @gn+1 = (2/7)Ropns1 (1 / \/E), where Ryn+1(2) is the remainder in the degree 2n—1
approximation to (1/(z%) — 1) arctan z. We see then that asn4y — 0 as it ought.

Note also that
1y 1 (-1 1 \2n-1
Rors () = = 00ms() + S ()™
where Qans1 (1 / \/E) is the remainder term in the Taylor series for arctan z. Hence
2 1 (=1)7*1 /1 y2n-1
canss = 2| (k=00 (72) + Gy (7))

Recalling (3.11), we have therefore that

V= Zam m = A(V),

m=0

o0 (=]
where 7= 3. OmXm = D Q2nt1X2n+1-
m=0 n=0
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Since V is an involution, see (3.10), the operator P appearing in (3.9) satisfies
P=VA=Av*x;)

B -]
= ay(k + )Xo + 1x2 + ) 0ons1(kXon + Xons2), by (3.2),

n=1

oo
= ai(k + 1)xo + E(QZn—l + kozns1)X2n.

n=1

It may be checked that for n > 1,

O2n-1 + kQgny

!
=%[(\/—) __\/—+\/_Z—%k-';(k2—l)arctan\/i;,

2 1
= ;5211—1 (71?),
where Sa,_1(z) is the remainder in the degree 2n — 3 approximation to
((1/z%) — 1) arctan z. Hence, putting
2 .
ZVk(k+1), ifm=0
1
1 =14 =Spn 1 (=
(3.19) b= § =S (2

0, fm=2n-1

), ifm=2n,n2>1

and p = Z BmXm, we have P = A(P). Note that p is supported on words in Gy of even

length and so P is in fact a function on F;.
From (2.3) we have

k k
Se+ 3 8z = Oy * (Za,,j)
=1 j=0
=6y * (UxD) =Uxp,

where U = 0,, *¥. The operator U = A(%) is unitary in VN(Fy) and P = A(p) is positive
in C; (F,) as required.

4. REMARKS.

4.1. Since V is unitary, ||} amxm|]2 =1, that is

> lamlk+ D™ =1

m=0

https://doi.org/10.1017/50004972700036157 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700036157

(11] A half-angle formula 379

so that
) 3 n+l a1\ 2
Z(R(Tlﬁz)) ’“=Z( -IQM(T) Cy (L) )k%
2
=4(—k7r+—15'

When k = 1 this reduces to the familiar identity 5 1/m? = n2/8.
m odd

4.2. The embedding of F; as an index two subgroup of G, is only one of several
embeddings which will produce the same result. If £ is odd, then Fy is isomorphic to the
subgroup of Fy/2)k+1) consisting of words of even length. In particular, F; is isomorphic
to Z, which may be embedded in the free product Z, * Z, as well as in the group of half
integers Z /2.

Similarly, F, may be embedded in Zo % Zy* Zy and in Z /2% Zy, F3 in Zo* Zo % Zyx Z,
and in Z/2 % Zy * Z, and Z/2 x Z /2, and so on.

4.3. 1t is intriguing that the numbers emerging from this calculation on free groups
should be the remainder terms in a Laurent series. Is there some way to carry out this
polar decomposition so that these appear more naturally? Does the angle arctan(1/vk)
have a geometric interpretation?

4.4. The polar decomposition of 1 + €* (-7 < 8 < ) implicitly involves topological
surgery in a very elementary form. The function e? — 1 + ¢¥ is continuous on the
circle, as is its positive part e — 2cos8/2. However the polar part, e? — el®)/2 jg
not continuous at €™ = —1 and so we cut the circle at this point, figure 3. In doing
so, we move outside C(T) into L>=(T) or, equivalently, from C;(Z) into VN(T), but not
all of L=(T) is required for the polar decomposition. The parametrisation § — ¢*
[-7,7] = T induces an embedding C(T) — C([-,x]) and it is in C([—=,x]) that the
polar decomposition takes place.

Im

1+e¥ eli8)/2

Figure 3.
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Now thinking of C‘(]Fk) as an algebra of ‘continuous functions’ on a noncommutative
‘space’, T = A(e) + Z A(z;) and P belong to C}(Fx) but the polar part, U, belongs only

to VN(Fy) and so 1s not ‘continuous’. Analogy suggests that the polar decomposition be
regarded as ‘cutting’ the underlying or supporting ‘space’ of C?(Fx). The closed form of
the polar decomposition computed here suggests that it is a particularly natural way to
‘cut’ this ‘space’. The C*-algebra generated by U and C; (Fy), to be denoted by 2y, is the
smallest algebra in which the polar decomposition may be formed. Continuing the anal-
ogy, the supporting ‘space’ of 2; is the result of ‘cutting’ the ‘space’ supporting C; (Fy)
and the embedding C;(Fx) — 2, corresponds to a ‘continuous function’ generalising the
parametrisation of T by [—7, 7}

The parametrisation 8 — e identifies the endpoints of the interval [—m, 7] and thus
is the reverse of cutting the circle at e = —1. A similar understanding of noncommu-
tative surgery might possibly be obtained by describing how irreducible representations
of %Ay relate to those of C;(Fy) under the embedding C:(F:) — 2. There is a natural
class of representations of C?(Fi) to be considered, namely the restrictions to C;(F;) of
the irreducible representations of C(Gy) arising in the direct integral decomposition of
the regular representation of Gy over the spectrum of the operator A4 in C;(Gy), see [5].

It is to be expected that the ‘space’ supporting 2, is connected in the sense that
K (2,) is trivial, see [4]. However the polar decomposition of & + d, in C:(Z) cuts the
circle into n pieces and similar can be expected of subgroups having finite index in Fy.
More precisely, each subgroup with finite index in F is isomorphic to a free group with
a finite number of generators, yi,...,ym say. Let A denote the C* algebra obtained by
adjoining to C;(F,) the unitary from the polar decomposition of Ae) + E A(y;). Does

]_.
Ky(2) depend only on the index of the subgroup? We have seen here that at least one

idempotent arises when the subgroup has index two.

Similarly, algebras obtained by adjoining unitaries from several polar decompositions
can be expected to have non-trivial K-groups. Can C;(F,) be analysed in terms of its
pieces as it is ‘cut’ by successive polar decompositions and can it be reconstructed from
these pieces?

When the concept of continuous function is first defined in elementary calculus it is
usual to illustrate it by giving examples of functions which are not continuous. Indeed,
the intuitive notion of a continuous function is that of one without breaks or jumps, see
[1, Section 3.4, p. 91], and in some languages that is the literal meaning of ‘continuous’.
It is natural then to investigate C; (Fy), or any C*algebra, and to attempt to make some
sense of the notion that its elements are ‘continuous’ by studying associated discontinuous
elements.
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4.5. It is in general difficult to determine whether or not functions in #(F;) belong to
VN(F:) or C:(F:) and to compute operator norms. This is usually done by considering
smooth elements, which means imposing a growth condition on the function which forces
it to belong to I'(F.), or by appealing to some result such as Haagerup’s inequality [6].
The cause of this difficulty is not noncommutativity because it is even difficult to decide
whether a given function in #2(Z) is the Fourier transform of a continuous or bounded
function on T, [11, 4.3, p. 78].

In the commutative case however there is an extra technique for writing down mea-
surable or continuous functions. Referring once more to elementary calculus, the exam-
ples of continuous functions presented are all smooth, as in the noncommutative case, or
piecewise smooth. Piecewise constant (or simple) functions and piecewise linear functions
belong to L®(T). If the values of a piecewise linear function are matched up correctly,
then it will belong to C(T). The freedom to write down piecewise linear functions is very
useful, see for example the proof that C(T) has Schauder basis given in [10, Theorem
II1D.25).

Linear combinations of idempotents and partial isometries would seem to be the
natural analogue of piecewise constant functions in VN(Fy). Is there a natural ana-
logue of piecewise linear functions in VN(F:) and C:(Fx)? A continuous function
on T can be approximated uniformly by functions constant or linear on the intervals
((27rj)/n, (2n(j + 1))/n],j =0,1,...,n — 1. Can an arbitrary operator in C;(F;) be
approximated in norm by linear combinations of idempotents and partial isometries in
V N(Fy), where the idempotents and partial isometries arise from the polar decomposi-

m

tion of A(e) + 3~ A(y;) with (y1,v2,...,Ym) having finite index in F;? It seems likely that
j=1
such as approximation would rely on the residual finiteness of Fy.
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