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The overall aim of precision nutrition is to replace the ‘one size fits all’ approach to dietary
advice with recommendations that are more specific to the individual in order to improve the
prevention or management of chronic disease. Interest in precision nutrition has grown with
advancements in technologies such as genomics, proteomics, metabolomics and measure-
ment of the gut microbiome. Precision nutrition initiatives have three major applications
in precision medicine. First, they aim to provide more ‘precision’ dietary assessments
through artificial intelligence, wearable devices or by employing omic technologies to char-
acterise diet more precisely. Secondly, precision nutrition allows us to understand the under-
lying mechanisms of how diet influences disease risk and identify individuals who are more
susceptible to disease due to gene–diet or microbiota–diet interactions. Third, precision
nutrition can be used for ‘personalised nutrition’ advice where machine-learning algorithms
can integrate data from omic profiles with other personal and clinical measures to improve
disease risk. Proteomics and metabolomics especially provide the ability to discover new bio-
markers of food or nutrient intake, proteomic or metabolomic signatures of diet and disease,
and discover potential mechanisms of diet–disease interactions. Although there are several
challenges that must be overcome to improve the reproducibility, cost-effectiveness and
efficacy of these approaches, precision nutrition methodologies have great potential for
nutrition research and clinical application.

Precision nutrition: Metabolomics: Precision medicine: Personalised nutrition: Multi-omics:
Biomarker

Dietary intake is one of the most impactful and modifi-
able risk factors in human health and disease risk.
However, diet is a particularly complex exposure that
encompasses a wide degree of variability, both in the
known and unknown components of foods, as well as
the day-to-day variability in diet and eating patterns.
Traditional dietary assessment methods rely on self-
reported intakes that are cumbersome and have

unavoidable systematic and random error(1). Further,
individuals may have varying responses to diet depend-
ing on personal characteristics, such as age or stage of
life (i.e. pregnant or lactating), sex and health or disease
status(2). Further variation can be explained through dif-
ferences in an individual’s genome, epigenome, transcrip-
tome, proteome, lipidome, metabolome and gut
microbiome(3), which may interact with diet, lifestyle
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and environmental factors. The study of genetics, epigen-
etics, transcriptomics, proteomics, lipidomic, metabolo-
mics and the gut microbiota is collectively referred to
as ‘omics’ research. Recent advances in omic profiling
techniques have led to greater focus on precision nutri-
tion, an approach that utilises these individual character-
istics to develop targeted nutrition recommendations,
services or products to prevent and/or manage chronic
diseases(4) (Fig. 1). The National Institutes of Health
has highlighted precision nutrition as an important strat-
egy in nutrition science in the 2020–2030 strategic plan
for NIH nutrition research(5). More recently, the
National Institutes of Health has funded a new study,
nutrition for precision health powered by all of us research
program, that aims to study and predict individual
responses to food and diets through examining interac-
tions between diet, genetics, metabolism, the microbiome
and other individual factors(6). Beyond a clinical applica-
tion of individual dietary advice or intervention, preci-
sion nutrition methodologies have also shown to be
useful in biomarker discovery and furthering understand-
ing of diet–disease mechanisms. Here we review some of
the tools and uses of precision nutrition research.

Tools of precision nutrition

Advancements in mobile applications, wearable devices
and omics technologies have become a major catalyst
to precision nutrition efforts. Detailed genome-wide
association studies and high-throughput next-generation
whole-genome and whole-exome sequencing provide
the ability to measure genetic variation and gene func-
tion. DNA microarray technology has been developed
to assess the expression and transcription of genes. MS
and NMR can be used to analyse both known and
unknown biological molecules that give a more complete
picture of the metabolic status and response to exposures
such as foods, diets and dietary patterns. Most recently,
advances in high-throughput, high multiplex immune-
based assays have paved the way towards protein profil-
ing that covers a broad range of biological processes. The
analysis of various omics can each provide a different
layer of information – from lifelong traits determined
by genetics to more dynamic changes in the epigenetics
or short-term variation in metabolism and the micro-
biome. Integration of multiple omics can help to leverage
the strengths and overcome the weaknesses of each indi-
vidual omic layer, increasing the ability to capture meta-
bolic variation and the chances of identifying robust
biomarkers of diet and disease(2).

Genome

The genome is the complete set of genetic information of
an individual that determines inherited traits, physical
characteristics and any genetic disorders or predisposi-
tions to disease risk that are present throughout the life-
span. Genes and gene polymorphisms have been
associated with individual metabolic responses to
diet(7,8). One example is genetic diseases that result in

defunct or deficient enzymes needed for metabolic path-
ways. These are referred to as inborn errors of metabol-
ism and can sometimes be treated with nutritional
strategies. One such case is phenylketonuria, a condition
where individuals are not able to metabolise the amino
acid phenylalanine which can lead to serious problems
in brain development unless treated with a low-
phenylalanine diet(9).

Nutrigenomics is the study of specific nutrient–gene
interactions that may explain observed variation in out-
come response to nutrients. For example, higher intake
of dietary fibre has been thought to help with lowering
blood pressure. However, individuals with a common
SNP in the gene that encodes angiotensinogen (AGT),
an important protein involved in regulating blood pres-
sure, do not appear to experience changes in blood pres-
sure in response to a high-fibre diet compared to those
without the SNP(10). Other examples include genetic
polymorphisms that are associated with fast v. slow
metabolism of caffeine(11) or variations in plasma TAG
response to fish oil supplements(12).

Epigenome

The epigenome refers to the physical structure and chem-
ical modification of DNA and supporting histone pro-
teins that can alter gene expression without altering the
DNA sequence. Types of epigenetic changes include
DNA methylation, histone modification and non-coding
RNA. Changes in the epigenome can be hereditary but
can also be altered by environmental conditions during
the lifespan, including lifestyle and diet(13,14). The epigen-
ome could therefore be an important target for potential
diet or lifestyle interventions that may have lasting
effects. For example, there is evidence that nutrition dur-
ing fetal development and early life can impact long-term
DNA methylation and, therefore, gene expression(14,15).
Another study demonstrated that habitual diet quality
was associated with differences in leucocyte-derived
DNA methylation levels(16). There is also growing evi-
dence that weight loss intervention may be associated
with changes in DNA methylation as well(17,18). In a two-
year randomised-controlled trial of energy-reduced diets
of varying macronutrient composition, the authors
found that higher DNA methylation at TXNIP was asso-
ciated with lower fasting glucose, HbA1c and insulin
resistance (measured by homeostatic model assessment
of insulin resistance)(18). Additionally, among those
with higher DNA methylation, a moderate protein
weight-loss diet was associated with improvement in
insulin and homeostatic model assessment of insulin
resistance compared to those with a higher protein
weight-loss diet.

Transcriptome

The transcriptome encompasses all mRNA transcripts
present in the cell, and therefore reflects the genes that
are actively being expressed. Besides epigenetic changes
that alter gene expression, other factors including vita-
mins, minerals, macronutrients, phytochemicals and
other bioactive components of foods can modify gene
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transcription and translation that impact metabolism
and cellular processes(3). Unlike the genome or epigen-
ome, which can reflect lifetime or longer-term variation
in response, the transcriptome measures a single point
in time. Therefore, the time, amount and duration of
exposure are critical when interpreting these data. For
example, numerous animal studies investigating the
effects of high-fat and high-sugar diets have demon-
strated transcriptomic changes in type 2 diabetes
(T2D)-related tissues(19,20).

Proteome

Proteomics measures the end-product of the gene expres-
sion cascade, the mature protein, which is more closely
related to biological function than mRNA levels(21).
Proteomics data can provide more information regarding
functional state, and modern techniques can differentiate
between isoforms and post-translational modifications.
Investigating perturbations in proteomics profiles may
provide detailed insight into cellular responses driven
by differences in dietary intakes(22). Animal studies
have already demonstrated the influence of extra virgin

olive oils on hepatic antioxidant protein levels in mouse
liver(23) and zinc deficiency on lipid metabolism-related
protein levels in rat liver(19). Recently, high-throughput
affinity-based proteomics assays have allowed for the
examination of proteomic profiles among individuals in
large epidemiological studies(24,25). Differences in prote-
omic profiles have been observed according to adherence
to both theoretical measures of diet quality (alternative
healthy eating index, dietary approaches to stop hyper-
tension (DASH) and Mediterranean-style diet score pat-
terns)(26) and empirically derived dietary patterns(27).

Gut microbiome

The gut microbiome consists of the microbial community
present in the large intestine that survives largely on diet-
ary fibre that is not digested in the small intestine. The
abundance and diversity of microbes present varies
between individuals depending on many factors includ-
ing the diet(28,29). Evidence suggests that the composition
and activity of the gut microbiota may modulate the host
response to diet(30). For example, the ratio of two prom-
inent genera of gut bacterial species, Prevotella spp. and

Fig. 1. Precision nutrition in the context of social–ecological model. This figure specifically highlights the complex relationships
between dietary intake and the biological systems which are being targeted in omics research. Also indicated are the types of
measures that can be made at different levels, which can then be utilised in computer algorithms to predict outcomes or to make
personalised dietary recommendations that may improve or prevent disease outcomes.
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Bacteroides spp., was reported to predict glucose metab-
olism in response to a dietary fibre intervention(31).
Microbial metabolism of food components as they pass
through the colon can result in the production of small
molecules that may be absorbed through the colonic
wall. SCFA, for instance, are largely absorbed into the
blood stream and have been linked to a variety of physio-
logical effects including energy metabolism(32,33). The gut
microbiota is also a target for precision nutrition inter-
ventions given that it can be influenced by diet, although
the extent of change may depend on longer-term dietary
habits(30).

Metabolome and lipidome

The metabolome refers to the set of metabolites, or small
molecules, present in an organism or in a particular bio-
logical matrix (i.e. plasma, saliva, etc.). Similarly, the
lipidome refers to the complete profile of lipids in a bio-
logical matrix. These ‘omics’ are much more dynamic,
responding rapidly to stimuli, including the bioactive
components of food. Metabolomic data provide insight
into metabolic variation, as well as regulatory or signal-
ling molecules. Evaluating differences in these profiles
between individuals and in response to diet is helping
to further the understanding of variation in metabolism
of individuals and diet disease mechanisms.
High-throughput metabolomics profiling has emerged
as an important tool in nutritional biomarker discovery
for both individual foods and overall dietary patterns(34).
Further refinement of these metabolomic biomarkers and
studies integrating these biomarkers into dietary inter-
ventions may demonstrate the utility of personalised
approaches to dietary advice for prevention of chronic
diseases(35).

Precision nutrition applications

In the era of precision medicine, precision nutrition holds
great promise to improve human health. First, precision
nutrition initiatives allow for more ‘precision’ dietary
assessments. These could be achieved through artificial
intelligence, wearables or by employing omic technolo-
gies (especially metabolomics) to characterise diet more
precisely. Secondly, through the application of omics,
precision nutrition allows for us to understand how diet
influences disease risk. This by far has been the most
promising aspect of precision nutrition research.
Finally, precision nutrition can be used for ‘personalised
nutrition’ advice where machine-learning algorithms
(based on data from omic technologies) can be integrated
with other personal and clinical measures to improve dis-
ease risk.

Dietary biomarker discovery

Accurately and objectively assessing diet in free-living
individuals remains an ongoing challenge in nutrition
research. An individual’s diet is a complex pattern of
inter-correlated exposures, both of known and unknown
constituents, cooking methods and social constructs.

This complexity, when coupled with the relatively large
within-person day-to-day variability, makes it difficult
to accurately quantify a person’s diet. Biomarkers, mea-
sured in serum, plasma or urine, are an objective method
to quantify the intake of nutrients, foods and dietary pat-
terns. Nutrient biomarkers that represent the dietary
exposure’s true ‘bioavailable’ or ‘internal’ dose can
serve as the ‘gold standard’ in the development and val-
idation of many dietary assessment tools, or they can be
used to in calibration equations to correct less precise
dietary data. However, in nutrition research, there are
only a few recovery biomarkers that reflect absolute
intake when measured thoroughly over a specified
amount of time. These include urinary nitrogen as a bio-
marker of protein intake, doubly labelled water for total
energy intake and urinary potassium and sodium. Unlike
recovery biomarkers, concentration or surrogate markers
of dietary intake are without a time dimension and can
only provide relative intakes. Examples of concentration
biomarkers include plasma retinol, plasma vitamin D,
plasma ascorbic acid, plasma α-tocopherol, adipose tis-
sue fatty acids, plasma folate and several others. There
are few objective dietary biomarkers that can reflect
usual/habitual intake of foods or dietary patterns,
which are the exposures of interest in many nutritional
epidemiologic studies.

The search for dietary biomarkers has most often
focused on the plasma metabolome as it most closely
represents the phenotype. The metabolome also has the
distinct advantage of reflecting the overall metabolic
homeostasis resulting from the interaction between the
environment, the genome and the microbiome.
Metabolites account for variability in intrinsic metabol-
ism by measuring downstream components and there-
fore, better reflect ‘true exposure’. Recent technological
advancements in targeted and untargeted metabolomics
profiling techniques have allowed for opportunities for
discovery of food-based biomarkers. Use of MS-based
techniques has allowed researchers to identify novel
metabolomic signatures for a wide range of foods and
nutrients that can ultimately be leveraged to more pre-
cisely characterise diet at the population level.
However, for this to happen, there is a tremendous
need for well-controlled feeding studies for initial bio-
marker discovery and external studies for validation at
the population level.

Methodological considerations in biomarker discovery
Study design. Several study designs are available for

biomarker discovery. Observational studies with infor-
mation on long-term diet, the nutritionally relevant
exposure in epidemiological studies, and stored biospeci-
mens are a valuable resource in identifying biomarkers of
foods and dietary patterns. In this approach, participants
are ranked according to their dietary intakes measured
closest to the timing of the biospecimen collection.
Associations between individual metabolites and diet
are then assessed using multivariable regression models
with statistical corrections for multiple testing. Machine
learning tools or other multivariate data reduction strat-
egies can also be applied to derive a multi-metabolite
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‘signature’ that is reflective of a food or a diet pattern.
Given that these are data-driven approaches, it is impera-
tive that the newly developed signatures are replicated in
an external independent sample. Because observational
studies that utilise food frequency questionnaires can
only provide a relative ranking of foods, biomarkers
identified in these studies cannot directly quantify food
intake or adequately assess dose–response relationships.
Moreover, identified metabolites may be reflective of life-
style rather than the food itself. For example, in some
studies, cotinine, a nicotine metabolite, has been part
of a metabolomic signature of coffee consumption.
Because foods are inter-correlated, biomarkers identified
from observational studies are likely to have low
specificity.

Randomised-controlled feeding trials are the gold stand-
ard to investigate the effects of test foods on the metabo-
lome and for dietary biomarker identification. The
dietary intervention often occurs in a rigorously con-
trolled setting such as a metabolic unit with biological
samples taken at regular intervals throughout the study
period. Sample sizes for these studies tend to be small
given the extensive measurements taken and the high
cost of metabolomics analyses. These studies can be
either acute (lasting a few hours or 1 d) or medium
term (lasting several days or sometimes weeks). Acute
intervention studies allow researchers to understand the
pharmacokinetic behaviour of the metabolites. In this
approach, participants refrain from eating the test
foods for a few days prior to the start of the intervention.
Test foods are provided on the day of the trial and bios-
pecimens, usually urine and plasma, are collected at peri-
odic intervals throughout the day. Metabolomic assays
on the biospecimens provide information on the pharma-
cokinetic behaviour of the putative biomarker. For
example, in an orange juice challenge study by
Heinzmann et al., urinary proline betaine increased dra-
matically after consumption and peaked at 2 h post inter-
vention(36). In all participants, proline betaine was
excreted rapidly in urine, and urinary excretion was
nearly complete after 24 h. This behaviour shows that
proline betaine is metabolically inert or minimally meta-
bolised in human subjects. Given that urinary concentra-
tions returned to baseline by the end of 24 h, urinary
proline betaine can only be used to reflect recent but
not long-term intake of citrus fruit.

To identify biomarkers of longer-term intake or to
understand dose–response relationships, intervention
studies that span several days to a few weeks or months
are typically used. These studies can be parallel arm, or
they can be cross-over designs, where each participant
crosses over to all other arms in a randomised fashion.
The cross-over study design remains the most popular
as this design has the distinct advantage of not only low-
ering the number of study participants needed but also
allows for researchers to adequately account for within-
person variability as each participant serves as their
own control. Although tightly controlled feeding trials
remain the gold-standard in nutrition research, they
alone cannot identify robust biomarkers of intake.
Many of these interventions are either acute or last

only a few weeks and, therefore, are not reflective of
habitual diet. For these biomarkers to be useful, these
foods need to be consumed frequently in adequate
amounts. Further, most controlled feeding interventions
only include a limited number of participants who are
non-smokers, are relatively healthy and not obese.
Whether these findings can be extended to free-living
individuals remains unknown. In this context, cohort
studies with long-term dietary data and stored biospeci-
mens can be employed to validate the biomarkers iden-
tified in intervention studies.

Sensitivity and specificity. A key characteristic of a
good biomarker is whether it is sensitive to different
doses. For example, plasma retinol increases linearly
with vitamin A intakes up to 750 μg/d but concentrations
plateau with intakes beyond this level. This limits the
sensitivity of plasma retinol as a biomarker of vitamin
A intake. Controlled feeding trials are an ideal design
to understand the dose–response relationship with mul-
tiple arms representing multiple doses. In these studies,
decisions regarding doses to be tested need to be pegged
against national intake data such as NHANES. For
foods where national consumption levels are low (e.g.
soyabean), it may be prudent to rely on international
data.

In addition to sensitivity, it is vital to understand
whether a biomarker is specific to a certain food. As
before, tightly controlled feeding trials are suitable to
testing specificity as participants often consume a stan-
dardised background diet with only the test food chan-
ging. As a result, any differences in metabolomic
profiles can be attributed to the test food. For example,
proline betaine is a robust indicator of citrus fruit intake
and the quantity of citrus fruit consumed.

Choice of biospecimen. Metabolomic profiles can be
measured in different biofluids such as serum/plasma,
urine, toenails, stool, hair or saliva. Even tear fluid is
being analysed for potential biomarkers of diabetic retin-
opathy(37). Comparisons across multiple fluids show that
while there are some metabolites that are unique to each
fluid, there is also substantial overlap of metabolites pre-
sent in each fluid(38,39). Therefore, the choice of biofluid
analysed may depend on the specific research question,
but also on the convenience of sample collection.
Saliva and/or urine collection are less invasive and
may reflect similar profiles to plasma metabolites. For
food biomarker discovery, however, urine has been
the preferred choice as it provides better metabolite
coverage and dietary biomarkers are often found in
higher concentrations in urine(8). Compared to spot
urine samples, 24 h urine samples will provide a more
accurate quantitative prediction of the dietary bio-
marker(40). The choice of biofluid will also dictate the
biomarkers that are discovered. For example, saliva
and urine may provide information on short-term diet-
ary exposures, erythrocytes may provide intermediate
dietary exposures, and adipose tissue and toenails are
promising biospecimens for capturing long-term expo-
sures. For this reason, measuring multiple biospeci-
mens can often provide us with a broader range of
biomarkers in the human body(41).
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Biomarkers identified using omics
Nutritional biomarkers. There have been only a few

studies that examined the metabolomic response to single
nutrient intakes. A comprehensive scoping review of 24
human studies confirmed that animal and plant protein-
rich diets elicit different metabolomic responses(42).
Several metabolites were identified as plausible candi-
dates to explain the differential association of the two
diets with cardiometabolic risk. For instance, plant
protein-rich diets were positively associated with glycine
which is known to be associated with lower cardiometa-
bolic risk. Conversely, animal protein-rich diets were
associated with branched chain amino acids, aromatic
amino acids, glutamate, short-chain acylcarnitines and
trimethylamine-N-oxide (TMAO), which are associated
with higher cardiometabolic risk. Like proteins, the qual-
ity of carbohydrates can also influence the metabolome,
although their utility as biomarkers maybe diminished
by individual variation. In a randomised and controlled
cross-over feeding trial lasting 4⋅5 weeks, 3-methylhisti-
dine, phenylethylamine, cysteine, betaine and pipecolic
acid were identified as biomarkers in the unrefined carbo-
hydrate diet compared to the refined carbohydrate
diet(43). Still, hierarchical analysis showed that these
metabolites at the end of each diet phase were more
strongly clustered by the participant than the diet type,
thereby limiting their ability to discriminate individuals
based on their carbohydrate intake. In a cross-sectional
analysis of the PREvencion con Dieta
MEDiterranea (PREDIMED) study, glycaemic index,
glycaemic load and a carbohydrate quality index were
associated with specific metabolomic profiles, and strong
correlations (Spearman r 0⋅22–0⋅37) were observed
between the multi-metabolite model and these indices(44).
In the women’s health initiative, Zheng et al. evaluated
potential metabolomic-based biomarkers of protein,
carbohydrate and fat intakes using a 2-week controlled
feeding study design among 153 postmenopausal
women(45). Their analyses showed that using metabolites
alone achieved reasonable prediction of % energy from
protein and % energy from carbohydrate (cross-validated
R2 22⋅8–37⋅1%) with better predictability when combin-
ing metabolites from spot urine and 24 h urine. However,
for energy intake, prediction improved to about 55 %
only after addition of participant characteristics and dou-
bly labelled water. Finally, for fat intake, metabolites did
not provide adequate prediction, highlighting the limita-
tion of urine samples for measuring biomarkers of fat
intake. It must be appreciated that metabolomic response
to a single nutrient intervention may depend on the
replacement nutrient and the food source of the nutrient.
Food biomarkers. In one of the earliest studies to identify
quantitative food biomarkers, participants were fed dif-
ferent doses of grapes in addition to a standardised
meal in a tightly controlled randomised clinical trial.
Urinary tartaric acid was identified by 1H NMR spec-
troscopy as a dose-responsive and quantitative urinary
biomarker of grape intake(46). In another controlled feed-
ing trial, Heinzmann et al. identified proline betaine as a
quantitative biomarker of citrus fruit intake(36). Proline
betaine was externally validated using data from the

International Collaborative Study of Macronutrients,
Micronutrients, and Blood Pressure (INTERMAP)
where it could distinguish citrus consumers from non-
consumers with a specificity of 92⋅3% and a sensitivity
of 80⋅6%. In the NutriTech food intake study, using
NMR spectroscopy, urinary guanidoacetate was iden-
tified as a quantitative biomarker of chicken intake(47).
Likewise, data from controlled feeding trials identified
urinary xylose as a biomarker with a dose–response rela-
tionship with apple intake. Importantly, xylose was cap-
able of ranking individuals in a cohort study into
categories of apple intake(48). Plasma alkylresorcinols
have been proposed as biomarkers of wholegrain intake
in several studies(49–51). Although plasma alkylresorci-
nols demonstrate a dose–response relationship with
whole grain intake and can distinguish between non-
consumers and consumers, they cannot be used to differ-
entiate between participants with whole grain consump-
tion >60 g/d(52). In a systematic search for biomarkers
of sugar-sweetened beverages and low-energy sweetened
beverages, Muli et al. evaluated specificity and validity
of the identified biomarkers following guidelines for bio-
marker of food intake reviews(53). They
identified13C:12C carbon isotope ratio (δ13C), particu-
larly, the δ13C of alanine, as a robust, sensitive and
specific biomarker of sugar-sweetened beverages intake.
Although biomarkers for long-term intake of low-energy
sweetened beverages were not available, several metabo-
lites including acesulfame-K, saccharin, sucralose, cycla-
mate and steviol glucuronide showed moderate validity
for predicting short-term intake of low-energy sweetened
beverages. The food biomarker alliance project performed
a literature review to identify biomarkers of tropical fruit
intake that fulfilled certain biological and chemical cri-
teria. Even though candidate biomarkers were identified
for banana, avocado and watermelon, many of these
metabolites, especially banana-derived metabolites had
limited data on dose–response relationship. At the same
time, for avocado, perseitol and mannoheptulose were
reported as candidate biomarkers while citrulline was
associated with watermelon intake(54). Although these
biomarkers are promising, validation of these in pharma-
cokinetic and dose–response studies is essential.

Multi-metabolite biomarker panels may be useful in
distinguishing foods and for increasing specificity in pre-
diction of food intake. For example, a three-metabolite
biomarker panel (proline betaine, hippurate and xylose)
identified from an intervention study had excellent agree-
ment with self-reported fruit intake from a cross-
sectional study(55). Using data from a randomised cross-
over dietary intervention trial of meat and the European
Prospective Investigation into Cancer and Nutrition
(EPIC)-Norfolk study, a multi-metabolite marker panel
including several glycerophospholipids, 4-hydroxypro-
line, TMAO, creatine, deoxycarnitine and stearoylcarni-
tine reflected red meat intake in both the intervention and
cohort studies(56). Because processing itself can influence
the metabolomic response, biomarkers of processed meat
can vary from those of red meat. For instance, a con-
trolled dietary intervention study of processed meat
showed that high urinary and plasma levels of pepper
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alkaloid metabolites were detected after consumption of
salami. While this was also replicated in a free-living
population, these metabolites performed poorly to predict
sausage intake in the EPIC participants (area under the
curve (AUC) 0⋅66–0⋅69) highlighting their limited value
as biomarkers(57).

Biomarkers of dietary patterns. Metabolomics analysis
of dietary patterns has been conducted using both obser-
vational and controlled feeding trials. In one of the first
rigorously conducted randomised, controlled, cross-over
feeding trials, Garcia-Perez et al. used 1H-NMR spectro-
scopic profiling of urine to develop a model based on
urinary metabolite patterns to classify individuals on
the basis of their adherence to the WHO healthy eating
guidelines(58). These metabolite signatures were then
externally validated in the INTERMAP study and a
Danish cohort. Although there were systematic differ-
ences in metabolomic profiles across the least and most
adherent diets, there was considerable overlap in metab-
olite concentrations indicating relatively low sensitivity
of this multi-metabolite panel(59). Several studies aimed
to identify metabolomic profiles of meat eaters, vegetar-
ians and vegans. In a cross-sectional study, branched
chain amino acids, leucine, isoleucine and valine were
higher in meat eaters and non-vegans than in non-meat
eaters/vegans(60). Likewise, in the EPIC cohort, signifi-
cant differences in metabolomic profiles were seen
between meat eaters, fish eaters, vegetarians and vegans.
For example, vegans had lower concentrations of some
glycerophospholipids, and sphingolipids compared to
other groups. At the same time, fish eaters or vegetarians
had the highest concentrations of the amino acids and a
biogenic amine relative to other diet groups(61). In the
Adventist health study-2, compared with non-
vegetarians, vegans had higher plasma carotenoid con-
centrations and a higher excretion of urinary isoflavones
and enterolactone. They also had lower relative abun-
dance of SFA including myristic, pentadecanoic, pal-
mitic and stearic acids but higher linoleic acid (18 :
2n-6) and a higher proportion of total n-3 fatty acids(62).

Because the anatomy of a healthy diet is universal
across various measures of diet quality, it is not surpris-
ing that predictive metabolites that represent greater
alignment to different diet quality scores were found to
be consistent across multiple diet indices. For example,
in the Atherosclerosis Risk in Communities (ARIC)
study, using an untargeted approach, Kim et al. found
17 unique metabolites that were associated with healthy
eating index (HEI), alternative healthy eating
index (AHEI), alternative Mediterranean diet (aMED),
and DASH(63). Because these diet scores share many
components, six of the seventeen metabolites were asso-
ciated with more than one dietary pattern. Candidate
biomarkers of HEI, AHEI and DASH had good predict-
ive capability (P-value for difference in C-statistics <0⋅02
for all three diet indices) and could distinguish indivi-
duals with highest compared with lowest quintile of
diet scores beyond participant characteristics. However,
this was not true for candidate biomarkers for aMED
indicating that these biomarkers had low prediction abil-
ity. In the DASH intervention trial, a serum metabolite

panel consisting of ten metabolites (N-methylproline,
stachydrine, tryptophan betaine, theobromine, 7-methy-
lurate, chiro-inositol, 3-methylxanthine, methyl gluco-
pyranoside, β-cryptoxanthin and 7-methylxanthine)
could distinguish between participants consuming a
DASH diet, a fruit and vegetable diet or a control diet
with a C-statistic of 0⋅98(64).

Using a unique study design that is applicable to the
real-world context, Willis et al. considered the whole
diet by using menus that delivered a wide range of
foods found in conventional UK diets(65). For this,
they recruited free-living participants who prepared
and consumed all foods and drinks in their own
homes and provided spot-urine samples. The authors
identified pyrogallol sulphate, pyrogallol glucuronide
and trigonelline as potential biomarkers of beans, pea-
nuts and soy. Trigonelline has been well documented
as a coffee metabolite(66), but these data are primarily
from populations that have limited legume consump-
tion. Concentrations of urinary eugenol glucuronide
and eugenol sulphate were higher after consumption
of curry possibly due to the high content of cloves
which is rich in eugenol. While there have been limited
attempts to examine how cooking alters metabolite
profiles, in the current study, 2-furoylglycine discrimi-
nated thermally treated foods (pies, grains and toasted
wheat products) from non-thermally treated foods (e.g.
toasted bread).

Understand diet–disease mechanisms

The use of omics methodologies can not only help
identify objective biomarkers of diet but are also useful
for elucidating metabolic pathways through which diet
can influence disease risk. To this end, researchers have
typically employed machine learning methods that can
model high-dimensional metabolomics data as scores
that reflect dietary adherence. These scores are then
examined in relation to disease risk. The intrinsic
advantages to using metabolic signatures that reflect
dietary adherence as opposed to self-reported diets
are several. First, the signature captures cumulative
changes in the metabolome due to diet. Secondly, the
signature can incorporate individual metabolic varia-
tions from other factors that influence dietary meta-
bolism. Finally, metabolomic signatures minimise
measurement errors which are inherent to self-reported
dietary assessments. A few recent examples of these
approaches are discussed here.

Recently, in two studies in China, using a lipidomics
panel, Yun et al. identified four novel candidate biomar-
kers of total dairy intake. Given that a third of the phos-
pholipids present in milk are sphingomyelins (SM), it is
not surprising that the four candidate biomarkers
included SM (OH) C32:2, SM C32:1, SM (2OH) C30:2
and SM (OH) C38:2. The use of these four SM alone
or in combination could accurately differentiate indivi-
duals with high and low dairy intakes (C-statistic ranging
from 0⋅81 to 0⋅87). Importantly, these SM were inversely
associated with changes in systolic and diastolic blood
pressure, blood glucose and plasma TAG(67,68). In our
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prior work, we identified a metabolic profile comprised
of 67 metabolites that was robustly associated with
adherence to a Mediterranean diet among participants
from the Nurses’ Health Study (NHS), Health
Professionals Follow-up Study (HPFS) and
PREDIMED study(69). In multivariable models, this
metabolomic score was inversely associated with incident
CVD even after adjusting for known risk factors and self-
reported diet. Additional genome-wide association stud-
ies analyses showed that this signature was significantly
associated with genetic loci involved in fatty acid and
amino acid metabolism. Additional diet indices that
have been investigated include indices of plant-based
diet quality such as the plant-based diet index (PDI),
the healthy PDI and unhealthy PDI. In the ARIC
study, several metabolites predicted adherence to plant-
based diet indices beyond sociodemographic characteristics,
health behaviours, clinical factors and total energy intake.
Six of these metabolites (glycerate, 1,5-anhydroglucitol,
γ-glutamylalanine, γ-glutamylglutamate, γ-glutamylleucine,
γ-glutamylvaline) were significantly associated with inci-
dent chronic kidney disease(70). Our previous work in the
NHS I and II and HPFS cohorts showed that multi-
metabolite profiles of plant-based diet quality were asso-
ciated with T2D risk. Specifically, metabolite profile
scores of PDI were associated with a 19 % (95 % CI 12,
25 %) lower T2D risk while those of healthy PDI were
associated with a 23% (95% CI 16, 29 %) lower T2D
risk even after controlling for self-reported diet. A signifi-
cant proportion of this risk was accounted for by trigo-
nelline, hippurate, isoleucine and a subset of TAG(71).
In the Malmo diet and cancer study and the Malmo off-
spring study, a metabolic signature that reflects adher-
ence to a health-conscious food pattern remained
inversely associated with T2D after adjustment for self-
reported diet intake(72). These studies are examples of
how metabolomic data could further our understanding
of the mechanisms by which diet may influence disease
development. Other studies have shown that metabolo-
mic or lipidomic profiles can improve the prediction of
T2D beyond traditional risk factors alone(73–75).

Proteomic biomarkers of diet quality may help us
better understand the specific pathways that are mod-
ified by food and nutrient intakes and lead to develop-
ment of chronic diseases. For example, in a prospective
cohort study among Framingham Heart Study partici-
pants, 30 out of 71 CVD-related plasma proteins were
associated with differences in diet quality (AHEI,
DASH and Mediterranean-style diet score)(76). Four
of these proteins were suggested to be mediators of
the association between diet quality and incident
CVD during a median follow-up of 13 years. New
opportunities for protein biomarker discovery have
emerged as our ability to estimate a wide range of pro-
teins from small sample volumes improves. Thus, this is
a fast-evolving area of research with ample opportunity
for discovery of novel biomarkers of foods, nutrients
and dietary patterns.

Investigation of the gut microbiome can add an add-
itional layer of understanding how dietary intakes influ-
ence metabolism and chronic disease risk. One example

is the microbial metabolism of L-carnitine, which is
found in red meat, into TMAO(77). TMAO is known to
be proatherogenic, and levels of production depend on
diet and microbial species present in the gut(78). Plasma
L-carnitine is also predictive of CVD and CVD-related
events(77,79). These types of studies can inform targeted
dietary recommendations, such as reducing red meat
intake among individuals with a gut microbiome that is
capable of producing higher levels of TMAO. In another
study of over 9000 racial/ethnically diverse participants
across five different cohorts, a microbial metabolite of
tryptophan, indolepropionate, was found to be inversely
associated with T2D risk(80). Interestingly, levels of circu-
lating indolepropionate were associated with fibre-rich
foods, but not protein/tryptophan-rich foods, and also
with a variant in the LCT gene, which encodes lactase.
Among individuals with this variant, higher milk con-
sumption was associated with higher levels of indolepro-
pionate and Bifidobacterium, a bacterium which was also
significantly associated with indolepropionate levels.
This study demonstrates the complex interactions
between genetics, diet and microbiota that play a role
in individual disease risk and suggests that circulating
metabolome could be used to identify higher risk indivi-
duals that could benefit from dietary intervention or
microbiota modulation.

Omics integration for personalised nutrition advice

The development and implementation of personalised
nutrition approaches requires integration of novel
omics-based recommendations with traditional clinical
and dietary measures. Thus, studies testing how perso-
nalised nutrition interventions can complement trad-
itional interventions to improve clinical outcomes are
necessary before they can be implemented on a
large-scale basis. As high-throughput omics-based
methods have become faster, cheaper and more com-
prehensive, the prospect of evaluating personalised
nutrition interventions in clinical studies has become
a reality. One study integrated gut microbiome data
with clinical and dietary data to build predictive models
of individual post-prandial glycaemic responses to
foods in patients with T2D(81). Then, results from this
machine learning model were utilised to generate perso-
nalised dietary recommendations that resulted in sign-
ificantly lower postprandial glycaemic responses
compared to traditional dietary advice for patients
with T2D. Other studies have also demonstrated the
feasibility of generating personalised dietary advice
through integration of clinical biomarkers with omics
data(82,83), and one study observed significantly larger
improvements in diet quality among intervention
arms receiving personalised dietary advice compared
to general dietary advice(83). Thus, as highlighted by
others(84,85), early evidence suggests that implementing
personalised dietary advice in the clinic has the poten-
tial to improve public health, but more research is
needed to understand the efficacy, cost-effectiveness
and scalability of these types of interventions in large
populations.
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Next steps

Rapidly evolving technologies have provided a plethora
of opportunities to explore omics data and to integrate
them into traditional nutrition epidemiological
approaches. Like any new area of research, however,
methodological considerations need to be addressed to
move forward. Challenges in omics research include vari-
ability in protocols, analysis and interpretation.
Untargeted metabolomics analysis produces large data-
sets of metabolites that must be systematically identified.
Large-scale, international efforts are needed to imple-
ment an infrastructure for data sharing and standard
metabolite identification. There is also a need to discover
biomarkers, not only of diet but also of diet–gene or
diet–microbiota interactions. This will further the ability
to link observations to biological pathways and further
our understanding of disease mechanisms and how they
are influenced by diet.

Most precision nutrition studies have been supported by
observational data. In order to translate findings from
these studies into personalised nutrition advice, more
randomised-controlled trials are needed. These types of
studies can evaluate whether implementing personalised
nutrition advice can improve clinical outcomes.
However, these studies have their own challenges, includ-
ing the high cost and logistical burden of carrying out long-
term interventions. Intermediate clinical markers, such as
lipid profiles, blood pressure or HbA1c, could be utilised
as disease markers over a shorter time period. Lastly,
more research is needed in multi-omics approaches.
Integrating data from different omics measures is challen-
ging, but critical to linking mechanistic pathways. This will
become increasingly difficult with the addition of new
omics areas that are gaining interest, such as the exposome
(the measure an individual’s environmental exposures) and
individual inflammatory responses(86).

Conclusions

Advancements in omics technologies have greatly
advanced the field of precision nutrition. Each type of
omics data provides a different layer of information
from genomics that persist through the lifespan, to highly
variable metabolomic profiles that can change in
response to diet. These data can be used to identify bio-
markers of dietary intake, to elucidate diet–disease
mechanisms, and to inform more personalised dietary
advice, particularly for higher risk individuals.
Precision nutrition and especially omics research is still
very new, and while there is great potential, methodo-
logical challenges that impact consistency and accessibil-
ity must be overcome.
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