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0. Introduction

Let us fix a prime numberp. The notationB+
dR refers to the ring ofp-adic periods

of algebraic varieties over local(p-adic) fields as defined by J.-M. Fontaine in [Fo].
It is a topological local ring with residue fieldCp (see the section Notations) and
it is endowed with a canonical, continuous action ofG := Gal(Qp/Qp), where
Qp is the algebraic closure ofQp in Cp. Let us denote byI its maximal ideal and
Bn := B+

dR/I
n. ThenB+

dR (andBn for eachn > 1) is canonically aQp-algebra
and, moreover,Qp is dense inB+

dR (and in eachBn, respectively) if we consider
the ‘canonical topology’ onB+

dR which is finer than theI-adic topology.
Let now L be any algebraic extension ofQp contained inQp andGL :=

Gal(Qp/L). Then it is a classical result of J. Tate [T], J. Ax [Ax] and S. Sen [S] that
L is dense in(Cp)GL . Moreover, the mapH→ (Cp)H gives a bijection between
the set of closed subgroups ofG and the set of complete subfields ofCp (see
[I–Z]). We then say that we have a Galois theory forCp. SinceQp is dense in
B+

dR (and inBn for eachn respectively) it makes sense to ask whether we have
a Galois theory forB+

dR (and forBn for eachn, respectively). For instance, it
makes sense to ask the question: isL dense in(B+

dR)GL? (or isL dense in(Bn)GL
for differentn’s?). Although this was known for finite extensionsL (actually for
extensionsL such that the ramification degree ofL/Qp is finite) it is not true
in general. A counterexample, which was pointed out to us by P. Colmez, is
presented in Section 8. IfL is dense in(B+

dR)GL (or in (Bn)GL for somen) we
shall say thatL satisfies the Galois correspondence forB+

dR (or it satisfies the
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Galois correspondence at leveln, respectively). The main purpose of this paper is
to characterize the algebraic extensionsL of K := Qurp (the maximal unramified
extension ofQp) which satisfy the Galois correspondence forB+

dR and at different
levels. A concept that plays an important role in what follows is that ofdeeply
ramifiedextension, which was introduced by J. Coates and R. Greenberg in [C–G]
(see Section 1 below). We will prove the following:

THEOREM 0.1.If L is an algebraic extension ofK which is not deeply ramified
thenL satisfies the Galois correspondence forB+

dR and at any leveln.

The situation changes dramatically ifL is deeply ramified. To study this case we
bring into play the modules ofnth differential formsΩ(n)(L/K), n∈N, defined by
P. Colmez (see Section 1 below). In this context we make the following definition.

LetL be a deeply ramified extension ofK. Then we say thatL is deeply ramified
at a given leveln > 2 if Ω(n−1)(L/K) is not annihilated by a finite power ofp.

We also consider the groupsH(n)
dR (L/K) := Ω(n)(L/K)/dn(O(n−1)

L ) which
we call thenth de Rham cohomology group ofL/K (see Remark 6.1). We say that

L is de Rham at leveln if H(n−1)
dR (L/K) = 0. Then we have the following.

THEOREM 0.2.LetL be a deeply ramified algebraic extension ofK andn∈N,
n > 2. Then

(i) The following are equivalent:

(a) L satisfies the Galois correspondence at any levelm 6 n.
(c) L is deeply ramified and de Rham at any levelm 6 n.

(e) The topological closure
∧n
L ofL in Bn contains a uniformizer ofBn.

(ii) The following are equivalent:
(a) L satisfies the Galois correspondence inB+

dR.
(c) L is deeply ramified and de Rham at all levels.

(d) The topological closure
∧∞
L ofL in B+

dR contains a uniformizer ofB+
dR.

The plan of the paper is the following: In Section 1 we recall the main construc-
tions and results which will be used in the sequel. In Section 2, we examine the
situation at level 2, namely we give a characterization of deeply ramified extensions
using 1-differential forms which will be used later. We present here all the concepts
and ideas which appear naturally at level 2 and will be generalized later. Section 3
is devoted to the computation of the Galois cohomology ofCp(n) and the cohomo-
logy groups in positive degrees ofB+

dR andBn for all n. The rest of the paper
will be spent on analyzingH0. Theorem 0.1 is proved in Section 4. In Section 5
we study deeply ramified extensions at different levelsn using thenth differential
forms. One of the main results of this section is that ifL is deeply ramified at level
n we have ‘almost’ Galois correspondence for then − 1 differential forms (here
‘almost’ has the sense defined by G. Faltings in [Fa]). In Section 6 we study de
Rham extensions and then prove Theorem 0.2. Section 7 contains the statements
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of the main results proven before, including a more complete version of Theorem
0.2. In the last section we propose some problems and give some examples of
deeply ramified extensions which are not de Rham at level 2 and deeply ramified
extensions which are de Rham at level 2. We do not have nontrivial examples of
deeply ramified and/or de Rham extensions at higher levels. Within this context, let
us remark that any example of a fieldL which satisfies the Galois correspondence
inB+

dR automatically produces a whole class of examples. In fact as a consequence
of the above Theorems 0.1 and 0.2, one has the following corollary:

COROLLARY 0.1.LetL be an algebraic extension ofK which satisfies the Galois
correspondence inB+

dR. Then the Galois correspondence inB+
dR is satisfied either

by all the subextensions ofL or by all the extensions ofL.

Indeed, ifL is not deeply ramified, then any subextension ofL is not deeply
ramified and the result follows from Theorem 0.1, while ifL is deeply ramified,

then from Theorem 0.2 we know that
∧∞
L contains a uniformiser ofB+

dR and any
extension ofL will have this property.

Notations

Let p be a positive prime integer,K = Qurp the maximal unramified extension of
Qp,K a fixed algebraic closure ofK andCp the completion ofK with respect to the
unique extensionv of thep-adic valuation onQp (normalized such thatv(p) = 1).
All the algebraic extensions ofK considered in this paper will be contained in
K. LetL be such an algebraic extension. We denote byGL := Gal(K/L), L̂ the
(topological) closure ofL in Cp,OL the ring of integers inL andmL its maximal
ideal. If K ⊂ L ⊂ F ⊂ K, andF is a finite extension ofL, ∆F/L denotes the
different ofF overL.

If A andB are commutative rings andφ:A → B is a ring homomorphism we
denote byΩB/A theB-module of K̈ahler differentials ofB overA, andd:B →
ΩB/A the structural derivation.

If M is an Abelian group we denote fork∈N,

M [pk] = {x∈M | pkx = 0} and TpM = lim
←−

M [pk].

LetA be a Banach space whose norm is given by the valuationw and suppose that
the sequence{am} converges inA to someα. We will write this asam

w−→ α.

1. Review of Some Constructions, Definitions and Results

We will first recall the construction ofB+
dR, which is due to J.-M. Fontaine in

[Fo]. LetR denote the set of sequencesx = (x(n))n>0 of elements ofOCp which
verify the relation(x(n+1))p = x(n). Let us definevR(x) := v(x(0)) andx +
y = s, wheres(n) = limn→∞(x(n+m) + y(n+m))p

m
andxy = t, wheret(n) =
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x(n)y(n). With these operationsR becomes a perfect ring of characteristicp on
which vR is a valuation.R is complete with respect tovR. Let W (R) be the
ring of Witt vectors with coefficients inR and if x∈R we denote by[x] its
Teichm̈uller representative inW (R). Denote byθ the homomorphismθ:W (R)→
OCp which sends(x0, x1, ..., xn, ...) to

∑∞
n=0 p

nx
(n)
n . Then θ is surjective and

its kernel is principal. Let alsoθ denote the mapW (R)[p−1] → Cp. We denote
B+

dR := lim
←
W (R)[p−1]/(Ker(θ))n. Thenθ extends to a continuous, surjective ring

homomorphismθ = θdR:B+
dR → Cp and we denoteI := Ker(θdR) andI+ :=

I∩W (R). Letε = (ε(n))n>0 be an element ofR, whereε(n) is a primitivepnth root
of unity such thatε(0) = 1 andε(1) 6= 1. Then the power series

∑∞
n=1(−1)n−1([ε]−

1)n/n converges inB+
dR, and its sum is denoted byt := log[ε]. It is proved in

[Fo] that t is a generator of the idealI, and asGK := Gal(K/K) acts ont by
multiplication with the cyclotomic character, we haveIn/In+1 ∼= Cp(n), where
the isomorphism isCp-linear andGK -equivariant. Therefore, for each integer
n > 2, if we denoteBn := B+

dR/I
n we have an exact sequence ofGK -equivariant

homomorphisms 0→ Cp(n) → Bn+1
φn−→ Bn → 0 which will be called ‘the

fundamental exact sequence’.
Let us now review P. Colmez’s differential calculus with algebraic numbers as

in the Appendix of [F-C]. We should point out that as ourK is unramified overQp
and soW (R) is canonically anOK as well as anOK̂ -algebra, we will work with
W (R) instead ofAinf . For each nonnegative integerk, we setAkinf := W (R)/Ik+1

+ .

We define recurrently the sequence of subringsO(k)

K̄
of OK̄ and ofOK̄ -modules

Ω(k) setting:O(0)

K̄
= OK̄ and ifk > 1 Ω(k) := OK̄ ⊗Ok−1

K̄

Ω1
O

(k−1)
K̄

/OK
andOk

K̄
is

the kernel of the canonical derivationd(k):O(k−1)

K̄
→ Ω(k). Then we have

THEOREM 1.1 (Colmez, Appendix of [F-C], Theorem 1). (i)If k ∈N, then

O(k)

K̄
= K ∩ (W (R) + Ik+1) and for all n∈N the inclusion ofO(k)

K̄
in W (R)

+ Ik+1 induces an isomorphism

Akinf

pnAkinf

∼=
O(k)

K̄

pnO(k)

K̄

.

(ii) If k > 1, thend(k) is surjective andΩ(k) ∼= (K/ak)(k), wherea is the
fractional ideal ofK whose inverse is the ideal generated byε(1) − 1 (recall ε(1)

is a fixed primitivepth root of unity.)
Some consequences of this theorem are gathered in the following corollary:

COROLLARY 1.1. (i)A(n)
inf
∼= lim
←−

(O(n)

K̄
/piO

(n)

K̄
) andA(n)

inf ⊗Zp Qp ∼= Bn+1 for all

m > 0.
(ii) Ω(n) is ap-divisible and ap-torsionOK̄-module.
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We would now like to recall the Coates–Greenberg concept of deeply ramified
extensions. LetL be an algebraic extension ofQp, contained inK. Then we have

THEOREM 1.2 (Coates and Greenberg, [C-G]).The following conditions are
equivalent

(i) L does not have a finite conductor(which means thatL is not fixed by any of
the ramification subgroups ofGal(Qp/Qp)).

(ii) The set{v(∆F/K)‖ whereF is any finite extension ofQp contained inL} is
unbounded.

(iii) For everyL′ finite extension ofL, we havemL ⊂TrL′/L(mL′).

Remark1.1. There are more equivalent conditions in [C-G], but we won’t use
them here.

DEFINITION 1.1 (Coates and Greenberg, [C-G]). We say thatL is deeply ramified
if it satisfies the equivalent conditions of the above theorem.

Finally, we will recall an approximation result due to Ax [A]. LetL be an
algebraic extension ofQp contained inK anda∈K. Then we have

THEOREM 1.3.There exists a constantc0 (it does not depend onL or a) such that
there existsα∈L with the property

v(a− α) + c0 > inf
σ∈GL

{v(σ(a) − a)}.

Remark1.2.c0 in the above theorem may be taken asp/(p − 1).

2. The Level Two Case

In the notations of the previous section letO := O(1)

K̄
, Ω := Ω(1), d := d(1)

andA := A
(1)
inf . Also if L is an algebraic extension ofK we denoteO(L/K) :=

Ker(d:OL → ΩOL/OK ).
Leta∈OK̄ . LetF be a finite extension ofK which containsa, π a uniformizer

of F andf ∈OK [X] such thata = f(π). Then we set

δ(a) := min

(
v

(
f ′(π)
∆F/K

)
,0

)
.

It is not hard to see thatδ does not depend onπ, f or F , so it defines a function
δ:OK̄ → (∞,0].

Properties ofδ

(a) If a, b∈OK̄ thenδ(a+ b) > min(δ(a), δ(b)) and ifδ(a) 6= δ(b) then we have
equality.

(b) δ(ab) > min(δ(a) + v(b), δ(b) + v(a)).
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(c) If f ∈OK [X] andθ∈OK̄ thenδ(f(θ)) = min(v(f ′(θ)) + δ(θ),0).
(d) If x, y ∈OK̄ thenxdy = 0 if and only ifv(x) + δ(y) > 0.
(e) fora∈OK̄ , δ(a) = 0 is equivalent toa∈O.
(f) The formulaδ(adb) := min(v(a) + δ(b),0) is well-defined and gives a map

δ: Ω→ (−∞,0], which makes the obvious diagram commutative.

Now we define another map,w, which is a valuation onK, namely ifa∈K we
setw(a) = sup{m∈Z ‖ a∈ pmO}.

Properties ofw

(a) w(a + b) > min(w(a), w(b)) and ifw(a) 6= w(b) then we have equality, for
all a, b∈K.

(b) w(ab) > w(a) +w(b) for all a, b.
(c) w(a) =∞ if and only if a = 0.
(d) v(a) > w(a) for all a∈K.

The relationship betweenw andδ is as follows: for anya∈OK̄ −O we have
w(a) = [δ(a)] (where [· ] denotes the integral part function).

From Theorem 1.1 it follows that the completion ofK with respect tow isB2,w
extends to a valuation onB2 which will be also calledw andA is its ring of integers
(i.e.A = {x∈B2||w(x) > 0}). Let us denote bỹOK̄ the completion ofOK̄ with
respect to the valuationw restricted toOK̄ . As d is continuous with respect to the
topology defined byw onOK̄ and the discrete topology onΩ, it extends uniquely
to anOK-linear map, also calledd: ÕK̄ → Ω. If we denoteJ := Ker(θ:B2→ Cp)
then we have

LEMMA 2.1. J ⊂ ÕK̄ .
Proof.Letx∈B2 be such thatθ(x) = 0. Let(an)n, an ∈K be a sequence such

thatan
w−→ x. Thenan

v−→ θ(x) = 0, so forn big enoughan ∈OK̄ . 2
We want now to characterize the class of deeply ramified extensions ofK (see

Definition 1.1) using differentials. For this we need

LEMMA 2.2. Leta, b∈OK̄ be such thatδ(a) 6 δ(b). Then there existsc∈OK[a,b]

such thatcda = db.
Proof.Letπbe a uniformizer ofK[a, b] andh1, h2∈OK [X] such thata = h1(π)

andb = h2(π). Then da = h′1(π) dπ and db = h′2(π) dπ. If δ(b) = 0 then we can
choosec = 0 and ifδ(b) < 0 we haveδ(a) = v(h′1(π))+δ(π) 6 v(h′2(π)+δ(π) =
δ(b). It follows that we can choosec = h′2(π)/h′1(π)∈OK[a,b]. 2
PROPOSITION 2.1.Let L be an algebraic extension ofK. Then the following
conditions are equivalent

(a) the set of real numbersδ(OL) is unbounded(from below).
(b) For every algebraic extensionF of L we haveΩOF /OK = OF · ΩOL/OK as

subgroups ofΩ.
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Proof.Let us prove that (a) implies (b). Letx∈OF . Then there isy ∈OL such
thatδ(y) 6 δ(x). From Lemma 2.2 we deduce the existence ofz ∈OF such that
dx = z dy ∈OF · ΩOL/OK . Conversely, let us suppose thatδ(OL) is bounded and
let N ∈N be such that−N 6 inf(δ(a)‖a∈OL). ThenpNΩOL/OK = 0. If we
chooseα∈OK̄ such thatδ(α) < −N , then dα cannot be inOK̄ · ΩOL/OK as
pN dα 6= 0. 2

Let us recall that we denoted byGK := Gal(K/K). Then if σ∈GK and
a, b∈OK̄ the formulaσ(adb) := σ(a) d(σ(b)) is well-defined and it gives a
continuous semilinear action ofGK onΩ. Then we have

THEOREM 2.1.There exists an absolute constantc0 (which can be taken the
same as in Theorem1.3) such that ifL is a deeply ramified extension ofK then
pc0(ΩGL/ΩOL/OK ) = 0.

Proof. We clearly haveΩOL/OK ⊂ ΩGL . Letb∈OK̄ such that db∈ΩGL , so for
eachσ ∈GL d(σ(b)) = db. Obviously, ifL is deeply ramifiedδ(OL) is unbounded,
we get from Proposition 2.1 thatΩ = OK̄ · ΩOL/OK . So letc∈OK̄ anda∈OL
be such that db = cda. Therefore, for eachσ ∈GL we haveσ(c) da = cda or
v(σ(c)− c) > −δ(a). From Theorem 1.3 we deduce that there existsα∈OL such
that

v(c− α) > −c0 + min
σ ∈GL

(v(σ(c) − c) > −c0− δ(a).

Thus,v(pc0(c− α)) > −δ(a) or pc0 db = pc0cda = pc0α da∈ΩOL/OK . 2
Remark2.1. In Section 5 we improve Theorem 2.1 for deeply ramified exten-

sions (Proposition 5.3). Using that result Theorem 2.1 becomes: IfL is deeply
ramified thenmL · (ΩGL/ΩOL/OK ) = 0, i.e. the inclusionΩOL/OK ⊂ (Ω)GL is an
almost isomorphism. We would not need this strong form of Theorem 2.1 in this
section.

Remark2.2. Theorem 2.1 and Remark 2.1 say that for deeply ramified exten-
sions we have ‘almost’ Galois correspondence for differentials.

Now we are finally able to formulate the main result of this section, namely the
characterization of deeply ramified extensions ofK using differentials.

THEOREM 2.2.LetL be an algebraic extension ofK. The following conditions
are equivalent

(1) L is deeply ramified.
(2) δ(OL) is unbounded.
(3) ΩOL/OK is non-zero andp-divisible.
(4) For every algebraic extensionF ofL we haveΩOF /OL = 0.
(5) For every algebraic extensionF ofL we haveΩOF /OK = OF · ΩOL/OK .
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(6) d(JGL) = ΩOL/OK (here we use the notations in the discussion before Lemma
2.1).

Proof. (1) and (2) are clearly equivalent and it was proved in Proposition 2.1
that (2) and (5) are equivalent. On the other hand, ifF is any algebraic extension
of L, the inclusionsOK ⊂ OL ⊂ OF induce the exact sequence

OF ⊗OL ΩOL/OK
f−→ ΩOF /OK → ΩOF /OL → 0

and as the image off isOF · ΩOL/OK we get that (4) is equivalent to (5).
Let us now prove that (2) implies (3). Letudv∈ΩOL/OK , let us chooseβ ∈OL

such thatδ(β) 6 δ(v)−1 and let us apply Lemma 2.2. So there existsc ∈ OL such
that dv = cdβ. Thenv(c) > 1 so if denotec1 = c/p∈OL we get thatu dv = puc1

dβ∈ pΩOL/OK . Conversely, let us assume (3) and suppose thatδ(OL) is bounded.
Then if ε := inf(δ(a)‖a∈OL) < 0 let x∈OL be such that 06 δ(x) − ε 6 1/2
andδ(x) < 0. AsΩOL/OK was supposedp-divisible there area, b∈OL such that
dx = pa db. Thenδ(x) = δ(padb) = 1+v(a)+δ(b). Soδ(b) 6 δ(x)−1 6 ε−1/2
which contradicts the definition ofε. So we have proved that (2) is equivalent to
(3).

Let us now prove that (1) implies (6). Letβ ∈JGL . Let(bn)n, with bn ∈OK̄ be a
sequence such thatbn

w→ β. Then, for anyσ∈GL, the sequencew(σ(bn)− bn)→
∞ uniformly in σ. It follows thatv(σ(bn) − bn) → ∞ uniformly in σ, so from
Theorem 1.3, for largen’s we can writebn = xn+pc0γn, wherexn ∈OL, γn ∈OK̄
andγn

v→ 0. Thenw(σ(bn)− bn) = w(σ(γn)− γn) + c0 sow(σ(γn)− γn)→∞
uniformly in σ. In particular, it follows thatdγn ∈ΩGL for largen. From Theorem
2.1 it follows thatpc0 dγn ∈ΩOL/OK , hence for largen we have dβ = dbn =
dxn + pc0 dγn∈ΩOL/OK . This proves thatd(JGL) ⊂ ΩOL/OK . Let us prove the
other inclusion. For this let 06= u0 dv0∈ΩOL/OK and let us chooseun, vn ∈OL
such thatun dvn = pun+1 dvn+1 for all n > 0. (This is possible as we have shown
that (1) and (3) are equivalent.) Then letαn ∈OK̄ be such that dαn = un dvn for
all n, sod(pαn+1 − αn) = 0 and therefore the sequenceβn := pnαn is Cauchy
with respect to the valuationw. Thenβn

w→ β∈B2, θ(β) = 0 asβn
v→ 0 = θ(β),

so β ∈ J andd(β) = u0 dv0. On the other hand, for anyσ∈GL, σ(un) = un
andσ(vn) = vn sow(σ(αn) − αn) > 0 soσ(β) = β, i.e.β ∈ JGL . This finishes
the proof of (1) implies (6). We will end the proof of the theorem showing that
(6) implies (3). But this is obvious asJGL is a L̂-vector space so obviouslyp-
divisible. 2
COROLLARY 2.1. If L is a deeply ramified extension ofK then

(a) Tp(ΩOL/OK ) 6= 0.

(b) (Tp(Ω))GL 6= 0.
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Proof.From Theorem 2.2 (3),ΩOL/OK is p-divisible, so (a) follows. We have
Tp(ΩOL/OK ) ⊂ (Tp(Ω))GL so (b) follows. 2

3. Galois Cohomology

Letn∈Z and letCp(n) be the one-dimensionalCp-vector space on whichGK acts
continuously and semilinearly via thenth power of the cyclotonic characterχ. Let
Lbe any algebraic extension ofK. ThenGL acts onCp(n) by restrictingχn, and we
want to compute the continuous cohomology groupsH i(GL,Cp(n)), i > 0. (The
continuous cohomology is computed using continuous cocycles and coboundaries
with respect to the Krull topology onGL and valuation topology onCp(n).) We
distinguish two cases:L deeply ramified andL not deeply ramified.

PROPOSITION 3.1.If L is deeply ramified, then(Cp(n))GL is a one-dimensional
L̂-vector space andH i(GL,Cp) = 0 for all i > 0.

Proof.Forn = 0 we haveCGLp = L̂ from the main results of [T] and [Ax]. For
n = 1 we recall from the previous section the result in [F-C] thatΩ ∼= (K/a)(1) (as
GK -modules) and soTp(Ω)[1/p] ∼= Cp(1) asGK-modules. On the other hand ifL is
deeply ramified it follows from Corollary 2.1 that 06= Tp(ΩOL/OK ⊂ (Tp(Ω))GL .
As Tp(Ω) is torsion free it follows that

(Cp(1))GL ∼= (Tp(Ω)[1/p])GL 6= 0.

Let us now suppose that there are twoL̂-linearly independent elementsa, b
∈ (Cp(1))GL . Thena = βb, for someβ ∈Cp but not inL̂. So there isσ∈GL such
thatσ(β) 6= β. Moreover, asa, b areGL-invariant, we havea = βb = σ(β)b so
b = 0 which contradicts the assumptions. Therefore(Cp)GL is a one-dimensional
L̂-vector space. It easily follows that(Cp(n))GL is a one-dimensional̂L-vector
space for alln. The statement about theH i’s for i > 0 can be proved following
exactly the same arguments as in Corollary 1, Corollary 2 and Proposition 10 of
Section 3 of [T]. 2
PROPOSITION 3.2.If L is not deeply ramified, then

(i) (Cp)GL = L̂ and(Cp(n))GL = 0 for n 6= 0.
(ii) H1(GL,Cp) is a one-dimensional̂L vector space andH1(GL,Cp(n)) = 0

for n 6= 0.
(iii) H i(GL,Cp(n)) = 0 for i > 2 and alln.

Proof.Let{Ln}n>0 be a sequence of finite extensions ofK such thatLn ⊆ Ln+1

andL = ∪n>0Ln. We will apply Tate’s theory as in Section 3 of [T] to each of
theLn’s. We point out that although theLn’s are not complete everything works
fine, finite extensions, degrees, differents and the Galois groups are all preserved
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10 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

by taking completions. LetK∞ be aZp extension ofK and denoteKi as the fixed
field of the subgrouppiZp of Zp, andKn,i := LnKi for all n, i∈N∪ {∞} (where
L∞ := L). As L is not deeply ramified,L ∩ K∞ is a finite extension ofK, so
without loss of generality we may assume thatL∩K∞ = L1. ThenLn andKi are
linearly disjoint overL1 for n > 1 andi > 1.

LEMMA 3.1. v(∆Kn,i/Ln
) = cn + i + (αi,n/pi), wherecn does not depend oni

and is bounded with respect ton andαi,n is bounded with respect to bothi andn.
Proof.We have the following diagram

Ln Kn,i

L1 K1,i

K

From the multiplicativity of the different we have

v(∆Kn,i/Ln
) = v(∆Kn,i/K1,i

) + v(∆K1,i/L1
)− v(∆Ln/L1

).

But v(∆Ln/L1
) does not depend oni, andv(∆K1,i/L1

) = c+ i+ (ai/pi) wherec is
a constant with respect to bothi andn andai is bounded with respect toi and does
not depend onn ([T] Section 3 Proposition 5). In order to evaluatev(∆Kn,i/K1,i

)
we will use the Coates–Greenberg [C-G] integral formula

v(∆Kn,i/K1,i
)

= v(∆Kn,i/L1
)− v(∆K1,i/L1

)

=
1

[L1:K]

∫ ∞
−1

(
1

[K1,i:K1,i ∩ Lω1 ]
− 1

[Kn,i : Kn,i ∩ Lω1 ]

)
dω,

whereLω1 := K
G

(ω)
L1 , andG(ω)

L1
is theω-ramification subgroup ofGL1 in upper

numbering. Letω0 be such thatL ⊆ Lω0
1 (this is possible sinceL is not deeply

ramifiedoverK, so it is not deeply ramified overL1). Then ifω > ω0, we have

[Kn,i:Kn,i ∩ Lω1 ] = [K1,i:K1,i ∩ Lω1 ]

asK1,i andLω1 are linearly disjoint overK1,i ∩ Lω1 , hence

[K1,i:K1,i ∩ Lω1 ] = [K1,i · (Kn,i ∩ Lω1 ):Kn,i ∩ Lω1 ]
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andK1,i · (Kn,i ∩ Lω1 ) = Kn,i. Then

0 6 v(∆Kn,i/K1,i
)

=
1

[L1:K]

∫ ω0

−1

(
1

[K1,i:K1,i ∩ Lω1 ]
− 1

[Kn,i:Kn,i ∩ Lω1 ]

)
dω

6
1

[L1:K]

∫ ω0

−1

1
[K1,i:K1,i ∩ Lω1 ]

dω

butK1,i ∩ Lω1 ⊂ K1,i ∩ Lω0
1 for all ω ∈ [−1, ω0]. Therefore∫ ω0

−1

1
[K1,i:K1,i ∩ Lω1 ]

dω 6 (ω0 + 1)
1

[K1,i:L
ω0
1 ]
6
ω0 + 1
pi

.

It follows thatv(∆Kn,i/K1,i) = βn,i/p
i, whereβn,i is bounded with respect to both

i andn (for example by(ω0+1)/[L1:K]). Thenv(∆Kn,i/Ln) = cn+i+(αi,n/pi),
whereαi,n = ai + βi,n andcn = c − v(∆Ln/L1

). SinceL is not deeply ramified
the sequence(cn)n is bounded. This proves the Lemma. 2

Let us continue the proof of Proposition 3.2.
We define (following Section 3 of [T])tn:Kn,∞ → L (n∈N ∪ {∞}) to be

tn(x) = p−iTrKn,i/Ln(x) if x∈Kn,i. This is a well-definedLn-linear operator
and

t∞|Kn,∞ = tn+1|Kn,∞ = tn for all n∈N and t∞ = lim
→
tn.

LEMMA 3.2. If σ is a topological generator ofGal(K∞,∞/L) =Gal(Kn,∞/Ln)
for all n > 1, there exists a real numberd > 0, such that

|x− t∞(x)| 6 d|σ(x)− x| for all x∈K∞,∞.

Proof.From Proposition 6, Section 3 of [T], for eachn∈N, there exists a real
numberdn > 0 such that

|x− tn(x)| 6 dn|σ(x) − x|, for all x∈K∞,n.

From the proof of Proposition 6 of Section 3 of [T] and Lemma 3.1 above it follows
that thedn’s are bounded with respect ton, henced = supn dn will do. 2

Remark.3.1. We have from Lemma 3.1v(∆Kn,i/Ln) = cn + i + αn,i/p
i and

althoughcn depends onn this does not matter ascn cancels in the calculations of
dn (see also the Remark after Proposition 6 in [T]).

From Lemma 3.2 it follows thatt∞ is a continuous linear operator. Moreover, if
we define byX = K̂∞,∞ (this is a Banach space overL̂), we can extendt := t∞
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12 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

by continuity toX, so t:X → L̂ is a continuous linear operator, and we denote
X0 = kert.

LEMMA 3.3. (a)X is a direct sum of̂L andX0.
(b) The operatorσ− 1 annihilatesL̂ and is bijective with a continuous inverse

onX0.
(c) Letλ be a unit inL̂ such thatλ ≡ 1 modmL̂) which is not a root of unity.

Thenσ − λ is bijective with a continuous inverse onX.
Proof.The proof follows identically the proof of Proposition 7 of Section 3 of

[T]. 2
Finally, one can conclude the proof of (i) and (ii) of Proposition 3.2 following

the proof of Proposition 8 and Theorem 1 of Section 3 of [T]. (iii) of Proposition 3.2
follows from the following facts:

(a) the inflation mapH i(Gal(K∞,∞/L), K̂∞,∞(n)) → H i(GL,Cp(n)) is an
isomorphism for alli > 0 and alln as shown in [H] Lemma (3–5).

(b) Gal(K∞,∞/L) ∼= Zp. 2
Now we would like to use the results of Proposition 3.1 and Proposition 3.2 to
compute the Galois cohomology of theBn’s andB+

dR. We have seen in Section
2 that we can define valuationw onK such thatB2 is the completion ofK with
respect to this valuation. Theorem 1.1 allows us to define such a valuation for each
n > 1. Namely, for eachn > 1 letO(n)

K̄
be the subring ofOK̄ defined in Section 1.

For a∈K∗ we definewn(a) := max{m∈Z‖a∈pmO(n−1)

K̄
}. Our oldw = w2 and

for eachn, wn has the same formal properties asw, namely:

Properties ofwn

(a) wn(a+ b) > min(wn(a), wn(b)) and ifwn(a) 6= wn(b) then we have equality,
for all a, b∈K.

(b) wn(ab) > wn(a) + wn(b) for all a, b.
(c) wn(a) =∞ if and only if a = 0.
(d) v(a) > wn−1(a) > wn(a) for all a∈K andn > 3.
(e) For eachn > 2 the completion ofK with respect town is canonically iso-

morphic toBn.

Remark3.2. If we define the norm‖a‖n := p−wn(a) for all a∈K, then
wn and‖ · ‖n extend naturally toBn which becomes a Banach algebra overK̂.
Furthermore, the canonical mapsφn:Bn → Bn−1 are continuous Banach algebra
homomorphisms of norm 1. Asp-adic Banach spaces are orthonormalizable (i.e.
have orthonormal basis [Se]) the mapφn has a continuous additive section, for all
n > 1.
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As a consequence of Remark 3.1, ifL is any algebraic extension ofK we get a
longGL-continuous cohomology sequence from the ‘fundamental exact sequence’
0 → Cp(n) → Bn+1 → Bn → 0. Applying the results of Proposition 3.1 and
Proposition 3.2 we get

THEOREM 3.1. (a)If L is a deeply ramified extension ofK thenH i(GL, Bn) =
H i(GL, B+

dR) = 0, for all n > 2 and all i > 1.
(b) If L is an algebraic extension ofK which is not deeply ramified then the

canonical mapsBn → Cp andB+
dR → Cp induce isomorphismsH i(GL, Bn) ∼=

H i(GL,Cp) ∼= H i(GL, B+
dR) for all n > 2 and i > 1, i.e., H1(GL, Bn) ∼=

H1(GL, B+
dR) is a one-dimensionalL̂-vector space andH i(GL, Bn) =

H i(GL, B+
dR) = 0 for i > 2 and alln > 2.

The rest of this paper will be devoted to the computations ofH0(GL, Bn) and
H0(GL, B+

dR), for L an algebraic extension ofK.

4. The Nondeeply Ramified Case

Using the results of the previous section we can easily deal with the nondeeply
ramified extensions. We have

THEOREM 4.1. If L is not deeply ramified thenBGL
n = L̂ for all n > 1, n ∈ N

and(B+
dR)GL = L̂.

Proof.The statement is true forn = 1. Suppose it is true forn, and let us prove
it for n+ 1. We have the exact sequence 0→ Cp(n)→ Bn+1→ Bn → 0. Hence,
we get an exact sequence

0→ (Cp(n))GL → (Bn+1)GL → (Bn)GL → H1(GL,Cp(n)).

But (Cp(n))GL = 0 from Proposition 3.2 (i),H1(GL,Cp(n)) = 0 by Proposition
3.2 (ii) and(Bn)GL ∼= L̂ by the inductive hypothesis. Thereforeφn+1 induces a
continuous ring isomorphism between(Bn+1)GL ∼= L̂. Butφn+1 is the restriction
of a morphism of Banach spaces of norm 1, so its inverse is also continuous.

COROLLARY 4.1. If L is not deeply ramified then for alln ∈ N, n > 2
∧n
L= L̂.

From the above corollary it follows that the topologies induced by the restrictions
of the valuationswn to L (if L is not deeply ramified overK) are the same as the
p-adic topology. In the rest of this section we’ll show that actually the restrictions
of wn’s to L are equivalent valuations, and we’ll give estimates for how far apart
they are. These estimates are not going to be used in the rest of this paper, so the
reader might want to skip the rest of this section at the first reading.

We start by introducing another sequence of maps, the higher level analogues
of δ defined in Section 2. Letn > 2 be an integer andω ∈Ω(n). We define

comp4006.tex; 4/05/1999; 11:39; v.7; p.13

https://doi.org/10.1023/A:1000642625728 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000642625728


14 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Ann(ω) = {a∈OK̄ |aω = 0}. Then Ann(ω) is an ideal inOK̄ . Let δn(ω) =
−v(Ann(ω)) = − inf{v(a)|a∈Ann(ω)}. This defines a mapδn: Ω(n) → (−∞,0].
It is easy to see thatδ1 is the same asδ defined in Section 2.

LEMMA 4.1. The mapsδn have the following properties:

(i) δn(ω) = 0 if and only ifmK̄ · ω = 0.
(ii) if α∈OK̄ andω ∈ Ω(n) thenδn(αω) = min(0, v(α) + δn(ω)).

Proof.(i) is clear from the definition.
(ii) If min (0, v(α)+δn(ω)) = 0 thenv(α) > −δn(ω) = v(Ann(ω)) somK̄α ⊆

Ann(ω) andδn(αω) = 0.
Now if min (0, v(α) + δn(ω)) < 0 thenv(α) < −δn(ω) = v(Ann(ω)).
Let β ∈Ann(αω). Thenαβ ∈Annω, hencev(β) > −δn(ω) − v(α) and so

δn(αω) 6 δn(ω) + v(α). Let γ ∈Ann(ω), thenv(γ) > v(α) soγ/α∈Ann(αω)
and soδn(αω) > δn(ω) + v(α). 2
Now we will introduce a new sequence of subrings ofK denoted{A(n)}n and a
new sequence of derivations. The{A(n)}n’s are defined as followsA(0) = OK̄ and
if n > 1,A(n) = {h(θ)|h∈OK [x], θ ∈OK̄ andh′(θ) = h′′(θ) = · · · = h(n)(θ) =
0} whereh(i)(x) := dih(x)/dxi. Hence:A(0) ⊇ A(1) ⊇ A(2) ⊇ · · · ⊇ A(n) ⊇
· · · ⊇ OK .

LEMMA 4.2. For eachn > 0,A(n) is a ring.
Proof. For eachθ∈OK̄ , we denoteA(n)

θ = {h(θ)|h∈OK [x] andh′(θ) =
h′′(θ) = · · · = h(n)(θ) = 0}. It is clear that for eachθ, A(n)

θ is a subring of
OK̄ . Moreover, ifθ∈OK [η], η ∈OK̄ , thenθ = g(η), g ∈OK [x]. Let h∈OK [x],
andh(θ)∈A(n)

θ , thenh1(η) = h(g(η)) has the property that for all 16 i 6
n, h

(i)
1 (η) = 0, henceh1(η)∈A(n)

η and soA(η)
θ ⊆ A(n)

η . Now we clearly have

A(n) =
⋃
θ∈OE A

(n)
θ and letx, y ∈A(n). Thenx∈A(n)

θ1
, y ∈A(n)

θ2
. Let η ∈OK̄

be such thatθ1, θ2∈OK [η]. Then from the previous discussionx, y ∈A(n)
η and so

x+ y, x · y ∈A(n)
η ⊆ A(n). 2

PROPOSITION 4.1.For n > 0, if denoten∗ = 3n − 1/2 we haveA(n∗) ⊆ O(n).
Proof. Let α∈A(n∗), π a uniformizer ofK(α) and r0 > v(∆K(α)/K). Let

h∈OK [x] be such thath(π) = α andh(i)(π) = 0,1 6 i 6 n∗. Consider the
Eisenstein equation overK(α): yp

s+t
+ psy − π = 0 with ‘large’ s andt which

will be specified later. Letβ be any root of this equation and denoteθ = βp
s+t

. We
havev(θ − π) > s and from Krasner’s lemma it follows that fors big enough
we have:K(α) = K(π) ⊆ K(β). As clearly v(∆K(β)/K(α)) = s we have
that v(∆K(β)/K) = v(P ′β(β)) 6 s + r0 (wherePβ is the minimal polynomial
of β overK). Now we apply Lemma 2 of the Appendix of [F-C]. We denote
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rn := (3n− 1/2)(s+ r0) and choosea = ps+t, thenrn(a) := inf(rn, s+ t) = rn
for t big enough with respect tos. Lemma 2 of the Appendix of [F-C] tells
us thatθ = βp

s+t
= prn−rn(a)βa ∈O(n)

K̄
. Obviouslyh(θ)∈O(n)

K̄
as well. But

h(θ) = α +
∑
i>n∗+1(θ − α)i(h(i)(π)/i!), whereh(i)(π)/i!∈OK(π) so we have

v(h(θ) − α) > (n∗ + 1)v(θ − π) > (n∗ + 1)s > rn + 1, for s big enough.
Applying again Lemma 2 of the Appendix of [F-C], we geth(θ)−α∈O(n), hence

α∈O(n)

K̄
. 2

For anyL algebraic extension ofK, we denoteA(n)
L =

⋃
θ∈OL A

(n)
θ . Then we

have the following proposition:

PROPOSITION 4.2.LetF be a finite extension ofK, letπ be a uniformizer ofF .
Letα∈A(n)

F , α = h(π), withh(i)(π) = 0, 1 6 i 6 n. Then we have

(i) v(h(n+1)(π)) > v(n!(∆F/K)n)

(ii) If h1(π) = α = h2(π) with h
(i)
1 (π) = h

(i)
2 (π) = 0 for i 6 i 6 n then

h
(n+1)
1 (π) ≡ h(n+1)

2 (π) (mod(n+ 1)!(∆F/K)n+1).

Proof. Let us denoteP (x)∈OK [x] the minimal polynomial ofπ over K.
Then, ash′(π) = · · · = h(n)(π) = 0 we have thatP (n)(x) divides h′(x) so
h′(x) = P (n)(x)·g(x), whereg ∈OK [x]. Hence, (i) follows. For (ii), we notice that
H(x) = h1(x)− h2(x) has the properties:H(π) = H ′(π) = · · · = H(n)(π) = 0
henceP (n+1)(x) dividesH(x) orH(x) = P (n+1)(x) · g1(x), whereg1∈OK [x].2
We continue to work in the hypothesis of Proposition 4.2. We define the application

Dn,F,π:A(n)
F → (n!(∆F/K)n)OF /((n + 1)!(∆F/K)n+1)OF

by: for anyα∈A(n)
F , α = h(π), with h(i)(π) = 0 for 1 6 i 6 n, Dn,F,π(α) =

h(n+1)(π) (mod(n+ 1)(∆F/K)n+1OF ). Proposition 4.2 guarantees thatDn,F,π is
well defined.

PROPOSITION 4.3.Dn,L,π is a derivation andKer (Dn,F,π) = A(n+1)
F .

Proof. It is clear thatDn,F,πis a derivation and thatA(n+1)
F ⊆ Ker(Dn,F,π). In

order to prove the converse, letα∈ Ker(Dn,F,π). Thenα = h(π), for h∈OK [x]
such thath(i)(π) = 0 for all 16 i 6 n. AsDn,F,π(α) = 0, we haveh(n+1)(π) =
(n+1)!(∆F/K)n+1β whereβ ∈OF . Hence, there is a polynomialf ∈OK [x] such
thatf(π) = β. Therefore, if we denoteh1(x) = h(x)−Pn+1(x)f(x), whereP (x)
is the minimal polynomial ofπ overK, we have:α = h1(π) andh(i)

1 (π) = 0 for

all 1 6 i 6 n+ 1, and soα∈A(n+1)
F 2
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16 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Now we defineδn,F,π:A(n)
F → (−∞,0] ∩ Q by

δn,F,π(α) = min(v(Dn,F,π(α)) − v((n+ 1)!(∆F/K)n+1); 0).

We are in the same hypothesis of Proposition 4.2.

PROPOSITION 4.4.We have

(i) δn,F,π does not depend onπ, hence we denote itδn,F .
(ii) If F1 ⊆ F2 are finite extensions ofK we have:δn,F2|A(n)

F1

= δn,F1. Therefore

we defineδn on the whole ofA(n) as the inductive limit of theδn,F over all
the finite extensionsF ofK.

(iii) We haveδ0 = δ onOK̄ whereδ has been defined in Section 2.

(iv) Let α∈A(n)
F . Thenδn,L(α) = 0 if and only ifDn,K(α),π(α) = 0 for some

uniformizerπ of K(α) if and only ifα∈A(n+1)
L , whereL is any algebraic

extension ofK andδn,L is the restriction ofδn toA(n)
L .

Proof. (i) Let π1 and π2 be uniformizers ofF , then π1 = g(π2) where

g(x)∈OK [x] andg′(π2) = u is a unit inOF . If α∈A(n)
F , then we haveDn,F,π1(α) =

Dn,F,π2(α)un+1, henceδn,F,π1(α) = δn,F,π2(α)
(ii) Let F1 ⊆ F2 andπ1 andπ2 be uniformizers ofF1 andF2 respectively. Then

π1 = g(π2) for someg(x)∈OK [x]. Letα∈An,F1 andh(x)∈OK [x] be such that
α = h(π1) andh(i)(π1) = 0 for all 16 i 6 n.

Let f(x) = h(g(x)), thenα = f(π2), f (i)(π2) = 0 for all 1 6 i 6 n
and f (n+1)(π2) = h(n+1)(π1)(g′(π2))n+1. But v(g′(π2)) = v(∆F2/F1

), hence
δn,F1(α) = δn,F2(α).

(iii) This follows from known facts aboutd1 ([F-C]).
(iv) This proof is similar to the proof of Proposition 4.3. 2

Finally, we have the following proposition:

PROPOSITION 4.5.If L is any algebraic extension ofK, thenA(n)∩OL = A(n)
L .

Proof.We will prove the statement by induction over then’s. Forn = 1, from
(iii) and (iv) above, we have thatA(1)

L = O(1)
L = O(1)∩OL = A(1)∩OL. Suppose

now that the statement is true forn and let us prove it forn + 1. The inclu-
sionA(n+1)

L ⊆ A(n+1) ∩ OL is trivial so letα∈A(n+1) ∩ OL. Then in particular

α∈A(n) ∩ OL = A(n)
L , hence can applyδn,L to α. But δn,L(α) = δn(α) = 0 as

α∈A(n+1). Therefore,α∈A(n+1)
L . 2

Remark.4.1. This last property of theA(n)’s makes them easier to handle than
theO(n)’s.
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We can use theA(n)’s in order to prove the following theorem:

THEOREM 4.2.LetL be an algebraic extension ofK which isnot deeplyramified.
Then, for eachn∈N, n > 2, the valuationswn|L andv|L are equivalent.

Proof.We claim that in order to prove the theorem it would be enough to show
that for eachn∈N, n > 2, there existskn ∈N such thatpknOL ⊆ O(n)

L (kn
depends only onL andn). Let us show that granted the claim the equivalence
of wn|L and v|L follows. Let x∈L, x 6= 0, and denotem = wn(x). Hence

x∈ pmO(n)
L − pm+1O(n)

L . But pmO(n)
L ⊆ pmOL andpm+kn+1OL ⊆ pm+1O

(n)
L .

Hence, for allx∈L,wn(x) 6 v(x) 6 wn(x)+kn+1 and we are done. Let us now
provethe claim. Letn > 2, n∈N be given. Then if we denoten∗ = (3n−1)/2 we

have thatA(n∗) ⊆ O(n) and thereforeA(n∗)
L = OL ∩ A(n∗) ⊆ O(n)

L . So it would

be enough to show that there existskn ∈N such thatpkn · OL ⊆ A(n∗)
L . For this,

we notice that for eachF ⊆ L, finite overK and 06 k 6 n∗ (k!(∆F/K)k)OF ⊆
A(k−1)
F , hence((n∗ + 1)!(∆F/K)n

∗+1)OF ⊆ A(n∗)
F . Let kn ∈N be greater than

or equal to supFv((n∗ + 1)!(∆F/K)n
∗+1), where the supremum is taken over all

finite extensionsF of K, contained inL (the supremum is finite asL is not deeply
ramified). Then:

pkn · OF ⊆ A(n∗)
F for all F , hence pknOL ⊆ A(n∗)

L ⊆ O(n)
L . 2

5. Deeply Ramified Extensions at Higher Levels

We want to calculate(Bm)GL , and(B+
dR)GL for all m > 1 and all deeply ramified

extensionsL of K. We have
∧n
L⊆ (Bn)GL and

∧∞
L ⊆ (B+

dR)GL . As was pointed out
in the introduction these inclusions may be strict. We want to describe all deeply
ramified extensionsL of K for which the above inclusions are equalities, i.e., for
which the Galois correspondence holds forL at leveln or inB+

dR respectively.
At this point, the first thing we want to clarify is the relationship between the

Galois correspondence at finite levels and the Galois correspondence inB+
dR. We

have:

THEOREM 5.1. For a deeply ramified extensionL overK the following are
equivalent:

(a) L satisfies the Galois correspondence inB+
dR.

(b) L satisfies the Galois correspondence at all levelsn∈N.

We will be able to prove one implication in this section. The other will be proved
in Section 6.

We denoteθn:B+
dR → Bn, ηn:Bn → Cp andφn:Bn → Bn−1 the canonical

projections. We denote byJn the kernel ofφn.
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18 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Proof of Theorem5.1 implication (b)⇒ (a).

For any extensionL of K we have
∧∞
L ⊆ (B+

dR)GL .

Let β ∈ (B+
dR)GL . Then for eachn∈N θn(β)∈BGL

n =
∧n
L . Let αn ∈L be such

thatwn(αn − θn(β)) > n.
We claim that the sequence{αn} is Cauchy inB+

dR. In order to show this, let
us computewn−1(αn − αn−1) = wn−1(αn − θn−1(β) + θn−1(β) − αn) > min
(wn−1(αn − θn−1(β)), wn−1(θn−1(β) − αn−1)).

Butwn−1(αn−θn−1(β)) = wn−1(φn−1(αn−θn(β))) > wn(αn−θn(β)) > n.
Thereforewn−1(αn − αn−1) > n− 1 and the claim is proved.
Letα∈B+

dR beα = limn→∞ αn.
We want to show thatα = β.
For this we fixn0 ∈ N and letn > n0. Thenwn0 (θn0 (α − β)) −wn0(φn0

φn0+1 . . . φn (θn(α−β)))> wn(θn(α−β)) =wn(θn(α)−αn+αn−θn(β)) > n.
Henceα = β. 2
Letn > 2 be an integer and denoteAn the topological closure ofO(n−2)

K̄
in Bn.

LEMMA 5.1. dn−1 is continuous with respect town (we consider the discrete
topology onΩ(n−1)) so it extends to anOK -linear map fromAn to Ω(n−1).

Proof.The proof is obvious. 2
LEMMA 5.2. Jn ⊆ An

Proof. Let us considerx∈ Jn andam ∈K such thatam
wn→ x. Thenam =

φn(am)
wn−1→ φn(x) = 0 so wn−1(am) > 0 for m large enough. Therefore

am ∈O(n−2)

K̄
for largem and sox∈An. 2

PROPOSITION 5.1.Letn > 1 andω1, ω2∈Ω(n). If δn(ω1) 6 δn(ω2) < 0 then
there existsα∈OCp such thatω2 = αω1.

Proof.For the proof we need the following lemma:

LEMMA 5.3. dn−1: Jn → Ω(n−1) is surjective for alln > 2.
Proof. Let 0 6= ω0∈Ω(n−1). Since by Corollary 1.1Ω(n−1) is p-divisible we

can choose{ωr}r>1 such thatωr ∈Ω(n−1) andωr = pωr+1 for all r > 0. From

Theorem 1.1, it follows that there areαr ∈O(n−2)

K̄
such thatωr = dn−1αr for all r.

The sequence{prαr}r is Cauchy (with respect town), henceprαr
wn→ x for some

x∈Bn. Clearlyx∈ Jn anddn−1x = ω0. 2
We now return to Proposition 5.1. Letx1, x2, ∈Jn+1 be such thatdn(xi) =
ωi, i = 1,2, and leta∈Cp such thatx2 = ax1. Supposea 6∈ OCp . Then
x1 = a−1x2 and v(a−1) > 0. Henceδn(ω1) = δn(dn(x1)) = δn(a−1ω2) =
min (0, v(a−1) + δn(ω2)) which contradicts the assumption onω1, ω2. Therefore
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a∈OCp and we are done asω2 = dnx2 = adnx1 = aω1. 2
PROPOSITION 5.2. (i)If n > 2, n∈N, for all y ∈Bn−1 there existsx∈Bn with
φn(x) = y such that ifn > 3, we havewn(x) = wn−1(y) and ifn = 2, we have
w2(x) = [v(y)].

(ii) If n > 2 n ∈ N, for all y ∈ Cp there existsx∈Bn such thatηn(x) = y and
wn(x) > v(y)− 1.

(iii) For all a∈C∗p andu∈ Jn u 6= 0 we have|wn(au)− wn(u)− v(a)| 6 1.
Proof. (i) Let n > 3, let y ∈Bn−1 and chooseα∈Bn such thaty = φn(α).

Supposewn−1(y) > wn(α). Multiplying if necessary by a suitable power ofp,
we may assume thatwn−1(y) = 0. Let {αm}m>0 be a sequence of elements in

K such thatαm
wn→
m α. Thenαm

wn−1→ y, hencewn−1(αm) = 0 form sufficiently
large. Alsodn−1α = dn−1αm for m large enough. By Lemma 5.3 there exists
u∈Jn such thatdn−1α = dn−1u. Thenx = α−u satisfies the required properties.
Clearly the same proof works forn = 2, exceptv(y) is not necessarily an integer,
so we work with its integral part.

For (ii) we apply (i) several times.
(iii) Let b∈Bn be such thatηn(b) = a andwn(b) > v(a)− 1. Then we have

wn(au) = wn(bu) > wn(b) + wn(u) > v(a) + wn(u)− 1.

And similarly

wn(u) = wn

(
1
a
· au

)
> v

(
1
a

)
+ wn(au)− 1. 2

COROLLARY 5.1. If α, am ∈OCp are such thatam
v→ α andx∈Jn then(am ·

x) wn→ αx.

LEMMA 5.4. For eachn∈N, n > 1,Ω(n) has a natural structure ofOCp module
and dn:Jn+1 → Ω(n) defined in Lemmas5.1 and 5.2 is anOCp-module homo-
morphism.

Proof.Ω(n) is ap-torsionOK̄ -module (see Section 1). Letω ∈Ω(n). Then the
mapOK̄ → Ω(n) defined bya 7→ a · ω is continuous (consider thev-topology on
OK̄ and discrete topology onΩ(n)) hence can be extended canonically toOCp . We
now show thatdn is anOCp-module homomorphism. From the above corollary
it follows that we only need to show thatdn is OK̄ -linear. So letx∈Jn+1 and

a∈OK̄ . We can findk∈N such thatpka∈O(n)

K̄
and a sequencebm ∈O(n−1)

K̄
such

thatbm
wn+1→ x. Thus one can choosem large enough such thatdn(ax) = dn(abm),

dn(x) = dn(bm) andwn(bm) > k. Therefore we have:dn(ax) = dn(abm) =
dn(pka · bm/pk) = pkadn(bm/pk) + bm/p

k · dn(pka) = adn(bm) = adn(x). 2
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20 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

COROLLARY 5.2. Letω ∈Ω(n) andα∈OCp . Then

δn(αω) = min(0, v(α) + δn(ω)).

The following result completes our characterization of deeply ramified exten-
sions using differential forms (see Theorem 2.2).

THEOREM 5.2. Let L be an algebraic extension ofK. Then the following are
equivalent:

(i) L is deeply ramified.
(ii) JGLn 6= 0 for all n > 2.
(iii) BGL

n contains a generator of the maximal ideal ofBn for all n∈N, n > 2 (a
generator of the maximal ideal ofBn will be called a uniformizer ofBn).

(iv) (B+
dR)GL contains a generator of the maximal ideal ofB+

dR.

Proof.We first show that (ii)⇔ (i). As Jn = TpΩ(n−1) ⊗ Qp we haveJGL2 =
(Tp(ΩOK̄/OK ))GL ⊗ Qp. But (i) is equivalent to (iii) of Theorem 2.2 which is

equivalent to the statementTpΩOL/OK 6= 0. So (i)⇒ JGL2 6= 0. If L is not
deeply ramified sinceJ2

∼= Cp(1) asGL-modules, we get from Proposition 3.2
(i) that JGL2 = (Cp(1))GL = 0. Hence (i)⇔ JGL2 6= 0. Now, let t∈B+

dR be a
generator of the maximal ideal such thatσt ≡ t (mod t2) (such at can be found
asJGL2 6= 0) for all σ∈GL. Thenσ(tn) ≡ tn (mod tn+1) for all σ ∈GL. Hence
0 6= tn(modtn+1)∈ JGLn+1 for all n and (ii) is proved. (ii) clearly implies (iii), (iv)
implies (iii) and (iii) implies (i) from Theorem 4.1. Finally we prove that (i)⇒
(iii) ⇒ (iv). Let L be deeply ramified andn∈N, n > 2. We want to show that
BGL
n contains a uniformizer ofBn. We shall proceed by induction. The assumption

is true forn = 2, as it was proved that (i)⇒ (ii). So, let us suppose thatn > 2
andBGL

n contains a uniformizer sayy. Let z be a uniformizer ofBn+1 such that
φn+1(z) = y. Sinceσ(y) = y for all σ∈GL we haveφn+1(σ(z)− z) = 0. For all
σ∈GL there exists a uniqueζ(σ)∈Cp such thatσ(z)−z = ζ(σ)·zn soζ:GL → Cp
is a well defined map. We claim thatζ is a continuous 1-cocycle. Letσ, τ ∈GL.
Then(σ · τ)(z) − z = σ((τ)(z) − z) + σ(z) − z = σ(ζ(τ) · zn) + ζ(σ) · zn =
σ(ζ(τ)) · σ(zn) + ζ(σ) · zn. Butσz = z + ζ(σ) · zn. If we raise to thenth power
we getσ(zn) = zn (aszn+1 = 0). Henceζ(σ · τ) = σζ(τ) + ζ(σ). Now let’s see
the continuity. Letf :GL → Jn be defined byf(σ) = σz − z andg:Cp → Jn+1

be defined byg(a) = a · zn. Thenf = g ◦ ζ andg is a homeomorphism from
Proposition 5.2. Hence, in order to prove thatζ is continuous, it would be enough
to show thatf is also continuous. But this is obvious asGL acts continuously on
Bn+1.

So finally if we denote[ζ] its cohomology class,[ζ]∈H1(GL,Cp) = 0. Hence
we can findε∈Cp such thatζ(σ) = σ(ε) − ε. Now we putz′ = z − εzn ∈BGL

n ,
and z′ is a uniformizer ofBn+1 andφn+1(z′) = φn+1(z). So the statement is
proved for allBn’s.
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The proof above shows that we can find a sequence{zn}n>2, zn ∈BGL
n , zn

uniformizer ofBn andφn(zn) = zn−1. Denotez̃ := (zn)n ∈ lim←Bn = B+
dR.

Thenz̃ is a uniformizer ofB+
dR andσ(z̃) = z̃ for all σ∈GL. 2

We would like to consider the Coates–Greenberg notion of deep ramification as
the level two deep ramification and define deep ramification at leveln for all n as
follows:

DEFINITION 5.1. Letn > 2 andL a deeply ramified extension. We will say that
L is deeply ramified at leveln if Ω(n−1)(L/K) is not annihilated by a finite power
of p.

Although, by the above definition we only ask thatδn−1(Ω(n−1)(L/K)) is
unbounded, we can show that in this caseΩ(n−1)(L/K) is almostp-divisible.

PROPOSITION 5.3.Letn∈N∗ andL be deeply ramified at leveln+ 1. Then

(i) Ω(n) = OK̄ · Ω(n)(L/K).
(ii) Ω(n) (L/K) has a nonzerop-divisible submoduleΩ(n)

0 (L/K) such that

mL(Ω(n) (L/K)/Ω(n)
0 (L/K)) = 0.

(iii) dn(O(n−1)
L ) + Ω(n)

0 (L/K) = Ω(n)(L/K).

We will see later that, for certainn’s and deeply ramified extensionsL, the
Galois correspondence at leveln might fail. But if L is deeply ramified at level
n, then one has an approximate Galois correspondence for the(n− 1)-differential
forms namely:

THEOREM 5.3. LetL be a deeply ramified extension. Then

(i) mL((Ω(n−1))GL/dn−1(JGLn )) = 0 for all n∈N, m > 2.
(ii) If L is deeply ramified at leveln, thenmL((Ω(n−1))GL/Ω(n−1)(L/K)) = 0.

In order to prove the results just stated, we need to derive first a technical result.
For any algebraic extensionL of K and anyα∈K we denote

c(L,α) = min
σ∈GL

v(σ(α) − α)− sup
x∈L

v(α − x).

One clearly hasc(L,α) > 0. On the other handc(L,α) is bounded from above
(e.g. byp/(p− 1), cf. [Ax] and [Sen]) and this result was crucial in the proof of
the Galois correspondence ofCp. Let us denotec(L) = supα∈K c(L,α) and call
it the Ax-Sen number ofL. Any σ∈GL extends to a continuous automorphism of
Cp therefore in the above definitions we could takeα∈Cp. This will not change
c(L) sincec(L,α) is clearly continuous as a function ofα.

PROPOSITION 5.4.The Ax–Sen number of any deeply ramified extension ofQp
is zero.

comp4006.tex; 4/05/1999; 11:39; v.7; p.21

https://doi.org/10.1023/A:1000642625728 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000642625728


22 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Proof. Let L be deeply ramified andα∈ Qp. Let (Ln)n>0· be an increasing
sequence of finite extensions ofQp such that

⋃
n Ln = L. We have limn→∞

c(Ln, α) = c(L,α). On the other hand, from Theorem 1.2 it follows easily that
limn→∞ v(∆Ln(α)/Ln) = 0. Then the same holds for the relative discriminants:

lim
n→∞

v(DLn(α)/Ln) = 0.

Let F be one of theLn’s. We want to find an integral basis ofF (α)/F expressed
in terms ofα so that we can relatev(DF (α)/F ) to c(F,α). Popescu–Zaharescu
in [P-Z] constructed such a basis{θ1, θ2, . . . , θm},m = [F (α):F ], with θ1 =
1, θ2 = (α− a)/πs whereπ is a uniformizer ofF , a∈F is such thatv(α −
a) = supx∈F v(α − x) ands∈Z is such that 06 v(θ2) < v(π). θr for r > 2
are certain polynomials inα, irrelevant for our discussion. LetM denote the
matrix (σ(θi))σ,i, whereσ runs over the embeddings ofF (α) in Qp overF . Then
v(DF (α)/F ) = 2v(detM). If we subtract the first row from the others, we get a
(m− 1)(m− 1) determinant which has as first column

σ(α)− α
πs

.

.

.

 .

Therefore

v (detM) > minσv
(
σ(α)− α

πs

)
> minσv(σ(α) − α)− v(α− a) = c(F,α).

We now takeF = Ln and derivec(L,α) = 0. 2
Proof of Proposition5.3. (i) Letω ∈Ω(n). As δn(Ω(n)(L/K)) is unbounded

there existsω1∈Ω(n)(L/K) such thatδn(ω1) 6 δn(ω). Now from Proposition 5.1
we findα∈OCp such thatω = αω1∈OCp · Ω(n)(L/K) = OK̄ · Ω(n)(L/K).

(ii) We defineΩ(n)
0 (L/K) := {ω ∈Ω(n)(L/K)| there exists a sequence(ωn)n>0

such thatωn∈Ω(n)(L/K), ω0 = ω, andωm = pωm+1 for all m}.
ThenΩ(n)

0 (L/K) is the maximalp-divisible submodule ofΩ(n)(L/K). First
of all let us notice thatΩ(n)(L/K) 6= 0. Otherwise from (i) it would follow
that Ω(n) = 0 which is not the case (see Theorem 1.1). Now fixβ ∈mL and
let ω ∈Ω(n)(L/K). There existsω0∈Ω(n) such thatω = pω0. From (i) we get
that ω0 =

∑n
i=1 aiωi, with ai ∈OK̄ andωi ∈Ω(n)(L/K). We denoteu1 one of

the ωi’s above such thatδn(u1) is minimum and apply Proposition 5.1. We get
ω = pa1 · u1, with a1∈OK̄ . Similarly, for anym > 1, we findam ∈OK̄ and
um ∈Ω(n)(L/K) such thatum−1 = pamum. We applyσ∈GL to this last equality
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and we get(σ(am) − am) · p · um = 0. Hencev(σ(am) − am) > −δn(pum).
Now we use Proposition 5.4: for anym∈N∗ andβ ∈mL there existsrm ∈OL
such thatv(am − rm) > −δn(pum) − v(β). Thenβ(am − rm) · pum = 0 and
βum−1 = βpamum = pβrmum. We multiply this equality byr1 · r2 . . . rm−1 and
get

βω = pv1, . . . , vm = pvm+1 where vm = βr1 . . . rmum ∈Ω(n)(L/K).

Soβω ∈Ω(n)
0 (L/K) for anyω ∈Ω(n)(L/K) and anyβ ∈mL. It now also follows

thatΩ(n)
0 (L/K) 6= 0.

(iii) Let ω ∈Ω(n)(L/K), ω =
∑r
j=1αjdnβj , withαj ∈OL, βj ∈O(n−1)

L . There
areaj ∈OK , bj ∈mL such thatαj = aj + bj, j = 1, . . . , r. Then

∑r
j=1 ajdnβj =

dn(
∑r
j=1 ajβj)∈ dn(O(n−1)

L ) and
∑r
j=1 bjdnβj ∈Ω(n)

0 (L/K). 2
Proof of Theorem5.3. (ii) SupposeL is deeply ramified at leveln. We have

Ω(n−1)(L/K) ⊆ (Ω(n−1))GL . So letω ∈(Ω(n−1))GL , we use Proposition 5.3(i) to
write ω =

∑n
i=1 aiωi, ai ∈OK̄ andωi ∈Ω(n−1)(L/K). Now we follow the same

argument as in the proof of Proposition 5.3(ii).
(i) We havedm−1(JGLm ) ⊆ (Ω(m−1))GL .
Let nowβ ∈mL andω ∈ (Ω(m−1))GL . From Lemma 5.3 we getx∈ Jm such that

ω = dm−1x. We use Theorem 5.2(ii) to get 06= y ∈JGLm so we can findα∈Cp such
thatx = αy. Without loss of generality, we may suppose thatα∈OCp (if not write
α = α′/pk, α′ ∈OCp andx = αy = α′(y/pK) andy/pK ∈ JGLm as well). Thus
αdm−1y = dm−1(αy) = dm−1x = ω ∈ (Ω(m−1))GL . Hence(σα − α)dm−1y = 0
for all σ∈GL and the trick used in the proof of Proposition 5.3 gives us aγ ∈OL
such thatβω = βγdm−1y = dm−1(βγy) andβγy ∈ JGLm . 2

6. De Rham Extensions

All over this sectionL will denote a deeply ramified extension ofK.

DEFINITION 6.1. For alln∈N defineH(n)
dR (L/K) := Ω(n)(L/K)/dn(O(n−1)

L ).

Remark.6.1. Let us considerd: Ω(n)(L/K) → Ω(1)(L/K) ∧ Ω(n)(L/K),
whered is the obvious derivation. IfL is deeply ramified we saw thatΩ(1)(L/K)
isp-divisible whileΩ(n)(L/K) is ap-torsion module. Hence their wedge product is
zero and we could think ofΩ(n)(L/K) as consisting of ‘closed’n-forms. Therefore

we may think ofH(n)
dR (L/K) as being the quotient ‘closedn-forms/exactn-forms’.

Remark.6.2. We have

H
(n)
dR (L/K) = Ω(n)

0 (L/K)/(dn(O(n−1)
L ) ∩ Ω(n)

0 (L/K)),
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whereΩ(n)
0 (L/K) is the maximalp-divisible submodule ofΩ(n)(L/K) as defined

in the proof of Proposition 5.3. This motivates the next definition.

DEFINITION 6.2. We say thatL has property(∗) at level n if Tp(dn−1

(O(n−2)
L )) 6= 0.

Remark.6.3. Definition 6.2 is equivalent to the following: there exists a sequence
{αr}r, αr ∈ O(n−2)

L such that 06= dn−1αr = pdn−1αr+1 for all r.

DEFINITION 6.3. We say thatL is a de Rham extension ofK at leveln if
H

(n−1)
dR (L/K) = 0.

LEMMA 6.1. If L is de Rham and deeply ramified at leveln, thenΩ(n−1)
0 (L/K) =

dn−1(Jn∩
∧n
L ), whereΩ(n−1)

0 (L/K) was defined in the proof of Proposition 5.3.

Proof.SinceJn∩
∧n
L isp-divisible it is clear thatdn−1(Jn∩

∧n
L ) ⊆ Ω(n−1)

0 (L|K).
Let now 0 6= ω0∈Ω(n−1)

0 (L/K) and choose{ωr}r>1 such thatωr ∈Ω(n−1)(L/K)
andωr = pωr+1 for all r > 0. We can findαr ∈O(n−2)

L such thatωr = dn−1αr for

all r. Now the sequence{prαr}r is Cauchy (with respect town), henceprαr
wn−→ x

for somex∈Bn. Thenx∈Jn∩
∧n
L anddn−1x = ω0. 2

THEOREM 6.1. Let L be a deeply ramified extension andn > 2. Then the
following are equivalent:

(i) L is deeply ramified and de Rham at leveln.

(ii) L has property(∗) at leveln.

(iii) Jn∩
∧n
L 6= 0.

(iv) Jn∩
∧n
L= JGLn .

Proof. (iii) ⇔ (iv) follows from the fact thatJn∩
∧n
L⊆ JGLn both areL̂-vector

spaces and dim̂LJ
GL
n = 1.

(ii) ⇒ (iii) Let {αr}r be a sequence as in Remark 6.1.

Then the sequence{prαr}r converges inwn to some nonzero element ofJn∩
∧n
L .

(iii) ⇒ (ii) Jn∩
∧n
L is clearlyp-divisible so if 0 6= x0∈ Jn∩

∧n
L for anyr∈N∗

we can chooseαr ∈O(n−2)
L such thatdn−1αr = dn−1(x0/p

r). Then theαr ’s give
the property(∗). (dn−1αr 6= 0 for r > wn(x0)).

(i) ⇒ (iii) follows from Lemma 6.1.
(ii) clearly implies thatL is deeply ramified at leveln.
We show that (iv) implies thatL is de Rham at leveln.
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For this we use Theorem 5.3(i) to derive:

Ω(n−1)
0 (L/K) = pΩ(n−1)

0 (L/K) ⊆ pΩ(n−1)(L/K) ⊆ p(Ω(n−1))GL ⊆

⊆ dn−1(JGLn ) = dn−1(Jn∩
∧n
L ) ⊆ dn−1(O(n−2)

L ).

From Proposition 5.3(iii) it follows thatdn−1(O(n−2)
L ) = Ω(n−1)(L/K). 2

PROPOSITION 6.1.LetL be a deeply ramified extension ofK andn > 2, n∈N
such thatJn∩

∧n
L 6= 0.

Then: (i) If n > 2 and
∧n
L
φn→
∧∞
L is the canonical map, lety ∈ Im φn. Then there

existsx∈
∧n
L such thatφn(x) = y andwn(x) > wn−1(y)− 1.

(ii) If n = 2 and
∧2

L
φ2→ L̂ is the canonical map, lety ∈ Im φ2. Then there exists

x∈
∧2

L such thatφ2(x) = y andw2(x) > [v(y)]− 1, where[ ] denotes the integral
part function.

(iii) φn(
∧n
L ) =

∧n−1

L .

Proof.(i) Let α∈
∧n
L andy = φn(α)∈

∧∞
L and supposewn−1(y) > wn(α)+1.

Without loss of generality, we may suppose thatwn−1(y) = 0 (if not multiply with
a suitable power ofp). Let{αm}m>0 be a sequence such thatαm ∈L for allm and

αm
wn→
m α. Thenαm

wn−1→ y hencewn−1(αm) = 0 form sufficiently large.

Thereforedn−1α = dn−1αm for m big enough. Letu∈ Jn∩
∧n
L be such

that p · dn−1α = pdn−1u (we apply Theorem 5.3(i) and Theorem 6.1), hence
wn(α− u) + 1 > 0 andφn(α− u) = φn(α) = y.

Finally 0 = wn−1(y) 6 wn(α− u) + 1 so setx = α− u.
(ii) The proof is identical except we cannot makev(y) zero by multiplying a

power ofp, we can make it 06 v(y) < 1.

(iii) Supposen > 2. Lety ∈
∧n−1

L and{αm}m>0 be a sequence inL such that

αm
wn−1
−→ y. Letβ0∈

∧n
L be such thatφn(β0) = α0 andwn(β0)+2> wn−1(α0). Let

nowβ1∈
∧n
L be such thatφn(β1) = α1 andwn(β1 − β0) > wn−1(α1 − α0) − 2.

Construct inductively{βm} such thatφm(βm) = αm andwn(βm − βm−1) >
wn−1(αm − αm−1) − 2. Thenβm is Cauchy inwn and letβ = limwn βm. Then
φn(β) = α. 2
PROPOSITION 6.2.LetL be deeply ramified. Then the map

φn:BGL
n → BGL

n−1

is surjective.
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Proof. We consider the long exact cohomology sequence coming from the
fundamental exact sequence (Section 1):

0→ (Cp(n− 1))GL → BGL
n

φn→ BGL
n−1→ H1(GL,Cp(n − 1)).

AsL is deeply ramifiedH1(GL,Cp(n−1)) = 0 as proved in Proposition 3.1.2
PROPOSITION 6.3.LetL be a deeply ramified extension ofK andn∈N, n > 2.
Then the following are equivalent

(i) BGL
n =

∧n
L .

(ii)
∧n
L contains a uniformizer ofBn.

Proof.(i) ⇒ (ii) follows from Theorem 5.2.
(ii) ⇒ (i). Let n = 2. From Propositions 6.1 and 6.2 we get a commutative

diagram with exact rows

0 - JGL2
- BGL

2
- L̂ - 0⋃ ⋃

0 - J2∩
∧2

L -
∧2

L - L̂

wwww
- 0.

We knowJ2∩
∧2

L= JGL2 , thereforeBGL
2 =

∧2

L.

Let us suppose that the statement is true form 6 n and assume that
∧n+1

L

contains a uniformizer ofBn+1, sayz. Thenφn+1(z)∈
∧n
L and it is a uniformizer

ofBn. Hence 06= zn ∈ Jn+1∩
∧n+1

L and therefore we have a commutative diagram

0 - JGLn+1
- BGL

n+1
- BGL

n
- 0⋃

0 - Jn+1∩
∧n+1

L

wwww
-
∧n+1

L - ∧n
L

wwww
- 0.

Hence the statement is true for alln. 2
PROPOSITION 6.4.LetL be a deeply ramified extension ofK. Then the following
are equivalent:

(i) (B+
dR)GL =

∧∞
L .

(ii)
∧∞
L contains a uniformizer ofB+

dR.

Proof.(i) ⇒ (ii) follows from Theorem 5.2.
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(ii) ⇒ (i) If
∧∞
L contains a uniformizer ofB+

dR, then
∧n
L contains a uniformizer of

Bn for all n, henceBGL
n =

∧n
L for all n by Proposition 6.3. Therefore(B+

dR)GL =
∧∞
L

by the implication already proved in Theorem 5.1. (b)⇒ (a). 2
But we have now proved the remaining implication of Theorem 5.1 and also

COROLLARY 6.1. Letn∈N, n > 2. Then ifBGL
n =

∧n
L we have thatBGL

k =
∧k
L

for all 2 6 k 6 n.

COROLLARY 6.2. The following are equivalent forn ∈ N, n > 2.

(i) Jm∩
∧m
L 6= 0 for all m 6 n.

(ii) BGL
m =

∧m
L for all m 6 n.

Proof. (i) ⇒ (ii). If Jm∩
∧m
L 6= 0 for all m 6 n by induction we can show that

BGL
m =

∧m
L for all m 6 n (as in the proof of Proposition 6.3).

(ii) ⇒ (i). If BGL
m =

∧m
L , then

∧m
L contains a uniformizer ofBm, sayz. But then

0 6= zm−1∈Jm∩
∧m
L . 2

COROLLARY 6.3. LetL be deeply ramified. Then the following are equivalent:

(i) Jm∩
∧m
L 6= 0 for all m.

(ii) BGL
m =

∧m
L for all m.

(iii) (B+
dR)GL =

∧∞
L .

Proof.The proof follows from Corollary 6.2 and Theorem 5.1 2
COROLLARY 6.4. Let L be deeply ramified andn∈N, n > 2 andM be an

algebraic extension ofL. So ifBGL
n =

∧n
L , thenBGM

n =
∧n
M and if (B+

dR)GL =
∧∞
L

then(B+
dR)GM =

∧∞
M .

Proof.We have that
∧n
L⊆

∧n
M so if

∧n
L contains a uniformizer ofBn so does

∧n
M .

Also
∧∞
L ⊆

∧∞
M so if

∧∞
L contains a uniformizer ofB+

dR so does
∧∞
M . 2

7. Main Results

We have proved:

THEOREM 7.1. LetL be an algebraic extension ofK andn ∈ N, n > 2. Then

(i) If L is not deeply ramified thenBGL
n =

∧n
L= L̂.

(ii) If L is deeply ramified the following are equivalent

(a) BGL
m =

∧m
L for all m 6 n.
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(b) L has property(∗) at all levelsm 6 n.
(c) L is deeply ramified and de Rham for all levelsm 6 n.

(d) Jm∩
∧m
L 6= 0 for all m 6 n.

(e)
∧n
L contains a uniformizer ofBn.

THEOREM 7.2.LetL be an algebraic extension ofK. Then

(i) If L is not deeply ramified then(B+
dR)GL =

∧∞
L = L̂.

(ii) If L is deeply ramified the following are equivalent

(a) (B+
dR)GL =

∧∞
L .

(b) L has property(∗) at all levels.
(c) L is deeply ramified and de Rham at all levels.

(d)
∧∞
L contains a uniformizer ofB+

dR

8. Examples

I. EXAMPLES OF DEEPLY RAMIFIED EXTENSIONS WHICH ARE NOT DE RHAM AT
LEVEL TWO

First example
Because we will work at level 2 in this section, we will denoted,w, δ,Ω by
respectively,d1, w1, δ1,Ω(1).

Also property(∗) will denote property(∗) at level 2. We have:

PROPOSITION 8.1.If L =
⋃
n Ln, whereLn are finite extensions ofK such that

v(∆Ln/K) ≡ −1/([Ln:K]) (mod 1)thenδ(Ω(L|K)) ∩ Z = {0}.
Proof. Let α∈OL with δ(dα) < 0 and choosen such thatα∈Ln. Then

dα = h′(πn)· dπn whereπn is a uniformizer ofLn andh∈OK [x] is such that
α = h(πn) and degh < [Ln:K]. Then

δ(dα) = v(h′(πn))− v(∆Ln/K)

≡ v(h′(πn)) +
1

[Ln:K]
= v(πn · h′(πn)) (mod 1).

But x · h′(x) has no terms of degree multiple of[Ln:K]. 2
COROLLARY 8.1. L =

⋃
nK(p

n√
p) is not de Rham at level two (it is deeply

ramified though), wherep
n√
p is a root ofXpn−p = 0such that(p

n√
p)p = pn−1√

p
chosen at stepn− 1.

Proof. We have[K(p
n√

p):K] = pn andv(∆K(pn
√
p)/k) = n + 1− (1/pn).

Henceδ(dOL)∩Z = {0}. On the other handδ(Ω(L|K)) ⊇ Z (e.g.δ(πp−1
1 dπ1) =
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−1 whereπp1 = p) henceH(1)
dR (L|K) 6= 0. 2

Second example(We owe this example to P. Colmez)

PROPOSITION 8.2.K∞ is not a de Rham extension at level 2.
Proof.We will prove that ifn > 0 is an integer andζ is a primitivepnth root

of unity, then dζ/ζ is not in d(OK∞). Suppose not, and leta∈OKm for some
m > n be such that da = dζ/ζ. Let η be a primitivepmth root of unity such that
ηp

m−n
= ζ. Then da = dζ/ζ = pm−n(dη/η) If denoteπ = η − 1 then

1
η

=
∞∑
i=0

(−1)iπi =
d−1∑
i=0

aiπ
i,

whered = pm − pm−1 = [Km:K], andai ∈OK for all i andad−1 ≡ 1 (mod p).
We also havea =

∑d−1
i=0 biπ

i, with bi ∈OK for all i. Then

0 = da− pm−ndη
η

=

(
d−1∑
i=1

ibiπ
i−1− pm−n

d−1∑
i=0

aiπ
i

)
dπ

=

((
d−2∑
i=0

((i+ 1)bi+1− pm−nai)πi
)
− pm−nad−1π

d−1

)
dπ.

Let us denote byM :=
∑d−2
i=0 ((i + 1)bi+1− pm−nai)πi − pm−nad−1π

d−1. Then
we havev(M) > v(∆Km/K) hencev(M) > m. On the other hand, if we com-
pute directlyv(M) 6 v(pm−nad−1π

d−1) < m−n+1 so we get a contradiction.2

II. EXAMPLES OF DEEPLY-RAMIFIED EXTENSIONS WHICH ARE DE RHAM AT LEVEL
TWO

Let ε0 > 0 be a real number andL an algebraic extension ofK.

DEFINITION 8.1. We say(L, ε0) has property(∗∗) if there exists{βn}n>1 with
βn ∈OL such thatdβn 6= 0 andδ(βn−pβn+1) >min (0, δ(βn)+ε0) for all n > 1.

PROPOSITION 8.3.The following are equivalent:

(1) L has property(∗).
(2) for all ` > 0(L, `) has property(∗∗).
(3) there existsε0 > 0 such that(L, ε0) has property(∗∗).

COROLLARY 8.2. Letq = pn, n > 2, then if we denoteFq the unique unramified
extension ofQp with residue field withq elements,(Fq)ab has property(∗), where
(Fq)ab denotes the maximal Abelian extension ofFq.
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Proof. Let us consider the Lubin–Tate extensions ofFq given by roots of
φm(x) = (fm(x)/fm−1(x), where

f(x) = xq + px and fm(x) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
m times

(x).

Choose for allm a rootβm of φm such thatβm = f(βm+1) for m > 1. From the
equalityβqm+pβm = βm−1 we getq ·βq−1

m dβm+pdβm = dβm−1. Butp2/q, hence
δ(qβq−1

m dβm) > δ(pdβm) = δ(βm−1). Henceδ(βm−1−pβm) = δ(qβq−1
m dβm) >

min {0,1 + δ(βm−1)}. Therefore((Fq)ab,1) has property(∗∗). 2
Proof of Proposition 8.3.Clearly (1)⇒ (2) and (2)⇒ (3). We will show

that (3)⇒ (1). Let ε0 > 0 be such that(L, ε0) has property(∗∗). It is clear
that ΩOL/OK is p-divisible (as ifudv ∈ΩOL/OK , then there existsn0 such that
δ(βn0) < δ(v) − 1 hencedv = γ0dβn0 with v(γ0) > 1. So we haveudv =
p(uγ1dβn0) whenγ1 = (γ0/p) ∈ OL). It would be enough to show thatL is de
Rham or in other words thatd:OL → ΩOL/OK is surjective. We will show using
induction onr ∈ N∗ that everyudv ∈ΩOL/OK with δ(udv) > −rε0 is in Imd.
r = 1: Let udv ∈ ΩOL/OK be such thatδ(udv) > −ε0. Choosen0 such that
δ(v) > δ(βn0) andγ0 ∈ OL such thatdv = γ0dβn0. Soudv = uγ0dβn0. But
δ(udv) > −ε0, henceδ(βn0) > −ε0 − v(uγ0). Now (L, ε0) has property(∗∗) so
δ(βn0 − pβn0+1) > min (0,−v(uγ0)) and souγ0(dβn0 − pdβn0+1) = 0. We get
udv = puγ0dβn0+1. Use the same reasoning several times and get

udv = p2uγ0dβn0+2 = · · · = pmuγ0dβn0+m

until pmuγ0∈O(1)
L (or d(pmuγ0) = 0). But nowudv = d(pmur0βn0+m) and the

caser = 1 is proved. Suppose we have proved the statement forr and let us prove it
for r+1. Letudv ∈ΩOl/OK be such thatδ(udv) > −(r+1)ε0. Chooseγ0, n0 such
thatudv = uγ0dβn0. δ(βn0) > −(r+1)ε0−v(uγ0). Henceδ(βn0−pβn0+1) >min
(0,−rε0− v(uγ0)). Soδ(uγ0(dβn0 − pdβn0+1)) > −rε0. Hence, by the induction
hypothesis, there existsz1 ∈ OL such thatuγ0(dβn0 − pdβn0+1) = dz1. So as
beforeudv = dz1 + uγ0pdβn0+1 = · · · = dz1 + · · ·+ dzm + uγ0p

mdβn0+m with

uγ0p
m ∈ O(1)

L . Henceudv ∈ Im d. 2

III. SOME OPEN PROBLEMS

Among the numerous problems which might become subjects for further work, we
state the following two:

(1) Is there any connection between the deep ramification property at different
levels?

In particular, are there proper subsetsN of N with the following property: If
we assume in Theorem 0.2(ii) (b) only thatL is de Rham at all levels and that it is
deeply ramified at any leveln in N , thenL is deeply ramified at all levels?
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(2) Corollary 8.2 shows that ifFq is an unramified extension ofQp, Fq 6= Qp,
then the maximal Abelian extension ofFq satisfies the Galois correspondence at
level 2. Does(Fq)ab satisfy the Galois correspondence at higher levels provided,
say,Fq is large enough?

This would imply thatKab satisfies the Galois correspondence inB+
dR.
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