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Abstract. This paper is concerned with the properties of differential-geometric-
type Poisson brackets specified by a differential operator of degree 2. It also considers
the conditions required for such a Poisson bracket to form a bi-Hamiltonian structure
with a hydrodynamic-type Poisson bracket.

1. Introduction. One defines a Poisson bracket on an n-dimensional manifold M
as a map C∞(M) × C∞(M) → C∞(M), ( f, g) �→ { f, g}, satisfying, for any functions
f, g, h on M

(1) anti-symmetry: {f, g} = −{g, f };
(2) linearity: {af + bg, h} = a{f, h} + b{g, h} for any constants a, b;
(3) product rule: {fg, h} = f {g, h} + g{f, h}; and
(4) Jacobi identity: {{f, g}, h} + {{g, h}, f } + {{h, f }, g} = 0.

The first three conditions identify {·, ·} as a bivector: a rank two, anti-symmetric,
contravariant tensor field ω on M. It can therefore be represented, by introducing
coordinates {ui} on M, as a matrix of coefficients ωij , giving

ω = ωij ∂

∂ui
⊗ ∂

∂uj
= 1

2
ωij ∂

∂ui
∧ ∂

∂uj

and

{f, g} = ωij ∂f
∂ui

∂g
∂uj

. (1)

The Jacobi identity places the following constraint on the components of ω:

ωir ∂ωjk

∂ur
+ ωjr ∂ωki

∂ur
+ ωkr ∂ωij

∂ur
= 0. (2)

If the matrix ωij is non-degenerate, we may introduce its inverse ωij , satisfying
ωirω

rj = δ
j
i . The Jacobi identity for ωij is equivalent to the closedness of ωij .

One may also introduce Poisson brackets on infinite-dimensional manifolds. The
loop space of a finite-dimensional manifold M, L(M), is the space of smooth maps
u : S1 → M. Poisson brackets relating Hamiltonians to flows in L(M) will therefore
act on functionals mapping L(M) → �. In [4, 5], Dubrovin and Novikov studied the
so-called Poisson brackets of differential geometric type, which are of the form

{f, g} =
∫

δf
δui

Pij

(
δg
δuj

)
dx, (3)
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where ui are coordinates on the target space M and x is the coordinate on S1. Pij is
a matrix of differential operators (in d/dx), with no explicit dependence on x, which
is assumed to be polynomial in the derivatives ui

x, ui
xx , . . . . If {·, ·} defines a Poisson

bracket on the loop space, then P is referred to as a Hamiltonian operator.
There is a grading on such operators, preserved by diffeomorphisms of M, given

by assigning degree 1 to d/dx and degree n to the nth x-derivative of each field ui. An
important class is the hydrodynamic-type Poisson brackets, which are homogeneous
of degree 1:

Pij = gij (u)
d

dx
+ �

ij
k (u)uk

x.

According to the programme set out by Novikov [10], differential-geometric-type
Poisson brackets on L(M) should be studied in terms of finite-dimensional differential
geometry on the target space M. When expanded as a polynomial in d/dx and the
field derivatives, the coefficients, which are functions of the fields ui alone, can often be
naturally related to known objects of differential geometry or else used to define new
ones. In the hydrodynamic case, for instance, with gij non-degenerate, P is Hamiltonian
if and only if gij is a flat metric on M, and �k

ij = −gir�
rk
j are the Christoffel symbols

of its Levi-Civita connection.
This paper is concerned with Hamiltonian operators which are homogeneous of

degree 2. Section 2 describes the geometry of such operators. Section 3 considers the
properties of inhomogeneous Hamiltonian operators containing degree 1 and degree 2
parts. We refer the interested reader to [7] for further details and proofs.

2. Hamiltonian operators of degree 2.

DEFINITION 2.1. By a Hamiltonian operator of degree 2 we mean a differential
operator of the form

Pij = aij

(
d

dx

)2

+ bij
k uk

x
d

dx
+ cij

klu
k
xul

x + cij
k uk

xx (4)

in which the matrix aij is assumed to be non-degenerate and which defines a Poisson
bracket by formula (3). We shall call such an operator an H2O for short.

Such operators have been considered already in, for example, [3, 9, 10, 12].
Amongst the material discussed in these papers there is a conditional Darboux theorem
stipulating under what circumstances (4) may be put into constant form by a coordinate
transformation. The approach taken in these papers is to consider the operator in a
special coordinate system in which the coefficients cij

k and cij
kl both vanish; this is

unsuitable for a discussion of bi-Hamiltonian structures, and as such we present the
results of this section without the use of special coordinates.

The behaviour of the coefficients aij , bij
k , cij

k and cij
kl under a change of coordinates

ũi = ũi(up) can be determined from the transformation rules for Pij . This reveals that
aij transforms as a rank 2 contravariant tensor, whilst bij

k and cij
k behave as

bij
k = −2air�̄

j
rk

and

cij
k = −air�

j
rk,
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where the objects �k
ij and �̄k

ij are the Christoffel symbols of affine connections. We
denote the connection with Christoffel symbols �k

ij by ∇ and denote by aij the inverse

of aij defined by airarj = δ
j
i . The final coefficient transforms as

c̃ij
kl = ∂ ũi

∂up

∂ ũj

∂uq

∂ur

∂ ũk

∂us

∂ ũl
cpq

rs + ∂ ũi

∂up

∂ ũj

∂uq

∂2ur

∂ ũk∂ ũl
cpq

r + ∂ ũi

∂up

∂2ũj

∂uq∂us

∂ur

∂ ũ(k

∂us

∂ ũl)
bpq

r

+ ∂ ũi

∂up

∂3ũj

∂uq∂ur∂us

∂ur

∂ ũk

∂us

∂ ũl
apq + ∂ ũi

∂up

∂2ũj

∂uq∂ur

∂2ur

∂ ũk∂ ũl
apq,

where the brackets denote symmetrisation, and thus does not correspond to any
standard object of differential geometry.

We may now write the condition of skew symmetry and the Jacobi identity in an
invariant manner.

THEOREM 2.2. An operator P of the form (4) defines a Poisson bracket by equation
(3) if and only if

(a) aij = −aji,
(b) ∇kaij = bij

k − 2cij
k ,

(c) air(bjk
r − 2cjk

r ) = akr(bij
r − 2cij

r ) ,
(d) ∇ is flat (zero torsion, zero curvature),
(e) cij

kl = cij
(k,l) − aprcri

(kcpj
l) .

From conditions (b) and (e) of Theorem 2.2 we can see that when Pij is
Hamiltonian, the coefficients cij

kl and bij
k are determined by aij and cij

k . Thus we
can characterise H2Os in terms of just these latter two objects.

COROLLARY 2.3. There is a one-to-one correspondence between H2Os on L(M) and
pairs (a,∇) on M consisting of a non-degenerate bivector aij and a torsion-free connection
∇ satisfying two conditions: firstly, the curvature of ∇ vanishes, and secondly,

air∇rajk = ajr∇raki. (5)

The Christoffel symbols, �k
ij , of ∇ are related to cij

k by cij
k = −air�

j
rk. We then have

bij
k = ∇kaij + 2cij

k ,

cij
kl = cij

(k,l) − aprcri
(kcpj

l) .

If we consider, as a simple case, an operator (4) in which the coefficients cij
k

are constant and ∇kaij = 0, and if we allow bij
k and cij

kl to be defined, from aij and
cij

k according to Corollary 2.3, then we have aij = Aij
k uk + Aij

0 , where Aij
k , Aij

0 are
constants with Aij

k = cij
k − cji

k , and the operator is Hamiltonian if and only if

cij
r crk

l = −cik
r crj

l ,

Air
l cjk

r = Ajr
l cik

r

and Air
0 cjk

r = Ajr
0 cik

r . (6)
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If we take an algebra A with basis {e1, . . . , en}, n = dimM, and use cij
k and Aij

0 to
define a multiplication, ◦, and skew-symmetric bilinear form, 〈·, ·〉, by

ei ◦ ej = cij
r er

and

〈ei, ej〉 = Aij
0 ,

then we may rewrite equations (6) as

(I ◦ J) ◦ K = −(I ◦ K) ◦ J, (7)

�(I, J, K) = �(J, I, K) and (8)

〈I, J ◦ K〉 = 〈J, I ◦ K〉, (9)

for all I, J, K ∈ A, where � is the associator of ◦ : �(I, J, K) = (I ◦ J) ◦ K − I ◦ (J ◦ K).
Algebras satisfying conditions (7) and (8) have appeared before in [13], in the

context of linear hydrodynamic Hamiltonian operators taking values in a completely
odd superspace, where the following definition was proposed.

DEFINITION 2.4. An algebra (A, ◦) satisfying conditions (7) and (8) is called a
Fermionic Novikov algebra.

In [1] Fermionic Novikov algebras in dimensions 2–5 were studied, and the listing
therein provides a source of examples of Hamiltonian operators of degree two.

EXAMPLE 2.5.

P =

⎛
⎜⎜⎜⎜⎝

0 0 0 a

0 0 −a −b − (t − 1)u1

0 a 0 c − u2

−a b + (t − 1)u1 −c + u2 0

⎞
⎟⎟⎟⎟⎠

(
d
dx

)2

+ 2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 u1
x

0 0 −u1
x 0

0 τu1
x u2

x u3
x

⎞
⎟⎟⎟⎟⎠

(
d
dx

)
+

(
1
a

)
⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 (u1
x)2

0 0 −(u1
x)2 0

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 u1
x

0 0 −u1
xx 0

0 τu1
xx u2

xx u3
xx

⎞
⎟⎟⎟⎟⎠

is Hamiltonian for all values of the constants a, b, c and τ with a 
= 0. This is the most
general Hamiltonian operator associated in the manner discussed above to the algebra
designated (44)τ in [1].
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The Darboux theorem for H2Os is given in [12] and states that P can be put in the
constant form

Pij = ãij

(
d
dx

)2

,

where ãij is constant, if and only if the two form aij inverse to aij is closed. The
following result elucidates this somewhat.

COROLLARY 2.6. For an H2O, the following three statements, presented in both
covariant and contravariant forms, are equivalent:

(1) The two-form aij is closed (and so symplectic), or equivalently aij satisfies
equation (2) (and so defines a Poisson bracket on M by equation (1));

(2) ∇kaij = 0, i.e. ∇kaij = 0;
(3) bij

k = 2cij
k , i.e. �k

ij = �̄k
ij .

Proof. We see, from the characterisation of H2Os given in Corollary 2.3,

aij is Poisson ⇐⇒ airajk
,r + ajraki

,r + akraij
,r = 0

⇐⇒ air∇rajk + ajr∇raki + akr∇raij = 0

⇐⇒ 3akr∇raij = 0

⇐⇒ ∇kaij = 0,

⇐⇒ bij
k = 2cij

k . �

This means that if the H2O can be put into a constant form, then the pair (a,∇)
associated with it by Corollary 2.3 can be replaced by a pair (ω,∇) consisting of a
symplectic form ω (the inverse of aij ) and a flat connection ∇ satisfying ∇ω = 0, i.e. a
flat symplectic connection (see, for example, [2]). In [7] such a pair (ω,∇) was referred
to as a Fedosov structure.

3. Second-order deformations of hydrodynamic type poisson brackets. We now
consider a pair of operators, P1 and P2 in which P1 is a Hamiltonian operator of
hydrodynamic type and P2 is of second order, i.e.

Pij
1 = gij d

dx
+ �

ij
k uk

x,

Pij
2 = aij

(
d

dx

)2

+ bij
k uk

x
d

dx
+ cij

klu
k
xul

x + cij
k uk

xx ,

where gij is the inverse of a flat metric gij on M and �
ij
k = −gir�

j
rk, where the �k

ij are

the Christoffel symbols1 of the Levi-Civita connection of g. We also assume that Pij
2

is anti-symmetric, so that aij = −aji, bij
k = aij

,k + cij
k + cji

k and c(ij)
kl = c(ij)

(k,l). (We do not

assume Pij
2 satisfies the Jacobi identity.)

The motivation [6] for studying such pairs of operators comes not from regarding
them as separate Hamiltonian operators but from thinking of Pij

2 as a first-order

1In the previous section we used �k
ij for the Christoffel symbols associated with cijk ; in this section �k

ij and

�
ij
k will always refer to the Levi-Civita connection of g.
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(dispersive) deformation of Pij
1 into some non-homogeneous Hamiltonian operator

Pij = Pij
1 + εPij

2 + O(ε2). Thus, in such a pair, it is sensible to regard the geometry of
Pij

1 as being more intrinsic than any associated to Pij
2 .

We choose to work in flat coordinates for g so that gij is constant and �
ij
k = 0.

Direct calculation of the Jacobi identity for Pij in these coordinates yields the following.

THEOREM 3.1. P2 is an infinitesimal deformation of P1; i.e. Pij = Pij
1 + εPij

2 + O(ε2)
satisfies the Jacobi identity to order ε if and only if

(a) gircjk
r + gjrcik

r = 0,
(b) cij

kl = cij
(k,l),

(c) gircjk
l,r = gjr(cik

l,r − cik
r,l) and

(d) gir(ajk
,r − cjk

r ) + gjr(aki
,r − cki

r ) + gkr(aij
,r − cij

r ) = 0
in the flat coordinates for gij .

PROPOSITION 3.2. If P2 is an infinitesimal deformation of P1, then there exists a
tensor field Ai

j such that

aij = girAj
r − gjrAi

r,

bij
k = 2gisAj

s,k − gjrAi
k,r − gisAj

k,s,

cij
kl = gisAj

s,kl − gisAj
(k,l)s,

cij
k = gisAj

s,k − gisAj
k,s (10)

in flat coordinates for gij . Further, any (1,1)-tensor field Ai
j produces an infinitesimal

deformation of P1 by the above formulae.

Proposition 3.2 may be understood as asserting the existence of an evolutionary
vector field

e = Ai
j (u(x)) uj

x(x)
∂

∂ui(x)
+ · · · ,

satisfying P2 = −LeP1 whenever P2 is an infinitesimal deformation of P1. This is
therefore not a surprising result; in [8] Getzler showed the triviality of infinitesimal
deformations of Hydrodynamic-type Poisson brackets.

There is a freedom in Ai
j of Ai

j �→ Ai
j + girf,rj for some function f , which does not

affect the coefficients of P2. This corresponds to adjusting e by a Hamiltonian vector
field, e �→ e + P1(δf ).

If, with reference to Corollary 2.6, we impose the additional constraint on (10)
that bij

k = 2cij
k , then we have the potentiality condition gjrAr

k,i = girAr
k,j, so that there

exists a one-form Bk such that

Ai
j = girBj,r. (11)

In this case aij = girgjr(Br,s − Bs,r) = girgjr(dB)rs; so aij and gij together define the
exterior derivative of B. This means that they define B to within the exterior derivative of
a function; however, the freedom B �→ B + df corresponds to changing Ai

j to Ai
j + girf,rj

and as such has no effect on the coefficients of P2. So, given aij and gij , if we wish to
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have bij
k = 2cij

k , then cij
k and cij

kl are determined uniquely. In fact we may write explicitly

cij
k = gjsgkr

∂air

∂us
, cij

kl = cij
(k,l), (12)

and with this, P2 is an infinitesimal deformation of P1 if and only if

girajk
,r + gjraki

,r + gkraij
,r = 0, (13)

which is equivalent to the closedness of the two-form

φij = girgjsars.

COROLLARY 3.3. Given a flat metric g and a symplectic form ω, there is at most one
choice of flat symplectic connection ∇ such that the H2O specified by (ω,∇) is compatible
with the hydrodynamic operator specified by g.

One must check that the operator

Pij
2 = ωij

(
d
dx

)2

+ 2cij
k uk

x
d
dx

+ cij
klu

k
xul

x + cij
k uk

xx

with coefficients given by substituting ωij into (12) is Hamiltonian by Theorem 2.2.
If it is, then compatibility with P1 will follow immediately, since equation (13) is a
consequence of the anti-symmetry of P2.

We conclude this section with an example of this type.

EXAMPLE 3.4. The Kaup–Broer system [11],

(
u1

t

u2
t

)
=

(
u1
xx + 2u2

x + 2u1u1
x

−u2
xx + 2(u1u2)x

)
,

is described by the pair of compatible Hamiltonian operators

P1 =
(

0 1
1 0

)
d

dx
,

P2 =
(

0 1
−1 0

) (
d

dx

)2

+
(

2 u1

u1 2u2

)
d

dx
+

(
0 u1

x
0 u2

x

)
.

Scaling x �→ εx, t �→ εt splits P2 into P(1)
2 + εP(2)

2 , where

P(1)
2 =

(
2 u1

u1 2u2

)
d

dx
+

(
0 u1

x
0 u2

x

)
,

P(2)
2 =

(
0 1

−1 0

) (
d

dx

)2

.

Since P2 = P(1)
2 + εP(2)

2 is Hamiltonian for all ε, P(1)
2 and P(2)

2 constitute a bi-
Hamiltonian structure of the type considered above. A set of flat coordinates for
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the metric in P(1)
2 are

ũ1 = u1,

ũ2 =
√

4u2 − (u1)2,

in which

P̃(1)
2 =

(
2 0
0 2

)
d

dx
,

P̃(2)
2 = 2

ũ2

(
0 1

−1 0

) (
d

dx

)2

+ 4
(ũ2)2

(
0 −ũ2

x

0 ũ1
x

)
d

dx

+ 4
(ũ2)3

(
0 (ũ2

x)2

0 −ũ1
xũ2

x

)
+ 2

(ũ2)2

(
0 −ũ2

xx

0 ũ1
xx

)
.

So in this situation we have, for the one-form in (11),

B = ũ1

2ũ2
dũ2.
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