
J. Fluid Mech. (2025), vol. 1002, A30, doi:10.1017/jfm.2024.1156

Nonlinear coherent structures in 2-D plane
Couette flow with constant throughflow
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The nonlinear stability of two-dimensional (2-D) plane Couette flow subject to a constant
throughflow is analysed at finite and asymptotically large Reynolds numbers Re. The
speed of this throughflow is quantified by the non-dimensional throughflow number η.
The base flow exhibits a linear instability provided η � 3.35, with multi-deck upper and
lower branch structures developing in the limit 1 � η � O(Re). This instability provides a
springboard for the computation of nonlinear travelling waves which bifurcate subcritically
from the linear neutral curve, allowing us to map out a neutral surface at different values
of η. Using strongly nonlinear critical layer theory, we investigate the waves that bifurcate
from the upper branch at asymptotically large Re. This asymptotic structure exists provided
the throughflow number is larger than the critical value of ηc ≈ 1.20 and is shown to give
quantitatively similar results to the numerical solutions at Reynolds numbers of O(105).
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1. Introduction

The effect of throughflow was first investigated theoretically in the mid-twentieth century
(see Bussmann & Münz 1942; Pretsch 1942; Schlichting & Bußmann 1943) and the
findings of these initial papers are summarised and amended by Chiarulli & Freeman
(1948). This work resulted in the discovery, and subsequent linear stability analysis, of the
asymptotic suction profile and provided the first analytic indication that throughflow has
potentially stabilising effects.

Throughflow occurs naturally when a fluid flows over a porous media such as a river
bed. This drastically changes characteristics such as the velocity profile of the river (Chen
& Chiew 2004) and sediment transport (Cao & Chiew 2014). Modelling such a system
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requires an additional equation of motion such as Darcy’s law describing how the flow
responds to its porous surroundings (see for example Deng & Martinez 2005).

Throughflow can also be added to a system intentionally as a control method for
maintaining a laminar boundary layer. Experimental studies have shown that suction leads
to a decrease in skin friction on an aerofoil (Braslow et al. 1951; Hwang 1997), which
would improve a plane’s fuel efficiency by reducing the drag on its wings. More recent
studies (Koepp et al. 2020) have used sophisticated numerical simulations and found
similar results. Other applications include cooling a turbine’s blades (Zhou et al. 2019)
and reducing drag due to wind on high-rise buildings (Zheng & Zhang 2012). In each of
these applications, suction is induced by creating small slits through which throughflow is
generated.

For this paper, we will use the following definition of throughflow. Given a fluid moving
according to some base flow, throughflow and suction are both used to refer to a second
flow component that acts perpendicular to the direction of the base flow. For the channel
flows we will consider, throughflow will be induced by injecting fluid through a porous
lower wall and extracting it out of a porous upper wall. While the rate of this injection
and extraction need not be constant, this paper will focus on the case where these effects
happen at the same rate, leading to a throughflow of constant velocity. The motion through
these walls will not be modelled. Instead, we apply no slip and no additional penetration,
excluding the throughflow itself.

To analyse this control method, we concentrate on the simplest possible shear flow,
namely plane Couette flow. It is well known that in the absence of throughflow,
plane Couette flow is linearly stable at all Reynolds numbers Re (Romanov 1973).
However, it has also been experimentally observed to be unstable at finite Re (Tillmark
& Alfredsson 1992). Three-dimensional plane Couette flow was first shown to have
finite-amplitude solutions by Nagata (1990) and subsequently many researchers have
computed solutions with various symmetries. The physical mechanism underlying these
nonlinear solutions is the theory of self-sustaining processes (SSPs), described by
Hamilton, Kim & Waleffe (1995) and Waleffe (1997). These structures are generated
by a nonlinear interaction between streamwise streaks, spanwise rolls and travelling
waves propagating in the streamwise direction. For a detailed discussion of these
processes, see Ruban, Gajjar & Walton (2023). Such a construction is an inherently
three-dimensional process and, while the effect of throughflow on those solutions is
undoubtedly of interest, we will concentrate here on nonlinear solutions arising purely
from two-dimensional effects, as a first step in understanding the nonlinear stability of this
flow.

The analytic portion of our investigation is concerned with identifying a nonlinear
travelling wave structure valid at asymptotically large Re. This structure is self-sustaining,
not by the roll/streak/wave interaction referred to above, but rather by an intricate
interaction between the viscous wall layers and a strongly nonlinear internal critical layer
located where the streamwise component of the base flow is equal to the phase velocity of
the travelling wave. The theory describing such a critical layer was developed by Benney
& Bergeron (1969), Haberman (1972) and Smith & Bodonyi (1982b) in the context of
boundary-layer flows. It was found that the O(1) phase shift across a linear critical layer
(Lin 1955; Stuart 1963) becomes asymptotically small as the disturbance’s amplitude
increases. This nonlinear theory has successfully been used to identify coherent structures
in many flows and these solutions have been shown to agree quantitatively with finite
Re nonlinear travelling wave solutions to the Navier–Stokes equations. Examples include
Hagen–Poiseuille flow (analytic work by Smith & Bodonyi (1982a) and numerical work
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Coherent structures in 2-D Couette flow with throughflow

by Deguchi & Walton 2013b), plane Poiseuille flow (Deguchi & Walton 2018) and annular
sliding Couette flow (Deguchi & Walton 2013a).

There have previously been several studies concerned with how throughflow affects the
linear stability of channel flows. The earliest examples are analyses of plane Poiseuille
flow (Sheppard 1972; Fransson & Alfredsson 2003), which found throughflow to be
strictly stabilising. The effect of throughflow on Couette–Poiseuille flow has also been
investigated in the special case where the pressure gradient is chosen to ensure the base
flow profile remains linear (Nicoud & Angilella 1997). This study found that throughflow
was destabilising at low throughflow speeds but stabilising at large speeds. Recently,
multiple studies have analysed the linear stability of Couette flow with throughflow.
Shankar & Shivakumara (2021) modelled the porous walls using the Brinkman-extended
Darcy equation, while Sun, Yalcin & Oberlack (2024) focused solely on the motion within
the channel. Sun et al. (2024) used an analytic solution to the modified Orr–Sommerfeld
equation in terms of hypergeometric functions to find linear neutral curves for sufficiently
strong throughflow numbers.

The remainder of this paper is structured as follows. In § 2, the precise problem and
base flow in question are described. Section 3 focuses on the linear stability analysis,
building upon the results of Sun et al. (2024), discussing both the relevant linear stability
properties of this flow and how at large Re, multi-deck asymptotic structures can develop as
throughflow increases. In § 4, we bifurcate from the linear neutral curve to numerically find
nonlinear neutral travelling wave solutions to the Navier–Stokes equations. Our numerical
approach generates a neutral surface of solutions for each value of η (including those
for which no linear neutral curve exists) and the structures of some of these solutions
are discussed. In § 5, a strongly nonlinear critical layer analysis is performed to obtain
a leading order analytic description of the nonlinear upper branch neutral solutions at
asymptotically large Re. The numerical and asymptotic nonlinear neutral solutions found
in §§ 4 and 5, respectively, are then compared in § 6. Despite the absence of any tuning
parameters, there is encouraging agreement between the two approaches in both the
magnitude and shape of the leading order disturbances.

2. Governing equations and basic flow

Using the dimensional coordinate system (x∗, y∗) and velocity u∗, consider an
infinite two-dimensional channel with walls at y∗ = ±h∗. This channel is filled with
incompressible Newtonian fluid of density ρ∗ and kinematic viscosity ν∗. The upper wall
is moved at a speed u∗

0 in the x∗ direction to induce a Couette flow. The walls of the channel
are porous and allow a constant throughflow of speed v∗

0 in the y∗ direction as depicted in
figure 1.

Altering the directions of motion and relative speed of either wall or the throughflow can
be achieved by a change of basis and appropriate frame of reference. As such, this set-up
provides a general framework for all wall and constant throughflow velocities. To simplify
the algebra, the coordinates and frame of reference are chosen so that the bottom wall is
stationary, the throughflow acts in the positive y∗ direction and the upper wall moves in
the positive x∗ direction.

A steady solution exists for the fluid velocity of the form u∗
0 = (U∗(y∗), v∗

0) with

U∗(y∗) = u∗
0

2 sinh
(
v∗

0h∗

ν∗

) (
exp

(
v∗

0y∗

ν∗

)
− exp

(
−v

∗
0h∗

ν∗

))
, (2.1)

1002 A30-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156


J. Cuthbert and A. Walton

y∗ = h∗

η = 0 η = 1 η = 2 η = 4 η = 6 η = 10

u∗ = u0
∗

y∗

x∗

y∗ = –h∗

u∗ = 0

U∗ (y)
v0

∗ v0
∗ v0

∗ v0
∗ v0

∗ v0
∗

Figure 1. Dimensional Couette flow with constant throughflow. The basic flow profile is given with a
throughflow strength varying from η = 0 (pure plane Couette flow) to η = 10.

and zero pressure gradient. This solution is non-dimensionalised with the quantities u0 =
(u, v) = u∗

0/u
∗
0, (x, y) = (x∗, y∗)/h∗ and t = t∗u∗

0/h
∗. This rescales (2.1) into

u = U(y) = eηy − e−η

2 sinh η
, v = η

Re
, (2.2a,b)

and the Navier–Stokes equations into

∂u
∂x

+ ∂v

∂y
= 0, (2.3a)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ 1
Re

∇2u, (2.3b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ 1

Re
∇2v. (2.3c)

The dimensionless parameters Re and η are given by

Re = u∗
0h∗

ν∗ , η = v∗
0h∗

ν∗ . (2.4a,b)

These dimensionless parameters correspond to an effective Reynolds number in the x and
y directions, respectively. The number Re will be referred to as the Reynolds number,
while η will be called the throughflow number. As discussed above, the case η < 0 can
be achieved by a change of basis and appropriate frame of reference, meaning we can
restrict our attention to the case η � 0 without loss of generality. This can be physically
interpreted as injecting fluid through the lower stationary wall and extracting fluid out of
the upper wall which moves at unit speed in the positive x-direction. The magnitude of η
determines the speed of the throughflow. It can be verified by taking the limit of (2.2a,b) as
η → 0 that, in the absence of throughflow, we recover the familiar Couette linear profile.
The basic flow (2.2a,b) is shown in figure 1. It is also instructive to consider the limit
η � 1, where it can be shown that the base flow decays exponentially with distance from
the upper wall, creating a two-tiered structure. Neglecting exponentially small terms, the
base flow becomes

U(y) ∼
{

e−ỹ in the inner region ỹ � 0,
0 in the outer region − 1 � y < 1,

(2.5)

where
ỹ = η(1 − y) (2.6)

1002 A30-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156
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is the order one variable in this inner region of thickness 1/η. Whenever we take η � 1, it
is assumed that η � O(Re), meaning the throughflow is never stronger than the streamwise
base flow. If η � O(Re) or η ∼ O(Re), much of the asymptotic analysis breaks down, as
the system becomes dominated by the throughflow.

3. Linear stability analysis

The linear stability of this flow was recently considered by Sun et al. (2024). The linear
neutral stability curves provide a springboard for the computation of finite amplitude states
in § 4 and so this section provides the necessary background for the subsequent analysis.
In our work, a different domain for the base flow is chosen compared with that used by
Sun et al. (2024), leading to our results differing by a factor of 2. Accounting for this, the
linear stability results that were calculated independently for this paper agree with those
reported by Sun et al. (2024). Building on their work, the asymptotic structure of the linear
neutral curves are also discussed.

3.1. The modified Orr–Sommerfeld equation
The linear stability of this system is governed by a modified version of the
Orr–Sommerfeld equation. To derive this equation, we perturb the basic flow with the
expansions

u = U(y)+ εû(y)eiξ , v = η

Re
+ εv̂(y)eiξ , p = εp̂(y)eiξ , (3.1a–c)

where ξ = α(x − ct), α ∈ R is the wavenumber, c ∈ C is the corresponding wavespeed
and ε is a small parameter. To obtain the governing equation, (3.1a–c) is substituted into
(2.3), terms of O(ε2) are neglected and û, p̂ are both eliminated giving(

U(y)− c + η

iαRe
d
dy

)(
d2

dy2 − α2
)
v̂ − d2U

dy2 v̂ = 1
iαRe

(
d2

dy2 − α2
)2

v̂, (3.2a)

along with the boundary conditions

v̂(±1) = dv̂
dy

∣∣∣∣
y=±1

= 0. (3.2b)

To solve (3.2), a Chebyshev collocation approach pioneered by Orszag (1971) was used.
For this particular base flow, an analytic solution in terms of hypergeometric functions
is known due to Baldwin (1970), but this is somewhat cumbersome to evaluate and it is
preferable for the nonlinear extension in § 4 to have a purely numeric solution. Equation
(3.2) has been considered in previous studies, applied to different base flows (see Sheppard
1972; Fransson & Alfredsson 2003; Sun et al. 2024). The results obtained in this paper
have been compared with these studies (using the appropriate base flow) to validate the
numerical procedure.

Figure 2(a) shows linear neutral curves found for different values of the throughflow
number. Recall that when η = 0, we recover Couette flow which is linearly stable for all
Reynolds numbers. The relationship between α and c on this neutral curve is shown in
figure 2(b) and will be explored in more detail below. The smallest Reynolds number at
which linear instability occurs, the linear critical Reynolds number, is denoted Re	c and the
corresponding wavenumber is denoted α	c . Both are shown in figure 3 as η increases. From
this, we can see that there exists a critical throughflow number, η	c , such that for η > η	c ,
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106 107 108 109

0
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0.90c

α

0.95

η = 3.5 η = 4 η = 6 η = 8 η = 10

(a) (b)

Figure 2. Linear neutral curves for different values of the throughflow number η. (a) Relationship between
Re and α, and (b) relationship between c and α on the linear neutral curve.

5 10 15
η η

20
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� αc

�
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0

1

2

3

(a) (b)

Figure 3. (a) Linear critical Reynolds number and (b) corresponding wavenumber as η is varied. The dashed
line is the asymptote as η → η	c from above.

linear neutral stability curves exist. From figure 3, we find η	c ≈ 3.35. This estimate will
be refined shortly. The flow is most unstable (Re	c is minimised) when η ≈ 4.90. Both of
these throughflow numbers agree with Sun et al. (2024) after appropriate rescaling.

To improve our estimate of η	c and better understand the structure of this solution, we
proceed as follows. Consider the limit of (3.2) as α → 0 and Re → ∞ such that γ = αRe
remains O(1). Note this is a formal limit and γ may still be numerically large or small
provided it is finite. This simplifies (3.2a) to

1
iγ

(
d4v̂

dy4 − η
d3v̂

dy3

)
− (U − c)

d2v̂

dy2 + d2U
dy2 v̂ = 0. (3.3)

We can solve (3.3) with the boundary conditions (3.2b), again using Chebyshev
collocation, to obtain the linear neutral curve in (η, γ ) space. The resulting neutral curve
is shown in figure 4.

We can use this system to efficiently find η	c to a high accuracy. By the above definition,
η	c is the minimum η on the curve in figure 4, which is found to be η	c ≈ 3.3511. The fact
that our chosen limit still produces a neutral curve demonstrates that the curves in figure 2
behave such that α ∝ Re−1 as Re → ∞. As a result, we do not expect a multi-deck upper
and lower branch structure to form that we can analyse analytically in this limit. However,
figure 4 also shows that as η increases, γ → ∞. This implies that in the η � 1 limit, new
upper and lower branch structures will emerge, and we study these below.
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4 6 8 10 12 14

η

γ

16 18 20 22 24
105
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107

108

ηc
� = 3.3511

Figure 4. Linear neutral curve in the limit α → 0, Re → ∞, γ = αRe = O(1).

3.2. Lower and upper branch structures
To analyse the lower and upper branch structures found when 1 � η � O(Re), a similar
approach to Smith (1979) and Bodonyi & Smith (1981) is taken for the lower and upper
branch, respectively. The coefficients found in the expansions of α and c are similar to
those of the asymptotic suction profile in Hughes & Reid (1965, p. 13) and Dempsey &
Walton (2017, p. 9) ensuring confidence in the results. Due to the similarity to previous
studies, only an outline of the derivation will be given, with the aim of illustrating why
these structures only emerge in the η � 1 limit.

To perform this analysis, the small parameter ε is introduced which we will find in
terms of the Reynolds number for both structures separately. For the lower branch, we
expect a triple deck structure to form as shown in figure 5(a). For the upper branch,
six layers are anticipated, as shown in figure 5(b). Note that the coordinate system of
figure 5 is flipped when compared with figure 1, due to the transformation (2.6). Since the
analysis is completed entirely using the inner coordinates (x̃, ỹ), this flipped perspective
avoids unnecessary negative signs and results in a closer correspondence to the asymptotic
suction profile’s upper/lower branch structures. In terms of Re, the small parameter ε is not
the same for both structures, so a label has been added for clarity in figure 5. When ε is used
without a label, the statement will apply to both structures. Figure 3 shows linear growth
of both Re and α in η, so we expect to see this in our distinguished limit. The wavelike
variable ξ should also remain O(1), which is achieved by rescaling x and t. Hence, we
define

R̃e = Re
η
, α̃ = α

η
, x̃ = ηx, t̃ = ηt, (3.4a–d)

to be our variables in this distinguished limit. Recall that when both η,Re � 1, we assume
η � O(Re), in which case we still have R̃e � 1. The wavenumber and wavespeed are
expanded in the small parameter ε as

α̃ = εα1 + ε2α2 + ε3α3 + · · · , (3.5a)

c = c0 − εc1 − ε2c2 − ε3c3 + · · · . (3.5b)

We only expect this structure to exist in the η � 1 limit, where the base flow splits into an
inner and outer region as stated in (2.5). Substituting the scalings (3.4a–d) for the outer
region into (2.3), we find that the perturbation in this outer region is exponentially small.
Hence, we restrict our analysis to take place entirely within the inner region with O(1)
variable ỹ given in (2.6). In doing so, our solution must decay to zero exponentially as
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(a)

Outer inviscid region (II)

Inviscid core (I)

εl

εl
–1

O(1)

Viscous shear layer (III)

x̃ = O(1) x̃ = O(1)

(b)

Outer inviscid region (II)

Inviscid core (I) O(1)

Viscous wall layer (IV)

Inviscid shear layer (III)

Inviscid shear layer (III)

Critical layer (V)

εu
–1

εu
5/3

εu
2

εu

εu

Figure 5. Layer structures for the (a) lower branch and (b) upper branch solutions. The scalings are given in
terms of the inner variables x̃ and ỹ, resulting in a flipped perspective compared with figure 1.

ỹ → ∞ to match the outer region. The expansions

u = U(ỹ)+�û(ỹ)eiξ , v = η

Re
−�v̂(ỹ)eiξ , p = �p̂(ỹ)eiξ , (3.6a–c)

are used where ξ = α̃(x̃ − ct̃) = α(x − ct) and Δ � 1. Substituting (3.6a–c) into (2.3)
and neglecting terms of O(Δ2), we derive the governing equations of a linear perturbation
in the inner region as

iα̃û + dv̂
dỹ

= 0, (3.7a)

iα̃(U − c)û + dU
dỹ
v̂ = −iα̃p̂ + 1

R̃e

(
d2û
dỹ2 + dû

dỹ
− α̃2û

)
, (3.7b)

iα̃(U − c)v̂ = −dp̂
dỹ

+ 1
R̃e

(
d2v̂

dỹ2 + dv̂
dỹ

− α̃2v̂

)
. (3.7c)

We aim to find c0, c1, α1 and ε, which is achieved by finding leading order solutions
across all of the layers. These solutions are subject to no slip and no penetration at ỹ = 0,
exponential decay as ỹ → ∞ and matching between adjacent layers.

The inviscid cores are perhaps most important, as the leading order vertical velocity,
v̂(ỹ) = εG0(ỹ)+ O(ε2), can be found to be given by

G0(ỹ) = iα1A0|c0 − e−ỹ|, (3.8)

where A0 is a constant of integration. This is significant as both structures in figure 5
require a thinner layer below the inviscid core. For this to be achieved, it can be verified
that we require G0(ỹ) → 0 as ỹ → 0, and hence that c0 = 1. It transpires that a solution
with unit wavespeed is only possible in the η � 1 limit, explaining why these upper and
lower branch structures only exist in this limit. It can be seen in figure 2(b) that the largest
value of c is approaching unity as η increases but does not attain this value. With η = 10,
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c only obtains a maximum of 0.956, resulting in the upper/lower branch structures
breaking down quickly. A large value of η is needed to maintain the structures as R̃e
increases.

The scalings given in figure 5 are found by matching between layers as appropriate.
Both εl and εu can be found in terms of R̃e by considering the balance between viscous
and inertial terms in appropriate layers. Doing so gives

εl = R̃e−1/4
, εu = R̃e−1/6

. (3.9a,b)

Completing the analysis and matching between each layer allows us to obtain α1 and c1. It
should be noted that for the upper branch solution, the existence of the critical layer results
in a phase jump of +πi from above the critical layer to below it. Linear critical layers are
well studied and the + sign comes from the fact U′(yc) < 0, where yc is the location of
the critical layer. For a more detailed explanation of this jump condition, see Ruban et al.
(2023).

Overall, it is found that in the lower branch structure,

αl
1 ≈ 1.0006525, cl

1 ≈ 2.2967186, (3.10a)

and for the upper branch structure,

αu
1 = cu

1 = (2π2)−1/6. (3.10b)

Combining these constants with the appropriate ε, we can approximate the neutral curves
in figure 2 with

α̃ = αl
1R̃e−1/4 ⇐⇒ α = αl

1η
5/4Re−1/4 (3.11a)

α̃ = (2π2)−1/6R̃e−1/6 ⇐⇒ α = (2π2)−1/6η7/6Re−1/6. (3.11b)

This is a leading order description based on R̃e being asymptotically large, meaning we
only expect this approximation to be accurate for very large values of R̃e.

3.3. Comparison of asymptotic theory and numerical solutions
Now that we have obtained leading order upper and lower branch asymptotic
approximations to the curves in figure 2(a), we wish to analyse their accuracy. To do
so, we rescale the solutions in figure 2(a) to the (R̃e, α̃) coordinates. We also include a
neutral curve with η = 100, as for any finite η, our upper and lower branch structures
will eventually break down and the curve will tend to the appropriate limit from figure 4.
Increasing η results in the multi-deck structure holding for larger values of R̃e, enabling
(3.11) to be a better approximation. The results of this rescaling, as well as the asymptotes
from (3.11), are shown in figure 6.

As R̃e increases, the curves diverge greatly. For η � 10, the asymptotic structures
quickly disappear and the behaviour shown in figure 4 dominates. The value η =
100 is sufficiently large that our upper and lower branch structures do not break
down within the domain plotted, allowing us to see a convergence to the appropriate
asymptotes.

As an aside, we see that as η increases, the curves coincide near R̃e	c = Re	c/η. This
implies that in the large η limit, the curves in figure 6 are accurate approximations of the
linear neutral curve for asymptotic suction flow near the linear critical Reynolds number
and we can use this to estimate the critical Reynolds number for this flow. Using the
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Re
Figure 6. Linear neutral curves, rescaled into the parameters R̃e = Re/η and α̃ = α/η. The black curves

represent the upper and lower branch asymptotic approximations.

η = 100 curve in figure 6, it is estimated that the linear critical Reynolds number of the
asymptotic suction profile is 54 378.60263 which is in very close agreement with the value
of 54 378.62032 from Yalcin, Turkac & Oberlack (2021), lending further credence to the
reliability of these results.

4. Nonlinear travelling wave solutions at finite Reynolds number

4.1. Nonlinear numerical method
Given our previous linear analysis, we now aim to perform a nonlinear analysis of our
stability problem. This will be performed at finite Reynolds number and will involve
looking for travelling wave solutions to (2.3). The numerical method used in this section
is based on that employed by Wong & Walton (2012). We seek solutions of the form

(u, v, p) =
(

U(y)+ û0(y),
η

Re
, p̂0(y)

)
+

∞∑
n=1

(ûn(y), v̂n(y), p̂n(y))einξ̂ + c.c., (4.1)

where U(y) is given by (2.2a,b) and ξ̂ = α(x − ct). The terms û0(y) and p̂0(y) are the
mean flow distortion and mean pressure distortion, respectively. For simplicity of notation,
we define v̂−n(y) = v̂n(y). Substituting (4.1) into (2.3) gives our governing equations. To
ensure that the problem is computationally feasible, only the first N modes are retained
with the value of N taken sufficiently large to achieve satisfactory resolution of the
solutions. The equation involving the mean pressure distortion uncouples from the rest of
the system and need not be considered further. Taking the resulting system of equations,
every instance of ûn and p̂n for n � 1 can be eliminated to give the following system:

û′′
0 − ηû′

0 =
N∑

k=1

iRe
αk
(v̂′′

k v̂−k − v̂kv̂
′′
−k), (4.2a)

− 1
α2n2Re

D2
nv̂n + i

αn

(
U + û0 − c + η

iαnRe
d
dy

)
Dnv̂n − i

αn
(U′′ + û′′

0)v̂n

=
n−1∑
k=1

S(1)k,n(y)+
N∑

k=n+1

S(2)k,n(y), (4.2b)

û0(±1) = v̂n(±1) = v̂′
n(±1) = 0, (4.2c)
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where

S(1)k,n(y) =
(

1 − k
n − k

)
v̂kv̂

′
n−k + 1

α2n(n − k)
(v̂′′

k v̂
′
n−k + v̂′

kv̂
′′
n−k)

− 1
α2kn

(v̂′′′
k v̂n−k + v̂′′

k v̂
′
n−k), (4.2d)

S(2)k,n(y) =
(

1 − k
n − k

)
v̂kv̂

′
n−k +

(
1 − n − k

k

)
v̂′

kv̂n−k + 1
α2k(n − k)

(v̂′′
k v̂

′
n−k + v̂′

kv̂
′′
n−k)

− 1
α2nk

(v̂′′′
k v̂n−k + v̂′′

k v̂
′
n−k)− 1

α2n(n − k)
(v̂kv̂

′′′
n−k + v̂′

kv̂
′′
n−k), (4.2e)

Dn ≡ d2

dy2 − α2n2, (4.2f )

and ′ denotes differentiation with respect to y. It can be shown, given a solution v̂n(y) to
(4.2a–c), that v̂n �→ v̂neinθ is also a valid solution to (4.2) for any θ ∈ R; this means that
we need to impose a condition to fix the value of θ , which is achieved with the equation

N∑
n=1

Re(v̂n(0)) = 0. (4.2g)

It can be shown that ∃θ ∈ [0, 2π] such that (4.2g) can always be satisfied. For given values
of Re and η, we expect our numerical approach to yield a curve of neutral solutions in the
(α, c) plane. To identify different solutions along this curve, an additional input to our
system is required which can be perturbed to find different solutions at fixed values of Re
and η. This new input is given in the form of a nonlinear amplitude

Â2 =
N∑

n=1

Re(v̂n(0))2 + Im(v̂n(0))2. (4.2h)

It should be emphasised that the only approximation made in the derivation of (4.2) is
the truncation of the Fourier series in ξ̂ . This means a fully resolved solution to (4.2)
with Â > 0 corresponds to a nonlinear travelling wave solution to the full Navier–Stokes
equations (2.3).

To solve (4.2) numerically, we again use Chebyshev collocation. The solution will
be evaluated using M + 1 Chebyshev polynomials evaluated at the Gauss points yj =
cos(π( j − 1)/M) for j = 1, 2, . . . ,M + 1. We express û0(y) and v̂n(y) as

û0(y) =
M+1∑
m=1

γmTm−1(y), v̂n(y) =
M+1∑
m=1

(a(n)m + ib(n)m )Tm−1(y), (4.3a,b)

where Tm(y) is the mth Chebyshev polynomial of the first kind and γm, a(n)m , b(n)m are real
coefficients of the Chebyshev series. This gives a total of (2N + 1)(M + 1)+ 2 parameters
for our system and (4.2) corresponds to (2N + 1)(M + 1)+ 2 equations after substitution
of (4.3a,b) and splitting into real/imaginary components. This allows us to express (4.2)
as a vector equation of the inputs α, c, a(n)m , b(n)m , γm and Newton iteration can be used to
find a solution.
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While this is a well-posed numerical problem, in practice, we require a very close initial
guess to a correct solution for the procedure to converge. This means that we will not be
able to find any solutions without a systematic way to find a starting guess. Observe that
if n = 1 and û0 ≡ 0, the left-hand side of (4.2b) is equivalent to (3.2a) after moving all
the terms in (3.2a) to the left-hand side and multiplying by i/α. Suppose v̂(y), αor, cor is a
solution to (3.2) for a given Re, η normalised so that v̂(0) = 1. Then, by this observation,

v̂1(y) = iÂv̂(y), α = αor, c = cor, û0(y) = v̂n(y) ≡ 0 for n � 2, (4.4)

is a solution to (4.2b), (4.2c), (4.2g) and (4.2h). Importantly, (4.4) is a solution for arbitrary
Â � 0. While (4.4) does not satisfy (4.2a) unless Â = 0, setting Â close to zero makes
(4.4) arbitrarily close to a non-trivial solution. This observation means we can take a
neutral solution to the modified Orr–Sommerfeld equation and bifurcate from this curve
into non-zero amplitude space.

This will allow us to find solutions to (4.2), but due to the complexity of the system,
convergence would require taking very small steps in Â. To remedy this and make
the algorithm more robust, the Jacobian of (4.2) has been calculated analytically. This
requires taking derivatives of each equation in (4.2) with respect to each parameter
α, c, a(n)m , b(n)m , γm. These derivatives, while important, are algebraically cumbersome and
so have not been included for brevity.

This method requires a linear neutral curve from which to bifurcate to generate the initial
solutions. This means that this method can only be used for η � η	c . For values outside of
this range, or to investigate neutral solutions with Reynolds numbers smaller than Re	c, a
different approach is used. Results can be obtained by stepping through values of η or Re
in Â > 0 space. This allows an investigation into a solution space that was not previously
accessible. Indeed, it is theoretically possible to decrease η to zero, allowing a nonlinear
investigation of Couette flow. Although this procedure was used to obtain some of the
results, solutions in these regimes require far more Fourier modes to achieve accurate
convergence. Using more than N = 40 modes resulted in unreasonable computation times
and so a detailed investigation of these highly nonlinear solutions has not been included.

4.2. Weakly nonlinear analysis
To validate the results described subsequently in § 4.3, a weakly nonlinear analysis is used
for comparison. The result of this analysis, the Landau–Stuart equation, was first conceived
by Landau (1944) and subsequently formally derived by Stuart (1960) and Watson (1960).
Weakly nonlinear theory has been successfully used to classify the bifurcation from the
linear neutral curve in a variety of flows including circular Couette flow (Davey 1962) and
Poiseuille flow (Reynolds & Potter 1967). For a full account of the theory, the reader is
referred to Ruban et al. (2023). Our aim is to see how the nonlinear amplitude Â varies
with α at fixed values of Re and η. This approximation should correctly identify whether
there is a subcritical or supercritical bifurcation. Suppose α0, c0 is a neutral solution to
(3.2) at some Re and η. We wish to analyse the system at α = α0 + δa, where a = O(1)
and δ � 1.

To undertake this analysis, we expand in the small parameter ε, which will be chosen as
a function of δ, using the streamfunction

ψ(x, y, t) = Ψ (x, y)+ εψ1(ξ̄, y, t̄)+ ε2ψ2(ξ̄, y, t̄)+ · · · , (4.5)

1002 A30-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156


Coherent structures in 2-D Couette flow with throughflow

where

Ψ (x, y) =
∫ y

0
U(z) dz − η

Re
x, ψ1(ξ̄, y, t̄) = Ā(t̄)eiξ̄ φ1(y)+ c.c., (4.6a,b)

and our variables are defined as ξ̄ = α0(x − c0t) and t̄ = δt. From (4.6a,b), we see there
are two time scales, t corresponding to oscillations of the perturbations and t̄ to describe
the slow growth of amplitude. We want the simplest non-trivial solution for the amplitude
and it transpires this will occur when δ = ε2. The analysis involves the first three orders
of equations from substituting (4.5) into (2.3). At leading order, we find that φ1(y) is
governed by (3.2), making any solution arbitrary up to a multiplicative constant. To
normalise the problem, it was chosen to enforce φ1(0) = 1. From this analysis, we obtain
the Landau–Stuart equation,

d|Ā|2
dt̄

= 2aκr|Ā|2 − 	r|Ā|4, (4.7)

where κr and 	r are real constants found as part of the analysis. The expressions of κr, 	r
are similar to those of Ruban et al. (2023), after propagating the non-trivial effects of η /= 0
throughout and varying α instead of Re. These expressions have been omitted explicitly
for brevity.

Our aim is to compare the growth of Ā (the weakly nonlinear amplitude) and Â (the
strongly nonlinear amplitude). We expect a neutral solution in our weak formulation if |Ā|
is constant, i.e.

|Ā| =
√

2aκr

	r
, (4.8)

from (4.7). To compare the weak and strong formulations, note that the leading orders in
(4.1) and (4.5) are analogous,

v̂1(y)eiξ̂ + c.c. ≈ −iεα0Āeiξ̄ φ1(y)+ c.c. (4.9)

Since we expect a weakly nonlinear solution to only match the strongly nonlinear solution
near the linear neutral curve, we approximate ξ̂ ≈ ξ̄ . Recall from (4.4) that close to the
linear neutral curve, we have v̂1(0) ≈ iÂ. Finally, as part of the weakly nonlinear analysis,
it was chosen that φ1(0) = 1, so evaluating (4.9) at y = 0 gives us

ε = − Â
α0Ā

= Â
α0

√
	r

2aκr
, (4.10)

after using (4.8) to find Ā so that ε ∈ R and ε > 0. Using (4.10) and the fact ε2 = δ =
(α − α0)/a, we find the relationship

Â2 ≈ 2κr

	r
α2

0(α − α0). (4.11)

This is our approximation of the nonlinear amplitude and will allow a partial check of
the numerical results in § 4.3. This is a linear approximation for Â2, so when plotting Â2

against α, the approximation will be, at best, tangent to the curve at Â = 0.
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Figure 7. Normalised amplitude growth predicted by the weakly nonlinear approximation and the strongly
nonlinear simulation when bifurcating from (a) the upper branch and (b) the lower branch of the linear neutral
curve. A throughflow number of η = 6 was used and a Reynolds number of Re = 360 000.

4.3. Numerical results
In this section, we examine results generated from the numerical approach discussed in
§ 4.1. The neutral curves in figure 2 exist at relatively high Reynolds numbers, which
generally means that many Fourier modes and Chebyshev polynomials are required to
accurately generate nonlinear continuations of these curves. To reduce this computational
burden, most of the simulations are performed with Reynolds numbers as small as
possible, most commonly of magnitude 105.

To begin, the nonlinear amplitude Â is compared with the approximation from the
weakly nonlinear analysis given in (4.11). The amplitudes have been normalised relative
to the maximum value attained by Â, which is denoted Âmax. That is to say, we have
defined Ân = Â/Âmax. Equation (4.11) is rescaled to approximate Ân instead of Â. To
aid the comparison, Â2

n has been plotted as this makes the weak approximation linear
in α. In figure 7, we see the neutral curves at a Reynolds number of Re = 360 000 and
a throughflow number of η = 6. It appears that the linear approximation is tangent to
the nonlinear amplitude at Â = 0, as expected. Both curves in figure 7 correspond to a
subcritical bifurcation. Here, Ân is of the magnitude 10−3, which is very small compared
with its maximum value of 1. This limited accuracy of the linear approximation can also
be observed in other studies (see for example Deguchi & Walton 2018, figure 2). Figure 8
shows how, at a fixed Reynolds number of 500 000, increasing the throughflow strength
decreases the slope κr/	r from (4.11). Due to the linear neutral curves only coming into
existence at η	c ≈ 3.35, the growth has only been tracked from η = 4, but it is clear that
increasing throughflow makes α grow more rapidly when varying amplitude.

A selection of nonlinear neutral curves with η = 6 are shown in figure 9. Between N =
10 and N = 20 Fourier modes and M = 150 Chebyshev polynomials were used to generate
the various curves in figure 9. Note that the lower branch is only shown for a limited
range of amplitudes beyond which it proved impossible to obtain a converged solution.
The inability to computationally continue the lower branch into the strongly nonlinear
regime has been observed before, e.g. for boundary-layer flow (Hall 1995, figure 2) and
plane Poiseuille flow (Deguchi & Walton 2018, figure 2).

Both the relationship between Â and α (figure 9a,b) and the relationship between α and
c (figure 9c,d) are shown. The lower branch can be observed leaving the linear neutral
curves in figures 9(b) and 9(d) for Re = 360 000, 500 000, but these solutions have only
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Figure 8. Slope of the initial amplitude growth, as predicted by the weakly nonlinear theory, of the upper
branch at a Reynolds number of 500 000 as a function of the throughflow number.
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Figure 9. Nonlinear neutral curves for η = 6. Both (a,c) a two-dimensional (2-D) representation and
(b,d) a three-dimensional (3-D) representation are shown with the black curves being the appropriate linear
neutral curve from figure 2. The relationship between the amplitude and wavenumber are shown in panels (a,b)
and the relationship between the wavenumber and wavespeed in panels (c,d).

been calculated for small Â. While the choice of amplitude measure is somewhat arbitrary,
the relationship between α and c is objective and should be used as the primary view of
these neutral curves. All graphs in figure 9 show a rapid growth in wavenumber for small
perturbations in Â or c near the linear neutral curve.
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Figure 10. Nonlinear critical Reynolds number as the throughflow number varies.

The curves in figure 9 form part of the nonlinear neutral surface that contains neutral
solutions far below the linear limit of Re	c ≈ 357 769. If Rec denotes the minimum Re
on the nonlinear neutral surface, when η = 6, it was found that Rec ≈ 19 200. The
nonlinear critical Reynolds number is shown for a range of values of η in figure 10.
There is a small amount of curvature; however, the curve appears to be an approximately
linear relationship. Crucially, figure 10 implies that faster throughflow leads to a
larger range of stable modes. So while Rec is an order of magnitude smaller than its
linear counterpart Re	c, both show that sufficiently strong throughflow stabilises Couette
flow.

Individual neutral solutions can also be investigated, some of which are shown in
figure 11. The functions shown are the mean flow distortion u0(y) and the travelling
wave components vn(y)einξ̂ + c.c.. Since the vn(y) are complex-valued, we plot twice
their imaginary part. The reason for this choice is discussed in § 6 when we compare
these functions to their analytic counterparts obtained from an asymptotic theory. From
each figure, we observe an ordering where u0 > v1 > v2 > v3 with the disturbance
concentrated over a region located at the top of the domain. This suggests the existence
of a structure that we will look for in § 5. As the amplitude increases, this ordering and
structure breaks down. This is most noticeable in figure 11(d), where v2 and v3 are of a
similar order of magnitude and u0 does not exponentially decay to zero as y → −1. This
behaviour is due to figure 11(d) using an amplitude which is near the maximum for the
corresponding neutral curve in figure 9(a).

The individual components shown in figure 11 can be appropriately combined to
visualise the total perturbation to the base flow, as shown in figure 12. The flow visualised
is for the parameters shown in figure 11(c). Over one period, we can see that the majority of
the activity happens towards the top of the domain. This is due to the mean flow distortion
(the dominant flow term) being significant only for y > 0.

These neutral solutions allow a much more thorough and realistic investigation into
the behaviour of this flow than their linear counterparts. It is clear by comparing the
values of Re	c and Rec in figures 3(a) and 10, respectively, that these nonlinear results
differ greatly from the linear theory. However, obtaining these solutions is computationally
expensive, especially at large Reynolds numbers. Furthermore, trying to track Rec becomes
computationally infeasible as η decreases, preventing us from numerically finding the
critical value of η beyond which these nonlinear solutions exist. The results in figure 11
seem to indicate an asymptotic structure which would give a pathway to analytically
investigate this nonlinear problem.
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Figure 11. The first few modes of the nonlinear neutral solutions. Each graph uses η = 6 and different values
for Re and Â, as indicated in the bottom right. For the complex-valued modes, 2Im( f (y)) is plotted.
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Figure 12. A nonlinear neutrally stable perturbation to the base flow with η = 6, Re = 500 000, Â = 0.005.
The individual components are shown in figure 11(c).

5. Strongly nonlinear critical layer analysis at high Reynolds number

In this section, a strongly nonlinear analysis will be performed seeking self-sustaining
structures in the flow at asymptotically large Reynolds numbers. We aim to provide an
asymptotic description of the upper branch modes found computationally in § 4. Similar
analyses have been conducted for many flows, including boundary layer flows (Bodonyi,
Smith & Gajjar 1983), Hagen–Poiseuille flow (Smith & Bodonyi 1982a), unsteady pipe
flow (Walton 2011) and plane Poiseuille flow (Smith, Doorly & Rothmayer 1990; Deguchi
& Walton 2018). The analysis conducted in this paper follows most closely to that of
zero-mass-flux plane Poiseuille–Couette flow by Walton & Barnes (2023). The effect

1002 A30-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156


J. Cuthbert and A. Walton
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Viscous wall layer Re−1/2
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Nonlinear critical layer Re−1/6

x = O(1)

Figure 13. Layer structure used in the strongly nonlinear critical layer analysis.

of throughflow is primarily to change the behaviour in the inviscid core, which will
be explained in detail. For the rest of the analysis, Walton & Barnes (2023) should be
consulted for further details.

To perform this analysis, we take Re � 1. To begin, the case η = O(1) will be
considered, and we assume α ∼ c = O(1). The layer structure is shown in figure 13. The
thickness of the wall layer is to ensure a leading order balance between the inertial and
viscous terms. The thickness of the critical layer is equal to our perturbation parameter ε.
This is found in terms of Re as part of the solution. Only one critical layer is expected due
to U(y), as given in (2.2a), being monotonic. When η > 0, the critical layer is expected to
be skewed to the top of the domain for most wavespeeds. By inverting our base flow U(y),
we find that at a wavespeed c, the critical layer will be located at

yc = 1
η

ln(2c sinh η + e−η). (5.1)

We now aim to analyse each layer of this structure with particular emphasis on how
throughflow changes the behaviour of the inviscid core.

5.1. Inviscid core
In the inviscid core, we expand our fluid parameters as

u(x, y, t) = U(y)+ εUM(y)+ ε2AF(y) cos ξ + · · · , (5.2a)

v(x, y, t) = η

Re
+ ε2AG(y) sin ξ + · · · , (5.2b)

p(x, y, t) = ε2AP(y) cos ξ + · · · , (5.2c)

where ξ = α(x − ct). Substituting (5.2) into (2.3) gives us the governing equations

αF(y) = G′(y), (5.3a)

U′′(y)G(y) = (U(y)− c)(G′′(y)− α2G(y)), (5.3b)

P(y) = α−1(U′(y)G(y)− (U(y)− c)G′(y)), (5.3c)

U′′
M(y) = ηU′

M(y), (5.3d)
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Coherent structures in 2-D Couette flow with throughflow

where ′ denotes a derivative with respect to y. These equations are subject to the inviscid
conditions G(±1) = 0, as well as jump conditions across the critical layer. As discussed
in § 2, the η < 0 case can be transformed into the η > 0 case by appropriate choice of
coordinate system and frame of reference, so we can restrict ourselves to η > 0 without
loss of generality. This means that from (5.3d), we have a piecewise exponential mean flow
distortion. We expect continuity of UM(y) over the critical layer; however, the derivative of
UM(y) is necessarily discontinuous as we shall see below. Solving (5.3d) subject to these
boundary conditions gives

UM(y) =

⎧⎪⎨⎪⎩
A1(1 − exp(η(y + 1))) if − 1 � y < yc,

A1

(
1 − exp(η(yc + 1))
1 − exp(η(yc − 1))

)
(1 − exp(η(y − 1))) if yc < y � 1.

(5.4)

It is clear that UM(y) cannot have a continuous derivative and be non-trivial, and hence
the constant A1 is determined by the jump condition of U′

M(y) over the critical layer. The
size of this jump is given by

JCL = U′
M(y

+
c )− U′

M(y
−
c ) = ηA1eηyc

[
eη −

(
1 − eη(yc+1)

1 − eη(yc−1)

)
e−η

]
. (5.5)

Next, the Rayleigh equation (5.3b) is solved to find G(y). We also have the boundary
conditions G(±1) = 0 and a jump condition over the critical layer. It is expected that when
solving for y > yc, there will be a term of the form (y − yc) ln(y − yc) in the Frobenius
solution for G(y) that leads to a logarithmic singularity in F(y). Since we are assuming a
strongly nonlinear critical layer, the appropriate jump condition to continue the solution to
y < yc will be to replace this logarithmic term with

(y − yc) ln |y − yc|, (5.6)

as done in other studies (see for example Bodonyi et al. 1983; Walton 2003; Walton &
Barnes 2023). A full explanation of this nonlinear phase shift condition can be found from
Ruban et al. (2023). While it is common to solve the Rayleigh equation numerically, the
specific form of the base flow (2.2a,b) allows us to take a semi-analytic approach. This
approach is described in Appendix A and culminates in (A4) defining the relationship
between α and c. The normalising condition used was G(yc) = 1.

The relationship between α and c that results from (A4) is shown in figure 14. Perhaps
the most important property to discuss is the existence of solutions. None of the curves in
figure 14 span the full domain 0 � c � 1. Furthermore, it is known that solutions do not
exist at η = 0 (pure plane Couette flow), so it is important to establish the parameter space
for which solutions can be found. We will now show that solutions exist given sufficiently
strong throughflow, so we define ηc such that solutions in figure 14 exist for all η � ηc.

To identify ηc, we consider the limit α � 1. From figure 14, it seems that to leading
order, the wavespeed remains O(1) and so we set c = c0 to be determined. Substituting
this limit into (5.3b) leads to the simplified equation

G(y)U′′(y) = (U(y)− c0)G′′(y), (5.7)

which can be solved analytically. Solving (5.7) subject to G(±1) = 0 and the jump
condition (5.6) for a non-zero solution results in the solvability condition

c0(1 − c0) ln
κ0(1 − c0)

(1 + κ0)c0
+ κ0 + c0 = 0, κ0 = e−η

2 sinh η
. (5.8a,b)

1002 A30-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156


J. Cuthbert and A. Walton

0 1 2 3 4
α

5 6 7
0

0.5

1.0

c

η = 1.5

η = 2

η = 4

η = 6

η = 10

Figure 14. Relation found between α and c from the solvability condition (A4) for the Rayleigh equation
(5.3b).
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η
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Figure 15. Leading order wavespeed in the long-wavelength limit for varying throughflow strength. The
dotted lines are the asymptotic approximations given in (5.9a,b).

For a given η, (5.8a,b) can be solved for c0 and two branches of solutions are shown in
figure 15. These two branches correspond to the upper and lower values of c, between
which we found solutions in figure 14. The behaviour of these branches for large η can be
derived as

c0 = 1 + 1
W−1(−e−2η)

, c0 = ζe−2η, (5.9a,b)

on the upper and lower branches, respectively, where ζ = 1/W0(1/e) ≈ 3.5911 is the
solution to the equation ζ(ln ζ − 1) = 1 and Wk(x) is the kth branch of the Lambert
W-function. These approximations are also shown in figure 15 and visually agree with
the true solution for η � 4. The rates at which the upper and lower branches tend to 1
and 0, respectively, explain why as η increases, we see c → 0 more rapidly than c → 1 in
figure 14.

It can be shown that when varying c0, the minimum of the left-hand side of (5.8a,b)
always occurs at c0 = 0.5. It follows that solutions to (A4) only exist when the left-hand
side of (5.8a,b) with c0 = 0.5 is � 0. Setting c0 = 0.5 and κc = e−ηc/2 sinh ηc gives the
equation

ln
κc

1 + κc
+ 4κc + 2 = 0, (5.10)

which can be solved numerically for κc and hence ηc. This allows us to efficiently find ηc
to arbitrary precision and it is found that ηc ≈ 1.1997. This is significantly smaller than
the critical throughflow number for the linear stability analysis at finite Reynolds number
η	c ≈ 3.3511. As well as the relation in figure 14, solving (5.3b) has given us an expression
for G(y) and its derivative which can be used in other layers as appropriate. The values
of G′(±1) are of great importance and have been shown in figure 16. We always have
G′(1) < 0 and G′(−1) > 0, but the relative sizes of both values varies with c and η.
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Coherent structures in 2-D Couette flow with throughflow

0 0.2 0.4 0.6

c c
0.8 1.0

−40

−30

−20

−10

0

G
′  (

1
)

G
′  (

–
1
)

0 0.2 0.4 0.6 0.8 1.0
0

2

4

η = 1.5 η = 2 η = 4 η = 6 η = 10

(a) (b)

Figure 16. Values of (a) G′(1) and (b) G′(−1) for each solution to the Rayleigh equation shown in figure 14.

To complete our leading order description of this system, we must find A, JCL as defined
in (5.5) and the expansion parameter ε in terms of Re. Doing so requires a leading order
description of the wall layers and critical layer; we start with the former.

5.2. Wall layers
In the lower wall layer, the order one coordinate used is Y− = Re1/2(y + 1) and our
expansions are

u(x, Y−, t) = U(y)+ ε2ũ(−)(ξ, Y−)+ · · · + εRe−1/2u(−)M (Y−)+ · · · , (5.11a)

v(x, Y−, t) = η

Re
+ ε2Re−1/2ṽ(−)(ξ, Y−)+ · · · , (5.11b)

p(x, Y−, t) = ε2p̃(−)(ξ, Y−)+ · · · . (5.11c)

This system is subject to no penetration and no slip at Y− = 0 and matching to the inviscid
core as Y− → ∞. It can be shown that the leading order velocities take the form

ũ(−)(ξ, Y−) = 1
2 Ũ(−)(Y−)eiξ + c.c., (5.12a)

ṽ(−)(ξ, Y−) = 1
2 Ṽ(−)(Y−)eiξ + c.c., (5.12b)

where U(−)(Y−) and V(−)(Y−) can be found analytically. We also require the mean-flow
distortion solution uM(Y−), which requires inspection of the next order of equations.
Substituting (5.11) into (2.3b), the terms of order ε4 are investigated. The inertial
contribution is

αũ(−)
∂ ũ(−)

∂ξ
+ ṽ(−)

∂ ũ(−)

∂Y−
= 1

4
((iαŨ(−)2 + Ṽ(−)Ũ(−)′)e2iξ + Ũ(−)′ �Ṽ(−) + c.c.), (5.13)

which must be balanced by viscosity and pressure gradient effects. Crucially, (5.13)
contains a term independent of ξ , which can only be balanced by the mean flow distortion.
For this to occur, we need a balance between the ε4 terms and the leading order mean flow
distortion of magnitude εRe−1/2 from (5.11a) giving the scaling

ε = Re−1/6. (5.14)

This scaling is typical of a nonlinear critical layer study (see for example Smith &
Bodonyi 1982b; Walton 2003; Walton & Barnes 2023). The lower wall analysis can then
be completed by finding u(−)M (Y−). The upper wall layer uses the order one coordinate
Y+ = Re1/2(1 − y) and the same method to find the leading order description.
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Figure 17. Amplitude A plotted for varying values of c and η.

5.3. Critical layer and amplitude equation
This leaves only the critical layer in which to determine the leading order solution. To
complete our analysis, the first five orders must be considered which leads to a lengthy
calculation. This allows us to quantify the jump in the mean flow distortion over the critical
layer, JCL. Then, by considering a net vorticity jump across all layers, an equation for
the amplitude A can be obtained. The details can be found in other studies (Kumar &
Walton 2019; Walton & Barnes 2023) with adjustments being made due to the addition of
throughflow. It is found that the jump in the derivative of the mean flow distortion over the
critical layer is given by

JCL = 25/2πq2(yc)Θ

(αq1(yc))1/2
A1/2G(yc)

1/2, (5.15)

and the amplitude is given by

A = 8α1/3
(

−πΘq2(yc)

√
G(yc)

q1(yc)

)2/3 (
G′(1)2

μ(+)
− G′(−1)2

μ(−)

)−2/3

, (5.16)

where

qn(y) = 1
n!

dnU
dyn , μ(+) =

√
α(1 − c)

2
, μ(−) =

√
αc
2

(5.17a)

and

Θ =
∫ ∞

1

(∫ 2π

0
(s − cos ξ)−1 dξ

)−1

− 1
2πs1/2 ds − 1

π
≈ −0.3103. (5.17b)

Using the solution found to (5.3b), all terms in (5.16) are known and A can be calculated.
The results are shown in figure 17. Observe that the amplitude is only real-valued for a
subset of the values for which we found solutions in figure 14, as this requires the final
bracketed term in (5.16) to be positive. It can be seen from figure 16 that this will not
always be true.

With this additional information, the relationship between α and c is shown again in
figure 18, but now it is indicated where a real amplitude exists with a solid line. As η is
increased, a solution exists for a greater proportion of each curve. This tells us that faster
throughflow results in our asymptotic structure existing for a greater range of wavespeeds.

By considering the 1 � η � O(Re) limit of this asymptotic structure, it can be
demonstrated that a real amplitude exists for the entire domain 0 � c � 1. Thus,
asymptotically large throughflow can enable our asymptotic structure to exist for the entire
domain of wavespeeds available. It is not until η ∼ O(Re) that the structure breaks down.
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Figure 18. Relationship found between α and c from the Rayleigh equation (5.3b). The lines are solid where
a non-negative real amplitude exists and dotted where no such amplitude exists.

6. Comparison between strongly nonlinear numerical and asymptotic results

Across §§ 4 and 5, the strongly nonlinear stability of Couette flow subject to a constant
throughflow has been investigated both numerically and analytically. At finite Re, we
can compute solutions to arbitrary accuracy at precise values of the parameters Re, η, Â.
Unfortunately, this comes at a large computational cost. A [(2N + 1)(M + 1)+ 2] ×
[(2N + 1)(M + 1)+ 2] matrix must be inverted several times to find solutions, and
small steps in Re, η, Â must be used to ensure convergence. There are also issues with
convergence as η or Re become large, as well as a large number of modes N being required
once η,Re, Â vary significantly from their values on the linear neutral curve. Typical
values of (M,N) required to achieve satisfactory convergence can be as large as (300, 40).

The strongly nonlinear asymptotic analysis avoids issues of convergence and gives us
a precise description of the flow, as well as an understanding of the various internal
mechanisms that interact to produce the solution. However, strictly speaking, the theory
is only valid if Re is asymptotically large. It is therefore fair to question the practical
applicability of such a solution compared with high-precision numerics.

Given that we have produced both types of solutions, we can compare them to provide
some insight into the answer to this question. In figure 19, the mean flow distortion and
first mode of the numerical solution have been shown with η = 6,Re = 500 000, Â =
5 × 10−3 for which c ≈ 0.665. Examining the expansions used for the nonlinear modes
in (4.1) and for the asymptotic solution in (5.2), it is evident that we should compare

û0(y) to εUM(y) for the mean-flow distortion and v̂1(y)eiξ̂ + c.c. to ε2AG(y) sin ξ for
the first harmonic. For the latter terms, an appropriate phase must be chosen for the
comparison. Equation (4.2g) implies that Re(v̂1(0)) ≈ 0 and hence v̂1(y)eiξ̂ + c.c. ∼
±2Im(v̂1(y)) sin ξ . This is a fairly crude approximation, but ensures the phase of the
solutions is similar without explicit numerical matching. The ± sign is due to the
travelling-wave coordinate ξ for each solution only being equivalent up to a phase shift
of π. For the parameter values chosen, it was found that the + sign was appropriate. We
therefore plot the quantity 2Im(v̂1(y)) in figure 19 as a representation of the first mode
of the numerical solution. As a comparison, we also show the asymptotic solution for the
parameter values η = 6, c = 0.665 and ε = 500 000−1/6 with the appropriate amplitude A
calculated from (5.16). We can see encouraging agreement between the two solutions for
both the mean-flow distortion and the first harmonic. To improve the agreement, a second
numerical solution at a larger Reynolds number Re = 5 000 000 has been added to the
figure. An amplitude of Â = 1.8 × 10−3 was chosen for this solution, as this corresponds
to a similar wavespeed to the previous solutions. The Reynolds number of each numerical
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Figure 19. Both the leading order analytic and numeric solutions for (a) the mean flow distortion and (b) the
leading order vertical component. Each curve has η = 6 and appropriate parameters are chosen so that c ≈
0.665 to give a fair comparison. The Reynolds numbers of the numerical solutions are given as an additional
subscript in the legend.

solution is indicated by the subscripts in the legend in figure 19. The numerical solutions
have also been scaled to remove the dependence of their magnitude on Re.

The values used in figure 19 result, via (5.14), in asymptotic parameters ε ≈ 0.1122 and
ε ≈ 0.07647 for Re = 500 000 and 5 000 000, respectively. These are both relatively large
expansion parameters for an asymptotic approach. However, the general distribution and
magnitude of the asymptotic solutions do match with those arising from a purely numerical
solution. It should be emphasised that the only matching between the solutions in figure 19
involves the phase and wavespeed, and there are no additional fitting parameters. The
comparison in figure 19 is typical and similar comparisons can be made for each of the
results in figure 11. Comparing the two numerical results, it is clear that the increase in Re
does result in an improvement in the agreement. As Â approaches its maximum value, the
comparison becomes worse, due to the phase condition for the matching becoming less
accurate and the breakdown of the asymptotic structure, as seen in figure 11(d), where the
first harmonic no longer dominates the flow.

7. Conclusion

In this paper, both the linear and nonlinear stability of Couette flow with a constant
throughflow have been analysed.

It was shown that throughflow linearly destabilises Couette flow beyond a critical
throughflow number of η	c ≈ 3.3511. As η becomes asymptotically large, a multi-deck
upper and lower branch structure was found to emerge. Using these structures, a leading
order asymptotic description of each branch of the linear neutral curve was obtained and
this was seen to approximate well the numerically computed branches at sufficiently large
η and Re, as shown in figure 6.

Nonlinear travelling wave solutions to the Navier–Stokes equations were then found
at finite Reynolds numbers. These solutions showed a strongly subcritical bifurcation
from the linear neutral curve which agreed with a weakly nonlinear analysis. Using a
throughflow number of η = 6, it was found that the nonlinear critical number was Rec ≈
19 200, far smaller than the corresponding linear critical Reynolds number Re	c ≈ 357 769.
This trend can be seen for a range of values of η by comparing figures 3(a) and 10. It was
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found that increasing η, raised both the linear and nonlinear critical Reynolds numbers,
supporting the idea that throughflow delays the laminar–turbulent transition.

Using strongly nonlinear critical layer theory, a self-sustaining structure was found
for an asymptotically large Reynolds number. This structure exists for a throughflow
number greater than ηc ≈ 1.1997, which is much lower than the value required for linear
instability η	c . This asymptotic structure remains valid until η ∼ O(Re), at which stage the
throughflow is comparable in magnitude with the streamwise component of the base flow.

The finite Re and asymptotic solutions were compared in figure 19, and it was found
that the asymptotic solution approximated the fully nonlinear numerical solutions even at
moderate Reynolds numbers of O(105). The agreement between these methods provides
both a partial check on the results and confirms the applicability of the asymptotic
approach.

The work presented could be extended in numerous ways to further explore the effect
of throughflow. One avenue would be to investigate how the existing three-dimensional
coherent structures in plane Couette flow (Waleffe 1998; Deguchi & Hall 2014) are
affected by the introduction of a throughflow component. Other flow geometries could
be considered to determine whether the stabilising effect of throughflow is reliant on the
Cartesian geometry used in most studies. The dynamics within the porous walls could also
be modelled using an equation such as Darcy’s law. The linear stability of such a system
has been explored for both Poiseuille (Yu 2024) and Couette (Shankar & Shivakumara
2021) flow. The linear instabilities in these problems could be used to generate nonlinear
neutral surfaces with throughflow found as part of the solution, enabling more realistic and
complex models. Finally, given the applications to improving aerodynamics, the addition
of compressible effects would help model more realistically the potential benefits of
throughflow in practical applications.
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Appendix A. Analytic solution to the Rayleigh equation with finite throughflow

To solve (5.3b) semi-analytically, we first substitute (2.2a) into (5.3b) and make the
substitution z = −η(y − yc) to obtain the equation

G′′(y)− α̃2G(y) = 1
1 − ez G(y). (A1)

The previous notation defined in (3.4b), α̃ = α/η, is used for simplicity. We then set β =√
α̃2 + 1, w = 1 − ez and G(y) = eβzf (w). Substituting these definitions into (A1), it can

be shown that f (w) satisfies the equation

w(1 − w)
d2f
dw2 − (2β + 1)w

df
dw

− f = 0. (A2)

This is a hypergeometric equation and has a standard solution given by DLMF (2024,
Chapter 15). Our domain is −1 � y � 1, which corresponds to a domain for w of
1 − exp(η(yc + 1)) � w � 1 − exp(η(yc − 1)). Since −1 � yc � 1, this means w = 0 is
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always in our domain and the domain can extend outside −1 � w < 1. Given this, a value
of w0 ∈ (−1, 0) exists such that our solution can be written piecewise, as an infinite series
within |w| < −w0 < 1 and as a combination of hypergeometric functions for w < w0. In
particular,

G(y) = eβz

{
Ay1(1 − ez)+ By2(1 − ez) for 1 − ez > w0,

Cy3(a, b; 1 − ez)+ Dy3(b, a; 1 − ez) for 1 − ez < w0,
(A3a)

y1(w) = w2F1 (a + 1, b + 1, 2; w) , (A3b)

y2(w) = y1(w) ln |w| + 1
ab

+
∞∑

n=1

(a + 1)n(b + 1)n
(2)nn!

[ψ(a + 1 + n)+ ψ(b + 1 + n)

−ψ(n + 2)− ψ(n + 1)]wn+1, (A3c)

y3(m, n; w) = (−w)−m
2F1

(
m,m + 1,m − n + 1; 1

w

)
, (A3d)

where A,B,C,D are arbitrary constants, 2F1 is the hypergeometric function, ψ(z) is the
digamma function, (x)n is the rising factorial, a = β − α̃ and b = β + α̃. The choice of
−1 < w0 < 0 is arbitrary, but the series in (A3c) diverges as w → −1 and the lower region
of (A3a) has an input which diverges to ∞ as w → 0. With this in mind, w0 = −0.5 was
chosen. The solution in (A3) satisfies (5.3b) and the jump condition (5.6), so it remains
to apply our boundary conditions. These are that G(±1) = 0 and the match between the
upper and lower region at w = w0 for both G(y) and its derivative. The function is also
normalised by setting G(yc) = 1, which is equivalent to choosing B = 1. This gives the
eigenrelation

Ay′
1(w0)+ y′

2(w0) = Cy′
3(a, b; w0)+ Dy′

3(b, a; w0), (A4a)

A = −y2(1 − exp(η(yc − 1)))
y1(1 − exp(η(yc − 1)))

, (A4b)

C = C0D, (A4c)

C0 = −y3(b, a; 1 − exp(η(yc + 1)))
y3(a, b; 1 − exp(η(yc + 1)))

, (A4d)

D = Ay1(w0)+ y2(w0)

C0y3(a, b; w0)+ y3(b, a; w0)
, (A4e)

where the derivatives in (A4a) are with respect to w and can be found analytically in terms
of hypergeometric functions using the identities in DLMF (2024, Chapter 15). Equation
(A4) is then solved numerically to obtain the eigenrelation between α and c.

REFERENCES

BALDWIN, P. 1970 The stability of the asymptotic suction boundary layer profile. Mathematika 17 (2),
206–242.

BENNEY, D.J. & BERGERON, R.F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths
48 (3), 181–204.

BODONYI, R.J. & SMITH, F.T. 1981 The upper branch stability of the Blasius boundary layer, including
non-parallel flow effects. Proc. R. Soc. Lond. A 375 (1760), 65–92.

BODONYI, R.J., SMITH, F.T. & GAJJAR, J. 1983 Amplitude-dependent stability of boundary-layer flow with
a strongly non-linear critical layer. IMA J. Appl. Maths 30 (1), 1–19.

1002 A30-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156


Coherent structures in 2-D Couette flow with throughflow

BRASLOW, A.L., BURROWS, D.L., TETERVIN, N. & VISCONTI, F. 1951 Experimental and theoretical studies
of area suction for the control of the laminar boundary layer on an NACA 64a010 airfoil. Tech. Rep.
NACA-TR-1025. NASA.

BUSSMANN, K. & MÜNZ, H. 1942 Die Stabilität der laminaren Reibungsschicht mit Absaugung. Jahrb.
Dtsch. Luftfahrtforsch. 1, 36–39.

CAO, D. & CHIEW, Y.M. 2014 Suction effects on sediment transport in closed-conduit flows. J. Hydraul.
Engng 140 (5), 04014008.

CHEN, X. & CHIEW, Y.M. 2004 Velocity distribution of turbulent open-channel flow with bed suction.
J. Hydraul. Engng 130 (2), 140–148.

CHIARULLI, P. & FREEMAN, J.C. 1948 Stability of the Boundary Layer, AAF Technical Report, vol. 6. Air
Material Command, Wright-Patterson Air Force Base.

DAVEY, A. 1962 The growth of Taylor vortices in flow between rotating cylinders. J. Fluid Mech. 14 (3),
336–368.

DEGUCHI, K. & HALL, P. 2014 The high-Reynolds-number asymptotic development of nonlinear equilibrium
states in plane Couette flow. J. Fluid Mech. 750, 99–112.

DEGUCHI, K. & WALTON, A.G. 2013a Axisymmetric travelling waves in annular sliding Couette flow at finite
and asymptotically large Reynolds number. J. Fluid Mech. 720, 582–617.

DEGUCHI, K. & WALTON, A.G. 2013b A swirling spiral wave solution in pipe flow. J. Fluid Mech. 737, R2.
DEGUCHI, K. & WALTON, A.G. 2018 Bifurcation of nonlinear Tollmien–Schlichting waves in a high-speed

channel flow. J. Fluid Mech. 843, 53–97.
DEMPSEY, L.J. & WALTON, A.G. 2017 Vortex/Tollmien–Schlichting wave interaction states in the asymptotic

suction boundary layer. Q. J. Mech. Appl. Maths 70 (3), 187–213.
DENG, C. & MARTINEZ, D.M. 2005 Viscous flow in a channel partially filled with a porous medium and with

wall suction. Chem. Engng Sci. 60 (2), 329–336.
DLMF 2024 NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.2 of

2024-09-15, (ed. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark,
B.R. Miller, B.V. Saunders, H.S. Cohl & M.A. McClain).

FRANSSON, J.H.M. & ALFREDSSON, P.H. 2003 On the hydrodynamic stability of channel flow with cross
flow. Phys. Fluids 15 (2), 436–441.

HABERMAN, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51 (2), 139–161.
HALL, P. 1995 A phase-equation approach to boundary–layer instability theory: Tollmien–Schlichting waves.

J. Fluid Mech. 304, 185–212.
HAMILTON, J.M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence structures.

J. Fluid Mech. 287, 317–348.
HUGHES, T.H. & REID, W.H. 1965 On the stability of the asymptotic suction boundary-layer profile. J. Fluid

Mech. 23 (4), 715–735.
HWANG, D.P. 1997 A proof of concept experiment for reducing skin friction by using a micro-blowing

technique. In 35th Aerospace Sciences Meeting and Exhibit. AIAA.
KOEPP, W., ATZORI, M., REZAEI, M., JANSSON, N., VINUESA, R., LAURE, E., SCHLATTER, P. &

WEINKAUF, T. 2020 Video: effects of blowing and suction on the turbulent flow around an airfoil. In
73th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society.

KUMAR, R. & WALTON, A.G. 2019 Self-sustaining dual critical layer states in plane Poiseuille–Couette flow
at large Reynolds number. Proc. R. Soc. Lond. A 475 (2223), 20180881.

LANDAU, L.D. 1944 On the problem of turbulence. Dokl. Akad. Nauk SSSR 44 (8), 339–349.
LIN, C.C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
NAGATA, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from

infinity. J. Fluid Mech. 217, 519–527.
NICOUD, F. & ANGILELLA, J.R. 1997 Effects of uniform injection at the wall on the stability of Couette-like

flows. Phys. Rev. E 56 (3), 3000–3009.
ORSZAG, S.A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4),

689–703.
PRETSCH, J. 1942 Umschlagbeginn und Absaugung. Jahrb. Dtsch. Luftfahrtforsch. 1, 54–71.
REYNOLDS, W.C. & POTTER, M.C. 1967 Finite-amplitude instability of parallel shear flows. J. Fluid Mech.

27 (3), 465–492.
ROMANOV, V.A. 1973 Stability of plane-parallel Couette flow. Funct. Anal. Applics. 7, 137–146.
RUBAN, A.I., GAJJAR, J.S.B. & WALTON, A.G. 2023 Fluid Dynamics: Part 4: Hydrodynamic Stability

Theory. Oxford University Press.
SCHLICHTING, H. & BUSSMANN, K. 1943 Exakte Lösungen für die laminare Grenzschicht mit Absaugung

und Ausblasen. Schriften Dtsch. Akad. Luftfahrtforsch. 7B (2), 25–69.

1002 A30-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://dlmf.nist.gov/
https://doi.org/10.1017/jfm.2024.1156


J. Cuthbert and A. Walton

SHANKAR, B.M. & SHIVAKUMARA, I.S. 2021 Changes in the hydrodynamic stability of plane
porous-Couette flow due to vertical throughflow. Phys. Fluids 33 (7), 074103.

SHEPPARD, D.M. 1972 Hydrodynamic stability of the flow between parallel porous walls. Phys. Fluids 15 (2),
241–244.

SMITH, F.T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366
(1724), 91–109.

SMITH, F.T. & BODONYI, R.J. 1982a Amplitude-dependent neutral modes in the Hagen–Poiseuille flow
through a circular pipe. Proc. R. Soc. Lond. A 384 (1787), 463–489.

SMITH, F.T. & BODONYI, R.J. 1982b Nonlinear critical layers and their development in streaming-flow
stability. J. Fluid Mech. 118, 165–185.

SMITH, F.T., DOORLY, D.J. & ROTHMAYER, A.P. 1990 On displacement-thickness, wall-layer and mid-flow
scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows. Proc. R. Soc. Lond. A
428 (1875), 255–281.

STUART, J.T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part
1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9 (3), 353–370.

STUART, J.T. 1963 Hydrodynamic stability. In Laminar Boundary Layers (ed. L. Rosenhead). Clarendon.
SUN, W., YALCIN, A. & OBERLACK, M. 2024 Stability of plane Couette flow with constant wall transpiration.

Phys. Rev. Fluids 9 (5), 053906.
TILLMARK, N. & ALFREDSSON, P.H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech.

235, 89–102.
WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.
WALEFFE, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 4140–4143.
WALTON, A.G. 2003 The nonlinear instability of thread–annular flow at high Reynolds number. J. Fluid Mech.

477, 227–257.
WALTON, A.G. 2011 The stability of developing pipe flow at high Reynolds number and the existence of

nonlinear neutral centre modes. J. Fluid Mech. 684, 284–315.
WALTON, A.G. & BARNES, C.C. 2023 Nonlinear neutral modes in zero-mass-flux plane Poiseuille–Couette

flow. Q. J. Mech. Appl. Maths 76 (4), 471–497.
WATSON, J. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part

2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9 (3),
371–389.

WONG, A.W.H. & WALTON, A.G. 2012 Axisymmetric travelling waves in annular Couette–Poiseuille flow.
Q. J. Mech. Appl. Maths 65 (2), 293–311.

YALCIN, A., TURKAC, Y. & OBERLACK, M. 2021 On the temporal linear stability of the asymptotic suction
boundary layer. Phys. Fluids 33 (5), 054111.

YU, J. 2024 Linear stability analysis of a multi-layered system with a throughflow. PhD thesis, Imperial
College, London.

ZHENG, C.R. & ZHANG, Y.C. 2012 Computational Fluid Dynamics study on the performance and mechanism
of suction control over a high-rise building. Struct. Des. Tall Spec. Build. 21 (7), 475–491.

ZHOU, Z., LI, H., WANG, H., XIE, G. & YOU, R. 2019 Film cooling of cylindrical holes on turbine blade
suction side near leading edge. Intl J. Heat Mass Transfer 141, 669–679.

1002 A30-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1156

	1 Introduction
	2 Governing equations and basic flow
	3 Linear stability analysis
	3.1 The modified Orr--Sommerfeld equation
	3.2 Lower and upper branch structures
	3.3 Comparison of asymptotic theory and numerical solutions

	4 Nonlinear travelling wave solutions at finite Reynolds number
	4.1 Nonlinear numerical method
	4.2 Weakly nonlinear analysis
	4.3 Numerical results

	5 Strongly nonlinear critical layer analysis at high Reynolds number
	5.1 Inviscid core
	5.2 Wall layers
	5.3 Critical layer and amplitude equation

	6 Comparison between strongly nonlinear numerical and asymptotic results
	7 Conclusion
	Appendix A. Analytic solution to the Rayleigh equation with finite throughflow
	References

