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Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with
technological advancements that make it simple to deploy study designs such as daily diary and ecological
momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day),
over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral
processes.One powerful framework for analyzing ILdata is state-spacemodeling,where observed variables
are considered measurements for underlying states (i.e., latent variables) that change together over time.
However, state-space modeling has typically relied on continuous measurements, whereas psychological
data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we
develop a general estimation approach for state-space models with ordinal measurements, specifically
focusing on a graded response model for Likert scale items. We evaluate the performance of our model
and estimator against that of the commonly used “linear approximation” model, which treats ordinal
measurements as though they are continuous. We find that our model resulted in unbiased estimates
of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state
dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that
these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent
bias.

Key words: state-space modeling, intensive longitudinal data, ecological momentary assessment, ordinal
measurements, item response theory, particle filtering.

Intensive longitudinal data in psychological and behavioral sciences typically consist of
self-report, behavioral and/or psychophysiological data collected multiple times a day for mul-
tiple participants. There are a number of study designs that produce intensive longitudinal data,
such as daily diary studies, experience sampling, and ecological momentary assessment. In this
manuscript, we develop the estimation approach for modeling intensive longitudinal data in the
state-space framework while accounting for the presence of ordinal measurements such as Likert
scale-type items. Our motivating example of a study design that produces intensive longitudinal
data is that of ecological momentary assessment, a design that is increasingly used in the study of
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psychopathology; however, we note that the state-space approach is appropriate for the modeling
of any intensive longitudinal data.

Ecological momentary assessment (EMA) is a type of intensive time series in which data
are gathered in the participants’ natural environments, typically multiple times a day over several
days. This results in strong ecological validity of measurement as, in theory, the data reflects the
participants’ lived experience rather than the effects of a lab. In addition, a benefit of EMA is that
it has the ability to capture the near real-time dynamics of the phenomenon under study, rather
than offering mere snapshots, as is the case with laboratory-based designs or more traditional
longitudinal designs (Wright et al., 2021) . The dynamic relationships of psychological variables
and behavior can be tracked in near real time in EMA. For instance, consider the relationship
between stress and cigarette smoking. In a laboratory study, the participant would be required
to recall when they were stressed, when they smoked, and if there was a link between the two
(Mote & Fulford, 2020) . For EMA, the need for retrospective recall is eliminated as stress and
cigarette smoking can be tracked in near real time via smartphone-based EMA data collection.
EMA studies of psychopathology have been increasing in the last few years (Stumpp et al., 2023;
Saulnier et al., 2022; Seidman et al., 2022) due to both the increased ubiquity of smartphones
and the theoretical turn toward complex systems depictions of psychopathology. Of course there
are a number of disadvantages to an EMA approach relative to other protocols. Notably, EMA
studies are high in participant burden, making recruitment and, in particular, retention difficult.
EMA studies, by dint of having more naturalistic data collections, do not allow for the same level
of experimental control as laboratory studies. Finally, due to the high participant burden, there is
a limit on the number of items that can be administered in any given “ping,” making the careful
selection of psychometrically valid items an extremely important aspect of study design.

EMA data can be modeled in a variety of ways from observed variable time series models to
mixed effects models. Here, we use a general framework that represents observed time-varying
variables as indicators of underlying, latent state variables: the state-space model (Durbin &
Koopman, 2012) . Using this framework/model, the temporal dynamics of the psychological
phenomenon under study are wholly determined by the temporal relations between the states,
which are then “measured” by the observed variables. As a general framework, state-spacemodels
can allow for nonlinear relations and unequal time intervals between data collections, but the key
benefit of the state-space approach relevant to the work presented here is the ability to account
for different measurement types. State-space modeling has been used to study psychological
phenomena previously, and we refer readers to the works of Oud et al. (1999), Browne and
Nesselroade (2005), Chow et al. (2009), Song and Ferrer (2009) as representative methodological
work in this space.

EMA data can be collected in a variety of modalities from psychological batteries (Levinson
et al., 2023) to physiological/biological assay data (Ditzen et al., 2008) . One common type
of data collected in EMA studies (and more broadly in psychological or behavioral studies) are
ordinal responses. Generally speaking, an ordinal variable is one where the values of the variable
can be rank-ordered, but the numerical distance between the values is not defined. The best way of
illustrating this is via example. One common example of an ordinal variable is a Likert scale item,
which, with 5 responses might have the following options: 1—strongly disagree, 2—disagree,
3—no opinion, 4—agree, 5—strongly agree. While the numerical values can be ordered based on
the strength and direction of the agreement, the theoretical distance between 1—strongly disagree
and 2—disagree is not necessarily the same distance between 2—disagree and 3—no opinion.
Similarly, another ordinal type item would be a binned count of substance use: 0—no use, 1—1–2
drinks, 2—3–5 drinks, 3—5+ drinks. Here, the distances between the response categories are
prima facie unequal and ill-defined. The issue with ordinal items is, of course, that they are not
continuous.Most analyticmethods commonlyused in psychological science treat ordinal variables
as continuous (indeed, the above references for state-spacemodeling applied to psychological data
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all make use of this approximation), and previous work on the quality of this approximation has
shown that this results in decreased true positives, increased false positives, and biased effect size
estimates in a simulation study where parameter values were known (Liddell & Krushke, 2017)
. In this manuscript, we develop a general estimating approach for state-space models with non-
continuous outcomes, and show how this estimating approach can be used to fit state-spacemodels
with ordinal outcomes using graded response model measurements. We evaluate the performance
of our approach in a simulation study against that of the linear approximation approach that is
commonly used in analyzing psychological data.

The remainder of this paper is structured as follows: We begin with an overview of the
state-space modeling framework and discuss specific technical issues that arise during model
estimation. We then describe the ordinal outcome state-space model that is the core contribution
of this manuscript. Following that, we describe the four central issues and solutions that make
estimating these models feasible: model identification, state filtering, parameter estimation and
standard error approximation.

Following the technical description of the model and its estimation methods, we present
a simulation study that evaluates the performance of the proposed estimation method and how
well a linear approximation approach (i.e., what is most typically used when analyzing ordinal
psychological data) can recover state dynamics. Next, we demonstrate the use of this method on
an empirical dataset, and compare with the performance of the linear approximation approach.
We close with a discussion of the modeling approach and its current limitations, as well as a
discussion of future directions in this methodological space.

1. State-Space Models

State-space modeling is a general framework for representing a dynamical process of latent
variables (states) which have observed variables as their measurements (Durbin & Koopman,
2012; Kalman, 1960) . While the state-space modeling framework can be seen as related to
dynamic structural equation modeling, particularly when both the latent states and the measured
variables are normally distributed with linear dynamics (Asparouhov et al., 2018) , the state-
space approach is a broader framework than dynamic structural equation modeling. State-space
models allow for, in theory, nonlinear dynamics andnon-normally distributed states/measurements
(Durbin & Koopman, 2012) , though most current implementations of state-space models lack
the same capability as DSEM for simultaneous multi-participant models.

A simple example of a state-space model is that of a discrete-time, time-invariant, normal-
state-normal-measurement with linear state dynamics, which can be described with the following
equations:

xt+1 = Axt + εt (1)

yt = Cxt + ςt (2)

εt ∼ Np(0,�) (3)

ςt ∼ Nq(0,�) (4)

where xt is a p-dimensional vector of state values at time t = 1, 2, . . . , yt is a q-dimensional
vector of observed measurements at time t = 1, 2, . . . , A is a p × p matrix that governs the
dynamics of the states over time, C is a q × p matrix of state-measurement loadings, ε is the
multivariate normally distributed disturbance term with mean 0 and covariance matrix �, and
ς is the multivariate normally distributed measurement error term with mean 0 and covariance
matrix �.
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To unpack the description of this model as “discrete time, time invariant, normal state-normal
measurement with linear state dynamics”: Discrete time refers to the equally spaced intervals
with respect to t . In a discrete time state-space model, the time interval between measurements is
assumed to be constant (and therefore ignorable). Time invariant refers to the various parameter
matrices (A,C,�,�) not varying as a function of t . Normal state-normal measurement corre-
sponds to the use of multivariate normal disturbance and measurement error distributions, while
the linear state dynamics refer to the use of Axt as the state dynamics.

It is important to note that each one of these assumptions can, in theory if not in practice,
be relaxed. State-space models can be proposed in continuous time as differential equations,
allowing for unequally spaced intervals (Oud & Jansen, 2000) . All parameters can be made
to be time-varying (Fisher et al., 2022) , while states and measurements can have non-normal
marginal distributions (Kitagawa, 1987) . Finally, nonlinear state dynamics are also possible to
represent in the state-space modeling framework (e.g., instead of linear multiplication Axt , the
state dynamics can be a nonlinear function f (A, xt )) (Kitagawa, 1996) .

However, as with any complex modeling approach, the devil is in the (estimation) details.
State-space modeling originated in an engineering context (Kalman, 1960) , with some of the
first public use cases being for the navigation and control of the Apollo space mission (McGee &
Schmidt, 1985) . In an engineering context, the model parameters are often considered fixed and
known, and the interest is in online estimating the trajectories of the states in real time.Additionally,
within the engineering context the measured variables, while not necessarily normally distributed,
tend to be continuously distributed, which simplifies estimation considerably. The estimation of
the state values is known as prediction, filtering or smoothing, depending on if the states are
estimated using only previous state estimates, previous state estimates and current measurements,
or all state estimates and measurements past and future, respectively. In the context of parameter
estimation, filtering is the most relevant, and we will focus our discussion on filtering in this
manuscript.

The first filtering approach, the Kalman filter (Kalman, 1960) , was developed for models
of the form described in Eqs. 1–4 and provides an analytic solution to estimating the expected
value of states at each timepoint. Since its development, the Kalman filter has been extended
to continuous time models (Kalman-Bucy; Kalman & Bucy, 1961), nonlinear state dynamics
(Extended Kalman; Sorenson, 1985), nonlinear measurement functions (Unscented Kalman;Wan
& Van Der Merwe, 2000), and regime-switching state-space models (Kim-Nelson Filter Kim &
Nelson, 2017), to name just a few of the variants. It is important to note here that all of these
analytic filters assume that the measurements are continuous. Filtering when measurements are
discrete/categorical requires the use of a different class of methods, which will be discussed later
in this manuscript.

Parameter estimation (or system identification as it can be known) is a rarer need in most
common applications of state-space models, but is extremely important when applying state-
space models to psychological or behavioral data. In the case of the model described in Eqs. 1–4,
the Kalman filter permits a prediction error decomposition approach to calculating the likeli-
hood directly. This in turn allows for gradient-based optimization; however, relaxing the various
assumptions of that model quickly results in intractable likelihood expressions (Durbin & Koop-
man, 2012) . Additionally, state-space models tend to have ill-behaved likelihood surfaces due
to weakly identified parameters (Ionides et al., 2015) , making gradient-based approaches to
optimization difficult, if not impossible, outside of a restricted subset of model types.
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2. Ordinal Measurement State-Space Models

As stated previously, the issue with ordinal measurements in a state-space modeling frame-
work is that they are not continuous. This in turn makes most analytic filtering approaches, such
as traditional Kalman filtering and the aforementioned variants, inappropriate. Applying standard
approaches for fitting state-space models to ordinal outcomes is analogous to the use of fitting
linear regression models to dichotomous data (and for that matter, fitting linear regression models
to Likert type data). In the current manuscript, we refer to the use of continuous outcome state-
space methods on ordinal data as the linear approximation approach, and note that this linear
approximation approach is used in many applications of state-space modeling to psychological
data.

Before developing our framework for ordinal measurement state-space models, there are
several previous approaches to estimating state-space models for ordinal data that need to be
discussed. Broadly, previous work in this area falls into two categories: Bayesian-based methods
and the work of van Rijn (2008) which extends the work of Fahrmeir and Tutz (2001).

State-space models with ordinal/categorical outcomes have been proposed under a Bayesian
estimation framework by a number of authors (Wang et al., 2013; Chaubert et al., 2008) . The
Bayesian approach permits flexible measurement distributions as well as arbitrary state dynamics
(up to the limits of identification) using MCMC-based estimating techniques such as Metropolis-
Hastings and/or conditional Gibbs sampling. However, the cost of this flexibility is in computation
time and the need to specify priors for each parameter. This combination of computational needs
with the need for expertise in Bayesian model specification makes the application of state-space
modeling with ordinal outcomes difficult for the applied scientist. That being said, Bayesian
estimation allows for bespoke models to be constructed and estimated in situations where fre-
quentist estimation has difficulties, and the computational aspects of Bayesian estimation might
be relieved with more efficient sampling methods such as Hamiltonian MCMC (Neal, 1996)
and/or variational methods (Blei et al., 2017) . As the goal of the current manuscript is to develop
a standard frequentist estimation framework for these models, we will put the prior work on
Bayesian estimation aside while noting its usefulness and applicability for this general class of
models.

Related to Bayesian estimation of state-space models is the work of Asparouhov et al. (2018)
who have developed an approach to fitting dynamic structural equation models (DSEM). DSEM
can account for ordinal measurements by using probit measurement models. Probit measurement
models assume that the underlying latent state is normally distributed, and is mapped onto the
ordinal response categories via hard thresholds (e.g., if the state is below .5, y = 0, above .5
y = 1). The approach thatAsparouhov and colleagues describesmakes use ofBayesian estimation
methods inMplus (Muthén &Muthén, 1998) and additionally allows for the analysis of multiple
participant’s data via random effects. However, the probit model has hard thresholds, which in
turn assumes that there is nomeasurement error in the response process (i.e., once the participant’s
latent state is in a certain region, they will always respond with the same category.) Accounting
for measurement error in ordinal responses is better accomplished adopting methodology from
item response theory, which both the current work, and the work of van Rijn (2008) do.

The work of van Rijn (2008) comes closest to the goals of the current manuscript. In that
work, van Rijn applied the general estimation techniques from Fahrmeir and Tutz (2001), which
allows for dynamical systemswith exponential familymeasurement distributions, and is estimated
using an iterative Kalman filtering strategy. van Rijn, like the current paper, focused on graded
response type outcomes, which can be put in exponential family form. While this approach does
provide a consistent estimation framework, it has a number of disadvantages: First, it requires that
certain parameters, including the state dynamics (here, A) to be fixed or known. This is limiting
in an idiographic modeling context, as the interest is typically in the individual differences in the
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latent state dynamics. Second, the requirement of exponential family measurement distributions,
while broad enough to cover many different ordinal item measurement distributions, removes
from consideration a number of useful measurement distributions, most notably zero-inflated
distributions such as the zero-inflated negative binomial or zero-inflated Poisson. Finally, the
implementation of this technique requires analytic derivations for the measurement models, and
there are no open source implementations of the approach available (it must be noted that the
code from van Rijn (2008) is available from the author on request). On the other hand, our
implementation of the ordinal state-space model uses a measurement family-agnostic estimation
method, and does not require model parameters to be fixed and known (after model identification
has been achieved), and we offer an open-source implementation of the modeling framework
(Falk et al., 2023) .

Given the state of research on state-space models with ordinal measurements, our goal with
this project was to develop a general frequentist approach to fitting state-space models with
arbitrary measurement models. In this manuscript, we specifically develop our state-space models
for graded response (GR; Samejima 1997, ) measurements, a model that links an ordinal response
to an underlying continuous state via cumulative logistic functions. GR models were originally
developed (as most item response theory models are) in an educational assessment framework,
and the idea behind a GRmodel is to capture how differing levels of underlying ability correspond
to different proportions of the item being correct, with higher ability corresponding to more of the
item being correct. However, we note here that the estimation methods andmethods for producing
standard errors that we describe here are applicable to any measurement model, (for example,
zero-inflated distributions), after identification considerations have been made.

The GR outcome state-space model can be expressed in the following form:

xt+1 = Axt + εt (5)

εt ∼ Np(0, �) (6)

p(yit > j |xt ) = 1

1 + exp[−αi (δi (xt ) − βi j )] (7)

where xt , A, and εt are as previously described; yit is the i th ordinal measurement item, p(yit >

j |xt ) is the probability that the response of yit being greater than the j th response category given
the value of the states at t ; αi is the discrimination parameter for item i , βi j is the j th threshold
parameter for item i , and δi (xt ) is a p → 1 selector function that assigns each item to a single state.
The use of a selector function here is for notational clarity, and corresponds to the assumption that
items do not load onto multiple states. However, there is no explicit reason (beyond complexity)
for items to not be indicators of multiple states, we simply make that assumption here to reduce
computational complexity.

The probability of a response option j for item yi t is then:

p(yit = j |xt ) = p(yit > j |xt ) − p(yit > j − 1|xt ) (8)

with p(yit > 0|xt ) = 1. Figure1 shows probability curves across values ofxt for twofive-category
graded response items. These items were taken from the PROMIS depression battery (Pilkonis et
al., 2011) , which is an extensively validated and calibrated scale designed to collect high quality
data from patients in a medical setting. The top panel shows the responses for the item “In the
past 7 days, I felt hopeless”, with item parameters α = 4.46, and β = [.49, 1.00, 1.71, 2.46],
while the top panel shows the responses for the item “In the past 7 days, I felt pessimistic”, with
item parameters α = 2.38 and β = [−.53, .41, 1.47, 2.56].
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Figure 1.
Item response probabilities for two PROMIS depression items.

One key aspect of graded response items is that different items are more or less better at
measuring specific areas of the underlying scale. For example, the large α for the item “I felt
hopeless”, combined with the locations of that item’s β values shows that “I felt hopeless” has
the most optimal measurement when the underlying state is above around.5. The second item, “I
felt pessimistic”, has less discriminant measurement but captures a broader range of state values.

2.1. Identification and Estimation

In developing the estimation strategy for the GR outcome state-space models described
in Eqs. 5, 6, and 7, the first consideration we faced was how to identify the latent states. The
identification problem is a well-known issue in latent variable modeling from both a structural
equation modeling and item response theory perspective and refers to the fact that the location
and scale of a latent variable is, by definition, arbitrary, whereas with observed data, the location
and scale can be directly estimated (i.e., scale indeterminacy; Baker & Kim 2004).

In cross-sectional models using latent variables, the identification problem is solved by fixing
a factor loading to a specific value (usually 1) or by fixing a threshold in the probit approach to a
specific value, which corresponds with the latent factor taking on the same scale as the indicator,
or by fixing the variance of the latent variables to a constant (again, usually 1). Location is
easily identified by setting the expected value of the factor to a constant (usually 0). Additionally,
for Rasch type measurement models, where the item discrimination parameters are fixed, the
scale/location of the latent variables can be identified by fixing a single items threshold parameters,
or by constraining the average threshold parameters across items (usually to 0), as an alternative
to fixing the scale of the latent variable (Baker & Kim, 2004) .

While fixing itemparameters can identify theGR state-spacemodel, unfortunately, specifying
the scale of the latent states is more difficult, for the simple reason that the marginal distribution
of the states is not directly parameterized by Eqs. 5 and 6. The marginal distribution of xt for
all values of t is a function of the model dynamics A and the innovation covariance matrix �.
Specifically, xt ∼ N (0,�), where � can be calculated as follows:
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vec(�) = (I − A ⊗ A)−1vec(�) (9)

where vec(·) is the vectorizing operator and ⊗ is the Kronecker product1.
It is clear that the marginal variance of the states is dependent on the values of the A and

�, which in turn complicates estimation as the marginal variance of the states must be constant
throughout estimation else identification issues will arise. Unlike with cross-sectional modeling,
the marginal variance of the states cannot be fixed by setting values in one of� orA to a constant,
as the marginal variance of the states will still depend on the values of the other matrix. To account
for this, we use the following set of dynamic constraints. First, we assume that � and � have the
following forms.

� =

⎡
⎢⎢⎢⎢⎢⎣

1 γ12 γ13 · · · γ1N
γ12 1 γ23 · · · γ2N
γ13 γ23 1 · · · γ3N
...

...
...

. . .
...

γ1N γ2N γ3N · · · 1

⎤
⎥⎥⎥⎥⎥⎦

(10)

� =

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σN

⎤
⎥⎥⎥⎥⎥⎦

(11)

We assume that A results in a stationary process, which ensures that the marginal variance of
xt exists. These assumptions correspond to setting the scale of the states to 1, while allowing
for arbitrary between state marginal correlations. The assumption regarding � corresponds to the
state innovation processes being independent of one another, above and beyond the state dynamics
described by A.

From here, given permissible values for A, one can solve first for the off-diagonal elements
of � and then by solving for the diagonal elements of �. This can be easily accomplished using
selection matrices.

Let S be a selection matrix formed by the rows of a p2 × p2 identity matrix that correspond
to the location of the off-diagonal entries of � in vec(�), where p is the number of states. Let
vector c be the same length as vec(�) and consist of 1s in the locations of the diagonal elements
of 
 and 0s otherwise. Let vec(�)∗ be a vector formed by only the off-diagonal elements of �.
This vector can be expressed purely as a function of A:

vec(�)∗ = −(S(I − A ⊗ A)ST )−1S(I − A ⊗ A)c. (12)

One can then reconstruct the full vec(�) using vec(�) and use Eq9 to solve for the diagonal
elements of �.

While this identification technique is computationally expensive, as it requires solving sys-
tems of equations whenever A is changed, it has a significant advantage: because the model is

1This function is slightly different when dealing with continuous time models where the state dynamics are in
differential equation form: ẋt = Axt + εt . Here, the function is vec(�) = (A⊕A)−1vec(�), where ⊕ is the Kronecker
sum (Vatiwutipong & Phewchean, 2019) .
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identifiedwithout fixing values in themeasurementmodel, estimated values ofA are directly com-
parable for any measurement model. For example, we use this property later in this manuscript to
directly compare A estimates when the measurement model is the correct GR model vs. a linear
approximation.

2.1.1. Estimation Issues and a 2-Step Solution The above procedure for identifying the GR
state-space model by constraining the marginal variance of the states to 1 allows for the item
parameters (β, and in theory, α) to be estimated along with the parameters for state dynamics
(A). The simulation study below uses this identification constraint to estimate both the state
dynamics and the measurement threshold parameters (β) successfully. However, as we found in
our empirical analysis presented below in Section 7, real data can pose a number of difficulties
for estimating both the state dynamics and measurement parameters simultaneously.

The first issue to discuss is that of how empirical under-identification intersects with the
specifics of the estimation approach we use (MIF2; Ionides et al., 2015, described in detail in the
next sections,) to lead to convergence issues. Here, empirical under-identification refers to the
case where there is a marked imbalance in the response categories (e.g., only 1 or 2 instances
of response category 7 on a 7 point Likert scale). This in turn makes estimating the threshold
parameter associated with that response category difficult in the sense that there is not much
information to inform the estimation. In a gradient based estimation approach, the MLE can still
be consistently found, but the standard error of that parameter will be high, reflecting the lack
of information. In the case of the algorithm we use, this situation leads to convergence issues,
as the likelihood surface can be thought of as nearly “flat” in the neighborhood of the MLE.
While Ionides et al. (2015) does prove that MIF2 converges asymptotically to the MLE, the rate
of convergence is unknown and highly dependent on the specific tuning of the estimation. As
such, the empirical under-identification can lead to issues with convergence in all parameters that
in theory can be solved by carefully tuning the estimation procedure; in practice, this tuning is
difficult and time consuming for an applied researcher to do.

The second issue with estimating the measurement parameters simultaneously with the state
dynamics is conceptual: The GR state-space model as presented here is an idiographic model
suitable for analyzing participant’s timeseries data separately. This means that the item measure-
ment parameters estimated will be idiographic in nature, and that inter-individual differences in
the state trajectories will be reflected in those measurement parameters. To put it simply, two par-
ticipants could have the same estimated state trajectories, but the meaning of the state values will
differ due to the idiographicly estimated measurement parameters. Importantly, the state dynamic
parameters will still be comparable between subjects, but the specific state values will not. This
is a limitation of the idiographic nature of these models, and could be solved by extending this
model to multiple subjects or by applying meta-analytic techniques (see Future Directions for
more details).

Fortunately, one solution to both of these issues is to use a scale for which item parameters
have already been estimated in a large calibration sample. By fixing the measurement model to
a priori known parameters and only estimating the state-dynamics, one can radically reduce the
dimensionality of the parameter space. This in turn results in easier convergence while using the
MIF2 approach for estimation. Additionally, using an calibrated scale and adding a mean vector
to the state trajectories would allow the idiographic trajectories of the states to be comparable
across participants.

2.2. State Estimation via Particle Filtering

There are two halves to the estimation of state-space models. The first half is the estimation of
the state values themselves, given a set of parameter estimates and the observed data. Estimating
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the expected value of a state at time t (i.e., xt ) given the parameter values and observed variables up
to and including time t is known as filtering. In state-space modeling, many different approaches
to filtering have been developed. One set of approaches can be classified as analytic filtering, and
includes the classical Kalman filter, as well as many of its newer variants. Unfortunately, analytic
filtering approaches rely on the filtering distribution (i.e., xt |y1:t , θ with θ standing for the entire
parameter set) being analytically tractable. In the case of our ordinal outcome state-space models,
the filtering distribution is not analytically tractable, and a different approach is needed.

The issue of intractable latent variable distributions in cross-sectional item response theory
models is well known, and has been solved by either using numeric integration methods or
Bayesian estimation approaches (Baker & Kim, 2004) . Here, we use particle filtering (Moral
& Doucet, 2014) , an estimation method conceptually related to Bayesian MCMC, which we
describe generally in Algorithm 1.

Algorithm 1
Basic Particle Filter for State Estimation

Initialize K particles xk0 ∼ f0
for t in 1:T do

Sample xkt ∼ f (xkt−1|θ)

Calculate wk = p(yt |xkt , θ)

Normalize wk : w∗
k = wk/

∑
k wk

Sample with replacement K particles from xkt with probability w∗
k with replacement.

end for

A particle filter is a simulation-based state estimation method that iteratively takes informed
guesses at the values of xt using the state dynamics model f (xt |xt−1, θ), determines how good
those guesses were by evaluating the likelihood of the observed data given the particles (wk =
p(yt |xkt , θ)), and then selects the best performing particles at each timepoint via resampling
with replacement. While computationally expensive, particle filtering is a turnkey solution to the
filtering problem, requiring only the state dynamics and measurement distributions, while making
no assumptions about the form of them. In the case of the GR state-space models of Eqs. 5, 6,
and 7, f (xt |xt−1, θ) is Eq.5, while p(yt |xit , θ) is Eq.8. The distribution of the initial values x0 is
f0 = MVN(0, I). Finally, E[xt |xt−1, yt , θ ] is simply

∑K
w∗
kx

k
t .

2.3. Parameter and State Estimation via the MIF2 Approach of Ionides et al. (2015)

While the particle filter described by Algorithm 1 can be used to estimate the expected
value of the states, careful readers will notice that the model parameters θ are assumed to be
fixed and known. While this is not an issue in common engineering applications of state-space
models where themodel parameters are known, in the analysis of psychological or behavioral data
the estimation of the parameters is of greatest importance. To tackle this side of the estimation
problem, we employ yet more particle filtering.

To simultaneously estimate parameters and states, we use the multiple iterated filtering
approach of Ionides et al. (MIF2; 2015). This algorithm is a general estimation routine for par-
tially observed Markov processes (i.e., most state-space models) and can be conceptualized as
a particle filter combined with an optimization technique called simulated annealing. Simulated
annealing is a method to find the global optima of a surface by sequentially perturbing an estimate
and updating the estimate when the perturbation results in a higher value. Over the course of the
optimization, how much the estimate is perturbed is reduced to 0, resulting in the final estimate
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that has “frozen” at the global optima (Kirkpatrick et al., 1983) . The authors of Ionides et al.
(2015) have developed an optimized implementation of the MIF2 algorithm within their pomp
R package (King et al., 2023, 2016) , and our implementation of the GR model makes use of
it. One key advantage of the MIF2 algorithm is that it does not require any analytic derivations
of gradients or hessians, and only requires the ability to simulate from implied state distributions
and evaluate the log-likelihood of the data given a set of parameter estimates. This makes the
approach able to work with arbitrary measurement and state distributions.

The MIF2 algorithm applies particle filtering to both the states and parameter values, sam-
pling, evaluating and resampling both over many iterations. The state filtering component of the
algorithm is similar to what is described in Algorithm 1, while the parameter filtering component
makes use of a sampling distribution that progressively reduces its variance over the iterations.
This causes the estimation routine to first search the parameter space, then freeze in an area of high
likelihood, ideally the MLE. This converging behavior would not occur if the MIF2 algorithm
used a set perturbation variance (Ionides et al., 2015) . The MIF2 algorithm is described in
Algorithm 2.

Algorithm 2
MIF2 Algorithm of Ionides et al. (2015)

Initialize K particles θ
0,k
0 = θ∗

for m in 1:M do
Sample θ

m,k
0 ∼ MVN(θm−1,k , cm�) for k ∈ 1 : K

Sample xm,k
0 ∼ f0(θ

m,k) for k ∈ 1 : K
for t in 1:T do

Sample θ
m,k
t ∼ MVN(θ

m,k
t−1, c

m�) for k ∈ 1 : K
Sample xm,k

t ∼ f (xm,k
t |xm,k

t−1, θ
m,k
t ) for k ∈ 1 : K

Calculate wk = p(yt |xm,k
t , θ

m,k
t ) for k ∈ 1 : K

Normalize wk : w∗
k = wk/

∑
k wk

Sample with replacement K particles from {θm,k
t , xm,k

t } with probability w∗
k .

end for
end for

In Algorithm 2,� is a diagonal covariance matrix with analyst-specified variances, and cm is
a positive and decreasing sequence such that cm → 0 asm → M . Ionides et al. (2015) implement
this as a geometrically decreasing sequence. The tuning values for this algorithm are the number
of particles K , the number of iterations M , the parameter perturbation covariance matrix � and
the cooling sequence cm . Ionides et al. (2015) show that the MIF2 algorithm converges to the
MLE under mild regularity conditions, making this approach a general estimation technique for
state-space models that does not rely on tractable analytics or numerical derivatives. Now we can
map the terms in the MIF2 algorithm to the specifics of the GR state-space model, which are
contained in Table 1.

We implement our GR state-space models in the genss R package (Falk et al., 2023) . This
package is under active development, and will be expanded with additional measurement models
and state dynamics in the near future.

Note that the discrimination parameters αi are not estimated in this set, and are instead
assumed to be fixed and known. In this manuscript, we fixed αi = 1 (i.e., a homogeneous Graded
Response Model) as the MIF2 algorithm had considerable difficulties estimating αi freely. This is
not due to model identification issues, but rather due to the nature of αi . Specifically, the relative
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Table 1.
GR state-space to MIF2 mapping.

MIF2 terms GR state-space terms

θ A, {βi j ∀ i, j}
f0(θ

m,k) MVN(0, I)
f (xm,k

t |xm,k
t−1, θ

m,k
t ) MVN(Am,k

t xm,k
t−1, �

m,k
t )

p(yt |xm,k
t , θ

m,k
t ) p(yi t = j |xm,k

t ) = p(yi t > j |xm,k
t ) − p(yi t > j − 1|xm,k

t )

p(yi t > j |xm,k
t ) = 1

1+exp[−αi (δi (x
m,k
t )−β

m,k
i j )]

magnitude of αi only makes a difference to the likelihood of the data when close to 0, while for
example αi = 5 and αi = 10 would result in nearly identical likelihood surfaces. This appears
to cause difficulty with MIF2’s exploration of the likelihood surface. This is a limitation of the
estimation approach, and we discuss possible solutions in the Discussion section.

2.4. Standard Errors via Slice Likelihoods

While the MIF2 algorithm converges to the MLE under mild regularity conditions, it does
not produce the information necessary to estimate the standard errors of the parameters. Calcu-
lating standard errors requires some knowledge of the curvature of the likelihood surface at the
MLE, and as MIF2 does not use gradient information, the Fisher information matrix needs to
be approximated. One potential way of doing this is to calculate numerical derivatives, however
this is complicated by the stochastic nature of particle filtering. Here, we take the slice likelihood
approach described by Ionides et al. (2006) to approximate standard errors.

Slice likelihood relies on the local asymptotic normality (LAN; Le Cam & Lo Yang, 1990)
property of the likelihood surface near the MLE. This property says that the likelihood surface is
approximately multivariate normal in the area around theMLE. This in turn allows one to estimate
the curvature of the likelihood surface at theMLEusing a series of quadratic regressions,which can
then be used to approximate the Fisher informationmatrix. Slice likelihood involves evaluating the
likelihood at a series of slices surrounding theMLE, usually along eachparameter (hence, “slicing”
along each parameter axis). Those values are then used in the series of quadratic regressions to
estimate the curvature of the likelihood surface. The details of the implementation can be found
in the Supplementary Materials of Ionides et al. (2006), and we include our implementation in the
genss package (Falk et al., 2023) . These standard error estimates are approximations and are
known to be more liberal (i.e., smaller) than the true standard errors. We evaluate the performance
of these slice likelihood standard errors in a simulation study below. Other methods for calculating
standard errors when using particle filtering methods for estimation is an active area of research,
and we discuss other potential options in our Discussion section.

3. A Simulation Study

With the estimation details of the GR state-space model established, we now describe a
simulation study that serves two purposes: 1) to evaluate howMIF2 and slice-likelihood standard
errors serve in fitting GR state-space models to data generated from a GR state-space model, and
2) to evaluate how a normal measurement state-space model (the linear approximation approach)
performs when fit to data generated from aGR state-space model. Code to replicate the simulation
study and empirical example are available at https://osf.io/fa69p/.
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Table 2.
Simulation factors.

Simulation factor Values

Number of timepoints 100, 500
Number of items per state 3, 6
Number of responses per item 3, 7
AR parameter value .3, .7
CR parameter value 0, .25
GRM thresholds Equal, Offset

4. Methods

4.1. Data Generating Model

In all conditions, the data generating model was a GR state-space model with 2 states and a
varying number of indicators per state. The number of states was fixed at two to avoid radically
increasing the number of conditions and computational cost of fitting the data,while still being able

to demonstrate the estimation of cross-regressive effects. The form of the A matrix is

[
AR CR
0 AR

]

with AR referring to the autoregressive effects, and CR referring to the cross-regressive effect of
the first state on the second state. The � used to generate the data is determined in accordance
to the identification constraints described previously. In all cases, each observed GR variable is
associated with a single state, which we assume is known when we fit the models to the simulated
data. The αi parameters are set to 1 and are considered fixed and known during estimation. The
number of items per state varies by condition, but is the same for each of the two states. Finally, βi j
valueswere determined in twoways. In the equalGRMthreshold condition,βi j were calculated by
centering the sequence [1, 2, . . . , j] on 0, so that, for example, an item with 7 response categories
would have βi j = [−2.5,−1.5,−.5, .5, 1.5, 2.5]. In this equal condition, the βi j sets for each
observed variable are the same, corresponding to the situation where each observed variable has
identical measurement properties. In the offset GRM threshold condition, the βi j sets for each
item within a given state were offset from one another by either the number of items divided by
the number of βi j per item, if that offset is less than 1.25, and 1.25 if it was calculated to be greater
than 1.25. In the case of three items per state, with 7 response options per item, this results in the
following set of βi j , β1 j = [−3,−2,−1, 0, 1, 2], β2 j = [−2.5,−1.5,−.5, .5, 1.5, 2.5], β3 j =
[−2,−1, 0, 1, 2, 3]. This condition corresponds with more typical measurement in psychometric
scales, where the items were designed to cover a range of latent values.

Table 2 lists the simulation factors and values. All factors were fully crossed, which resulted
in 64 conditions. A total of 300 iterations per condition were generated.

4.2. Analysis Models

All generated datasets were fit with a GR model and a linear approximation model. For both
the GR model and linear approximation model, A was unconstrained and � was calculated using
the identification constraint described above. Recall that this allows for direct comparison of the
estimated values of A between the GR and linear approximation models. In both cases, the initial

values for A =
[
.1 0
0 .1

]
. In the fit GR models, all βi j are freely estimated. The initial values for
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βi1 were set to −2, and the initial values for the intervals between subsequent βi j ’s were set to
.36.

In the linear approximation models, the matrix C from Eq.2 was constrained to freely esti-
mate non-0 state-item loadings, corresponding to a known measurement structure with unknown
parameter values. The initial values for nonzero loadings were set to 1. Initial values for diagonal
elements of � were set to 1.

Finally, 4 separate runs of the MIF2 algorithm were performed on for each model as per
Ionides et al. (2015) and the estimated coefficients were averaged into a final estimate. Slice
likelihood standard errors were calculated based on the averaged estimates. In all cases, 1000
particles were used with 250 MIF2 iterations. The cooling proportion per 50 iterations was set
to.05 (i.e., after 50 iterations, the variance of the parameter perturbation distribution, � is.05 of
the starting values). For all parameters, the initial perturbation standard deviation was set to .3.

4.3. Outcomes

As our interests were chiefly in evaluating the GR models performance in recovering state
dynamics and comparing its performance against the linear approximation model, our outcomes
focus on the Amatrix. While βi j parameters were estimated, we do not present outcomes related
to them in this manuscript due to space concerns.

We present and discuss the following outcomes:

• True-Estimated State Correlation—We operationalize this outcome as the Spearman’s
correlation between the true state values, and the expected values of the states calculated via
MIF2. This is a general measure of model performance, with values close to 1 indicating
perfect recovery of the unobserved states, and values away from 1 indicating poor recovery.

• Relative Bias of the Autoregressive Parameters—This signed relative bias evaluates
how well the models recover the autoregressive parameters. Values close to 0 indicate
unbiased recovery, while nonzero values indicate bias.

• Bias of the Cross-Regressive Parameter—As one of our CR conditions set the parameter
to 0, to examine the bias of the CR parameter we use bias rather than relative bias.

• 95% Wald Type Confidence Interval Coverage—To evaluate how accurate our slice
likelihood standard errors were, we calculated a simple 95% confidence interval (i.e.,
θ ± 1.96 × SE) and determined the coverage. This was calculated for both the AR and
CR parameters.

Additionally, we present plots and tables of slice standard errors in the Supplementary Mate-
rials.

5. Results

5.1. True-Estimated State Correlations

Figure2 shows the true-estimated state correlations across all conditions. Median values
per condition are contained in Supplementary Materials Tables S1 and S2. There are several
notable findings here. First, in every condition the GR state-space model resulted in better overall
recovery of the state values, with the maximum median recovery of ρs = .849 occurring in the
500 timepoint, AR: 0.7/CR: 0.25, equal thresholds, 6 items per state with 7 response categories.
That the best recovery of the state values occurs in this condition is no surprise, given that it is
the most generous data-quality wise. The median recovery for the linear approximation model
for the same condition was ρs = .749. The worst recoveries for the GRM model were in the 100
timepoint, AR: 0.3/CR: 0 or.25, offset threshold, 3 items per state, 3 response categories per item
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Figure 2.
True-estimated state Spearman’s correlations. Central black line on boxplot denotes median, box denotes 25–75%
interquartile range, whiskers denote 1.5 × I QR. AR refers to the autoregressive parameter, while CR refers to the
cross-regressive parameter.

condition, with a median recovery of ρs = .625. The linear approximation model had median
recoveries of ρs = .474 and .491. In addition to the GR models performing better than the linear
approximation models with respect to overall level of state recovery, the GR models also had less
variable recoveries across simulation iterations than the linear approximation models. The linear
approximation models showed substantial negative skew in the true-estimated state correlations,
suggesting that the linear approximation model struggled to recover the state values more often
than the GR model.

In terms of the simulation factors effects on the state recovery, both GR and linear approxi-
mation models had the same general pattern of effects, with the notable exception of the effect of
number of timepoints. In the case of the GRmodel, increasing the number of timepoints from 100
to 500 uniformly decreased the variability of the true-estimated state correlations within a condi-
tion and increased the overall true-estimated state recovery. However, for the linear approximation
model in the 3 response categories per item conditions (top row of Fig. 2), increasing the number
of timepoints from 100 to 500 led to an increase in variability and an overall slight decrease in
the median level of recovery. This was not the case for the linear approximation models in the
7 response categories per item conditions (bottom row of Fig. 2), though both the reduction in
variability and improvement in median recovery was modest compared to that of the GR model.

Increasing the number of items per state generally improved the recovery of the state values,
as did increasing the number of response categories per state. Increasing the magnitude of the AR
and/or CR parameters also generally increased the median recovery across all other conditions.
Interestingly, having the GR threshold parameters (i.e., βi j ) be equal across items led to better
overall recovery than having the GR threshold parameters be offset. Additionally, there appears
to be an interaction between the offset of the GR thresholds and the number of items per state,
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Figure 3.
Autoregressive parameter relative bias. Central black line on boxplot denotes median, box denotes 25–75% interquartile
range, whiskers denote 1.5 × I QR. AR refers to the autoregressive parameter, while CR refers to the cross-regressive
parameter.

where the reduction in recovery when GR threshold parameters were offset is greater with more
items per state. This result is most noticeable in the linear approximation model, but occurs with
lower magnitude in the GR models as well.

5.2. Relative Bias of the AR Parameter

Figure3 visualizes the relative bias of the AR parameters. Tables S1 and S2 in the Supple-
mentary Materials contain median relative bias values across all conditions.

First, the results shown in Fig. 3 suggest that the GRmodel results in asymptotically unbiased
estimates of the AR coefficients. Across all conditions, the median relative bias is close to 0, and
the variability of this bias decreases with increased numbers of timepoints. As one would expect,
larger magnitudes of the AR coefficient result in lower relative bias.

However, the linear approximation model did not result in unbiased estimates of the AR
parameters. Several patterns of findings stand out. First, when the AR parameters were small
(AR = 0.3), the linear approximation model resulted in AR parameters that were positively
biased, with the greatest median relative bias of approximately.75 to 1.25 occurring in the 3 items
per state conditions. In the 6 items per state conditions, the variability of the relative bias was
radically increased relative to the variability in the 3 items per state condition. For stronger AR
effects (AR = .7), the linear approximation models resulted in relatively unbiased estimates only
in the 3 items per state conditions, while for the 6 items per state conditions, there was a consistent
negative bias for the AR coefficients. Notably, the variability of the bias was minimally impacted
by increasing the number of timepoints from 100 to 500.
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Figure 4.
Cross-regressive parameter bias. Central black line on boxplot denotes median, box denotes 25–75% interquartile range,
and whiskers denote 1.5 × I QR. AR refers to the autoregressive parameter, while CR refers to the cross-regressive
parameter. Note that this figure shows bias rather than relative bias.

5.3. Bias of the CR Parameter

Figure4 shows the bias of the CR parameter across all conditions. Tables S3 and S4 in the
Supplementary Materials contain the median values.

The results shown in Fig. 4 suggest that the GR model results in unbiased estimates of the
CR parameter, with variance decreasing and median value becoming more 0 centered with an
increase in the number of time points. For the linear approximation model, the bias of the CR
parameter is consistently positive, and this bias does not improve with increased sample sizes.
Consistent with the AR parameter, the 6 items per state/3 response categories per state conditions
exhibited increased variability in the bias for the linear approximation models relative to the 3
items per state conditions. It appears that increasing the magnitude of the CR parameter does
slightly improve bias; however, this difference is slight. Finally, there is a less pronounced effect
of the GRM thresholds being equal vs. offset. The offset conditions appeared to result in slightly
higher variance in the bias for the linear approximation models, but there is little difference in the
median bias.

5.4. Parameter Coverage

Figure5 shows the coverage of the 95% Wald type confidence interval using the slice likeli-
hood SEs. Tables S1 and S2 in the SupplementaryMaterials list the coverage values per condition.

First, we note that across most conditions the coverage of the AR parameter in the GR
models was consistently close to 75%, with the exception of the 500 timepoints, 6 items per state,
7 responses categories per state conditions, where the coverage was approximately 70%. There
were minimal differences between coverage with respect to parameter values or GRM thresholds
for the GR model. This is consistent with the GR models resulting in unbiased estimates of the
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Figure 5.
Autoregressive parameter coverage. Height of bars represents coverage.

parameters, with the lower than nominal coverage consistent with the slice-likelihood SE being a
liberal estimate.

On the other hand, the coverage of the AR parameter when using the linear approximation
model was less than ideal. The coverage was not consistent across conditions, with stronger
magnitude parameters having better coverage overall than smaller parameter conditions. These
results are consistentwith the patterns of bias shownby the linear approximationmodels, combined
with the liberal nature of the slice likelihood standard errors.

Figure6 shows the coverage of the CR parameter over all conditions. Tables S3 and S4 in the
Supplementary Materials contain the values of coverage.

The coverage results for the CR parameter are consistent with the coverage results for the AR
parameter. Overall the coverage of the GR models was approximately.75% with the exception
of the 500 timepoint, 6 items per state, 7 responses per item conditions, where the coverage
values range from approximately 55% to 70%. Again, this is consistent with unbiased parameter
estimates combined with overly liberal standard errors.

Compared to their coverage of the AR parameter, the linear approximation models have
considerably worse coverage of the CR parameter. Coverage is best when the CR parameter is
nonzero; however, coverage decreases with increased sample size. This is consistent with the
biased estimates that the linear approximation models provide.
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Figure 6.
Cross-regressive parameter coverage. Height of bars represents coverage.

5.5. Slice Likelihood Standard Errors

Figures S1 and S2 in the Supplementary Materials, as well as Tables S1, S2, S3, and S4,
display and contain the slice likelihood standard error estimates. We briefly describe the overall
pattern of findings here.

For both the AR and CR coefficient, two interesting patterns emerge. In the 3 items per
state conditions, the median slice likelihood SEs of the linear approximation models are slightly
less than that of the GR models, though this difference becomes negligible at 500 timepoints.
Conversely, in the 6 items per state conditions, the linear approximation models have greater
median slice likelihood SEs and more variability in the distribution of SEs than the GR model.
This is reduced but not eliminated at 500 timepoints.

6. Empirical Example

Here, we apply the GR state-space approach as well as the linear approximation approach
to the publically available dataset of Kossakowski et al. (2017), which consists of an EMA study
of a single individual diagnosed with major depressive disorder. 1478 timepoints were collected
over 239 consecutive days (with 10 timepoints a day collected) and during a specific phase of data
collection the participant decreased their dosage of anti-depressants. In the following analyses,
we examine the dynamics between three items measuring mood, and three items measuring self
esteem. For the sake of simplicity, we did not take into account the phase of the study (i.e., before,
during or after the reduction in antidepressants).
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Table 3.
A priori estimated measurement parameters.

Item α β1 β2 β3 β4 β5 β6 Loading

M1 1.888 −0.708 0.607 1.42 2.075 3.244 4.345 0.803
M2 1.324 −5.367 −4.835 −2.068 1.2 2.713 3.607 0.315
M3 4.349 −3.306 −2.856 −0.387 1.047 2.221 3.134 0.679
S1 3.397 −3.185 −3.092 −1.979 −0.607 3.173 – 0.409
S2 2.99 −3.661 −3.025 −2.515 −1.959 −1.174 – 0.34
S3 3.462 −3.123 −2.388 −0.596 0.7 3.251 – 0.605

α and β are the discrimination parameter and threshold parameters for the graded response model, respec-
tively. Loadings are the estimated factor loadings from the fit confirmatory factor model.

6.1. Measure Description, Preprocessing, and Model Choice

Out of the available items that measured mood and self-esteem, we chose three for each
construct that showed the greatest range of response categories. For mood (for which items were
measured on a 7 point Likert scale), we chose M1. “I feel relaxed” (reverse coded), M2. “I feel
down” and M3. “I feel irritated.” For self-esteem (also measured on a 7 point Likert scale), we
chose S1. “I like myself,” S2. “I am ashamed of myself” (reverse coded), and S3. “I can handle
anything.”

We initially attempted to fit GR state-space and linear approximation state-space mod-
els where the measurement parameters were estimated, as in the simulation study previously
described. Due to empirical under-identification (very few observations at the extreme ends of
the response options), we encountered substantial difficulties with convergence for both model
types. As such, we chose to estimate measurement models separately using a multivariate graded
response model using the R package mirt (Chalmers, 2012) and confirmatory factor model
using the R package lavaan (Rosseel, 2012) . Table 3 contains the estimated measurement
parameters. In both cases, we set the mean of the latent variables to 0 and their variances to 1, and
allowed correlation between the latent variables. The correlation between the latent variables was
estimate to be −.803 for the multivariate graded response model and −.701 for the confirmatory
factor model. Readers should note that these measurement parameters are estimated using the
data from one individual for the purposes of this example, and should not be taken as accurate in
the larger population.

Following the estimation of the measurement parameters, we fit the GR state-space model
and linear approximation model, in both cases estimating the state dynamics matrix A. While not
necessary from an identification standpoint, as we fixed the measurement parameters, we retained
the constraint on marginal variance of the states (fixing the marginal variance to 1 by making
the state innovation variances a function of the state dynamics) so as to make the comparison
between the GR state-space model and the linear approximation model estimates as direct as
possible. As with the simulation study, 4 separate MIF2 models were fit per model type, each
with 1000 particles, 500 iterations, a cooling rate per 50 iterations of.75, and a starting proposal
standard deviation of.05 for all estimated parameters. The cooling rate and proposal standard
deviation were chosen via a small grid search, and resulted in the best overall convergence. After
the 4 MIF2 runs were complete, the final parameter estimates were calculated as the average of
the final iteration of the 4 runs, and slice likelihood SEs were obtained.

Finally, we quantified goodness of fit at the item level as follows: we first calculated the
expected state trajectory for the GR state-space model and the linear approximation model using
the parameters previously estimated (measurement and state-dynamics). We then simulated 1000
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Table 4.
State dynamic parameter estimates.

Parameter GR Model Est Slice SE Linear Model Est Slice SE

A11 0.199 0.023 0.168 0.018
A12 −0.310 0.018 −0.339 0.018
A21 −0.190 0.014 0.071 0.024
A22 0.651 0.015 0.505 0.024

measurement time series using the estimated measurement models and the expected state trajec-
tories. We calculated the item specific mean squared error from the observed data for each of
these 1000 simulated timeseries and calculated means and standard deviations across the 1000
iterations. This provides an item-level index of fit that is comparable across model types.

6.2. Results

Table 4 contains the estimated state dynamics parameters for both the GR state-space and
linear approximation models. For reference, state 1 can be considered as the mood state, with
higher values reflecting more negative mood, while state 2 can be considered as the self-esteem
state, with higher values reflecting more self-esteem.

The estimated state dynamics were fairly consistent between the GR state-space model and
the linear approximation model, with one notable exception being the cross-lagged effect of self-
esteem on mood. In both models, the autoregressive effects (A11 and A22) suggest that mood
(A11 = .199and.168) returned to equilibrium faster than self-esteem (A11 = .651and.505). The
cross-lagged effect of mood on self-esteem (A12 = −.310 and − .339) was negative, suggesting
an inverse relation between mood and self-esteem over time such that more negative mood at time
t was associated with less self-esteem at time t + 1. For both models, the slice standard errors for
A11,A12, and A22 were small relative to the magnitude of the parameter estimate. Even with the
more liberal nature of the slice standard errors, the relative difference in magnitude suggests that
these effects would be considered statistically significant and unlikely due to random chance.

Where the GR state-space and the linear approximation models diverge is in the estimate
of the cross-lagged effect of self-esteem on mood. In the GR model, this effect was negative
(A21 = −.190) with a small slice standard error, suggesting that there is a small inverse relation
from self-esteem to mood over time, such that high self-esteem at time t are related to lower
negative mood at time t +1. However, for the linear approximation model, the effect was positive
and small (A21 = 0.071) with a relatively large slice standard error of .024. Given the slice
standard error’s known underestimation of the uncertainty in the parameter estimate, this implies
that there is little to no cross-lagged relation from self-esteem to mood when analyzed with the
linear approximation approach. As the linear approximation approach is a priori known to be a
miss-specified model relative to the GR state-space model, this in turn suggests that the linear
approximationmodel is underestimating the strength of this relation and providing a false negative
finding.

Goodness of fit measures are given in Table 5. These item level goodness of fit measures
are consistent in magnitude across the GR state-space and linear approximation models, with the
GR state-space model exhibiting better fit for five out of the six items. The linear approximation
model showed better fit of item M3 (“I feel irritated”), with an MSE of.218 to the GR state-space
model’s MSE of.302. Taking these goodness of fit measures together with the estimated state
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Table 5.
Model fit measures.

Item GR MSE SD Linear MSE SD

M1 1.448 0.055 1.468 0.046
M2 0.878 0.036 0.925 0.03
M3 0.302 0.011 0.218 0.007
S1 0.283 0.011 0.316 0.01
S2 0.364 0.022 0.479 0.015
S3 0.456 0.015 0.571 0.018

MSE refers to average mean squared error over the 1000 simulation iterations, and SD is the standard
deviation of the MSE over the 1000 simulation iterations.

dynamics suggest that the GR state-space model results in a better fit to the observed data overall,
and that this fit allows it to better detect relatively weak state dynamics.

7. Discussion

In this manuscript, we present an estimation strategy for state-space models with graded
response measurements, suitable for use with ordinal measurements such as Likert scales. We
demonstrate that the estimation routine results in unbiased parameter estimates, and compare the
performance of our model with that of a linear approximation approach, consistent with fitting a
dynamic structural equation model (in an N = 1 setting) to ordinal measurements. The findings
of our simulation study suggest that the linear approximation approach results in biased estimates
of the state dynamics, and should be used with considerable caution. Our empirical example,
consisting of an analysis of the dynamics of mood and self- esteem across 1478 timepoints,
showed that while the GR state-space and linear approximation models were broadly consistent
in their findings, the linear approximation model underestimated the cross-lagged relation from
self-esteem to mood and had overall worse fit than the GR state-space model.

While there are a number of methods for estimating state-space type models with ordinal
outcomes, such as Bayesian approaches in DSEM (Asparouhov et al., 2018) or the work of van
Rijn (van Rijn, 2008) using generalized linear modeling, the estimation approach we describe
here is innovative in a number of ways. First, the identification constraint we develop here involves
only the parameters for state dynamics, allowing comparable estimates to be obtained frommodels
with differing measurement models. Second, the use of particle filtering, and more generally the
MIF2 algorithm (Ionides et al., 2015) , provides a general estimator that does not require the use
of gradients that is suitable for any measurement model and/or any mix of measurement models,
while both DSEM and the approach of van Rijn are restricted to specific classes of outcomes.
While the estimation technique itself relies on simulation akin to standard methods in Bayesian
estimation, the estimation is developed in a frequentist framework, requires less computation than
full Bayesian estimation, andwe provide ameans of calculating approximate standard errors using
slice-likelihoods. We emphasize that the MIF2 algorithm is not specific to ordinal measurement
outcomes, and can be used to estimate models with any form of measurement (and for that
matter state dynamics). Finally, we provide an open-source implementation of the GR and linear
approximation models used in this manuscript in the R package genss (Falk et al., 2023) .

Our simulation study demonstrates that the GR model results in unbiased estimates of the
state-dynamics and that the slice-likelihood standard errors result in consistent coverage across
conditions. However, this coverage was not at the nominal level of 95%, indicating that the slice-

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:41:16, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


T. R. HENRY ET AL. 1225

likelihood standard errors are overly liberal. There are a number of approaches for obtaining
accurate SE estimates from models that are estimated using a particle filtering approach such
as profile likelihoods (Ionides et al., 2015) or particle filter approximations of the Hessian
(Spall, 2005; Chada et al., 2022) . However, these approaches are orders of magnitude more
computationally expensive than slice-likelihood, requiring in the case of the profile likelihoods
re-estimation of thousands of models with slight variations in fixed parameter values. Refining the
standard error estimates for these models is of paramount interest, as accurate SEs are necessary
for accurate inference. That being said, the slice-likelihood standard errors are fairly consistent in
their coverage in the GRmodel across conditions, suggesting that one can alleviate these issues by
usingmore strictWald type confidence intervals. For example,we found that a 99.8%WaldCI (i.e.,
θ ± 3.09 × SE) provided approximate 95% coverage in the GR models. As the slice-likelihood
SEs are more liberal, conservative statistical test thresholds should be used to help reduce the
chance of false positive findings. We advocate for the use of 99.8% confidence intervals and that
authors explicitly note the use of the slice-likelihood SEs along with their limitations.

The linear approximation models performance in our simulation study revealed considerable
issues with bias in both the AR and CR parameters, and that there was no set of conditions that
completely alleviated the bias. Overall, it appeared that more response options per item (7 vs. 3),
resulted in less variable estimates, but only minimally different estimates with respect to bias.
This is somewhat consistent with the idea that an ordinal measurement with increasing number
of response categories will converge to a continuous distribution (e.g., a 0–100 slider is more
continuous than a 1–7 Likert scale), however the negligible improvement in bias suggests that
the influence of increasing the number of response categories needs to be studied more. We also
note that while increasing the number of timepoints improved bias for the GR model, this was
not the case in the linear approximation models. Of course, this was not expected as increasing
the sample size when fitting a mis-specified model does not make for less biased estimates, just
more misplaced confidence in the biased estimates one obtains. Here, we suggest extreme caution
is warranted in fitting continuous measurement state-space models to ordinal measurements, and
strongly advocate for the use of an appropriate model such as the GR models presented here or
other ordinal outcome state-space models discussed previously. We note that our findings of bias
in the case of the linear approximation model are in line with previous work evaluating the perfor-
mance of normal theory models applied to ordinal data. In an excellent and thorough study of this
topic, Rhemtulla et al. (2012) comprehensively reviewed related literature which suggested that
at around seven response categories, treating ordinal variables as continuous resulted in minimal,
but still nonzero bias in parameter estimates. Rhemtulla et al. (2012) additionally showed that
estimating confirmatory factor models on Likert type data resulted in biased parameter estimates
and overly liberal standard errors particularly for measurement distributions that had small num-
bers of response categories and highly skewed measurement distributions. However, they did note
that at seven response options the bias was minimal, though consistent, and more severe when the
measurement distributionwas skewed.While our simulations show fairly severe bias in estimating
low magnitude state-dynamic parameters even with seven response categories, our findings are
consistent in that large magnitude state-dynamic parameters had minimal bias when estimated
with the linear approximation model. Our empirical example is also consistent with Rhemtulla et
al. (2012), showing small but meaningful differences in fit and parameter estimates between the
GR state-space and the linear approximation models. Taking our findings with those of Rhem-
tulla et al. (2012), we can synthesize the following note of caution: while it is certainly the case
that ordinal variables with large numbers of response options could be treated as continuous and
the consequences of that approximation on inference can be minimal, the linear approximation
is still a miss-specified model with guaranteed bias, and it appears that the consequences of the
approximation increase with model complexity. Again, we advocate for caution in using the linear
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approximation state space models, and call for more research on robust estimation for state-space
models with ordinal measurements.

There are a number of limitations to the modeling strategy presented here. First and foremost
is the computational expense of the estimation. As the estimation routine is a simulation based
method, and requires iterated particle filters, any model fit using MIF2 takes a considerable
amount of time. In our simulations, it took approximately 15–20min for a single model to fit,
though that time heavily depends on the computational environment (15–20min on a Linux
desktop computer outfit for simulation studies, 20–30min on a more typical Windows laptop).
There is also the limitation of needing to determine appropriate setting for the estimation itself
(i.e., number of particles, cooling rate, number of iterations and the standard deviation of the
perturbation distribution), along with the need to fit multiple runs of the same model to the data
to determine if a global maximum has been obtained. These limitations can be ameliorated by
optimizing the implementation, but should be taken into account when considering using this
estimator.

Another limitation of the approach we develop here is that the state-space models are N = 1,
suitable for purely idiographic analysis. There are a couple of subtleties to this limitation that
need to be discussed, as they are relevant for readers interested in fitting these models idiograph-
ically. First, because there is no sharing of information between multiple participant’s models,
both the measurement model and state dynamics will be specific to a given participant. However,
state dynamics parameters can be compared between participants’ models. Furthermore, as the
expected values of the state distribution are assumed to be 0 as per the identification constraints, the
estimated state trajectories are not comparable between participants unless measurement param-
eters were assumed fixed and known. If the βi j values were estimated per participant, the state
trajectories are not directly comparable between participants, as the measurement parameters
would contain information as to the location of the participants’ state values relative to the popu-
lation. This limitation can be alleviated by using a calibrated set of items with known parameters,
and modifying the GR state-space model to estimate participant specific mean vectors of states.
If the same set of measurement parameters is used for all subjects in addition to constraining
the marginal variance of the states to 1, then the state trajectories will be comparable between
participants (and suitable for the calculation of percentiles relative to the population).

Additionally, a limitation that arose when applying these models to empirical data was that
tuning the estimation procedure to the vagaries of empirical data is a difficult and time consuming
process. We encountered difficulty in getting both the GR state-space and linear approximation
model to converge when we allowed the measurement components to be freely estimated, and we
believe that this difficulty has to dowith the nature of theMIF2 algorithm combinedwith empirical
under-identification issues. While the MIF2 algorithm is guaranteed to eventually converge to the
MLE, the rate of convergence is unknown and highly dependent on the tuning parameters and
the specifics of the analyzed data. Carefully tuning the performance of this estimator is possible,
but would have to be performed for every dataset and model structure separately, with few to no
general guidelines possible to recommend. As such, this estimation approach and therefore the
GR state-space model are not turn-key analysis methods and require a substantial amount of effort
and expertise to implement correctly.

The limitations of the current model suggest a number of fruitful future directions. First, a
means of analyzing multiple participants is needed. The estimation method is not suitable for
analyzing multiple participants’ data simultaneously in the same model due to computational
expense, so we are investigating the use of meta-analytic techniques for analyzing the participant-
specific parameter estimates. This approach would preserve the idiographic nature of the models
while allowing for an analysis of population heterogeneity/homogeneity. Second, as the MIF2
algorithm is a general estimator that allows for arbitrary measurement models, other measurement
models such as distributions for counts, zero-inflated distributions, and other IRT measurement
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models, should be implemented and their performance evaluated. A low hanging fruit in this
direction is that of zero-inflated distributions, which would improve our ability to model time
series of rarer behaviors like substance use. Finally, the MIF2 algorithm itself should be studied
to improve its speed and convergence. One core component of the MIF2 algorithm is the use of a
symmetric perturbation distribution,which could be improved via integrating gradient information
ala Hamiltonian MCMC (Neal, 1996) or by sharing information between particles ala a genetic
optimization algorithm (de Lima & Krohling, 2011) . Improving the convergence of the MIF2
approach would relieve much of the burden on analysts to carefully tune the estimator, making
these models more accessible to applied researchers. Finally, improved standard error estimates
must be developed, potentially using the profile likelihood or particle filter estimation of the
Hessian methods mentioned previously.

The analysis of intensive longitudinal data in psychology is only becoming more prominent,
and researchers need analysis techniques that can appropriately account for the measurement
properties of their data. We aim that the work presented in this manuscript provides a general
estimation infrastructure for state-space modeling of ordinal psychological data and look forward
to expanding its capabilities in the near future.
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