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Abstract

A standard model for the visibility of pulsar radio emission is based on the assumption that the emission is confined
to a narrow cone about the tangent to a dipolar field line. The widely accepted rotating vector model (RVM) is an
approximation in which the line of sight is fixed and the field line is not strictly tangent to it. We refer to an exact treatment
(Gangadhara, 2004) as the tangent model. In the tangent model (but not in the RVM) the visible point changes as a
function of pulsar rotational phase, ψ , defining a trajectory on a sphere of radius r. We solve for the trajectory and for the
angular velocity of the visible point around it. We note the recent claim that this motion is observable using interstellar
holography (Pen et al., 2014). We estimate the error introduced by use of the RVM and find that it is significant for
pulsars with emission over a wide range of ψ . The RVM tends to underestimate the range of ψ over which emission is
visible. We suggest that the geometry alone strongly favors the visible pulsar radio being emitted at a heights more than
ten percent of the light-cylinder distance, where our neglect of retardation effects becomes significant.

Keywords: radiation mechanisms: non-thermal, pulsar: general

1 INTRODUCTION

The visibility of pulsar emission is a geometric problem: to
identify the “visible point” in the pulsar magnetosphere that
an observer can see. A standard model for pulsar visibility is
based on three assumptions: (i) at the source, the emission is
confined to a narrow beam around the direction tangent to the
local magnetic field line, (ii) the magnetic field is dipolar, and
(iii) emission occurs only within the open-field region. Let the
visible point be described by its spherical polar coordinates,
r, θ, φ relative to the rotation axis, or r, θb, φb relative to the
magnetic axis. Two angles are assumed to be given for a
pulsar: the obliquity angle, α, between the magnetic axis and
the rotation axis, and the viewing angle, ζ , between the line of
sight and the rotation axis. The height of the emission point,
described by the radial distance r, is not well determined, and
one considers the location of the visible point on a sphere of
radius r. The geometric problem is to determine the visible
point in terms of θ, φ or θb, φb for given α, ζ as a function of
rotational phase, ψ = ω∗t, where ω∗ is the angular speed of
rotation.

It is not widely recognised that two different geometric
models are used for different purposes. We refer to these
as the RVM (rotating vector model) and the tangent model.
The RVM was used by Radhakrishnan & Cooke (1969) to

identify the S-shaped swing in the position angle (PA) of
the plane of linear polarisation, and the RVM continues to be
used for this purpose. In the RVM the line of sight is assumed
to pass through the centre of the star, and the visible point is
identified as its intersection with the sphere of radius r. The
RVM should be regarded as an approximation to the standard
model because the fixed line of sight through the centre of
the star is not tangent to the field line (with the exception
of the special case where the line of sight also intersects the
magnetic pole). The tangent model, which was analysed by
Gangadhara (2004), is exact in the sense that the line of sight
varies so that it is always tangent to the field line.

The error introduced by use of the RVM may be under-
stood as follows. For an observer at infinity, ζ specifies a
direction, and hence an infinite set of parallel lines. One of
these lines, the one that passes through the centre of the star,
is chosen in the RVM, and another of these lines, the one that
instantaneously satisfies (i), is chosen in the tangent model.
As the pulsar rotates, the line in the RVM remains fixed,
implying that the visible point is stationary (fixed θ, φ). In
the tangent model, the line through the visible point changes
with ψ . The path on the sphere is the trajectory, described by
θ, φ as a function of ψ . Compared with the tangent model,
the RVM introduces an angular error. One estimate of this
error is the angle between the magnetic field line and the
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radial vector (the assumed line of sight in the RVM) at the
emission point: the RVM is valid only to zeroth order in an
expansion in this angle.1 Another estimate of the angular
error introduced is arcsin(d/r), where d is the perpendicu-
lar displacement between the lines to the observer in the two
models. The RVM also introduces a conceptual error: that the
visible point is fixed. In the tangent model, the visible point
moves, and its motion defines a trajectory on the sphere of
radius r.

Our main purpose of this paper is to discuss the implica-
tions, for the interpretation of pulsar radio emission, of the
existence of this trajectory and the motion of the visible point
around it. (Note that neither the trajectory nor the associated
motion around it exists in the RVM.) Besides application
to conventional observations (duty cycle, interpulse, drifting
subpulses, swing of PA), a new possibility is direct measure-
ment of the motion of the visible point. Recent detection of
motion with sub-nano-arcsecond accuracy using interstellar
holography (Pen et al., 2014) shows that this is a realistic
possibility. These authors claim that the “direct observable
is the apparent motion of the emission region as a func-
tion of pulse phase.” This (plausibly) corresponds to a direct
measurement of the velocity of the visible point, projected
along scattering axis. The estimated height of the emission
in this particular observation suggests a source well inside
the light cylinder radius, r � rL, where the magnetic field is
well approximated by its dipolar (∝ 1/r3) component.

In Section 2 we use an analytic solution for the tangent
model to derive examples of the trajectory of the visible point
in terms of θ, φ as functions of ψ for given ζ , α. In Section 3
we discuss the angular velocity of the visible point around
the trajectory. In Section 4 we discuss the significance of
assumption (iii), specifically the requirement that the trajec-
tory passes the open-field region. In Section 5 we compare
the predicted swing of PA in the RVM and the tangent model,
and we also comment on the visibility of the opposite pole
in the two models. We discuss limitations of the model and
summarise our conclusion in Section 6.

2 TRAJECTORY OF THE VISIBLE POINT

The tangent model has an analytic solution for a strictly
dipolar field.

2.1 Analytic model for the visible point

We determine the visible point in terms of θ = θV(α, ζ ;ψ)

and φ = φV(α, ζ ;ψ), or θb = θbV(α, ζ ;ψ) and φb =
φbV(α, ζ ;ψ) by requiring that the line of sight be tangent
to a field line,

(b̂ · n̂)2 = 1, φ̂b · n̂ = 0, (1)

where b̂ is the unit vector along the magnetic field and n̂ =
sin ζ x̂ + cos ζ ẑ is the unit vector along the line of sight.

1Specifically arcsin[sin θb/(1 + 3 cos2 θb)
1/2] ≈ θb/2 for θb � 1.

Figure 1. This figure shows the viewing geometry of emission in three
dimensions for α = 45◦, ζ = 60◦. A unit sphere, which represents a pulsar
magnetosphere, is plotted in Cartesian coordinates. The rotation axis ω is
along the z-axis, the red arrow represents the magnetic moment (m), and
the line of sight (LOS) is represented by the blue arrow. The point in brown
is the visible point as seen by the observer, in this case, it is at ψ = 0 with
θV ≈ 55◦. The visible point moves as the pulsar rotates from −π to π tracing
out the dark curve.

Solving Equation (1) simultaneously in the magnetic frame
gives (Gangadhara, 2004, 2005)

cos 2θbV = 1

3

(
cos θb

√
8 + cos2 θb − sin2 θb

)
,

tan φbV = sin ζ sin ψ

sin α cos ζ − cos α sin ζ cos ψ
. (2)

The angles θ, φ and θb, φb are related by

cos θb = cos α cos θ + sin α sin θ cos(φ − ψ), (3)

tan φb = sin θ sin(φ − ψ)

cos α sin θ cos(φ − ψ) − sin α cos θ
, (4)

or

cos θ = cos α cos θb − sin α sin θb cos θb, (5)

tan(φ − ψ) = sin θb sin φb

cos α sin θb cos φb + sin α cos θb

. (6)

We choose the zeros of all three azimuthal angles to coincide:
φ = ψ = φb = 0.

2.2 Examples of the trajectory

We use Mathematica
R©

to plot the visible point for
ψ := [−π, π ] for chosen values of α := [0, π/2] and
ζ := [0, π/2]. A point defined by (θ, φ) is plotted on
the unit sphere corresponding to Cartesian coordinates
{sin θ cos φ, sin θ sin φ, cos θ}.

As ψ varies from −180◦ to 180◦ the visible point traces a
continuous trajectory on the surface of the sphere. Figure 1
shows the visible point for α = 45◦ and ζ = 60◦, with the
brown dot at ψ = 0 and the trajectory shown by the dark
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Visibility of pulsar emission 3

Figure 2. As for Figure 1, but for α = 80◦, ζ = 30◦.

closed curve (it is not a circle in general). A further example
of the visible point and the trajectory are shown for α =
80◦, ζ = 30◦ in Figure 2. A special case is for an orthogonal
rotator, α = 90◦, observed along the rotation axis, ζ = 0◦;
the trajectory is then circularly symmetric about the rotation
axis, with the line of sight located inside the emission circle
for α > ζ .

3 VELOCITY OF THE VISIBLE POINT

The velocity of the visible point, which is now of direct ob-
servational interest (Pen et al., 2014), may be determined by
differentiating the solution for the visible point with respect
to ψ . (This velocity is identically zero in the RVM.)

3.1 Definition of the velocity

The visible point moves at an angular velocity ωV with com-
ponents

ωVθ
= ω

	

∂θ (α,ψ)

∂ψ
, ωVφ

= ω
	

∂φ(α,ψ)

∂ψ
, (7)

where ω	 = dψ/dt is the angular speed of the star. The angu-
lar speed of the visible point is ωV = |ωV|. The motion of the
visible point is periodic, with the same period as the star, but
the motion can be far from uniform. The motion of the visible
point corresponds to sub-rotation around ψ = 0, and super-
rotation around ψ = π , with an average 〈ωV(ψ)〉 = ω	.

It is instructive to consider the change in velocity as α is
decreased; in the aligned case α = 0 it can be shown that the
visible point is stationary. The size of the trajectory decreases,
with decreasing α, and the asymmetry in the speed of the
visible point increases, becoming slower near ψ = 0 and
faster near ψ = π . In the limit α → 0, the visible point is
nearly stationary for nearly all ψ , with the exception being
very rapid motion near ψ = π around a tiny trajectory.

Figure 3. The ratio of the angular frequency of the visible point, ωV, to the
spin frequency of the pulsar, ω

	
, plotted against the rotational phase for α =

90◦, ζ = 0 (blue), α = 10◦, ζ = 5◦ (solid), α = 30◦, ζ = 10◦ (dashed), and
α = 45◦, ζ = 15◦ (dot-dashed). The periodic motion over one pulsar period
results in 〈ωV(ψ)〉 = ω

	
.

3.2 Numerical calculation of ωV

Figure 3 shows the variations of ωV in units of ω	 as a func-
tion of rotational phase for various combinations of α and
ζ . For α = 90◦ and ζ = 0, the trajectory is a circle centred
at the rotation axis, giving ωV = ω	. For other values of ζ

and α, the maximum and minimum values of ωV/ω	 occur at
ψ = 180◦ and 0, respectively. The extrema increase in mag-
nitude with increasing α or ζ , maximizing at α = ζ = 90◦.
All curves intersect at ψ ∼ ±90◦ with ωV(±90◦)/ω	 = 1.

4 PATH OF THE LINE OF SIGHT

Assumption (iii) in the tangent model requires that for pulsar
emission to be visible the trajectory must be at least partly
inside the open-field region. The trajectory enters the open-
field region only if r exceeds a minimum value for a given
open field line. The minimum visible height, rmin, is for the
last closed field line.

4.1 Last closed field line

When only the dipolar term is retained, the last closed field
line is determined by the condition that the field line be
tangent to the light cylinder, at r sin θ = rL. For given field
line, r = r0 sin2 θb, φb = φ0, this requires

∂(sin2 θb sin θ )

∂θb

∣∣∣∣∣
φb

= 0. (8)

The derivative ∂θ/∂θb may be determined using (5), and
the resulting equation solved for θb = θbL(φb). The value
of θ → θL(φb) along the last closed field line follows from
θb → θbL(φb) in (5). The shape of the boundary of the open-
field region is independent of r, and is given by plotting the
function θb = θbL(φb). The field line constant, r0 → rL0(φb),
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4 Yuen and Melrose

Figure 4. A three-dimensional surface plot of rmin as functions of ζ and α.
The rmin increases as |β| increases and rmin → 0 for β → 0.

for the last closed field line is then determined by

rL0(φb) = rL

sin2 θbL(φb) sin θL(φb)
. (9)

The radial position along the last closed field line at φb is
r(θb, φb) = rL0(φb) sin2 θb.

4.2 Minimum visible height

The minimum visible height, rmin, is determined by assuming
that the trajectory is tangent to the locus of last closed field
lines. This corresponds to θbV = θbL(φb) at φb = φbV, and
reproduces the result given by Gangadhara (2004):

rmin = rL sin2 θbV

sin2 θbL(φbV) sin θL(φbV)
. (10)

One may regard rmin as a function of α and ζ . Figure 4
shows a three-dimensional plot for rmin as functions of these
variables.

4.3 Probability of seeing a pulsar

The existence of a minimum height, below which any emis-
sion is not visible (because it is not along the observer’s line
of sight) has a statistical implication. Consider a populations
of neutron stars with α and ζ randomly distributed. This im-
plies that the impact parameter, β = ζ − α, is also randomly
distributed. Emission from low heights, r � rL, is restricted
to a small cone, with half angle θc, equal to (r/rL)1/2 in the
aligned case, and is visible only for |β| < θc. The proba-
bility of seeing emission from a particular neutron star is

Figure 5. The viewing geometry in the magnetic frame showing the ob-
servable visible point traces out a path through the open-field region. Four
open regions are plotted for r = 1.2 rmin (green), 0.1rL (gray), 0.2rL (brown)
and 0.6rL (blue) for α = 45◦ and ζ = 60◦. The trajectory of the visible point
(black) intersects the green, gray, brown and blue curves at (D, E), (C, F),
(B, G) and (A, H), respectively, between which an observer sees radiation.
The red curve represents the path that traces out by the visible point in the
conventional model, in which the line of sight is assumed to go through an
origin.

given by dividing the solid angle 2πθ2
c (for two poles) by

4π . This probability is r/2rL for r/rL � 1. Based on the ge-
ometry alone, most visible emission from pulsars must come
from relatively large heights. For example, if one assumes
that at least 10% of all radio pulsars are visible, this implies
r/rL � 0.2. This analytic estimate is supported by the numer-
ical results in Figure 4, which show that near the minimum,
rmin/rL increases approximately proportional to β2, implying
that emission from low heights is visible only for small β.

4.4 Duty cycle

In the tangent model, the duty cycle of a pulsar is identified
as the range of ψ between the two intersection points where
the trajectory cuts the boundary of the open-field region.
Figure 5 shows the viewing geometry in the magnetic frame.
Along this portion of the trajectory, ωV varies symmetrically
about ψ = 0 (which defines the xm-axis); ωV is minimum at
ψ = 0, and increases towards either of the two intersections.
The visible point enters the open region, at A, with a cer-
tain angular speed, its speed gradually reduces, reaching its
minimum at ψ = 0, and then increases again until it leaves
the open-field region at H with the same angular speed as at
A. The portion of the trajectory that is within the open-field
region, and hence the duty cycle, increases with increasing
r > rmin.
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Figure 6. The changes in polarisation position angle for α = 45◦ and ζ =
40◦ (solid), ζ = 45◦ (dashed) and ζ = 50◦ (dot-dashed) plotted against
rotational phase. Integrated profiles, which are centred at ψ = 0 in the
model, of different widths capture different information of the PA curve.

5 SWING OF POSITION ANGLE

Conventional treatments of the swing of the PA are based on
the RVM, and it is important to identify the error that this
introduces. Provided this error is small, the RVM is a useful
simple approximation to the tangent model. We find that the
error is largest near the limits of the duty cycle, and that this
affects the predicted visibility of the other pole, interpreted
as an interpulse.

5.1 Evolution of the PA

Pulsar radio emission has a linearly polarised component,
described by its PA, which is assumed to be determined
by the projection (perpendicular to the line of sight) of the
magnetic field line at the visible point. The evolution of the
PA with ψ in the RVM is assumed to give a characteristic S-
shaped swing as the open-field region sweeps across the line
of sight to the centre of the star (Radhakrishnan & Cooke,
1969). The actual shape of the PA curve depends on α and β.
Figure 6 shows the sweep in PA as predicted by the tangent
model for α = 45◦ and three different values of ζ . The PA
curve changes from I to III as β changes from negative to
positive, with II corresponding to β = 0. For β < 0, the PA
swing is an S-shaped curve, similar to a sine curve for β

large and negative, with the slope of the S steepening as
|β| decreases towards zero. For β ≥ 0, the PA variation is
monotonic, exhibiting a jump by 180◦, which occurs at ψ = 0
for β = 0 (II) and at a non-zero ψ for β > 0 (III).

The observed PA curve depends on the pulse width. For a
narrow pulse width the PA change can resemble an unbroken
S-shaped curve, as illustrated by curve I in Figure 6, exam-
ples being PSR B0136+57, B0628-28 and Vela pulsar (Lyne
& Manchester, 1988; Becker et al., 2005), or an abrupt jump,
as illustrated by curve II in Figure 6, an example being PSR
B0355+54 at 1.4 GHz (Gould & Lyne, 1998). For a larger
pulse width the PA change illustrated by curve III in Figure 6

Figure 7. The trajectory of the visible point as predicted in the RVM (red)
and the tangent model (black) for α = 45◦, ζ = 60◦ (solid) and α = 80◦,
ζ = 30◦ (dashed) in the magnetic frame (see Figures 1 and 2). The leftmost
point of intersection between a trajectory and the xm axis represents ψ = 0.

is similar to that observed from PSR J0738-4042 and PSR
J1243-6423 (Karastergiou & Johnston, 2006). The interpre-
tation of PA curves suggests that effects other than geometry
alone can be significant: ‘reversed’ PA curves indicate that
pulsars rotate in the direction opposite to that we assume, and
other unusual PA curves may be an indication of non-dipolar
field structure, small scale distortions in the open-field re-
gion, or interstellar scattering effects (Karastergiou, 2009).

5.2 Comparison of RVM and tangent models

In the RVM the PA swing is calculated based on the path of
the line of sight through the centre of the star as the open-
field region sweeps across it (Radhakrishnan & Cooke, 1969;
Lyne & Manchester, 1988). An example of the path implied
by the RVM is the red curve in Figure 5, which is clearly
different from the trajectory in the tangent model, shown by
the black curve. Further examples showing the difference
between the two models are illustrated by the red and black
curves, for two different choices of parameters, in Figure 7.
Such examples allow one to quantify the error introduced by
use of the RVM.

As remarked in Section 1, the angular error introduced is
arcsin(d/r), where d is the perpendicular distance between
the lines of sight in the RVM and the tangent model. This
error is maximum, as a function of r, near the minimum
value of r, at r = rmin, where it is d = rmin sin(θb − θbV). For
given ζ and α, d has a minimum at ψ = 0 and a maximum
at ψ = 180◦, and it increases with increasing ζ and α.
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6 Yuen and Melrose

Figure 8. Variations in the emission height, rV , along the open field lines
where the trajectory cuts through the open region in the RVM (red) and the
tangent model (black) for α = 45◦ and ζ = 30◦. The geometry identifies
the centre of the pulse at ψ = 0 where rV = rmin, and rV = 0.2rL at the two
boundaries representing the leading and trailing edges of the pulse profile.

5.3 Minimum visible height

Another way of comparing the RVM and the tangent model
is in terms of the minimum visible height. The criterion
for emission to be visible is that the line of sight, which is
independent of r in both models, intersects the open-field
region, which broadens with increasing r. In both models
there is a minimum visible height, at which the line of sight
intersects the boundary of the open-field region. Above this
height, there is a range of ψ for which emission is visible.
In Figure 8 we fix this height at a specific value, r = 0.2rL,
so that this corresponds to the emission height at the two
extrema in ψ that define the edges of the pulse window. For
ψ between these extrema emission is visible from a range of
heights rV < 0.2rL with this range increasing to a maximum
at ψ = 0, midway between the edges. Figure 8 compares
the pulse window and the range of visible heights within
the window for this particular example. The most obvious
feature is that the RVM underestimates the size of the pulse
window, compared with the tangent model.

5.4 Swing of PA

How significant is the error introduced by using the RVM
to determine the swing in PA? To answer this question we
calculate the swing in PA for both models with given values
of α and ζ . The results are shown in Figures 9–12. The error
introduced is small near ψ = 0, and indeed so small that we
need to displace the curves, by 5◦, in order to distinguish
between the two models. One can conclude that the RVM is
an excellent approximation for the purposes of calculating
the PA swing, provided that the pulsar has a narrow pulse
window.

The difference in the PA curves between the two models
increases as the pulse window increases. The range of ψ

predicted by the RVM is narrower than that predicted by the
tangent model, and this difference can be substantial for a

Figure 9. Differences in the trajectory through the open-field region in the
magnetic frame (left) and the observed PA curve (right) between the RVM
(red) and the tangent model (black), for α = 45◦ and ζ = 30◦, and emission
height at 0.2rL. The red curve in the PA plot is shifted by +5◦ for clarity.
An S-shaped is predicted for the PA swing in the tangent model.

Figure 10. Same as in Figure 9 but for ζ = 50◦.

Figure 11. Same as in Figure 9 but for α = 80◦ and ζ = 65◦. Both with
β = −15◦.

Figure 12. Same as in Figure 10 but for α = 80◦ and ζ = 85◦. Both with
β = 5◦.

broad pulse. The largest difference between the two models
occurs for large β.

In summary, the error introduced by assuming that the
line of sight passes through the origin include an underes-
timation of the height of emission, and hence either to an
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Figure 13. The minimum visible height for ψ = 0 is shown by the value
of xm for the main pulse (black) and interpulse (blue) in the tangent model
(solid) and the RVM (dashed) as a function of 0 ≤ α ≤ 90◦ and ζ = 10◦.
The boundaries for the open regions are shown for r = 0.1rL (dot-dashed
gray) and 0.2rL (solid gray) where each intersects the xm axis at two points
(xm > 0 and xm < 0, see Figure 9). The two magnetic poles, which are
separated by θ = ψ = π , are plotted at the same origin for clarity and both
are assumed with similar constrains on the emission height, and hence for
β = 0 (intersection of the black curve with the xm-axis), rmin = 0 for near
pole but rmin,IP is large. Visible emission requires the visible point to be
between the gray lines. Intersection of a curve with the horizontal axis
occurs when ζ = α = 10◦, but only for the main pulse.

overestimation of α, for β > 0, or to an underestimation of
α, for β < 0.

5.5 Visibility of the opposite pole

The integrated pulse profiles of some pulsars show an inter-
pulse (IP), which is separated from the main pulse by approx-
imately half the rotation period. Similar to main pulses, inter-
pulses may also exhibit such phenomena as mode-changing,
pulse-to-pulse intensity modulation and subpulse drifting
(Weltevrede, Stappers, & Edwards, 2007). Assuming that
the emission mechanism for the near and far magnetic poles
is the same and both are actively radiating, the conditions that
determine the visibility for the near magnetic pole also apply
to visible emission from the far (opposite) pole. The analytic
solution in Section 2 involves solving a quartic equation, and
there are four solutions. Two of the solutions correspond to
emission in the observer’s hemisphere, and the condition for
an interpulse is that both be visible. (The other two solutions
correspond to emission in the opposite hemisphere to the
observer and are of no interest.)

The visibility conditions for an interpulse are that a portion
of the trajectory of the visible point near the far pole is within
the open field region, and that this occurs above the minimum
visible height, rmin,IP. Figures 13–15 apply in the special case
ψ = 0, when the magnetic axis, the rotation axis and the
line of sight are in the same plane. These figures show the
variations in rmin and rmin,IP, where IP refers to interpulse, as
predicted in both the RVM and the tangent model as function
of α for three values of ζ . Two emission heights are selected,
at r = 0.1rL and r = 0.2rL, with the range of ±xm from which

Figure 14. Same as in Figure 13 but for ζ = 50◦; only the near pole is
visible.

Figure 15. Same as in Figure 13 but for ζ = 90◦; both poles are visible for
large α. The RVM (dashed curves) underestimates the range of α for which
both poles are visible.

emission is visible restricted to between the curves, which
are symmetric about the horizontal axis.

Three features are apparent from Figures 13–15. First, the
far pole is visible only for large α and ζ , and large heights.
Second, from Figure 15 one infers that the RVM underesti-
mates the range of 90◦ − α over which the far pole is visible.
Third, from Figure 13 it is evident that the RVM incorrectly
predicts a range of small α and ζ where the far pole is visible.
These differences illustrate the errors that can be introduced
by using the RVM away from ψ ≈ 0, where the error is small.

6 CONCLUSIONS

The tangent model for the visibility of pulsar radio emission
(Gangadhara, 2004) is widely accepted, but its implications
are not widely recognised. The tangent model is inconsistent
with the earlier RVM, which continues to be used, especially
in connection with the swing of PA. In this paper, we use an
analytic solution for the tangent model to demonstrate some
of its implications, and to compare the predictions based on
it with predictions based on the RVM. Before summarizing
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Figure 16. Simulation of the magnetic field lines at various r for α = 90◦
when looking down from the rotation axis showing the dipolar structure for
r ≤ 0.2rL.

our results in dot-point form, we comment on limitations on
the tangent model in the form assumed here.

The tangent model we explore neglects many physical
effects, with the most important being retardation and aber-
ration (Gupta & Gangadhara, 2003; Gangadhara, 2005). The
exact solution for a rotating magnetic dipole includes the
dipolar term, ∝ 1/r3, which is the only term we retain, and
the inductive (∝ 1/r2) and radiative (∝ 1/r) terms (collec-
tively the retarded terms) that we ignore. Inclusion of the
retarded terms leads to well-known distortions in the field
(Arendt & Eilek, 1998; Dyks & Harding, 2004), compared
with the dipolar term. The distortions are a strong function of
α (being absent for α = 0), and we illustrate their magnitude
by plotting, in Figure 16, some of the exact field lines for
the special case of α = 90◦. Based on our calculations, and
on the work of others, e.g., Higgins & Henriksen (1997), we
estimate that these distortions are relatively unimportant for
r ≤ 0.2rL. An exact analytic solution for the trajectory is not
feasible when the retarded terms are included. It is possible
to complement the exact solution for a dipolar field by a
perturbation approach to include the effects of retardation.
For example, Blaskiewicz, Cordes & Wasserman (1991) in-
cluded retardation effects as a perturbations to the RVM. The
perturbations should be applied to the tangent model, and
not to the RVM, but we do not do so here. Similarly, other
field line distortions, the finite size of the emission cone and
aberration may be included as perturbation corrections to the
exact solution. Again, such perturbations should be applied
to the exact solution, and not to the RVM.

6.1 Summary

• The older model for the visibility of pulsar radio emis-
sion (Radhakrishnan & Cooke, 1969; Lyne & Manch-
ester, 1988) is incompatible with the widely accepted
model (Gangadhara, 2004) in which radiation is beamed
along the magnetic field line at the point of emission.
We refer to the two models as the RVM and the tangent
model, respectively.

• The tangent model (but not the RVM) implies that the
visible point moves around a trajectory as the pulsar
rotates. The size of the trajectory and the speed of the
motion of the visible point around it depend on α and
ζ .

• The requirement that emission come only from open
field lines sets a minimum height for visible emission,
and this is different in the two models.

• The geometry alone strongly favors visible radio emis-
sion being originating at a heights more than ten percent
of the light-cylinder distance.

• The size of the pulse window is different in the two
models, with the RVM typically underestimating the
range of ψ for which emission is visible.

• The errors introduced by using the RVM are particularly
notable when considering the visibility of the opposite
pole, and hence of an interpulse.

• The swing of PA is similar in the two models provided
the pulse window is narrow, but the RVM becomes
increasingly unreliable as the size of the pulse window
increases.
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