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Diameter, Decomposability, and
Minkowski Sums of Polytopes

Antoine Deza and Lionel Pournin

Abstract. We investigate how the Minkowski sum of two polytopes aòects their graph and, in par-
ticular, their diameter. We show that the diameter of the Minkowski sum is bounded below by the
diameter of each summand and above by, roughly, the product between the diameter of one summand
and the number of vertices of the other. We also prove that both bounds are sharp. In addition, we
obtain a result on polytope decomposability. More precisely, given two polytopes P and Q, we show
that P can be written as aMinkowski sum with a summand homothetic to Q if and only if P has the
same number of vertices as its Minkowski sum with Q.

1 Introduction

he Minkowski sum of two subsets of an Euclidean space is obtained by summing
each element of one subset with each element of the other. he Minkowski sum of
P and Q is denoted by P + Q. his operation turns up in a large number of diòer-
ent contexts ranging from the Brunn–Minkowski theorem to applications in civil en-
gineering or motion planning. he special case when P and Q are polytopes is of
particular interest. It is amodel for the combinatorics of prismatoids used by Santos
to disprove the Hirsch conjecture [10]. he face lattice of P + Q, and in particular
its vertex set, has been studied by Fukuda and Weibel [5]. Recently, a sharp upper
bound on the number of faces of P+Q has been obtained byAdiprasito and Sanyal [1].
he question of the decomposability of a polytope, that is, whether it can be ob-
tained as theMinkowski sum of two non-homothetic polytopes, has been considered
in [7–9, 11]. Among polytopes, the case of zonotopes is particularly interesting. hese
polytopes are theMinkowski sums of line segments. For any pair of positive integers
d and k, zonotopes are conjectured to achieve the largest possible diameter over all
the d-dimensional polytopes whose vertices have integer coordinates ranging from 0
to k [3]. Here, by the diameter of a polytope, we mean the diameter of the graph of
a polytope, made up of its vertices and edges. We refer the reader to the textbooks
by Fukuda [4], Grünbaum [6], and Ziegler [12] for comprehensive introductions to
polytopes,Minkowski sums, and zonotopes.

Here, we focus on the possible diameter of (the graph of) the Minkowski sum
of two polytopes. While this diameter is bounded below by the diameters of each
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summand, we will observe that it can grow arbitrarily large, even when the diameter
of both summands is ûxed. In fact, we will prove that this diameter cannot exceed,
roughly, the product between the diameter of one summand and the number of ver-
tices of the other. Wewill also show that this upper bound is sharpwhen the diameter
and the number of vertices of both summands grow large. Along the way, we ob-
tain a result on the decomposability of a polytope into aMinkowski sum. If P is the
Minkowski sum of two polytopes Q and R, we say that Q and R are summands of P.
A polytope that is not homothetic to at least one of its summands is called decompos-
able [11]. Wewill show that a polytope P has a summand homothetic to a polytopeQ if
and only if P and P+Q have the same number of vertices. his allows for a convenient
way to check polytope decomposability, especially in the case of lattice polytopes.

he article is based on a couple of propositions from [4], which we recall and
extend in Section 2. Our result on polytope decomposability is given as a conclu-
sion to Section 2. he question on the diameter of Minkowski sums is addressed in
Sections 3 and 4. he bounds on that diameter are given in Section 3 and the proof
that the upper bound is sharp in Section 4.

2 Some Properties of the Minkowski Sum of Polytopes

In the sequel, each time aMinkowski sumof two polytopes is considered, it is implic-
itly assumed that these polytopes are both contained in the same ambient Euclidean
space. Note that we will make heavy use of linear maps of the form x ↦ c⋅x. In this
notation, c and x are vectors in the considered ambient space and c⋅x denotes their
scalar product. he following lemma is borrowed from [4]. It is in some sense our
starting point. In particular,most of our results are based on it.

Lemma 2.1 ([4, Proposition 12.1]) For any subset F of a polytope P and any subset
G of a polytope Q, F +G is a face of P + Q if and only if
(i) F and G are faces of P and Q, respectively,
(ii) there exists a vector c such that the map x ↦ c⋅x is minimized exactly at F in P

and exactly at G in Q.

By this lemma, given two polytopes P and Q, a face X of their Minkowski sum
can always be written as the Minkowski sum of a unique face F of P and a unique
face G of Q. In the sequel, the expression F + G will be referred to as theMinkowski
decomposition of X. Lemma 2.1 is illustrated on Figure 1with theMinkowski sumof a
triangle P and a line segment Q, where theMinkowski decomposition of each proper
face of P+Q is indicated by an arrow. Note, for instance, thatwhen c is a vertical vector
pointing down, themap x ↦ c⋅x is minimized, in P, at the purple vertex placed at the
top and, in Q, at Q itself. he sum of these two faces is the line segment at the top
of P + Q. he following lemma, also borrowed from [4], tells how Minkowski sums
aòect vertex adjacency in the graph of a polytope.

Lemma 2.2 ([4, Proposition 12.4]) Let P andQ be two polytopes. If u and v are adja-
cent vertices of P+Q withMinkowski decompositions uP +uQ and vP +vQ , respectively,
then uP and vP either coincide or are adjacent vertices of P. Similarly, uQ and vQ coin-
cide or are adjacent vertices of Q.
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Figure 1: (Color online.) heMinkowski sum of a triangle and a line segment.

Observe that, for any vertex u of a polytope P, and any polytope Q, there exists a
vertex v of Q such that u+v is a vertex of P+Q. Indeed, consider a vector c such that
themap x ↦ c⋅x is uniquelyminimized at u in P. hismap is alsominimized at a face
F in Q. According to Lemma 2.1, u + F is a face of P +Q, and the vertices of this face
are precisely theMinkowski sums u+v where v is a vertex of F. Since theMinkowski
decomposition of a vertex of P + Q is unique, we immediately obtain Lemma 2.3.

Lemma 2.3 Let P andQ be two polytopes. here exists an injection ϕ from the vertex
set of P into the vertex set of P + Q such that, for every vertex u of P, ϕ(u) = u + v,
where v is a vertex of Q.

Consider a face F of a polytope P. Recall that the normal cone of P at F is the set
of all the vectors c such that the map x ↦ c⋅x is minimized, in P, exactly at a face
that contains F. he normal fan of P is the complete polyhedral fan made up of the
normal cones of P at all of its faces.

he following result is proved in [7].

Lemma 2.4 ([7,heorem 4]) If the normal fans of two polytopes P and Q coincide,
then P has a summand homothetic to Q.

Note that [7,heorem 4] actually provides four statements equivalent to the nor-
mal fans of two polytopes coinciding. Lemma 2.4 only borrows the part of this theo-
rem that we will make use of here.

heorem 2.5 A polytope P has a summand homothetic to a polytope Q if and only if
P and P + Q have the same number of vertices.

Proof Assume that P has a summand homothetic to Q; that is, P is equal to αQ +R
for some positive number α and some polytope R. In this case, Lemma 2.1 provides
a bijection between the vertex set of P and the vertex set of P + Q. Indeed, let u and
v be two points in Q and R, respectively. By Lemma 2.1, αu + v is a vertex of P if and
only if there exists a vector c such that themap x ↦ c⋅x is uniquely minimized at αu
in αQ and at v in R. his is equivalent to themap x ↦ c⋅x being uniquelyminimized
at (1 + α)u in (1 + α)Q and at v in R. Since P + Q is equal to (1 + α)Q + R, it follows
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from Lemma 2.1 that themap αu + v ↦ (1+ α)u + v is a bijection between the vertex
set of P and the vertex set of P + Q.

Now assume that P and P + Q have the same number of vertices. According to
[12, Proposition 7.12], the normal fan of P + Q reûnes the normal fan of P. In other
words, the normal cones of P+Q formpolyhedral subdivisions of each of the normal
cones of P. Since P and P + Q have the same number of vertices, their normal fans
contain the same number of full-dimensional cones and, therefore, the two fans must
coincide. According to Lemma 2.4, P has a summand homothetic to P + Q and, in
turn, a summand homothetic to Q. ∎

he proof we give here for heorem 2.5 illustrates how Lemma 2.1 can be used.
Note, however, that this theorem can be given a shorter proof by making use of a
result from [8] instead of Lemmas 2.1 and 2.4. Indeed, it follows from heorem 2
therein that a polytope Q is homothetic to a summand of a polytope P if and only if
the normal fan of P reûnes the normal fan of Q. According to [12, Proposition 7.12],
this is equivalent to the equality between the normal fans of P and P + Q and to the
equality between their number of vertices.
A weaker version ofheorem 2.5 where P is a lattice polytope and Q is lattice seg-

ment is used in [2] in order to enumerate lattice polytopes with given properties. In
the case of lattice polytopes, the summand homothetic to Q in the statement ofhe-
orem 2.5 is homothetic to Q by an integer coeõcient, which allows for a convenient
enumeration procedure. A consequence of heorem 2.5 is that it makes it possible
to check whether a Minkowski diòerence is possible between P and a polytope ho-
mothetic to Q by only computing the vertices P + Q and comparing its number of
vertices to that of P. Another consequence is that it provides an convenient way to
tell whether a lattice polytope P is a zonotope: it suõces to compute theMinkowski
sums of P with each of its edges (up to parallelism) and to compare the number of
vertices of the resulting polytopes with that of P.

3 Bounds on the Diameter of Minkowski Sums

he purpose of this section is to investigate the possible range for the diameter of a
Minkowski sum in terms of the diameter and the number of vertices of its summands.
In the sequel, the diameter of apolytope P isdenoted by δ(P). We beginwith a general
lower bound that only depends on the diameter of the summands.

heorem 3.1 For any two polytopes P and Q,

δ(P + Q) ≥ max{δ(P), δ(Q)}.

Proof By Lemma 2.3, there exists an injection ϕ from the vertex set of P into the
vertex set of P + Q such that, for every vertex v of P, theMinkowski decomposition
of ϕ(v) contains v as one of its two summands. Consider two vertices u and v of P
distant of δ(P) in the graph of P. By Lemma 2.2, for any path of length l between ϕ(u)
and ϕ(v) in the graph of P +Q, there exists a path of length at most l between u and
v in the graph of P. As a consequence, the distance between u and v in the graph of P
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is at most the distance between ϕ(u) and ϕ(v) in the graph of P+Q. herefore, δ(P)
is not greater than δ(P + Q) and, by symmetry, the desired inequality holds. ∎

he inequality provided byheorem 3.1 is sharp, since δ(2P) = δ(P) for any poly-
tope P. his inequality is used in [2] in the case when Q is a line segment, in order to
evaluate the diameter of lattice polytopes.

It turns out that there is no upper bound on the diameter of a Minkowski sum
only in terms of the diameter of the summands. More precisely, we provide a pair
of polytopes, each of diameter 2, whose diameter of the Minkowski sum can grow
arbitrarily large. he construction relies on the following proposition that provides
polytopes of any dimension and any diameter.

Proposition 3.2 For any two positive integers d and k, there exists a polytope of di-
mension d and diameter k.

Proof We distinguish two cases. First, assume that k ≥ d − 1. Consider a polygon
with 2(k − d) + 5 vertices (whose diameter is therefore k − d + 2) and a (d − 2)-
dimensional cube. Let P be the cartesian product of the polygon and the cube. his
cartesianproduct can be alternatively obtained by taking a prismover the polygon and
then a prism over this prism, and so on until the resulting polytope is d-dimensional.
Since the diameter of a prism is the diameter of its base plus 1, the diameter of P is
equal to k. Now assume that k < d − 1. Consider a (d − k + 1)-dimensional simplex
and a (k − 1)-dimensional cube. As above, theMinkowski sum P of the simplex and
the cube is a d-dimensional polytope obtained by taking successive prisms over the
simplex. Hence, as the diameter of a prism is the diameter of its base plus 1 and as
simplices have diameter 1, the diameter of P is equal to k. ∎

By Proposition 3.3, the diameter of a Minkowski sum of two polytopes can grow
arbitrarily large, even if both polytopes have a ûxed diameter.

Proposition 3.3 For any d ≥ 3 and k ≥ 4, there exist two d-dimensional polytopes,
both of diameter 2, whoseMinkowski sum has diameter k

Proof By Proposition 3.2, there exists a polytope B of dimension d − 1 and diameter
k − 2. We will think of B as embedded in a hyperplane H of Rd . Consider two points
p and q placed in Rd∖H in such a way that the line segment between p and q goes
through the relative interior of B. Let P and Q be the pyramids over B whose apices
are p and q. By construction, P andQ both have diameter 2. Note that p+B and q+B
are two translates of B placed in distinct hyperplanes parallel to H. he Minkowski
sum of P and Q is the convex hull of these two translates of B, and of the polytope
2B (theMinkowski sum of B with itself) placed between them in a third hyperplane
parallel to H. In particular, all the faces of p + B and q + B are also faces of P + Q.
Moreover, since the line segment between p and q goes through the relative interior
of B, all the proper faces of 2B are faces of P + Q, and all the remaining proper faces
of P + Q are precisely obtained as the convex hull of x + F and 2F, where F is proper
a face of B, and x is equal to p or to q. Combinatorially, P + Q can be thought of as
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a prism on both sides of B. Since the diameter of a prism is the diameter of its base
plus 1, the diameter of P + Q is equal to k. ∎

When d is equal to 3, the construction in the proof of Proposition 3.3 consists in
considering a convex polygon B with 2k − 3 vertices and two pyramids P and Q over
this polygon whose apices are joined by a line segment going through the relative
interior of B. A property of this construction is that both P and Q have diameter 2. It
would be interesting to knowwhether a statement similar to that of Proposition 3.3 is
true with polytopes of smaller diameter. More precisely, we ask the following.

Question 3.4 Do there exist a polytope of diameter 1 and a polytope of diameter 1
or 2 whoseMinkowski sum has an arbitrarily large diameter?

On the one hand, Proposition 3.3 shows that there is no ûnite upper bound on
the diameter of a Minkowski sum of polytopes only in terms of the diameter of the
summands. In other words, the ratio

δ(P + Q)
δ(P)δ(Q)

can grow arbitrarily large. On the other hand, there is a coarse upper bound for the
diameter of P +Q in terms of the number of vertices of P and Q, which we denote by
f0(P) and f0(Q), respectively. Since a geodesic in the graph of P + Q cannot visit a
vertex twice, the diameter of P +Q is at most the number of vertices of P +Q, which
is in turn bounded above by f0(P) f0(Q).

hemain result of this section is the following reûned bound, which combines the
diameters of P and Q and the number of their vertices.

heorem 3.5 For any two polytopes P and Q,

δ(P + Q) < min{(δ(P) + 1) f0(Q), f0(P)(δ(Q) + 1)} .

As will be shown in Section 4, this bound is sharp when the diameter of one sum-
mand grows large and the other summand is a line segment or a polygon with an
arbitrarily large number of vertices. In order to proveheorem 3.5, we will introduce
the following family of graphs, whose vertex sets form a partition of the vertices of
theMinkowski sum of two polytopes.

Deûnition 3.6 For any vertex u of a polytope P and any polytope Q, call ΓP ,Q(u)
the subgraph induced in the graph of P+Q by the verticeswhoseMinkowski decom-
position is of the form u + v, where v is a vertex of Q.

Note that the injection ϕ provided by Lemma 2.3 is precisely a map that sends
each vertex u of P to a vertex of ΓP ,Q(u). Let us illustrate the graphs ΓP ,Q(u) using
theMinkowski sum of a triangle P and a line segment Q depicted in Figure 1. When
u is the vertex at the top of P, ΓP ,Q(u) is the graph made up of the line segment at
the top of P + Q and its two vertices. When u is one of the vertices at the bottom of
P, ΓP ,Q(u) is made up of a single vertex and no edge; this vertex is the one bottom
le� of P + Q if u is the vertex bottom le� of P, and bottom right of P + Q if u is the
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vertex bottom right of P. Further observe that ΓQ ,P(u) is the oblique edge on the le�
of P + Q together with its vertices when u is the vertex at the le� of Q and the other
oblique edge of P +Q together with its vertices when u is the vertex at the right of Q.

Lemma 3.7 Consider two polytopes P and Q. For any vertex u of P, the graph
ΓP ,Q(u) is connected.

Proof Denote by N the interior of the normal cone of P at u and recall that N is
precisely the set of the vectors c such that themap x ↦ c⋅x is minimized exactly at u
in P. According to Lemma 2.1, the Minkowski sum of u with a face F of Q is a face
of P +Q if and only if N is non-disjoint from the relative interior of the normal cone
of Q at F. As a consequence, it follows from Deûnition 3.6 that for every vertex v of
Q, u + v is a vertex of ΓP ,Q(u) if and only if some point belongs both to N and to the
interior of the normal cone of Q at v.

Let v and w be two vertices of Q such that u + v and u +w are vertices of ΓP ,Q(u).
Choose a point pv that belongs to N and to the interior of the normal cone of Q at v.
Similarly, let pw be a point in the intersection of N with the interior of the normal
cone of Q at w. Since pv and pw are picked from open sets, we can assume that the
line segment between them does not meet a face of dimension less than d − 1 in the
normal fan of Q. his can be achieved by, if needed, perturbing pv or pw slightly. By
construction,when going from pv to pw along the line segment that joins these points,
onemeets the interiors of a sequence of full-dimensional cones in the normal fan of
Q, glued along cones of codimension 1. hese cones are the normal cones of Q at the
vertices and at the edges of a path in the graph of Q from v to w. By the convexity of
N , the relative interiors of all these cones are non-disjoint from N . According to the
above observation, theMinkowski sumof uwith the vertices and the edges of the path
we found in the graph of Q from v tow form a path from u+v to u+w in ΓP ,Q(u). ∎

Lemma 3.8 tells how the subgraphs induced by the graphs ΓP ,Q(u) relate to one
another within the graph of P + Q.

Lemma 3.8 Consider two polytopes P and Q. Two distinct vertices u and v of P are
adjacent in the graph of P if and only if there exist a vertex of ΓP ,Q(u) and a vertex of
ΓP ,Q(v) that are adjacent in the graph of P + Q.

Proof First consider an edge of P + Q between a vertex of ΓP ,Q(u) and a vertex of
ΓP ,Q(v). his edge is the Minkowski sum of a face of P with a face of Q, both of
dimension 0 or 1. he face of P is necessarily the line segment with vertices u and v
because these vertices are distinct.

Now assume that u and v are adjacent in the graph of P. Consider a projection π on
some linear hyperplane H of the ambient space that sends u and v to the same point.
Observe that π(u) is a vertex of π(P) and consider a vector c ∈ Rd such that themap
x ↦ c⋅x is uniquely minimized at π(u) in π(P). his map is minimized at a face F
in Q. According to Lemma 2.1, π(u)+ F is a face of π(P)+ π(Q), and the vertices of
this face are precisely the Minkowski sums of u with the vertices of F. Hence, there
exists a vertex of π(P)+π(Q), obtained as theMinkowski sumof π(u)with a vertex,
say π(w) of π(Q). SinceMinkowski sums commute with projections, π(u + w) is a
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Figure 2: (Color online.) heMinkowski sum of a path with a polytope Q.

vertex of π(P+Q). Now observe that the face of P+Q whose image by π is π(u+w)
is either a vertex or an edge. Since u and v are distinct, this face is an edge between a
vertex of ΓP ,Q(u) and a vertex of ΓP ,Q(v). ∎

We are now ready to proveheorem 3.5. he strategy, illustrated in Figure 2, is to
look at how a geodesic of length l in the graph of P is modiûed by the Minkowski
sum with Q: informally, the Minkowski sum copies each of the l + 1 vertices in the
geodesic at most f0(Q) times. In particular, the term δ(P)+ 1 in the bound provided
by heorem 3.5 can be thought of as the number of vertices of a path of length δ(P).
Figure 2 shows how copies of the ûrst and last vertices of the path (represented as red
squares) can be connected via copies of the vertices and edges of the original path.

Proof of Theorem 3.5 Consider two vertices u and v of P such that in the graph of
P+Q, the largest possible distance between a vertex of ΓP ,Q(u) and a vertex of ΓP ,Q(v)
is exactly δ(P + Q). Denote by l the distance of u and v in the graph of P. We show
that the distance, in the graph of P + Q, between a vertex of ΓP ,Q(u) and a vertex of
ΓP ,Q(v) is at most (l + 1) f0(Q). Consider a geodesic from u to v in the graph of P.
Denote by w0 to w l the vertices along this geodesic in such a way that w0 coincides
with u, w l coincides with v, and w i−1 is adjacent to w i in the graph of P, for all i.
According to Lemma 3.7, ΓP ,Q(w i) is a connected graph. We will denote the di-

ameter of this graph by δ(ΓP ,Q(w i)). By Lemma 3.8, some vertex of ΓP ,Q(w i−1) is
adjacent to a vertex of ΓP ,Q(w i) in the graph of P +Q. herefore, the largest distance
in the graph of P + Q between any vertex of ΓP ,Q(u) and any vertex of ΓP ,Q(v), that
is the diameter of P + Q, is bounded as

(3.1) δ(P + Q) ≤ l +
l

∑
i=0
δ(ΓP ,Q(w i)).

Now observe that ΓP ,Q(w i) has at most f0(Q) vertices. As a direct consequence,
its diameter is at most f0(Q) − 1, and (3.1) yields

δ(P + Q) < (l + 1) f0(Q).
Since l is the distance between two vertices in the graph of P, it is bounded above

by δ(P), and we obtain the desired inequality. ∎

4 The Polytopes Ξ(k, l) and Ξ̃(k, l ,m)
In this section, we describe two families of 3-dimensional polytopes. he ûrst family,
which we will denote by Ξ(k, l), shows that heorem 3.5 is sharp for theMinkowski

748

https://doi.org/10.4153/S0008439518000668 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000668


Diameter, Decomposability, andMinkowski sums

sum with a line segment, even when the diameter of the other summand is large. In
otherwords, one cannearlydouble the diameterof apolytope by taking theMinkowski
sum with a line segment. he other family of polytopes, which will be denoted by
Ξ̃(k, l ,m), will show that heorem 3.5 is also sharp for the Minkowski sum with a
polygon, even when both the number of vertices of the polygon and the diameter of
the other summand are arbitrarily large.
Consider the 3-dimensional polytope Ξ(5, 4) sketched in Figure 3. he le� of the

ûgure shows Ξ(5, 4) from above, and the right of the ûgure shows it from below. he
vertices represented as blue squares are the vertices of a regular decagon A. In par-
ticular they all belong to R2, which we think of as a horizontal plane. On the view of
Ξ(5, 4) from above, the vertices markedwith red disks are only slightly aboveR2 and
their orthogonal projection on R2 belongs to every other edge of the decagon. Simi-
larly, the vertices marked with green disks on the view of Ξ(5, 4) from below are just
slightly below R2 and their orthogonal projection on R2 also belongs to every other
edge of A, but with the requirement that a red and a green vertex never project on
the same edge of A. It follows that Ξ(5, 4) has vertical facets, sketched in the center
of the ûgure, each with two blue vertices and three other vertices, either all red or
all green. he way the vertical facets are glued to the other facets of Ξ(5, 4) is indi-
cated by arrows in the ûgure. he polytope Ξ(5, 4) also has two congruent horizontal
facets colored grey in Figure 3, each with 20 vertices. All the other facets of Ξ(5, 4)
are quadrilaterals or isosceles triangles. Each quadrilateral shares an edge with a hor-
izontal facet and an edge with a vertical facet. Each triangle shares a vertex with a
horizontal facet and an edgewith a vertical facet. Observe that Ξ(5, 4) admits a natu-
ral generalization. One can deûne a similar 3-dimensional polytopewhose projection
on R2 is a regular polygon with 2k vertices (which we shall also denote by A) instead
of a decagon, and such that there are l − 1 red (or green) vertices between two blue
vertices, instead of just 3. he resulting 3-dimensional polytope,whichwewill denote
by Ξ(k, l), still has two horizontal facets, each with kl vertices. It also has 2k verti-
cal facets, each with two blue vertices and l − 1 red or green vertices. he other facets
of Ξ(k, l) are 2k isosceles triangles and 2kl quadrilaterals.

Proposition 4.1 he diameter of Ξ(k, l) is at most k + l + 2.

Figure 3: (Color online.) he 3-dimensional polytope Ξ(5, 4).
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Figure 4: (Color online.) hemap λ.

Proof Observe that the distance in the graph of Ξ(k, l) from a red or green vertex
to a blue vertex is at most l/2. Since the vertices of the horizontal facets are adjacent
to a red or a green vertex, their distance to a blue vertex in the graph of Ξ(k, l) is at
most l/2+ 1. As two blue vertices are distant by at most k in the graph of A, we obtain
the desired upper bound on the diameter of Ξ(x , l). ∎

Proposition 4.2 heMinkowski sum of Ξ(k, 4) with a vertical line segment has di-
ameter at least 2k.

Proof First observe that taking the Minkowski sum of Ξ(k, 4) with a vertical line
segment Σ does not modify the non-vertical facets of Ξ(k, 4), except for a possible
translation. he only facets of Ξ(k, 4)whose geometry is modiûed by theMinkowski
sum are the vertical ones. In these facets, the blue vertices are replaced by a translate
ofΣ. he two vertices of this edge can beunderstood as two copies of a blue vertex, and
will also be referred to as blue vertices. In particular, the vertical facets of Ξ(k, 4)+Σ
incident to a given blue vertex now share an edge, as shown in Figure 4.
Consider the map λ that sends each blue vertex of Ξ(k, 4) + Σ to itself and every

other vertex of Ξ(k, 4) + Σ to a blue vertex, as indicated with arrows in Figure 4.
While the ûgure only depicts λ next to a pair of vertical facets, the rest of themap can
be recovered using the rotational symmetry of Ξ(k, 4) + Σ. Observe that λ maps any
two adjacent vertices of Ξ(k, 4)+Σ to adjacent or identical vertices. In particular, this
map transforms a path between two blue vertices in the graph of Ξ(k, 4) + Σ into a
path whose length has not increased between the same two blue vertices. Along the
path resulting from the transformation, all the vertices are blue. As a consequence,
the distance between two blue vertices can bemeasured within the cycle induced by
blue vertices in the graph of Ξ(k, 4) + Σ. Since this cycle has diameter 2k, Ξ(k, 4)
necessarily has diameter at least 2k, as desired. ∎

Combining Propositions 4.1 and 4.2 shows that the upper bound provided byhe-
orem 3.5 is asymptotically sharp for the Minkowski sum with a line segment when
the diameter of the other summand grows large.

heorem 4.3 If Σ is a vertical line segment, then

lim
k→∞

δ(Ξ(k, 4) + Σ)
δ(Ξ(k, 4)) = 2.
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Figure 5: (Color online.) he polytope Θ(5, 4).

he polytope Ξ(k, l) is now modiûed into another polytope whose diameter gets
multiplied by the number of vertices (that can be arbitrary) of a well-chosen polygon
under theMinkowski sum with this polygon. he ûrst step of this modiûcation, de-
picted in Figure 5 when k = 5 and l = 4, consists in cutting Ξ(k, l) in half. he cut
is performed along a vertical plane M that contains the center of two opposite edges
of A. his plane is represented as a dashed line in the ûgure. If l is even, which we
will assume from now on, then M contains two edges of Ξ(k, l), and cuts in half its
two horizontal grey facets, two of its triangular facets, and two of its vertical facets.
In particular, the intersection of M and Ξ(k, l) is an octagon, as shown in Figure 5.
Now consider the polytope Θ(k, l) obtained as the intersection of Ξ(k, l) with one
of the closed half-spaces bounded by M. he octagon M∩Ξ(k, l) is a vertical facet of
Θ(k, l) whose all eight vertices will be thought of as blue vertices and represented as
blue squares. All the other vertices ofΘ(k, l) will keep the color they have as vertices
of Ξ(k, l). he orthogonal projection on R2 of Θ(k, l) is now a polygon with k + 2
vertices. he way the vertical facets of Θ(k, l) are glued to the other facets of Θ(k, l)
is indicated by arrows in Figure 5.

We will further modify Θ(k, l) into a polytope Ξ̃(k, l ,m) by gluing small poly-
topes to each of the vertical facets of Θ(k, l) that are disjoint from M. In order to
build these polytopes, we will use homothetic translates of the vertical polygon Π
with m + 1 vertices depicted on the le� of Figure 6 when m = 4. Let us ûrst describe
this polygon. he intersection of Π with M is the longest edge of Π, which will be re-
ferred to as e. In the ûgure, the half-space limited by M that does not contain Θ(k, l)
is striped and one can see that the vertices of Π outside of M are on the same side
of M than Θ(k, l). As also shown on the ûgure, the orthogonal projections on M of
these vertices belong to the relative interior of e. he largest distance to M of a vertex
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Figure 6: (Color online.) he polygon Π (le�), the polytopes PF glued to the vertices facets of
Θ(k, l) in order to build Ξ̃(k, l ,m) (center), and a sketch of the Minkowski sum between Π
and these polytopes (right).

of Π will be denoted by ε. Observe that ε can be taken arbitrarily small, which will be
instrumental for the construction of Ξ̃(k, l ,m).

Now consider a vertical facet F of Θ(k, l) that is disjoint from M. he announced
polytope PF ,whichwewill glue to F,will be the convex hull of F and of l − 1 polygons
homothetic to Π. Consider a red or a green vertex v of F and call e′ the vertical line
segment incident to v whose other vertex is in the horizontal edge of F. Denote by α
the real number such that αe and e′ have the same length. We can then translate αΠ
and glue it to F in such away that e and e′ coincide. he polytope PF is the convex hull
of F and of the l−1 homothetic translates ofΠ glued to F when v ranges over the red or
green vertices of F. he projection of PF back on F is depicted in the center of Figure 6
for two consecutive vertical facets of Θ(k, 4) when m = 4. Note that the projection
is made along the direction orthogonal to M. Further note that, apart from two blue
vertices, all the vertices of PF will be colored red or green depending onwhether F has
red or green vertices. If ε is small enough, then gluing these polytopes to each of the
vertical facets ofΘ(k, l) that are disjoint from M results in a new polytope Ξ̃(k, l ,m)
whose vertex set contains all the vertices ofΘ(k, l), togetherwith (k−1)(l−1)(m−1)
new vertices. he diameter of this polytope is bounded as follows.

Proposition 4.4 he diameter of Ξ̃(k, l ,m) is at most (k + 5)/2 + l + 2.

Proof We proceed as in the proof of Proposition 4.1. Every vertex in the graph of
Ξ̃(k, l ,m) is distant by at most l/2 + 1 of a blue vertex. By construction, there are
exactly k + 8 blue vertices in this graph and the subgraph they induce is made up of a
cycle of length 8 corresponding to the boundary of the octagonal facet of Ξ̃(k, l ,m),
and of a simple path of length k + 1 whose extremities are two vertices of that cycle.
As a consequence, two blue vertices are distant by at most (k + 5)/2 in the graph of
Ξ̃(k, l ,m) and we obtain an upper bound of (k + 5)/2+ l + 2 on the diameter of that
graph, as desired. ∎

According to Lemma 2.1, when taking the Minkowski sum of Ξ̃(k, l ,m) with
the polygon Π, the only faces whose geometry is aòected are the vertical facets of
Ξ̃(k, l ,m) and the faces of the polytope PF for each of the vertical facets F of Θ(k, l)
that are disjoint from M. Consider such a facet F of Θ(k, l). By construction,
every facet of PF is parallel to an edge of Π. In particular, according to Lemma 2.1,
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theMinkowski sum with Π aòects the facets of PF as shown on the right of Figure 6.
Note that each of the blue vertices of PF will be copiedm+1 times. Each of these copies
will be thought of as a blue vertex and represented as a blue square. he two vertical
facets of Ξ̃(k, l ,m) obtained by cutting in half a vertical facet of Ξ(k, l ,m) also each
gain exactlym new blue vertices. he vertical octagonal facet of Ξ̃(k, l ,m) remains an
octagon a�er theMinkowski sumwith Π, although its two vertical edges are longer by
the length of e. All the vertices of that deformed octagon will still be considered blue
vertices. It follows that Ξ̃(k, l ,m)+Π has k(m+ 1)+8 blue vertices. By construction,
the subgraph induced by these blue vertices in the graph of Ξ̃(k, l ,m)+Π is made up
of a simple path of length k(m + 1) + 1 tied at each end to the graph of the octagonal
facet. In particular, that subgraph has diameter at least k(m + 1)/2. A portion of this
subgraph is depicted in Figure 7. We will show that, when l is large enough, the long
geodesics in the graph of Ξ̃(k, l ,m) +Π will mostly visit blue vertices.

Proposition 4.5 If l ≥ 2m + 8, then the Minkowski sum of Ξ̃(k, l ,m) with Π has
diameter at least k(m + 1)/2.

Proof We will proceed as for Proposition 4.2. As observed above, the subgraph
induced by the blue vertices in the graph of Ξ̃(k, l ,m) + Π has diameter at least
k(m + 1)/2. As a consequence, we only need to ûnd amap λ that takes each vertex of
Ξ̃(k, l ,m) +Π to a blue vertex in such a way that blue vertices are sent to themselves
and any two adjacent vertices are sent either to adjacent vertices or to the same vertex.
First, consider the facets of Ξ̃(k, l ,m) + Π sketched on the right of Figure 6. he

way λ aòects the vertices of these facets is shown on the le� and in the center of Fig-
ure 7. he sketch has been deformed for clarity, which does not matter since λ is only
combinatorial. Observe that the red and green vertices are arranged in horizontal lay-
ers bounded by a blue vertex on the le� and on the right. here are l − 1 red or green
vertices in each of these layers. here is an additional layer made up of the two blue
vertices of a horizontal edge of Ξ̃(k, l ,m) + Π, shown below the red vertices on the
le� of the ûgure and above the green vertices in the center of the ûgure. he map λ
takes the ûrst green or red vertex in a layer (from the le� or from the right of the layer)
to the blue vertex closest to it. he second green or red vertex in a layerwill be sent to
the blue vertex closest to it in the next layer and so on. Upon reaching the layer made
up of a single horizontal edge of Ξ̃(k, l ,m) + Π, vertices will all be sent to the vertex
of this edge closest to them in the graph of Ξ̃(k, l ,m)+Π. If l ≥ 2m + 4, then λ takes
adjacent vertices to either adjacent or identical blue vertices. Note that since l is even,

Figure 7: (Color online.) hemap λ for the polytope Ξ̃(k, l ,m).
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there is a vertex in the center of each layer. his vertex can be sent indiòerently to any
of the two vertices of the horizontal edge of Ξ̃(k, l ,m) +Π in the last layer.

Now consider a facet of Ξ̃(k, l ,m)+Π whose intersection with M is an edge. he
map λ aòects the vertices of this facet as shown on the right of Figure 7, where the
vertices that belong to M are depicted on the right. Note that several vertices may
be sent to any of the blue vertices at the bottom of the facet in case l grows large.
By construction, this facet has l/2 − 1 red or green vertices and m + 3 blue vertices.
herefore, λ takes adjacent vertices to either adjacent or identical blue vertices as soon
as l is greater than or equal to 2m + 8.

It remains to explain where λ sends the vertices of the horizontal grey facets. Any
vertex of these facets that belongs to M is blue and, therefore, is sent to itself by λ.
For any other vertex of these facets, the transformation is similar to what is shown in
Figure 4: if such a vertex is adjacent to a red or a green vertex v, then its image by λ
will be λ(v). Otherwise, its image by λ is any of the blue vertices it is adjacent to.

his deûnes a map λ that sends blue vertices to themselves and any two adjacent
vertices of Ξ̃(k, l ,m) +Π to either adjacent or identical blue vertices, as desired. ∎

We obtain the following theorem by combining Propositions 4.4 and 4.5.

heorem 4.6 If l ≥ 2m + 4, then

lim
k→∞

δ(Ξ̃(k, l ,m) +Π)
δ(Ξ̃(k, l ,m))

= m + 1.

In otherwords, theMinkowski sumwithΠmultiplies the diameterof Ξ̃(k, l ,m) by
the number of vertices ofΠ, even though both of these quantities can grow arbitrarily
large. his might come as a surprise. Indeed,while a geodesic in the graph ofΠ never
visits more than half of the vertices, the geodesics in the graph of Ξ̃(k, l ,m) + Π
will visit an arbitrarily large number of copies of each vertex of Π. his proves that
the bound stated by heorem 3.5 is sharp even when the diameter of one summand
is arbitrarily large, and the other summand is a line segment or an arbitrarily large
polygon. Note that by taking consecutive prisms over Ξ(k, l) and Ξ̃(k, l ,m), one
obtains that for any ûxed dimension d greater than 2, this bound remains sharpwhen
one summand is d-dimensional and its diameter is arbitrarily large, while the other
summand is a line segment or an arbitrarily large polygon.
Further note that when both summands have dimension at most 2, the diameter

of their Minkowski sum is better behaved, since it is always at most, and can be equal
to, the sum of the diameters of the two summands.

his begs the questionwhether the bound provided byheorem 3.5 remains sharp
when both summands are high dimensional.

Question 4.7 Do there exist two polytopes P and Q, both of dimension at least 3
such that δ(P) and f0(Q) are arbitrarily large, while the ratio between δ(P +Q) and
δ(P) f0(Q) gets arbitrarily close to 1?

Acknowledgment We thank Komei Fukuda for inspiring comments and insights
that nurtured thiswork from the beginning and an anonymous referee for suggesting
a shorter proof for heorem 2.5.

754

https://doi.org/10.4153/S0008439518000668 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000668


Diameter, Decomposability, andMinkowski sums

References

[1] K. A. Adiprasito and R. Sanyal, Relative Stanley–Reisner theory and upper bound theorems for
Minkowski sums. Publ. Math. Inst. Hautes Études Sci. 124(2016), 99–163.
https://doi.org/10.1007/s10240-016-0083-7.

[2] A. Deza, A. Deza, Z. Guan, and L. Pournin, Distance between vertices of lattice polytopes.
Optimization letters, to appear.

[3] A. Deza, G. Manoussakis, and S. Onn, Primitive zonotopes. Discrete Comput. Geom. 60(2018),
27–39. https://doi.org/10.1007/s00454-017-9873-z.

[4] K. Fukuda, Lecture notes: Polyhedral computation. ETH Zurich, Switzerland,
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/.

[5] K. Fukuda and C.Weibel, f -Vectors ofMinkowski additions of convex polytopes. Discrete Comput.
Geom. 37(2007), 503–516. https://doi.org/10.1007/s00454-007-1310-2.

[6] B. Grünbaum, Convex polytopes. Graduate Texts in Mathematics, 221, Springer, 2003.
https://doi.org/10.1007/978-1-4613-0019-9.

[7] M. Kallay, Decomposability of polytopes. Israel J. Math. 41(1982), 235–243.
https://doi.org/10.1007/BF02771723.

[8] W. Meyer, Indecomposable polytopes. Trans. Amer. Math. Soc. 190(1974), 77–86.
https://doi.org/10.2307/1996951.

[9] K. Przesławski and D. Yost, Decomposability of polytopes. Discrete Comput. Geom. 39(2008),
460–468. https://doi.org/10.1007/s00454-008-9051-4.

[10] F. Santos, A counterexample to the Hirsch conjecture. Ann. ofMath. 176(2012), 383–412.
https://doi.org/10.4007/annals.2012.176.1.7.

[11] G. C. Shephard, Decomposable convex polyhedra. Mathematika 10(1963), 89–95.
https://doi.org/10.1112/S0025579300003995.

[12] G. M. Ziegler, Lectures on polytopes. Graduate Texts in Mathematics, 152, Springer, 1995.
https://doi.org/10.1007/978-1-4613-8431-1.

Advanced Optimization Laboratory,McMaster University, Hamilton, Ontario, Canada
e-mail : deza@mcmaster.ca

LIPN, Université Paris 13, Villetaneuse, France
e-mail : lionel.pournin@univ-paris13.fr

755

https://doi.org/10.4153/S0008439518000668 Published online by Cambridge University Press

https://doi.org/10.1007/s10240-016-0083-7
https://doi.org/10.1007/s10240-016-0083-7
https://doi.org/10.1007/s00454-017-9873-z
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/
https://doi.org/10.1007/s00454-007-1310-2
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/BF02771723
https://doi.org/10.1007/BF02771723
https://doi.org/10.2307/1996951
https://doi.org/10.2307/1996951
https://doi.org/10.1007/s00454-008-9051-4
https://doi.org/10.4007/annals.2012.176.1.7
https://doi.org/10.4007/annals.2012.176.1.7
https://doi.org/10.1112/S0025579300003995
https://doi.org/10.1112/S0025579300003995
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
mailto:deza@mcmaster.ca
mailto:lionel.pournin@univ-paris13.fr
https://doi.org/10.4153/S0008439518000668



