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0. Introduction

Let us fix a prime numbes. The notationBJR refers to the ring op-adic periods
of algebraic varieties over locgb-adic) fields as defined by J.-M. Fontaine in [Fo].
It is a topological local ring with residue field, (see the section Notations) and
it is endowed with a canonical, continuous action(®f= Gal(Q,/Q,), where
Q, is the algebraic closure @f, in C,. Let us denote by its maximal ideal and
B,, := Bgp/I". ThenB{, (and B, for eachn > 1) is canonically aQ,-algebra
and, moreoverQ, is dense inBjR (and in eachB,,, respectively) if we consider
the ‘canonical topology’ orBjR which is finer than thd-adic topology.

Let now L be any algebraic extension @, contained inQ, and G =
Gal(ﬁp/L). Thenitis a classical result of J. Tate [T], J. Ax [Ax] and S. Sen [S] that
L is dense in(C,)“~. Moreover, the mag — (C,) gives a bijection between
the set of closed subgroups 6f and the set of complete subfields ©f (see
[-Z]). We then say that we have a Galois theory foy. Sinceﬁp is dense in
BOTR (and in B,, for eachn respectively) it makes sense to ask whether we have
a Galois theory forBjR (and for B,, for eachn, respectively). For instance, it
makes sense to ask the questiort. idense in( Bj;)“*? (or isL dense in( B, )%t
for differentn’s?). Although this was known for finite extensiongactually for
extensionsL such that the ramification degree HfQ, is finite) it is not true
in general. A counterexample, which was pointed out to us by P. Colmez, is
presented in Section 8. I is dense in(BJ)¢~ (or in (B,,)¢~ for somen) we
shall say thatL satisfies the Galois correspondence &y, (or it satisfies the
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Galois correspondence at levelrespectively). The main purpose of this paper is
to characterize the algebraic extensidnsf K = Q," (the maximal unramified
extension ofQ,) which satisfy the Galois correspondenceBgFR and at different
levels. A concept that plays an important role in what follows is thadexdply
ramifiedextension, which was introduced by J. Coates and R. Greenberg in [C-G]
(see Section 1 below). We will prove the following:

THEOREM 0.1.If L is an algebraic extension df which is not deeply ramified
thenL satisfies the Galois correspondence f)f;, and at any leveh.

The situation changes dramaticall\ifs deeply ramified. To study this case we
bring into play the modules ofth differential forms(™ (L/K), n € N, defined by
P. Colmez (see Section 1 below). In this context we make the following definition.
Let L be a deeply ramified extension&f. Then we say that is deeply ramified
ata given leveh > 2 if Q=Y (L/K) is not annihilated by a finite power pf
We also consider the grougs (L/K) := QM (L/K)/d, (0" ") which
we call thenth de Rham cohomology group 6f K (see Remark 6.1). We say that
L is de Rham at levet if Hc(,zfl)(L/K) = 0. Then we have the following.

THEOREM 0.2.Let L be a deeply ramified algebraic extensionféfandn € N,
n > 2.Then

(i) The following are equivalent

(a) L satisfies the Galois correspondence at any levet n.
(c) L is deeply ramified and de Rham at any lewek n.

(e) The topological closur% of L in B,, contains a uniformizer aB,,.
(ii) The following are equivalent

(a) L satisfies the Galois correspondenceﬁﬁrR.

(c) L is deeply ramified and de Rham at all levels

oo , , , :
(d) The topological closurel, of L in B, contains a uniformizer aB.

The plan of the paper is the following: In Section 1 we recall the main construc-
tions and results which will be used in the sequel. In Section 2, we examine the
situation at level 2, namely we give a characterization of deeply ramified extensions
using 1-differential forms which will be used later. We present here all the concepts
and ideas which appear naturally at level 2 and will be generalized later. Section 3
is devoted to the computation of the Galois cohomology,gf.) and the cohomo-
logy groups in positive degrees EJR and B,, for all n. The rest of the paper
will be spent on analyzingZ®. Theorem 0.1 is proved in Section 4. In Section 5
we study deeply ramified extensions at different levelsing thenth differential
forms. One of the main results of this section is thdt if deeply ramified at level
n we have ‘almost’ Galois correspondence for the 1 differential forms (here
‘almost’ has the sense defined by G. Faltings in [Fa]). In Section 6 we study de
Rham extensions and then prove Theorem 0.2. Section 7 contains the statements
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of the main results proven before, including a more complete version of Theorem
0.2. In the last section we propose some problems and give some examples of
deeply ramified extensions which are not de Rham at level 2 and deeply ramified
extensions which are de Rham at level 2. We do not have nontrivial examples of
deeply ramified and/or de Rham extensions at higher levels. Within this context, let
us remark that any example of a fidldwvhich satisfies the Galois correspondence

in B4, automatically produces a whole class of examples. In fact as a consequence
of the above Theorems 0.1 and 0.2, one has the following corollary:

COROLLARY 0.1.Let L be an algebraic extension &f which satisfies the Galois
correspondence 3. Then the Galois correspondenceliif, is satisfied either
by all the subextensions éfor by all the extensions df.

Indeed, if L is not deeply ramified, then any subextensionlofs not deeply
ramified and the result follows from Theorem 0.1, whildiis deeply ramified,

Aso . , ,
then from Theorem 0.2 we know that contains a uniformiser aBg; and any
extension ofL will have this property.

Notations

Let p be a positive prime integefy = Q" the maximal unramified extension of
Q,, K afixed algebraic closure & andC, the completion of with respectto the
unique extension of thep-adic valuation orQ, (normalized such that(p) = 1).
All the algebraic extensions dk considered in this paper will be contained in
K. Let L be such an algebraic extension. We denote&hy.= Gal(K /L), L the
(topological) closure of. in C,,, Oy, the ring of integers irL andm, its maximal
ideal. f K ¢ L ¢ F Cc K, andF is a finite extension of, Ap/y, denotes the
different of F" over L.

If A andB are commutative rings antt A — B is a ring homomorphism we
denote by, the B-module of Kahler differentials of3 over A, andd: B —
Q2,4 the structural derivation.

If M is an Abelian group we denote fére N,

M[p* ={zeM |p*z =0} and T,M = lim M[p"].

Let.4 be a Banach space whose norm is given by the valuatiand suppose that
the sequencéu,, } converges ind to somen. We will write this asa,, — a.
1. Review of Some Constructions, Definitions and Results

We will first recall the construction 0B, which is due to J.-M. Fontaine in
[Fo]. Let R denote the set of sequences- (ac(”))n>o of elements of0¢, which
verify the relation(z("+t1)? = 2", Let us definevg(z) = v(z®) andz +
y = s, wheres™ = lim,,_(z("+™) 4 y(+m))P™ andzy = t, wheret™) =
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=y (™) With these operation® becomes a perfect ring of characterigtion
which vy is a valuation.R is complete with respect tog. Let W (R) be the
ring of Witt vectors with coefficients iR and if x € R we denote by[x] its
Teichmiller representative ifi/ (R). Denote by the homomorphisri: W (R) —
Oc, which sends(zo, 1, ..., Tn,...) 10 Y02 p x%) Thend is surjective and
its kernel is principal. Let alsé denote the mapV’ (R)[p~!] — C,. We denote

Bip = limW(R) [p~Y]/(Ker())™. Thend extends to a continuous, surjective ring
homomorphlsm’) = 04r: Bjr — C, and we denotd := Ker(fqr) and I :=
INW(R). Lete = (¢™),,50 be an element ak, where=(") is a primitivep™th root
of unity suchthat(® = 1ande® # 1. Then the power seri€s® ; (—1)"*([e] -

1)" /n converges inBg,, and its sum is denoted by:= loge]. It is proved in
[Fo] thatt is a generator of the ided| and asG'x := Gal(K/K) acts ont by
multiplication with the cyclotomic character, we haie/1"+1 = C,(n), where
the isomorphism isC,-linear andG i -equivariant. Therefore, for each integer
n > 2, if we denoteB,, := BJ,/I™ we have an exact sequence(®f -equivariant

homomorphisms 0— C,(n) — Bp41 Pn, B,, — 0 which will be called ‘the
fundamental exact sequence’.

Let us now review P. Colmez’s differential calculus with algebraic numbers as
in the Appendix of [F-C]. We should point out that as dtiis unramified ove,
and sol¥/(R) is canonically arOg as well as ar0 . -algebra, we will work with

W (R) instead of4;,;. For each nonnegative integemwe setAInf : W(R)/L’j*l.
We define recurrently the sequence of subn@i@ of Oz and of Oz-modules

k N (O ; k) o~ _ 1 ko
QW setting:0} = O and ifk > 1QW 1= O Bkt Qo}f‘”/oK andOk is
the kernel of the canonical derivatiaff*): ngl) — Q) Then we have

THEOREM 1.1 (Colmez, Appendix of [F-C], Theorem 1). (i) k € N, then
(’)g) = K n (W(R) + I*1) and for all n € N the inclusion of(’)g) in W(R)
+ I**1induces an isomorphism

(k)
Alnf ~ OK )
nAlnf p”@g)

(i) If & > 1, thend™® is surjective and*) =~ (K /a*)(k), wherea is the
fractional ideal of K whose inverse is the ideal generatedsby — 1 (recall ¢V
is a fixed primitivepth root of unity)

Some consequences of this theorem are gathered in the following corollary:

COROLLARY 1.1 () Ay = im0 /p'0%) and ALY @7, Q, = By41 for all
m > 0.
(i) Q™ is ap-divisible and ap-torsion © z-module
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We would now like to recall the Coates—Greenberg concept of deeply ramified
extensions. LeL be an algebraic extension @f,, contained ink’. Then we have

THEOREM 1.2 (Coates and Greenberg, [C-Glhe following conditions are
equivalent

(i) L does not have a finite conduct@vhich means thak is not fixed by any of
the ramification subgroups @al(Q,/Q,)).
(i) The sef{v(Ap k)| whereF is any finite extension @, contained inL} is
unbounded
(i) ForeveryL' finite extension of.,, we haveny, CTry/p(mr).

Remarkl.1. There are more equivalent conditions in [C-G], but we won't use
them here.
DEFINITION 1.1 (Coates and Greenberg, [C-G]). We say th&tdeeply ramified
if it satisfies the equivalent conditions of the above theorem.

Finally, we will recall an approximation result due to Ax [A]. Lét be an
algebraic extension @p, contained ink” anda € K. Then we have

THEOREM 1.3.There exists a constang (it does not depend oh or a) such that
there existgy € L with the property

v(a—a)+co> UienéL{U(a(a) —a)}.

Remarkl.2.cg in the above theorem may be takerpdép — 1).

2. The Level Two Case

In the notations of the previous section t6t:= O, Q == QW 4 := 4®
andA = Ai(nlf). Also if L is an algebraic extension &f we denoteD(L/K) =
Ker(d: Or — QOL/OK)'

Leta € O. Let F be afinite extension ak which contains:, 7 a uniformizer
of Fandf € Ox[X] such thatt = f(m). Then we set

0(a) :=min (v <$> ,0) .

It is not hard to see thakt does not depend on, f or F, so it defines a function
5: 0 — (00,0

Properties of

(@) Ifa,be Ok thend(a + b) = min(d(a), (b)) and ifé(a) # 5(b) then we have

equality.
(b) 5(ab) = min(d(a) + v(b),0(b) + v(a)).
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(¢) If feOk[X]andf € Ok thend(f(0)) = min(v(f'(0)) + (), 0).

(d) If z,y € O thenzdy = 0 if and only ifv(z) + 6(y) > 0.

(e) forae O, 6(a) = 0is equivalent ta € O.

(f) The formulad(add) := min(v(a) 4+ §(b), 0) is well-defined and gives a map
5: Q — (—o0, 0], which makes the obvious diagram commutative.

Now we define another ma, which is a valuation oi’, namely ifa € K we
setw(a) =supfmeZ| acp™O}.

Properties ofw

(@) w(a +b) = min(w(a),w(b)) and ifw(a) # w(b) then we have equality, for
alla,be K.

(b) w(adb) > w(a) + w(b) for all a, b.

() w(a) = xifand only ifa = 0.

(d) v(a) > w(a) forallac K.

The relationship between and/ is as follows: for any: € O — O we have
w(a) = [d(a)] (Wwhere [ ] denotes the integral part function).

From Theorem 1.1 it follows that the completion/éfwith respecttav is B, w
extends to a valuation afi; which will be also calledv andA is its ring of integers
(i.e. A = {z € By||w(x) > 0}). Let us denote by ;- the completion of) ;- with
respect to the valuatiom restricted taO ;. As d is continuous with respect to the
topology defined byv on O and the discrete topology di, it extends uniquely
to anOg-linear map, also calledt O — Q. If we denote/ := Ker(6: B, — Cp)
then we have

LEMMA 2.1. J C Of.
Proof.Letz € B, be such tha#(x) = 0. Let(a,),, a, € K be a sequence such
thata,, — x. Thena,, — 6(x) = 0, so forn big enoughu,, € 0. O

We want now to characterize the class of deeply ramified extensiofis(sée
Definition 1.1) using differentials. For this we need

LEMMA 2.2. Leta, b€ Og be suchthab(a) < §(b). Then there existse Ok,
such thatcda = db.

Proof.Letr be auniformizer ok[a, b] andhy, hy € Ok [X]|suchthat = hq(7)
andb = hy(w). Then dv = k) (7) dr and b = hy(w) dr. If §(b) = O then we can
choose: = 0 andif§(b) < Owe havei(a) = v(hy(m))+6(r) < v(hy(m)+4d(r) =
4(b). It follows that we can choose= hj(7)/h(7) € Okl p)- 0

PROPOSITION 2.1Let L be an algebraic extension df. Then the following
conditions are equivalent

(a) the set of real numbe® O;,) is unboundedfrom below.

(b) For every algebraic extensiof of L. we havely . /0, = OF - Qo, /0, as

subgroups of).
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Proof.Let us prove that (a) implies (b). Lete Or. Then there igy € O, such
thatd(y) < o(z). From Lemma 2.2 we deduce the existence efOr such that
dr = zdy € OF - Qp, 0, - Conversely, let us suppose 40, ) is bounded and
let N €N be such that-N < inf(6(a)|la € Or). ThenpNQp, /0, = 0. If we
choosea € O such thati(a) < —N, then dv cannot be IO - Qp, /0, s
p™ da # 0. O

Let us recall that we denoted i := Gal(K/K). Then if o € G and
a,be O the formulac(adb) := o(a)d(o(b)) is well-defined and it gives a
continuous semilinear action 6fx on€). Then we have

THEOREM 2.1.There exists an absolute constagt(which can be taken the
same as in Theoreth3) such that ifL is a deeply ramified extension &f then
P /Q0, j0,) = 0.

Proof. We clearly havélo, /0, C Q°~. Letb € O such that 8 € Q¢z, so for
eachr € G, d(o(b)) = db. Obviously, ifL is deeply ramified(Oy,) is unbounded,
we get from Proposition 2.1 th&t = Ok - Qp, j0,.- SO letce Og anda € Oy
be such that & = cda. Therefore, for each € G we haves(c)da = cda or
v(o(c) —¢) = —d(a). From Theorem 1.3 we deduce that there existsO;, such

that
v(ic—a) = —co+ min (v(o(c) —¢) = —co— d(a).
ceGp,
Thus,u(p®(c — a)) = —6(a) or p®db = p®cda = p®°ada € Qp, /0, O

Remark2.1. In Section 5 we improve Theorem 2.1 for deeply ramified exten-
sions (Proposition 5.3). Using that result Theorem 2.1 becomds:idfdeeply
ramified thenn, - (292 /Qo, j0,.) = 0, i.e. the inclusiofo, 0, C ()= isan
almost isomorphism. We would not need this strong form of Theorem 2.1 in this
section.

Remark2.2. Theorem 2.1 and Remark 2.1 say that for deeply ramified exten-
sions we have ‘almost’ Galois correspondence for differentials.

Now we are finally able to formulate the main result of this section, namely the
characterization of deeply ramified extensiongofising differentials.

THEOREM 2.2.Let L be an algebraic extension &. The following conditions
are equivalent

(1) L is deeply ramified

(2) 6(Or,) is unbounded

() Qo, jo is non-zero ang-divisible.

(4) For every algebraic extensiofi of L we have)p,. /0, = 0.

(5) For every algebraic extensiofi of L we havelp . /0, = OF - Qo, /0 -
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(6) d(JCr) = Qo, /0, (herewe use the notations in the discussion before Lemma
2.1).

Proof. (1) and (2) are clearly equivalent and it was proved in Proposition 2.1
that (2) and (5) are equivalent. On the other hand, i§ any algebraic extension
of L, the inclusion®x C O C O induce the exact sequence

f
OF ®OL QOL/OK — QOF/OK — QOF/OL — 0

and as the image ofis Or - Qo, /0, We get that (4) is equivalent to (5).

Let us now prove that (2) implies (3). Letdv €Qp, /0, , let us choosg € O,
such that(3) < 6(v) —1 and letus apply Lemma 2.2. So there existsOy, such
thatd» = c¢di. Thenv(c) > 1 soif denotey = ¢/p € O we getthat dv = pucy
dBe pQo, 0, - Conversely, let us assume (3) and supposeitt@d} ) is bounded.
Then ife = inf(d(a)|la€Or) < 0 letx € Or, be such that & 6(z) —e < 1/2
andd(r) < 0. AsQp, /0, Was supposeg-divisible there are, b € Oy, such that
dz = padb. Thend(z) = d(paddb) = 14+v(a)+4d(b). S0 (b) < d(x)—1<e—1/2
which contradicts the definition af So we have proved that (2) is equivalent to
(3).

Let us now prove that (1) implies (6). L8tc.J~. Let (b, ),, with b, € O be a
sequence such that = 3. Then, for anyr € G, the sequence (o (b,,) — by,) —

oo uniformly in o. It follows thatv(o(b,) — b,) — oo uniformly in o, so from
Theorem 1.3, for large’s we can writeh,, = x,, +p“~,,, wherezr,, € Or, v, € O
and'Yn 5 0. Thenw(a(bn) - bn) = w(o-(’Yn) - 'Yn) +co SOU)(U(’YTL) - 'Yn) — 0
uniformly in ¢. In particular, it follows thatly, €QC« for largen. From Theorem
2.1 it follows thatp® dv, €Q0, /0., hence for large: we have ¢ = db, =
dz,, 4 p® dy,€ Qo, /0, This proves thatl(J“L) C Qp, /0, Let us prove the
other inclusion. For this let €& wug dug € Qo, /05 and let us choose,,, v, € O,
such thatu,, dv,, = pu,11 dv, 41 foralln > 0. (This is possible as we have shown
that (1) and (3) are equivalent.) Then dgt € O be such thatd,, = u,, dv,, for

all n, sod(pay,+1 — o) = 0 and therefore the sequenge := p™«,, is Cauchy
with respect to the valuation. Theng, = g€ Ba, (8) = 0 asB, — 0= 0(3),
sofeJ andd() = ug dvg. On the other hand, for anye G, o(u,) = u,
ando(v,) = v, sSow(o(ay) — ay) = 0s00(B) = S, i.e. € JE. This finishes
the proof of (1) implies (6). We will end the proof of the theorem showing that
(6) implies (3). But this is obvious a¢~ is a L-vector space so obviousy
divisible. 0

COROLLARY 2.1. If L is a deeply ramified extension &f then

@) T,(Qo, j0,) # 0.
(b) (T,(€2))% # 0.
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Proof. From Theorem 2.2 (3Xo, /0, I p-divisible, so (a) follows. We have
T,(Q0, j0x) C (T,,(£2))4" so (b) follows. O

3. Galois Cohomology

Letn € Z and letC,(n) be the one-dimensional,-vector space on whici' - acts
continuously and semilinearly via thgh power of the cyclotonic charactgr Let

L be any algebraic extension&f. ThenG', acts orC,,(n) by restrictingy™, and we

want to compute the continuous cohomology grofip§G ., C,(n)), i > 0. (The
continuous cohomology is computed using continuous cocycles and coboundaries
with respect to the Krull topology o&';, and valuation topology o@,(n).) We
distinguish two cased: deeply ramified and. not deeply ramified.

PROPOSITION 3.1If L is deeply ramified, the(C,(n))“* is a one-dimensional
L-vector space andl’ (G, Cp) =0forall 7 > 0.

Proof.Forn = 0 we haveCfL = L from the main results of [T] and [Ax]. For
n = 1 we recall from the previous section the resultin [F-C] that (K /a)(1) (as
Gr-modules) and s6,(2)[1/p] = C,(1) asG x-modules. Onthe other handifis
deeply ramified it follows from Corollary 2.1 that T),(Q0, /0, C (T, ().
As T,,(Q) is torsion free it follows that

(Cp(1) % = (T, ()[1/p]) " # 0.

Let us now suppose that there are tdelinearly independent elements b

€ (C,(1))%*. Thena = b, for someg € C, but notinL. So there isr € G, such
thato(3) # . Moreover, asi, b are Gp-invariant, we have. = b = o(3)b so

b = 0 which contradicts the assumptions. Theref@g)“ is a one-dimensional
L-vector space. It easily follows th&C,(n)) is a one-dimensional-vector
space for allx. The statement about thié’’s for i > 0 can be proved following
exactly the same arguments as in Corollary 1, Corollary 2 and Proposition 10 of
Section 3 of [T]. O

PROPOSITION 3.2If L is not deeply ramified, then
(i) (C,)% = L and(Cpy(n))“r = 0forn # 0.
(iy HY(G1,C,) is a one-dimensional vector space andf* (G, C,(n)) = 0
forn #£ 0.
(i) H'(Gy,Cp(n)) = Ofori > 2and alln.

Proof.Let{L, },>0be asequence of finite extensiongo$uch that_,, C L,,1
andL = U,>oL,. We will apply Tate’s theory as in Section 3 of [T] to each of
the L,,’s. We point out that although the,’s are not complete everything works
fine, finite extensions, degrees, differents and the Galois groups are all preserved
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by taking completions. Lek, be aZ, extension ofK” and denotes; as the fixed
field of the subgroup’z,, of Z,, andK,, ; := L, K; for alln,i € NU {co} (where
Lo, = L). As L is not deeply ramified N K, is a finite extension of<, so
without loss of generality we may assume that K, = L;. ThenL,, andK; are
linearly disjoint overL; forn > 1 and: > 1.

LEMMA 3.1. v(Ak, ;) =cn+i+ (ain/p"), Wherec,, does not depend an
and is bounded with respecttoandc; ,, is bounded with respect to bottandn.
Proof. We have the following diagram

Ln I Kn,i
Ly — Ky,
K

From the multiplicativity of the different we have
U(AKn,i/Ln) = U(AKn,i/Kl,i) + U(AKl,i/Ll) - U(ALn/L1)~

Butv(Ar, z,) does notdepend anandv(Ag, , , ) =c+i+ (a;/p') wherec is
a constant with respect to botlandn anda; is bounded with respect tcand does
not depend om ([T] Section 3 Proposition 5). In order to evalua;t(eﬁKn’i/Kl’i)
we will use the Coates—Greenberg [C-G] integral formula

U(AKn,i/Kl,i)
= ’U(AKn,i/Ll) - U(AKl,i/Ll)

1 /OO 1 1 d
g — U_}’
[Ll: K] 1 [Kl,i: Kl,i N Lé’f] [Knﬂ : Kn,i N Lé’f]

— @
where Ly = KO , and G(Lﬁ) is thew-ramification subgroup oz, in upper

numbering. Letwg be such thal. C Li° (this is possible sincé is not deeply
ramifiedover K, so it is not deeply ramified ovédr;). Then ifw > wq, we have
[Kn,i: Kn,i N LT] = [Kl,i: Kl,i N LT]

asKy; andL{ are linearly disjoint oveK ; N LY, hence

[Kl,i: Kl,i N L{f] = [Kl,i . (KTLJ N L{f) Kn,i N Lf]
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andKy; - (K,; NLY) = K. Then

0< U(AKn,i/Kl,i)

1 /"JO 1 1 q
= — W
[Ll: K] _1 [Kl,i: Klﬂ' N Li’] [Kn,i: Kn,i N L‘f]

< 1 /wo ! d
< W
[L1: K| J-1 [K1i: K1 N LY

butKy; N LY C K1,; N L;° forallw € [—1,wp]. Therefore

wo 1 1 wo+ 1
dow < (wp+1 — < —
/4 (K1 K10 LY (o )[Kl,i: LY°] p'
Itfollows thatv(Ag, /K1) = Bn.i/P', Whereg, ; is bounded with respect to both
i andn (for example by(wo+1)/[L1: K]). Thenu(Ag, /1) = cn+i+(in/p'),

wherea; , = a; + fin ande, = ¢ —v(Ag, /1,). SincelL is not deeply ramified
the sequenceg:,),, is bounded. This proves the Lemma. O

Let us continue the proof of Proposition 3.2.

We define (following Section 3 of [T]},: K 0o — L (n€NU {oo}) to be
to(x) = p*ZTrKn’i/Ln(x) if x€K, ;. This is a well-defined.,,-linear operator
and

too|Knoo = tnt1lKn o =tn forall neN andt, =limt,.

LEMMA 3.2. If o is a topological generator dbal( Koo o /L) =Gal( K}, o0/ Ly)
for all n > 1, there exists a real numbédr> 0, such that

|z —too(2)] < d|o(z) —z| forall reKy .

Proof. From Proposition 6, Section 3 of [T], for eaal€ N, there exists a real
numberd,, > 0 such that

|z —tp(x)] < dylo(z) —z|, forall zeK,.

From the proof of Proposition 6 of Section 3 of [T] and Lemma 3.1 above it follows

that thed,,’s are bounded with respecttg henced = sup, d,, will do. O

Remark3.1. We have from Lemma 34(Ag, ,/r,) = ¢ + i+ an;/p* and
althoughc,, depends om this does not matter ag cancels in the calculations of
d,, (see also the Remark after Proposition 6 in [T]).

From Lemma 3.2 it follows that,, is a continuous linear operator. Moreover, if
we define byX = K, o, (this is a Banach space ovB), we can extend := t,
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12 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

by continuity toX, sot: X — L is a continuous linear operator, and we denote
Xo = kert.

LEMMA 3.3. (a) X is a direct sum of. and Xo.

(b) The operatorr — 1 annihilatesL and is bijective with a continuous inverse
on Xp.

(c) Let X be a unitinL such that\ = 1 modm; ) which is not a root of unity.
Theno — X is bijective with a continuous inverse oh

Proof. The proof follows identically the proof of Proposition 7 of Section 3 of
[T]. O

Finally, one can conclude the proof of (i) and (ii) of Proposition 3.2 following
the proof of Proposition 8 and Theorem 1 of Section 3 of [T]. (iii) of Proposition 3.2
follows from the following facts:

(a) the inflation mapH*(Gal(K y 0o/L), Koo co(n)) — HY(GL,Cp(n)) is an
isomorphism for ali > 0 and alln as shown in [H] Lemma (3-5).
(b) Gal(Koo,00/L) = Zy,. O

Now we would like to use the results of Proposition 3.1 and Proposition 3.2 to
compute the Galois cohomology of tig,’s andBjR. We have seen in Section

2 that we can define valuatian on K such thatB; is the completion ofX” with
respect to this valuation. Theorem 1.1 allows us to define such a valuation for each

n > 1. Namely, for each > 1 IetO}?) be the subring o® ;- defined in Section 1.

Forac K* we definew, (a) = max{meZHaemegfl)}. Our oldw = wy and
for eachn, w,, has the same formal propertiesitasnamely:

Properties ofw,,

(@) wy(a+b) = min(wy,(a),w, (b)) and ifw, (a) # w,(b) then we have equality,
for all a, be K.

(b) wy,(ab) = wy(a) + wy,(b) for all a, b.

(€) wy(a) = ccifand only ifa = 0.

(d) v(a) > wy_1(a) > wy(a) foralla € K andn > 3.

(e) For each > 2 the completion of{ with respect tow,, is canonically iso-
morphic toB,,.

Remark3.2. If we define the normilal|,, := p~*~(%) for all a€ K, then
w, and| - ||, extend naturally taB,, which becomes a Banach algebra o¥ér
Furthermore, the canonical maps: B,, — B, _1 are continuous Banach algebra
homomorphisms of norm 1. As-adic Banach spaces are orthonormalizable (i.e.
have orthonormal basis [Se]) the maphas a continuous additive section, for all
n> 1.
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As a consequence of Remark 3.1Lifs any algebraic extension &f we get a
long G1.-continuous cohomology sequence from the ‘fundamental exact sequence
0 — Cy(n) — Byy1 — B, — 0. Applying the results of Proposition 3.1 and
Proposition 3.2 we get

THEOREM 3.1. (a)f L is a deeply ramified extension &f then H* (G, B,,) =
HY(Gp,Bfs) =0,foralln >2andalli > 1.

(b) If L is an algebraic extension df which is not deeply ramified then the
canonical mapsB,, — C, and B4, — C, induce isomorphism&*(Gy,, B,)
HY(Gp,Cp) = HY(Gp,Bgy) forall n > 2andi > 1, i.e, HYGy,B,)
HY(Gp,Bj,) is a one-dimensionalL-vector space andH'(Gyp,B,)
HY(Gp,Bjp) =0fori>2andalln > 2.

The rest of this paper will be devoted to the computation& &G, B,,) and
H%(Gp, Bgy), for L an algebraic extension df.

Il 11

4. The Nondeeply Ramified Case

Using the results of the previous section we can easily deal with the nondeeply
ramified extensions. We have

THEOREM 4.1. If L is not deeply ramified theBS': = Lforalln>1neN
and(Bg,)¢* = L.

Proof. The statement is true far = 1. Suppose it is true fat, and let us prove
it for n + 1. We have the exact sequence-0C,(n) — B,11 — B, — 0. Hence,
we get an exact sequence

0 — (Cp(n))* — (Bus1)“t — (Bn)“t — HY(G1,Cp(n)).

But (C,(n))“r = 0 from Proposition 3.2 () (G, C,(n)) = 0 by Proposition
3.2 (i) and(B,,)%* = L by the inductive hypothesis. Therefag 1 induces a
continuous ring isomorphism betweéBnH)GL ~ [, But ¢n+1 IS the restriction
of a morphism of Banach spaces of norm 1, so its inverse is also continuous.

COROLLARY 4.1. If L is not deeply ramified then forall € N,n > 2 AL”: L.

From the above corollary it follows that the topologies induced by the restrictions
of the valuationsu,, to L (if L is not deeply ramified ovek’) are the same as the
p-adic topology. In the rest of this section we’ll show that actually the restrictions
of w,’'s to L are equivalent valuations, and we’ll give estimates for how far apart
they are. These estimates are not going to be used in the rest of this paper, so the
reader might want to skip the rest of this section at the first reading.

We start by introducing another sequence of maps, the higher level analogues
of ¢ defined in Section 2. Let > 2 be an integer and € Q™. We define
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14 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Ann(w) = {a € Oglaw = 0}. Then Ann(w) is an ideal inOj. Let5 ( ) =
—v(AnNn(w)) = —inf{v(a)|a € Ann(w)}. This defines ama,: Q™ — ,0].
It is easy to see thay is the same a& defined in Section 2.

LEMMA 4.1. The map$,, have the following properties:

(i) 0n(w) =0ifand only ifmg -w = 0.
(i) if € O andw € Q™ thend,, (aw) = min(0, v(a) + 6, (w)).

Proof. (i) is clear from the definition.

(i) If min (0, v(a) 4+ 0y, (w)) = O thenv () > —d,(w) = v(ANN(w)) SOMm za C
Ann(w) andd,, (aw) = 0.

Now if min (0, v(«) + 0, (w)) < O thenu(a) < —d,(w) = v(ANN(w)).

Let 56Ann(aw) Thenag € Annw, hencev(5) > —d,(w) — v(a) and so
In(aw) < dp(w) + v(a). Lety € Ann(w), thenv(y) > v(a) SOv/a € Ann(aw)
and saj, (aw) = 0p(w) + v(a). O

Now we will introduce a new sequence of subringgtienoted{ A}, and a
new sequence of derivations. Thd( },,’s are defined as followd (© = O and

if n>1, A" = {h(0)|h€ Oklz],0 € O andh' () = h"(0) = --- = K (9) =
0} whereh(i )(x) := d'h(z)/dz’. Hence:A© D> A® > A® > ... > A >
-+ D Og.

LEMMA 4.2. For eachn > 0, A" is a rmg

Proof. For eachf € O, we denoteAt9 = {h(0)|h €eOk|z]and'(0) =
W'(6) = --- = h(™(B) = O}. It is clear that for eactd, A\ is a subring of
O . Moreover, ifd €Ok |[n], n€ O, thend = g(n), g€ Oklz|. Leth € Ok|z],
andh(0) eAé”), thenhi(n) = h(g(n)) has the property that for all X i <
n, K1) = 0, hencehy(n) €A and soAfg") c A™. Now we clearly have
A® = Uyo, A and lete,y € AM™. Thenz e Agf), y eAéZ). Letne O
be such thaf, 6, € O [n]. Then from the previous discussieny € A,S") and so
x—i—y,x-yeA%n)QA("). O

PROPOSITION 4.1For n > 0, if denoten* = 3" — 1/2 we haved™) C 0™,
Proof. Let o € A, 7 a uniformizer of K (o) andro > v(Ag(a)/x)- Let
he Oklx] be such thak(r) = a andh®(r) = 0,1 < i < n*. Consider the
Eisenstein equation ovéf (a): y*""" + p*y — = = 0 with ‘large’ s and¢ which
will be specified later. Let be any root of this equation and denéte- ﬂps”. We
havev(d — 7) > s and from Krasner’s lemma it follows that ferbig enough
we have:K(a) = K(m) C K(8). As clearly v(Ag )/ k() = s we have
thatv(Ag gy x) = v(P5(B)) < s+ ro (Where P is the minimal polynomial
of 8 over K). Now we apply Lemma 2 of the Appendix of [F-C]. We denote
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rn = (3" —1/2)(s + ro) and choose = p***, thenr, (a) :=inf(r,,s +t) =r,
for t big enough with respect te. Lemma 2 of the Appendix of [F-C] tells
us thatd = P = prm—rnla)gac O(” Obviouslyh(@)e(’)g) as well. But
h(d) = a+ Z@n*ﬂ(e o) (h9) (x )/z') whereh(® (r) /il€Og () SO we have
v(h(0) —a) = (n* + v — 1) > (n* +1)s > r, + 1, for s big enough.
Applying again Lemma 2 of the Appendix of [F-C], we d&8) —a € O, hence
aecol o
P

For anyL algebraic extension ok, we denoteA(L") =Usco, Aé"). Then we
have the following proposition:

PROPOSITION 4.2 Let F' be a finite extension df, letw be a uniformizer of-.
Leta e AY, o = h(r), with h@ () = 0, 1 < i < n. Then we have

@) v(h" V(7)) > v(n!(Ap/k)")
(i) If ha(n) = o = ha(x) with b\ (7) = h$)(x) = Ofori < i < m then
B () = B () (mod (n + DHA py5)™).

Proof. Let us denoteP(z) € Ok[x] the minimal polynomial ofr over K.

Then, ash/(n) = --- = h™(x) = 0 we have thatP(™(z) divides h/(x) so
W (z) = P (x)- ( ), Whereg e O [z]. Hence, (i) follows. For (ii), we notice that
H(z) = hi(x) — hao(z) has the propertiedd (r) = H'(n) = --- = H™® (1) =0

henceP"+ D (z) dividesH (z) or H(z) = PV (z) - g1(x), wheregy €Ok [z].00

We continue to work in the hypothesis of Proposition 4.2. We define the application
Dyt AR = (n (A gy ))Or /(0 + D (A" Or

by: for anya e A o = h(r), with hO)(7) = 0 for 1 < i < n, Dy pa(a) =
KD () (mod (n + 1) (A g/ k)" 1Op). Proposition 4.2 guarantees thaj, p  is
well defined.

PROPOSITION 4.3.D,, 1, - is a derivation andKer (D,, ) = A}"H).

Proof. It is clear thatD,, r ris a derivation and thatl%”l) C Ker(Dy, pr). In
order to prove the converse, letc Ker(D,, r ). Thena = h(r), for h € Ok |[z]
such thatt) (1) = 0 forall 1 < i < n. As D,, r-(a) = 0, we haveh("+1) (1) =
(n+1)! (AF/K)"Hﬁ wheres € Or. Hence, there is a polynomigle O [z] such
thatf(r) = 3. Therefore, if we denote; (z) = h(x) — P"TY(z) f(z), whereP(z)
is the minimal polynomial ofr over K, we haven = hy(m) andhgz) (m) =0 for
al1<i<n+1, andsavedl™ m
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16 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU
Now we defines,, s A" — (—o0,0] N Q by

b, r(@) = Min(o(Dr,pr () = 0((n 4+ DN A p/)"HH); 0).
We are in the same hypothesis of Proposition 4.2.

PROPOSITION 4.4 We have

(i) 0,7~ does not depend on, hence we denotedt, r. ~
(ii) If F, C F> are finite extensions af we have:én,pzlA(m = 0p, ;. Therefore
F

we define’,, on the whole ofA™ as the inductive limit of thé,, » over all
the finite extensions' of K.

(i) We havelg = d on O whereé has been defined in Section 2.

(iv) Let o GAEZJ). Thend,, (o) = 0 if and only if Dy, k(a),=(a) = 0 for some
uniformizerr of K («) if and only if o € A(L"H), whereL is any algebraic
extension of< andd,, 1, is the restriction of,, to A(L”).

Proof. (i) Let w1 and m, be uniformizers ofF’, thenm; = g(m) where
g(z) € Ok[z]andg (m2) = wisaunitinOp. If « eA™ thenwe havé),, rr,(a) =
Dy oy (a)u™tL, henced,, pr, (o) = 6, ()

(i) Let F; C F» andm, andm;, be uniformizers off;, andF>, respectively. Then
w1 = g(m2) for someg(z) € Ok [z]. Leta € A, i, andh(z) € Ok |[z] be such that
o = h(m1) andh® (r1) = 0forall 1< i < n.

Let f(z) = h(g(x)), thena = f(m), fO(m) = O0forall 1 <i < n
and f("D () = "D (m)(¢ (2))" L. But v(g'(m2)) = v(Ag/r), hence
5n,F1(a) = 5n,F2(04)-

(i) This follows from known facts about; ([F-C]).

(iv) This proof is similar to the proof of Proposition 4.3. O

Finally, we have the following proposition:

PROPOSITION 4.51f L is any algebraic extension éf, thenA"™ N O}, = A(L”).
Proof. We will prove the statement by induction over th's. Forn = 1, from

(iii) and (iv) above, we have that'!) = O/ = 0V N0, = AW N O,. Suppose
now that the statement is true farand let us prove it fom + 1. The inclu-
sionA(L”+1) C A*tD N Oy is trivial so leta € A™tD 0 Op. Then in particular
ae A N Oy =A™ hence can appl, ;. to . Butd,, 1(a) = d,(a) = 0 as
ae A Thereforep € A(L"H). O

Remark4.1. This last property of thd(™)’s makes them easier to handle than
theO™)’s,
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We can use thel(™’s in order to prove the following theorem:

THEOREM 4.2.Let L be an algebraic extension &f which isnot deeplyramified.
Then, for eacn € N, n > 2, the valuationsu, |, andv|;, are equivalent.

Proof. We claim that in order to prove the theorem it would be enough to show
that for eachn €N, n > 2, there exists:,, € N such thatp~ 0 C (’)(L”) (kn
depends only orl, andn). Let us show that granted the claim the equivalence
of wy,|r andv|;, follows. Letxz € L, = # 0, and denoten = w,(z). Hence
zepmO — pmrloM™ ButpmOf” C pmo; andpmtietlog C prtiof,
Hence, foralle € L, wy,(z) < v(x) < wy(x)+ ky, + 1 and we are done. Let us now
provethe claim Letn > 2,n € N be given. Then if we denote® = (3" — 1) /2 we

have that4"") € O™ and therefored!"”) = 0, N A ¢ 0. So it would
be enough to show that there exigtsc N such thago"?" -Op, C A(L"*). For this,
we notice that for each’ C L, finite overK and 0< k£ < n* (k!(AF/K)k)OF -
AED hence((n* + DN Ap)" THOR C A Let k, €N be greater than
or equal to supv((n* + 1)!(AF/K)”*+1), where the supremum is taken over all

finite extensiond” of K, contained inL (the supremum is finite ak is not deeply
ramified). Then:

P 0p € A forall F, hence pfr0, € AN c o, -

5. Deeply Ramified Extensions at Higher Levels

We want to calculatéB,,)“*, and(B4,)¢* for all m > 1 and all deeply ramified

extensiond. of K. We have[. C (B,)Cr and I C (Bgr)€*. As was pointed out
in the introduction these inclusions may be strict. We want to describe all deeply
ramified extensiong of K for which the above inclusions are equalities, i.e., for
which the Galois correspondence holds foat leveln or in BJR respectively.

At this point, the first thing we want to clarify is the relationship between the
Galois correspondence at finite levels and the Galois correspondeBg*g.iNVe
have:

THEOREM 5.1. For a deeply ramified extensioh over K the following are
equivalent:

(a) L satisfies the Galois correspondenceﬁg‘iR.
(b) L satisfies the Galois correspondence at all levetsN.

We will be able to prove one implication in this section. The other will be proved
in Section 6.

We denoted,,: Bjr, — B, i B, — C, andé,: B, — B,_1 the canonical
projections. We denote hy;, the kernel ofp,,.

comp4006.tex; 4/05/1999; 11:39; v.7; p.17

https://doi.org/10.1023/A:1000642625728 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000642625728

18 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU

Proof of Theoren®.1 implication (b)=- (a).
For any extensioi. of K we haveAL°°g (Bfr)C".

Let 3 € (Bz)“t. Then for eacm € N 6,,(3) e BS* :AIT. Leta, € L be such
thatw,, (a, — 0,(8)) = n.

We claim that the sequendev,, } is Cauchy inBj. In order to show this, let
us computev,_1(a, — ap—1) = wy—1(ay — 0p—1(8) + 0,—-1(8) — ay,) = Min
(wnfl(an - anl(/B))a wnfl(enfl(ﬂ) - Oén,]_)).

BUtwnfl(an_enfl(ﬂ)) = wnfl(gbnfl(an_en(ﬂ))) 2 wn(an_‘gn(ﬁ)) = n.

Thereforew,,—1(a, — ap—1) > n — 1 and the claim is proved.

Leta € BJR bea =lim,_ ay,.

We want to show thak = (.

For this we fixng € N and letn > ng. Thenwy, (0,, (o — 3)) —wpy(Pn,
Prg+1- - - n (On(a—P))) = wy(On(a—B3)) = wn(n(a) —an+an —0,(8)) = n.

Hencea = 3. O

Letn > 2 be an integer and denats, the topological closure (ﬁ)}?*z) in By,.

LEMMA 5.1. d,,_1 is continuous with respect t@,, (we consider the discrete
topology or2("~D) so it extends to ad x-linear map from4,, to Q1.
Proof. The proof is obvious. O

LEMMA5.2. J, C A,

Proof. Let us consider: € J,, anda,, € K such thata,, = z. Thena,, =
On(am) st on(z) = 0 sow,_1(a,) = O for m large enough. Therefore
Qm € (9}?*2) for largem and sar € A,,. O

PROPOSITION 5.1.Letn > 1 andws,ws € QM. If 6, (w1) < ,(wz2) < Othen
there existsy € Oc, such thatv; = aw;.
Proof. For the proof we need the following lemma:

LEMMA 5.3. d,,_1: J, — Q"1 is surjective for alln > 2.
Proof. Let 0 # wp € QY. Since by Corollary 1.1~ s p-divisible we
can choos€w, },>1 such thatv, € Q=Y andw, = pwy11 forall » > 0. From

Theorem 1.1, it follows that there asg € (9%72) such thatv, = d,,_1c, forall r.
The sequencép’a, }, is Cauchy (with respect te,,), hencep” . =% = for some
x € By,. Clearlyz € J, andd,,_1x = wo. O

We now return to Proposition 5.1. Lety, z2, €J,+1 be such that,(z;) =
w;, © = 1,2, and leta € C, such thatr, = ax;. Supposes ¢ Oc,. Then
r1 = a lrp andv(a™l) > 0. Henced,(w1) = 6,(dn(21)) = 0p(a"twp) =

min (0,v(a"Y) 4 §,(w2)) which contradicts the assumption @, w,. Therefore
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GALOIS THEORY OF B, 19
a €0¢, and we are done ag, = d,zr2 = ad,r1 = aw. O

PROPOSITION 5.2. (i)f n > 2, n€N, for all y € B,,_; there exists € B,, with
¢n(x) = y such that ifn. > 3, we havew, (z) = w,—1(y) and ifn = 2, we have
wz(x) = [v(y)].

(i) If n > 2n e N, for all y € C, there exists: € B,, such thaty,, (z) = y and
wp(x) > v(y) — L

(i) Forall a € C; andu € J,, u # 0 we havew,(au) — wy(u) — v(a)| < 1.

Proof. (i) Let n > 3, lety € B,,_1 and choosex € B,, such thaty = ¢,,(«).
Supposew,,—1(y) > wy(«). Multiplying if necessary by a suitable power pf
we may assume that,_1(y) = 0. Let {a,, }.m>0 be a sequence of elements in

K such thaty,, T‘f a. Thena,, Ynst y, hencew,,_1(a,,) = 0 for m sufficiently
large. Alsod,,_1a = d,_10y, for m large enough. By Lemma 5.3 there exists
u €J, suchthatl, 1o = d,,_1u. Thenz = « — u satisfies the required properties.
Clearly the same proof works far = 2, except/(y) is not necessarily an integer,
so we work with its integral part.

For (ii) we apply (i) several times.

(iii) Let b € B,, be such that,,(b) = a andw,,(b) > v(a) — 1. Then we have

wp(au) = wy(bu) = wy(b) + wy(u) = v(a) + wy(u) — 1.

And similarly

a a

wp(u) = wy, (E . au) > (E) + wy(au) — 1. O

COROLLARY 5.1. If a, a, € Oc, are such that,, 2 a andz €.J, then(a,, -

Wn,
x) = .

LEMMA 5.4. For eachn €N, n > 1,Q(® has a natural structure aPc, module
andd,,: J,11 — Q™ defined in LemmasS.1 and 5.2 is an Oc,-module homo-
morphism.

Proof. Q™) is ap-torsion© z-module (see Section 1). Lete Q™). Then the
mapOg — Q) defined bya — « - w is continuous (consider thetopology on
O and discrete topology ai(™) hence can be extended canonicallyxg,. We
now show thatd,, is an O¢,-module homomorphism. From the above corollary
it follows that we only need to show thaf, is Ox-linear. So letz € J,,+1 and

a € Og. We can findk € N such thap*a e(’)}?) and a sequendg, € (’)}?*1) such

thatb,, " . Thus one can choose large enough such that,(az) = d, (aby,),
dn(z) = dy(by) andw,(b,) > k. Therefore we haved, (az) = d,(aby,) =
dn(p¥a - by /PF) = pFad, by, /D*) + by /PF - dn(pFa) = ad,, (by,) = adp(z). O
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20 ADRIAN IOVITA AND ALEXANDRU ZAHARESCU
COROLLARY 5.2. Letw € 2™ anda € Oc,. Then
On(aw) = mMin(0, v(a) + 6, (w)).

The following result completes our characterization of deeply ramified exten-
sions using differential forms (see Theorem 2.2).

THEOREM 5.2. Let L be an algebraic extension @. Then the following are
equivalent:

(i) L is deeply ramified
(i) JGr £ 0forall n > 2.
(i) BS* contains a generator of the maximal ideal®f forall neN, n > 2 (a
generator of the maximal ideal &f,, will be called a uniformizer of3,,).
(iv) (B4z)¢* contains a generator of the maximal idealif},.

Proof. We first show that (ii}= (i). As J,, = T,V © Q, we haveJJ'* =
(Tp(on/@K))GL ® Qp. But (i) is equivalent to (iii) of Theorem 2.2 which is
equivalent to the statemeff},Q2p, /0, # 0. So (i) = JZGL # 0. If L is not
deeply ramified since> = C,(1) asG-modules, we get from Proposition 3.2
(i) that J5'* = (C,(1))% = 0. Hence (i) J5'“ # 0. Now, lett e BJ, be a
generator of the maximal ideal such that= ¢ (mod?) (such at can be found
asJZGL #£ 0) for all 0 € G. Theno(t") = t" (mod ™Y for all o € G. Hence
0 # t"(modt™t1) e Jffl for all » and (ii) is proved. (ii) clearly implies (jii), (iv)
implies (iii) and (iii) implies (i) from Theorem 4.1. Finally we prove that &)
(iii) = (iv). Let L be deeply ramified and €N, n > 2. We want to show that
B&® contains a uniformizer aB,,. We shall proceed by induction. The assumption
is true forn = 2, as it was proved that (i (ii). So, let us suppose that > 2
andB,?L contains a uniformizer say. Let = be a uniformizer ofB,,; such that
¢n+1(z) = y. Sinceo (y) = y for all o € G, we havep,,1(o(z) — z) = 0. For all
o € G there exists auniqugc) €C, suchthat (z)—z = ((0)-2" so¢: G, — C,,
is a well defined map. We claim thatis a continuous 1-cocycle. Let 7 € G ..
Then(o - 7)(2) — 2 = o((7)(2) — 2) + 0(2) — 2 = o(((7) - 2") +((0) - 2" =
o(C(7))-o(2") + (o) - 2". Butoz = z + ((0o) - 2. If we raise to the:th power
we geto(z") = 2" (asz"t! = 0). Hence( (o - 7) = o((7) + ((0). Now let’s see
the continuity. Letf: G;, — J,, be defined byf(c) = 0z — z andg: C, — Jp11
be defined byy(a) = a - 2". Thenf = g o ( andg is a homeomorphism from
Proposition 5.2. Hence, in order to prove thas continuous, it would be enough
to show thatf is also continuous. But this is obvious @g acts continuously on
Bn+l-

So finally if we denotéd(] its cohomology clasg¢] € H1(G1,C,) = 0. Hence
we can finde € C, such that/ (o) = o(e) — . Now we putz’ = » — 2" € BYz,
and?’ is a uniformizer ofB,,11 and ¢,+1(z") = ¢n+1(2). So the statement is
proved for allB,,’s.
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The proof above shows that we can find a sequgngé,,~2, z, € BGL, 2,
uniformizer of B,, and ¢,,(z,) = z,—1. Denotez := (z,), €lim_ B, = BJR.
Then? is a uniformizer ofB, ando(Z) = z for all o € G O

We would like to consider the Coates—Greenberg notion of deep ramification as
the level two deep ramification and define deep ramification at tevet all » as
follows:

DEFINITION 5.1. Letn > 2 andL a deeply ramified extension. We will say that
L is deeply ramified at level if "~ (L/K) is not annihilated by a finite power
of p.

Although, by the above definition we only ask thit 1(Q™ Y (L/K)) is
unbounded, we can show that in this c&$&~Y (L/K) is almostp-divisible.

PROPOSITION 5.3 Letn € N* and L be deeply ramified at level+ 1. Then
(i) QM = 0r - QW(L/K).
(i) Q™ (L/K) has a nonzerg-divisible submodule2(” (L/K) such that
my (" (L/K)/Qg" (L/K)) = 0.
(i) dn(OF") + QG (L/K) = QW (L/K).
We will see later that, for certain’s and deeply ramified extensiods the
Galois correspondence at levelmight fail. But if L is deeply ramified at level

n, then one has an approximate Galois correspondence fér thel)-differential
forms namely:

THEOREM 5.3. Let L be a deeply ramified extension. Then

() mp ()G /d, 1(JCL)) = 0forall n €N, m > 2.
(i) If L is deeply ramified at level, thenm, ((Q~1)¢2 /=1 (L/K)) = 0.

In order to prove the results just stated, we need to derive first a technical result.
For any algebraic extensidnof K and anyn € K we denote
c¢(L,a) = min v(o(a) — a) — supv(a — x).
oceGL zeL
One clearly hag(L,«) > 0. On the other hand(L, «) is bounded from above
(e.g. byp/(p — 1), cf. [Ax] and [Sen]) and this result was crucial in the proof of
the Galois correspondence ©f. Let us denote(L) = sup, .z ¢(L, o) and call
it the Ax-Sen number of.. Any o € G, extends to a continuous automorphism of
C,, therefore in the above definitions we could takeC,,. This will not change
¢(L) sincec(L, «) is clearly continuous as a function af

PROPOSITION 5.4.The Ax—Sen number of any deeply ramified extensi@, of
is zero.
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Proof. Let L be deeply ramified and € Q,. Let (L,),>0. be an increasing
sequence of finite extensions @, such thatJ,, L, = L. We have lim_.
¢(Ly,a) = ¢(L,a). On the other hand, from Theorem 1.2 it follows easily that
limy, .00 v(AL, (0)/L,) = 0. Then the same holds for the relative discriminants:

lim o(Dy, ()/1,) =0
Let F' be one of thel,,’s. We want to find an integral basis éf(«)/F' expressed

in terms ofa so that we can relate(Dr (), r) 10 c(F, a). Popescu-Zaharescu
in [P-Z] constructed such a bas{$,62,...,0,,},m = [F(a): F], with ; =
1,0, = (o« —a)/m° wherer is a uniformizer of ', a € F' is such thatv(« —

a) = sup,cpv(a — x) ands € Z is such that 0< v(02) < v(w). 6, for r > 2
are certain polynomials i, irrelevant for our discussion. Le¥/ denote the
matrix (o(6;)).,;, whereo runs over the embeddings 6f«) in Q, overF'. Then
v(Dp(a)/r) = 2v(detM). If we subtract the first row from the others, we get a
(m — 1)(m — 1) determinant which has as first column

ola) —a
7T‘S
Therefore
v (detM) > min,v (0(04)75_06) > minv(o(a) — a) —v(a —a) = c(F, a).
T
We now takel" = L,, and deriver(L, o) = 0. 0

Proof of Proposition5.3. (i) Letw € Q™. As §,(Q™(L/K)) is unbounded
there existss; € Q" (L/K) such thab,, (w1) < 6, (w). Now from Proposition 5.1
we finda € O, such thaty = aw; € O¢, - Q™ (L/K) = O - QW (L/K).

(i) We defineQé")(L/K) = {we QW (L/K)| there exists a sequenge, ),>o
such thatu,, € QM (L/K), wo = w, andw,, = pwy,1 for all m}.

ThenQ{"(L/K) is the maximalp-divisible submodule of2™ (L/K). First
of all let us notice thaf2(™ (L/K) # 0. Otherwise from (i) it would follow
that Q") = 0 which is not the case (see Theorem 1.1). Now/i& m; and
let we QW (L/K). There existsug € Q™ such thatw = pwo. From (i) we get
thatwo = 37 a;w;, With a; € O andw; €™ (L/K). We denoteu; one of
the w;’s above such thai,(u1) is minimum and apply Proposition 5.1. We get
w = paj - u1, With ag € O. Similarly, for anym > 1, we finda,, € O and
U € QM (L/K) such thatu,, 1 = pa,,u.,. We applys € G, to this last equality
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and we get(o(a,,) — am) - p - uym = 0. Hencev(o(am) — am) = —0n(pum).
Now we use Proposition 5.4: for any € N* and 8 € mj, there exists,,, € Oy,
such that(a,, — ) > —dn(pum) — v(B). ThenB(an, — ) - puy, = 0 and
BUm—1 = Bpamim = pBrmun. We multiply this equality by - r, ... 7,1 and
get

Bw = pu1,...,0m = PUmy1 Where v, = Bri...rpum, € Q(”)(L/K).

Soﬁw e Q (") (L) K) for anyw € Q™ (L/K) and any3 € my,. It now also follows
thatQ{" (L/K) # 0.

(iii) Let w € QM (L/K),w = Yy ajdy B, With o € Or, B € O~ There
area; € Ok, by €my suchthaty; = a;+bj, j =1,...,r. Theny ', a;dnf; =
(S 0365) € (O™ and )y by € 98 (L ). =

Proof of Theorenb.3. (ii) Supposel. is deeply ramified at levet. We have
Q-U(L/K) C (Q=D))G2, So letw €(Q~D)C2, we use Proposition 5.3(i) to
write w = S 1 a;w;i, a; € O andw; € QY (L/K). Now we follow the same
argument as in the proof of Proposition 5.3(ii).

(i) We haved,,, 1(JS*) C (Qm=1)Gr,

Letnows3 € my, andw € (Q(™~1)EL From Lemma 5.3 we gete .J,,, suchthat
w = d,,_12. We use Theorem 5.2(ii) to get® y €~ so we can findv € Cpsuch
thatz = ay. Without loss of generality, we may suppose that O, (if not write
a = o//pk,o/EO(cp andr = ay = o (y/p”) andy/p™ € JGL as well). Thus
ady 1y = dpm-1(ay) = dp_12 = w € (A Hence(oa — a)dy,_1y = 0
for all o € G, and the trick used in the proof of Proposition 5.3 gives gsea0;,
such thaBw = Bydy—1y = dm—1(Bvy) andByy € JGL. O

6. De Rham Extensions

All over this sectionZ will denote a deeply ramified extension &f.

DEFINITION 6.1. For alln € N defineH{) (L/K) := Q" (L/K)/d, (O!"V).

Remark.6.1. Let us consided: Q" (L/K) — QW(L/K) A QM™(L/K),
whered is the obvious derivation. I is deeply ramified we saw the) (L/K)
is p-divisible whileQ(™) (L / K) is ap-torsion module. Hence their wedge product is
zero and we could think @™ (L/K) as consisting of ‘closedi-forms. Therefore

we may think ofHd (L/K) as being the quotient ‘closedforms/exack-forms’.

Remark6.2. We have

HO(L/K) = Q) (L/K)/(d. (08 V) nQ§ (L/K)),
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whereQ{"” (L/K) is the maximap-divisible submodule o™ (L/K) as defined
in the proof of Proposition 5.3. This motivates the next definition.

DEFINITION 6.2. We say thatL has property(x) at level n if T,(d,—1
(0" 72)) #0.

Remark6.3. Definition 6.2 is equivalent to the following: there exists a sequence
{ar}r,ap € (95;”_2) such that O# d,,_1c, = pd,,—10,-41 for all r.

DEFINITION 6.3. We say that. is a de Rham extension df at leveln if
n—1
Hi V(L/K) = 0.

LEMMAG.1. If L is de Rham and deeply ramified at IexzethenQé”_l)(L/K) =

dp—1(JpN A[:L), Wherng”_l)(L/K) was defined in the proof of Proposition 5.3.
Proof.SinceJ, I, isp-divisible itis clearthatl, 1 (J,N I) € Q8" V(L] K).
Let now 0+ wo € Q" Y (L/K) and chooséw, } -1 such thats, € Q=Y (L/K)
andw, = pw, 41 forall » > 0. We can findy, € (’)(L”_Z) such thatv, = d,,_1«, for
all ». Now the sequenc” . }, is Cauchy (with respect te,,), hencen” i

An
for somer € B,,. Thenz € J,N L andd,,_1x = wo. a

THEOREM 6.1. Let L. be a deeply ramified extension and> 2. Then the
following are equivalent

() L is deeply ramified and de Rham at leuel
(i) L has property(x) at leveln.
(iii) Jon L+ 0.
() Jon T'= JCr.

Proof. (iii) < (iv) follows from the fact that/,,n A[flg JGt both areL-vector
spaces and dipy$'t = 1.

(i) = (iii) Let {a, }, be a sequence as in Remark 6.1.

Thenthe sequende’«, }, converges im,, to some nonzero elementéfn AL”

(i) = (i) J.N AL" is clearlyp-divisible so if 0# xp € J,N AL" for anyr € N*
we can choose,. € O(L"*Z) such thatl,, 1, = d,,—1(x0/p"). Then thexn,’s give
the property(x). (d,,—1c # 0 forr > w,(zo)).

(i) = (iii) follows from Lemma 6.1.

(ii) clearly implies thatl is deeply ramified at level.
We show that (iv) implies that is de Rham at levet.
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For this we use Theorem 5.3(i) to derive:
"V (L/K) = pf V(L/K) € pa" D (L/K) € p(@D)Cr C
C dy1(JCL) = dy_1(JoN ) C dry (02,
From Proposition 5.3(iii) it follows that,,_1 (0" ?) = Q=D(L/K). m

PROPOSITION 6.1.Let L be a deeply ramified extensiongfandn > 2, n€N
such thatJ,,N AL"# 0.

Then (i) If n > 2 andALndliALoo is the canonical map, lej € Im ¢,,. Then there
existse € AL" such thatp,,(z) = y andw, (x) > w,—1(y) — 1.

(i) fn=2 andALzﬁ L is the canonical map, lej € Im ¢,. Then there exists

x € AL2 such thatpy(z) = y andws(z) > [v(y)] — 1, where[ ] denotes the integral
part function.

An An—1
(i) on(L)= L .
An Aoo
Proof.(i) Leta € L andy = ¢,(a) € L andsuppose,,_1(y) > w,(«)+1.
Without loss of generality, we may suppose that 1(y) = 0 (if not multiply with
a suitable power of). Let{a., }.m>0 be a sequence such that, € L for all m and

— Wn—1

Qm . o Thena,, — yhencew, 1(an) = 0 form sufficiently large.

Therefored,,_1a = d,_1c,, for m big enough. Letu € J,N AL" be such
thatp - d,_1a = pd,_1u (we apply Theorem 5.3(i) and Theorem 6.1), hence
wp (o —u) + 1> 0andd,(a —u) = gn(a) = y.

Finally 0= w,_1(y) < wy(a —u) + 1 S0 setr = a — w.

(i) The proof is identical except we cannot makgy) zero by multiplying a
power ofp, we can make it & v(y) < 1.

Ao
(iii) Supposen > 2. Letye L ' and{a,, }m>o0 be a sequence ih such that
a5y Letgo e T be such thap, (B0) = cpandw, (Bo)+2 > wy_1(ag). Let

now B, € AL" be such that,,(51) = a1 andw, (81 — fo) > wn—1(1 — ap) — 2.
Construct inductively{5,,} such thate,,(5,,) = an andw, (B, — Bm-1) >
wp—1(am — am—1) — 2. Thenpg,, is Cauchy inw,, and letg = lim,, (.. Then

on(B) = a. a

PROPOSITION 6.2.Let L be deeply ramified. Then the map
n BSL - Bg—Ll

is surjective.
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Proof. We consider the long exact cohomology sequence coming from the
fundamental exact sequence (Section 1):

0= (Cpln — )% — BYH 5 BIY) — HYGr, Cyln — 1),
As L is deeply ramified7}(G,, C,(n — 1)) = 0 as proved in Proposition 3(1.

PROPOSITION 6.3Let L be a deeply ramified extensionigfandn € N, n > 2.
Then the following are equivalent

An

() B =1..
An . , .
(i) L contains a uniformizer oB,,.

Proof. (i) = (ii) follows from Theorem 5.2.
(i) = (i). Let n = 2. From Propositions 6.1 and 6.2 we get a commutative
diagram with exact rows

0—— J5'* Bt — L —0
U U
N2 N2 A
0— LN L L L 0.

A A
We know.Jon = JS*, thereforeBS® =T.
An
Let us suppose that the statement is truesfor< n and assume thaLtL+1
An . . .
contains a uniformizer oB,, 1, sayz. Then¢,,+1(z) € L and itis a uniformizer

An+1 . .
of B,,. Hence 0# z,, € J, 11N f and therefore we have a commutative diagram

0

G
Jn+l

| y

An+1 An1 An
0—>Jn+1ﬂ I — [ —— [ ——0.

Brifl—’ BSL —0

Hence the statement is true for all O

PROPOSITION 6.4L et L be a deeply ramified extensionigf Then the following
are equivalent:

- /\OO
i) (Bdp)* =L
Aoo : , .
(i) L contains a uniformizer OBJR.

Proof. (i) = (ii) follows from Theorem 5.2.
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Aco . . . An , , ,
(i) = (i) If L contains a uniformizer OBJR, then [, contains a uniformizer of

B, foralln, henceB&: _T foralln by Proposition 6.3. Therefo(é ) “* _F
by the implication already proved in Theorem 5.1.£b)a). O

But we have now proved the remaining implication of Theorem 5.1 and also
k
COROLLARY 6.1. LetneN, n > 2. Then ifB,?L :AL" we have thalBkGL -
forall 2 < k < n.
COROLLARY 6.2. The following are equivalent for € N,n > 2.
/\"L

(i) J.N L #O0forall m < n.
(i) BGr =" forall m < n.

Proof. (i) = (ii). If J,,N ALmyé 0 for all m < n by induction we can show that

/\"L . e

BGr = [ for all m < n (as in the proof of Proposition 6.3).

(iiy = (i). If BGr _"I" then’[" contains a uniformizer oB,,, sayz. But then

Am

0+ " 1eJ,N L. O
COROLLARY 6.3. Let L be deeply ramified. Then the following are equivalent:

(i) Ji T\ Ofor all m.
(i) BGr =1 for all m.

(i) (BLn)Cr =T
Proof. The proof follows from Corollary 6.2 and Theorem 5.1 O

COROLLARY 6.4. Let L be deeply ramified and e N,n > 2 and M be an
algebraic extension of.. So if BS~ -7, then BS™ — 0 and if (Bgr)C* .
then(Bg,)E™ 0T

Proof. We have thatAL"gJA\Z so if AL" contains a uniformizer oB,, SO doesf\f.
Also '7'C 37 soif ' contains a uniformizer aBg;, so doesi. 0

7. Main Results

We have proved:
THEOREM 7.1. Let L be an algebraic extension & andn € N,n > 2. Then

(i) If L is not deeply ramified theBS'~ ~T-1.
(i) If L is deeply ramified the following are equivalent

Am
(@) BGr = [, forall m < n.
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(b) L has property(x) at all levelsm < n.
(c) L is deeply ramified and de Rham for all levels< n.

Am
(d) J,n L # Oforall m < n.

An . . .
(e) L contains a uniformizer oB,,.

THEOREM 7.2.Let L be an algebraic extension &f. Then

Noo ~

(i) If L is not deeply ramified thefB,)“" = L = L.
(i) If L is deeply ramified the following are equivalent

o0

N
(@) (Bfp)“* = L.
(b) L has property(x) at all levels.
(c) L is deeply ramified and de Rham at all levels.

Moo : W
(d) L contains a uniformizer aB,

8. Examples

|. EXAMPLES OF DEEPLY RAMIFIED EXTENSIONS WHICH ARE NOT DE RHAM AT
LEVEL TWO

First example
Because we will work at level 2 in this section, we will denatev, 5,2 by
respectivelyds, w1, 61, QY.

Also property(x) will denote propertyx) at level 2. We have:

PROPOSITION 8.1If L = J,, L,,, whereL,, are finite extensions df’ such that
v(Ar,/k) = —1/([Ly: K]) (mod 1)thend(U(L|K)) NZ = {0}.

Proof. Let o € Oy with §(da) < 0 and choose: such thata € L,,. Then
da = h/(m,)- dm, wherem, is a uniformizer ofL,, andh €O |[x] is such that
a = h(m,) and degh < [L,: K]. Then

d(dar) = v(h'(mn)) — v(Ap, k)

1
[L,: K]

v(h' (7)) +

= v(mp, - B (m,))  (mod ).

Butx - i/ (x) has no terms of degree multiple [df,,: K]. O

COROLLARY 8.1. L =, K(P"\/j)) is not de Rham at level two (it is deeply
ramified though), wher& . /pis arootofX?" —p = Osuchthat?" . /p)? =" /p
chosen at step — 1.

Proof. We have[K (*"/p): K] = p" andv(Ag e ) = 7+ 1 — (1/p").

)
Hences(dO) NZ = {0}. On the other hand(Q(L|K)) 2 Z (e.9.6(w% tdmy) =
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—1 whererr] = p) henceHéllg(L|K) # 0. O
Second exampl@Ve owe this example to P. Colmez)

PROPOSITION 8.2.K, is not a de Rham extension at level 2.

Proof. We will prove that ifn. > 0 is an integer and is a primitivep™th root
of unity, then d /¢ is not ind(Ok_ ). Suppose not, and letcOg,  for some
m > n be such thatd = d¢/¢. Letn be a primitivep™th root of unity such that

m—n

nP = (. Thend = d¢/¢ = p™ "(dn/n) If denoter = n — 1 then
1 [e'S) o d—1 ]
— = z:(—l)zﬂ'Z = Z a;m",
T iZo i=0

whered = p™ — p™~1 = [Kp: K], anda; €O for all i andag—1 = 1 (mod p).
We also have = Y91 b;7?, with b; € O for all 5. Then

d—1 d—-1

0 = da — mfnd_n _ ( 1 i—1 __ . m—-n ) d

= p = § ;T p E a;m as
N i=1 i=0

d—2
= <<Z((z + 1)bjp1 — pm"ai)ﬂ'i> - pm"ad_lwdl> dr.

=0

Let us denote b/ := S 972((i + 1)b; 11 — p™ "a;) 7w — p" "ag_17@L Then
we havev(M) > v(Ag,,/x) hencev(M) > m. On the other hand, if we com-
pute directly(M) < v(p™ "aq_174"t) < m—n+1sowe get a contradictiorm

Il. EXAMPLES OF DEEPLYRAMIFIED EXTENSIONS WHICH ARE DE RHAM AT LEVEL
TWO

Letep > 0 be a real number anid an algebraic extension éf.

DEFINITION 8.1. We say(L, o) has propertyx) if there exists{3,, },>1 with
Bn € Or, suchthatif,, # 0andd(8,, —pSn+1) =min (0,0(5,)+eo) foralln > 1.

PROPOSITION 8.3.The following are equivalent

(1) L has property(x).

(2) forall £ > O(L, ¢) has property(xx).

(3) there existsg > 0 such that(L, eg) has property(sx).

COROLLARY 8.2. Letqg = p",n > 2, then if we denoté;, the unique unramified
extension of), with residue field withy elements(F,)* has property(x), where
(F,)® denotes the maximal Abelian extensiodpf
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Proof. Let us consider the Lubin—Tate extensionsHf given by roots of

Gm(x) = (f™(x)/ ™ (x), where
flx)=2"+pz and f"(z)=fofo- o f(x)

m times

Choose for alin a root(,, of ¢,, such that3,, = f(G,+1) for m > 1. From the
equa"tyﬁgn +pBm = Bm-1We ge@'ﬂgz_ldﬂm +pdBm = dBm-1. BUtpz/q’ hence
5(Qﬂgz_ldﬂm) > 6(pdBm) = 6(Bm—1). Henc&(Bm—1— pPm) = 5(Qﬁgn_ldﬁm) =
min {0,1 + §(Bm—_1)}- Therefore((F,)®, 1) has propertyxx). 0

Proof of Proposition 8.3Clearly (1) = (2) and (2)=- (3). We will show
that (3) = (1). Letey > 0 be such thatL,so) has property(xx). It is clear
thatQp, /0, Is p-divisible (as ifudv € Qp, /0, , then there existag such that
3(Bry) < d(v) — 1 hencedv = ~odfB,, With v(y0) > 1. So we haveudv =
p(u1dB,,) Whenyy = (yo0/p) € Op). It would be enough to show thdt is de
Rham or in other words that O, — Qp, /0, is surjective. We will show using
induction onr € N* that everyudv € Qp, /0, With d(udv) > —reg is in Imd.
r = 1 Letudv € Qp, /0, be such thab(udv) > —eo. Chooseng such that
d(v) > d(Brn,) andyo € Of such thatdv = ~odfF,,. SOudv = uyedf,,. But
d(udv) > —eo, henced(8,,) = —eo — v(uyo). Now (L, eg) has property(*x) so
5(ﬁno - pﬁno-i—l) > min (07 _’U(uPYO)) and SOUVO(dﬁno - pdﬁno-l—l) = 0. We get
udv = puyodfn,+1. Use the same reasoning several times and get

udv = PZU’YodﬁnoJrz == me’YOdﬂnoer

until p™u~o e(’)(Ll) (or d(p™u~yo) = 0). But nowudv = d(p™urofBny+m) and the
caser = lis proved. Suppose we have proved the statementod let us prove it
forr+1. Letudv € Qp, )0, be such thai(udv) > —(r+1)eo. Chooseyo, no such
thatudv = uyodBy,- 6(Bny) = —(r+1)eo—v(uv0). HENC& (5, — pfny+1) = min
(0, —reg — v(uv0)). S0 (uyo(dBn, — PdBne+1)) = —reo. HeNce, by the induction
hypothesis, there exists € Oy, such thatuyo(df,, — pdfny+1) = dz1. SO as
beforeudv = dz1 + uyopdBno+1 = - - = dz1 + - - - + dzp, + wyop" dBny+m With

uyop™ € (’)(Ll). Henceudv € Imd. 0

I1l. SOME OPEN PROBLEMS

Among the numerous problems which might become subjects for further work, we
state the following two:

(1) Is there any connection between the deep ramification property at different
levels?

In particular, are there proper subsdafsof N with the following property: If
we assume in Theorem 0.2(ii) (b) only thais de Rham at all levels and that it is
deeply ramified at any level in \/, thenL is deeply ramified at all levels?
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(2) Corollary 8.2 shows that i, is an unramified extension @f,, F, # Qp,
then the maximal Abelian extension 6} satisfies the Galois correspondence at
level 2. Doeq(F,)? satisfy the Galois correspondence at higher levels provided,
say, Fy is large enough?

This would imply thatK ® satisfies the Galois correspondencéjf),.
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