Solidification of Selected Al-Ru-Y Samples

L.A. Cornish,* and M.J. Witcomb**

- * Physical Metallurgy Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
- ** Electron Microscope Unit, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; both DST/NRF Centre of Excellence for Strong Materials, University of the Witwatersrand

The Al-Ru-Y system is of interest because RuAl has excellent properties for spark plugs [1] and yttrium has been used in coating Ni-based alloys [2]. Thus, the Al-Ru-Y system might provide a potential new coating material. The Al-Ru and Al-Y binary phase diagrams are well established, but the reactions in Ru-Y are more speculative, although the phases themselves are known [3]. Six phases on the YRu₂ – YAl₂ transus had been reported [4]. Earlier work on the Al-Ru-Y system [5] showed mainly limited extension of the binary phases into the ternary, and located four of the phases on the YRu₂ – YAl₂ transus.

Samples were made by arc-melting 99.9% pure elemental components together, using titanium as an oxygen-getter. They were then halved, mounted, and prepared for metallography. Analysis was undertaken, using elemental standards, in a JSM-840 SEM with a LINK AN10000 EDS system.

Some of the alloys had small particles of Y₂O₃, assumed to be present before or in an early stage of melting, despite taking precautions. Since these were in minor proportion, and have a very high melting point (2458°C [3]), and despite the fact that they were sometimes obviously acting as nucleation sites, they were ignored in the interpretation of the microstructures. Interpreting them as (Y), which had oxidised subsequently, gave an impossible sequence of solidification reactions.

The Al_{15} : Ru_{70} : Y_{15} (at. %) sample, which had small particles of (Ru) and RuAl (with negligible Al), was mostly a ternary eutectic. The ternary eutectic comprised (Ru), RuAl and $\sim YRu_2$ and its overall composition was Al_{14} : Ru_{71} : Y_{15} .

Two phases on the $YRu_2 - YAl_2$ transus were found in the Al_{15} : Ru_{70} : Y_{15} sample: $\sim Y_{33}Ru_{56}Al_{11}$ and $\sim Y_{33}Ru_{47}Al_{20}$.

The Al₁₇:Ru₃₉:Y₄₄ sample had a small proportion of the oxide particles, and comprised primary \sim Y₅Ru₂ (with about 2 at. % Al). There was then a peritectic reaction forming \sim Y₃₄Ru₄₃Al₂₃, and subsequently \sim Y₃₄Ru₄₇Al₁₉.

The Al_{12} : Ru_{11} : Y_{77} sample comprised angular primary crystals of a ternary phase, $\sim Y_{75}Ru_9Al_{16}$, surrounded by a $\sim Y_{75}Ru_9Al_{16} + Y_3Ru$ eutectic, as shown in Fig. 1.

The nominal Al₃₅:Ru₄₂:Y₂₃ alloy also had oxide particles. The primary phase was RuAl which was cored (but without Y). The next two reactions were peritectic, forming cored \sim Y₃₄Ru₄₀Al₂₆ and \sim Y₃₄Ru₃₃Al₃₃. The latter two phases were also seen in the Al₃₁:Ru₃₃:Y₃₆ sample, together with primary \sim Y₅₀Ru₂₇Al₂₃, which is assumed to be a ternary phase.

As well as containing yttrium oxide, the Al_{39} : Ru_{19} : Y_{42} sample comprised a primary phase which lay on the $YRu_2 - YAl_2$ transus, $\sim Y_{35}Ru_{22}Al_{43}$, and a ternary phase, $\sim Y_{68}Ru_{12}Al_{20}$.

The Al₆₉:Ru₁₄:Y₁₇ samples had dendrites of ~RuAl₂ (with ~10 at. % Y) surrounded by coarse needles of a

ternary phase of composition $\sim Y_{11}Ru_{16}Al_{73}$ with the last phase to solidify being YAl₃ (Fig. 2). The ternary nature of the $\sim Y_{11}Ru_{16}Al_{73}$ phase was confirmed by the Al₇₉:Ru₁₄:Y₇ sample. This had primary $\sim Ru_4Al_{13}$ surrounded by $\sim Y_{11}Ru_{16}Al_{73}$, then (Al).

The investigation of the Al-Ru-Y system revealed problems with oxidation of Y, although the particles were small. A ternary eutectic of (Ru) + RuAl + \sim YRu₂ was found, and the congruent melting of Y₅Ru₂ was confirmed. Ternary phases of compositions \sim Y₅₀Ru₂₇Al₂₃ and \sim Y₇₅Ru₉Al₁₆, have been found, and on the YRu₂ - YAl₂ transus, the phases: \sim Y₃₃Ru₅₆Al₁₁, \sim Y₃₃Ru₄₇Al₂₀ \sim Y₃₄Ru₄₃Al₂₃, \sim Y₃₄Ru₃₃Al₃₃ and \sim Y₃₅Ru₂₂Al₄₃.

References

- [1] I. M. Wolf et al., Structural Intermetallics 1997, M.V. Nathal et al., eds., The Minerals, Metals and Materials Soc., Champion, 1997, p. 815.
- [2] S. Grainger, ed., Engineering Coatings Design and Application, Abington Pub., Cambridge, 1989.
- [3] Ed.-in-chief T.B. Massalski, eds., H. Okamoto et al., Binary Alloy Phase Diagrams, 2nd ed., Amer. Soc. Metals, Ohio, 1990.
- [4] Eds. C. He et al., Phase Diagrams of Precious Metals Alloys, The Metallurgical Industry Press, Kunming, 1983, p. 221.
- [5] L. A. Cornish and M. J. Witcomb, Proc.15th Int. Congress on Electron Microscopy, Microsc. Soc. South. Afr, Onderstepoort, Vol. 1, p. 689.
- [6] The assistance of Mintek, DACST and the PDI is gratefully acknowledged.

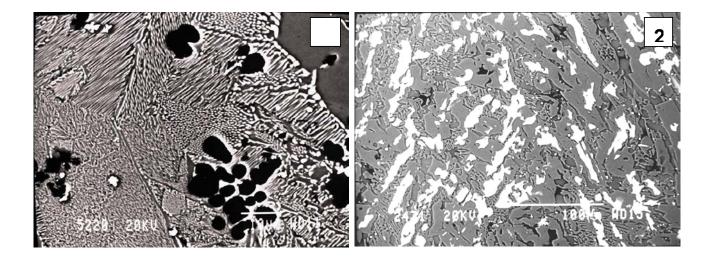


Fig. 1. Backscatter image of the Al_{12} : Ru_{11} : Y_{77} sample showing dark Y_2O_3 particles, $\sim Y_{75}Ru_9Al_{16}$ (medium), in a $\sim Y_{75}Ru_9Al_{16} + Y_3Ru$ (light) eutectic.

Fig. 2. Backscatter image of the Al_{69} : Ru_{14} : Y_{17} sample showing $\sim RuAl_2$ dendrites (light) with coarse needles of $\sim Ru_4Al_{13}$ (medium) and YAl_3 (dark).