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Abstract

The Chevalley involution of a connected, reductive algebraic group over an algebraically
closed field takes every semisimple element to a conjugate of its inverse, and this
involution is unique up to conjugacy. In the case of the reals we prove the existence of
a real Chevalley involution, which is defined over R, takes every semisimple element of
G(R) to a G(R)-conjugate of its inverse, and is unique up to conjugacy by G(R). We
derive some consequences, including an analysis of groups for which every irreducible
representation is self-dual, and a calculation of the Frobenius Schur indicator for such
groups.

1. Introduction

A Chevalley involution C of a connected reductive group over an algebraically closed field satisfies
C(h) = h−1 for all h in some Cartan subgroup of G. Furthermore, C takes any semisimple1

element to a conjugate of its inverse. Consequently, in characteristic zero, for any algebraic
representation π of G, πC is isomorphic to the contragredient π∗.

We are interested in the existence, and properties, of rational Chevalley involutions.

Definition 1.1. Suppose that G is defined over a field F , and let F be an algebraic closure
of F .

(i) A Chevalley involution of G(F ) is the restriction of a Chevalley involution of G(F ) that is
defined over F .

(ii) We say an involution of G(F ) is dualizing if it takes every semisimple element of G(F ) to
a G(F )-conjugate of its inverse.

We refer to a Chevalley involution of G(F ), which is defined over F , as an F -rational
Chevalley involution, or simply a rational Chevalley involution if F is understood.

If F is algebraically closed every Chevalley involution is dualizing, and any two are conjugate
by an inner automorphism. However, if F is not algebraically closed, since not all Cartan
subgroups of G(F ) are conjugate, neither result is true in general. We are primarily interested
in dualizing Chevalley involutions.

For certain classical groups, over any local field, there is a dualizing Chevalley involution by
[MVW87, Chapitre 4].

Our main result is the existence of dualizing Chevalley involutions in general when F = R.
Not all of these are conjugate by an inner automorphism of G(R) (see Example 1). In order to
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have a uniqueness result, we impose a further restriction. A Cartan subgroup of G(R) is said

to be fundamental if it is of minimal split rank. Such a Cartan subgroup is the ‘most compact’

Cartan subgroup, and is unique up to conjugation by G(R).

Theorem 1.2. Suppose G is defined over R. There is an involution C of G(R) such that

C(h) = h−1 for all h in some fundamental Cartan subgroup of G(R). Any such involution is the

restriction of a rational Chevalley involution of G(C), and is dualizing. Any two such involutions

are conjugate by an inner automorphism of G(R).

If G is semisimple and simply connected, this is due to Vogan [BW00, ch. I, § 7]. The proof

of the theorem is similar to the proof in [BW00]. See Remark 2.

If G is simple, all involutions (over local and finite fields) have been classified by Helminck.

In particular, Theorem 1.2 can be read off from [Hel88], and similar results over other fields

follow from [Hel00].

Definition 1.3. We refer to an involution of G(R) satisfying the conditions of the theorem as

a fundamental Chevalley involution of G(R).

Since all fundamental Chevalley involutions are conjugate by an inner automorphism of G(R),

we may safely refer to the fundamental Chevalley involution.

Corollary 1.4. Suppose π is an irreducible representation of G(R), and C is the fundamental

Chevalley involution. Then πC ' π∗.

Over a p-adic field it is not always obvious, at least to this author, that there is a rational

Chevalley involution, not to mention a dualizing one. In any event, the dualizing condition is quite

restrictive. For example, if G(F ) is split, there are many G(F )-conjugacy classes of involutions

C such that C(h) = h−1 for h in a split Cartan subgroup. Most of these are not dualizing. In

fact, if G is a split exceptional group of type G2, F4 or E8 over a p-adic field there is no dualizing

involution. See Example 2.

The map π → π∗ defines an involution on L-packets. The main result of [AV12] is that, on

the dual side, this involution is given by the Chevalley involution of
L
G. See § 4. It follows that

there is an elementary condition for every L-packet to be self-dual.

Proposition 1.5. Every L-packet for G(R) is self-dual if and only if −1 ∈W (G(C), H(C)).

Here H(C) is any Cartan subgroup of G(C), and W (G(C), H(C)) is the (absolute) Weyl

group NormG(C)(H(C))/H(C).

Now consider the finer question, whether every irreducible representation of G(R) is self-

dual. Let Hf (R) be a fundamental Cartan subgroup of G(R), and let W (G(R), Hf (R)) =

NormG(R)(Hf (R))/Hf (R).

Theorem 1.6. Every irreducible representation of G(R) is self-dual if and only if −1 ∈W (G(R),

Hf (R)).

The condition is equivalent to: every semisimple element of G(R) is G(R)-conjugate to its

inverse. We give some information about when this condition holds in § 4. For example, suppose

G(R) is connected,Hf (R) is compact, and letK(C) be the complexification of a maximal compact

subgroup of G(R). Then W (G(R), Hf (R)) is the Weyl group of the root system of the connected,

reductive group K(C). One can then look up this root system in a table, for example [OV90],

and check whether it contains −1.
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Corollary 1.7. Every irreducible representation of G(R) is self-dual if and only if both of these
conditions hold:

(i) every irreducible representation of K(R) is self-dual;

(ii) −1 is in the absolute Weyl group W (G(C), H(C)).

If G(R) contains a compact Cartan subgroup, then condition (a) implies condition (b).

It is perhaps surprising how common this is. We give the following example.

Theorem 1.8. If −1 ∈ W (G(C), H(C)), and G is of adjoint type, then every irreducible
representation of G(R) is self-dual.

For a more precise version, and some examples, see § 4, especially Corollary 4.2.
We next give an application to Frobenius Schur indicators. If π is an irreducible, self-dual

representation of G(R), the Frobenius Schur indicator ε(π) of π is ±1, depending on whether
π admits an invariant symmetric or skew-symmetric bilinear form. Write χπ for the central
character of π. Let ρ∨ be one-half of the sum of any set of positive co-roots. Then z(ρ∨) =
exp(2πiρ∨) is in the center of G(R).

The Frobenius Schur indicator of a finite-dimensional representation π of G(C) is χπ(z(ρ∨)).
Under an assumption the same holds for all irreducible (possibly infinite-dimensional)
representations of G(R).

Theorem 1.9. Suppose that every irreducible representation of G(R) is self-dual. Then, for any
irreducible representation π, ε(π) = χπ(z(ρ∨)).

In particular, the assumption holds if −1 ∈ W (G(C), H(C)) and G is of adjoint type
(Theorem 1.8), in which case every irreducible representation is orthogonal.

This paper is a complement to [AV12], which considers the action of the Chevalley involution
on the dual group, and its relation to the contragredient. See [AV12, Remark 7.5].

2. Split groups

Throughout this paper G denotes a connected, reductive algebraic group, defined over a field
F . We may identify G with its points G(F ) over an algebraic closure of F . In this section F is
arbitrary; starting in the next section F = R. For background on algebraic groups see [Spr98],
[Bor91] or [Hum75].

We start by defining Chevalley involutions. This is well known, although it is not easy to
find it stated in the terms we need. See [AV12, § 2].

By a Chevalley involution of G = G(F ) we mean an involution C of G satisfying C(h) = h−1

for all h in some Cartan subgroup H. Any two such involutions are conjugate by an inner
automorphism.

Fix a pinning P = (H,B, {Xα}): H ⊂ B are Cartan and Borel subgroups of G, respectively,
and (for α a simple root) Xα is in the α-weight space of Lie(H) acting on Lie(G). Pinnings always
exist, and are unique up to an inner automorphism; an inner automorphism fixes a pinning
only if it is trivial. For α a simple root let X−α be the unique −α-weight vector satisfying
[Xα, X−α] = α∨ ∈ Lie(H).

The choice of P determines a unique Chevalley involution C, satisfying C(h) = h−1 (h ∈ H)
and C(Xα) = X−α (α simple).

Now suppose G is semisimple and simply connected, and G(F ) is split. Generators and
relations for G(F ) are given by [Ste62, Théorème 3.2] (see also [Ste97]). The generators are xα(u)
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for α a simple root, and u ∈ F , and these satisfy certain relations. It is easy to check that the map
C(xα(u)) = x−α(u) preserves the defining relations of G(F ), and the resulting automorphism
satisfies C(h) = h−1 for h in a split Cartan subgroup.

Lemma 2.1. Suppose G is semisimple and simply connected, and G(F ) is split. Let H(F ) be a
split Cartan subgroup. Then there is a rational Chevalley involution satisfying C(h) = h−1 for
all h ∈ H(F ).

Remark 1. The same result holds a fortiori for the (possibly) nonlinear covering group ∆ of
G(F ) of [Ste62, Théorème 3.1], which is obtained by dropping some relations from those for
G(F ).

This is a somewhat weak result. Not every rational Chevalley involution is dualizing, and
not all dualizing Chevalley involutions are conjugate by an inner automorphism of G(F ). Both
these facts are illustrated by a simple example. For g ∈ G, let int(g) be conjugation by g.

Example 1. Let G(F ) = SL(2, F ). Let Hs(F ) be the diagonal (split) Cartan subgroup. Let
σ =

(
0 1
−1 0

)
, and let C = int(σ). Then C(g) = tg−1 for all g, and, in particular, C(g) = g−1 for all

g ∈ Hs(F ).
Suppose g 6= ±I is contained in an anisotropic Cartan subgroup Ha(F ). Then if −1 6∈ F ∗2,

C(g) is not conjugate to g−1 (in other words, −1 is not in the Weyl group of Ha(F )). Therefore,
C is not dualizing.

On the other hand, let C ′ = int(diag(i,−i)σ). Then C ′ is rational and dualizing. Note that
C ′ is an outer automorphism of G(F ) unless −1 ∈ F ∗2.

Now replace SL(2, F ) with G(F ) = PGL(2, F ). Both C,C ′ factor to inner automorphisms of
G(F ). Since every semisimple element of G(F ) is G(F )-conjugate to its inverse, C,C ′ are both
dualizing. However, it is easy to see that C is not conjugate to C ′ by an inner automorphism of
G(F ).

Surprisingly, even for split groups, which have rational Chevalley involutions, there may be
no dualizing involution. This is illustrated by the following example, which was pointed out by
D. Prasad [Pra].

Example 2. Suppose F is p-adic and G(F ) is the split form of G2, F4 or E8. By Lemma 2.1 there
is a Chevalley involution C of G(F ). However, G(F ) has no dualizing involution.

To see this, assume τ is a dualizing involution. Then πτ ' π∗ for all irreducible representations
π. Every automorphism of G(F ) is inner (since Out(G) = 1 and G is both simply connected and
adjoint), so πτ ' π, and therefore every irreducible representation is self-dual. However, there are
irreducible representations of G(F ) which are not self-dual, coming from non-self-dual cuspidal
unipotent representations of the group over the residue field.

3. Real Chevalley involutions

From now on we take F = R, and we identify G with its complex points G(C). We recall some
standard theory about real forms of G, in a form convenient for our applications. For details, see
[OV90, § 5.1.4], [Hel01], [Kna02] or [AdC09, § 3].

A real form G(R) of G(C) is the fixed points of an antiholomorphic involution. Each complex
group has two distinguished real forms: the compact one and the split one.

For the compact real form, fix a pinning P = (H,B, {Xα}) and define {X−α} as at the
beginning of § 2. Let σc be the unique antiholomorphic automorphism of G satisfying σ(Xα) =
−X−α. Then G(R) = Gσc is compact, and H(R) ' S1 × · · · × S1 is a compact torus.
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It is clear from the definitions that the Chevalley automorphism C = CP commutes with σc.
Therefore σs = Cσc is an antiholomorphic involution of G. Furthermore, G(R) = Gσs is split:
H(R) ' R∗ × · · · × R∗ is a split torus.

General real forms of G may be classified either by antiholomorphic or holomorphic
involutions of G. The latter is provided by the theory of the Cartan involution.

In particular, there is a bijection

{antiholomorphic involutions σ}/G←→ {holomorphic involutions θ}/G (1)

(the quotients are by conjugation by {int(g) | g ∈ G}). If σ is an antiholomorphic involution,
after conjugating by G we may assume it commutes with σc, and set θ = σσc. The other direction
is similar.

For example, by the preceding discussion, C is the Cartan involution of the split real form
of G (and the Cartan involution of the compact real form is the identity).

Suppose σ ←→ θ, and σ, θ commute. Let G(R) = Gσ, K = Gθ and K(R) = K ∩ G(R) =
G(R)θ = Kσ. Then K(R) is a maximal compact subgroup of G(R), with complexification K.
The relationship between these groups is illustrated by the following diagram.

G

σ

((

θ

ww
Gθ = K

σ
&&

G(R) = Gσ

θww
K(R)

Write Aut(G), Int(G) for the (holomorphic) automorphisms of G, and the inner auto-
morphisms, respectively. Let Out(G) = Aut(G)/Int(G) be the group of outer automorphisms. We
say an automorphism of G is distinguished if it preserves P. The pinning P defines an injective
map Out(G)

s
↪→ Aut(G): s(φ) is the unique distinguished automorphism mapping to φ. If G is

semisimple the distinguished automorphisms embed into the automorphism group of the Dynkin
diagram, and this is a bijection if G is simply connected or adjoint.

Now fix a holomorphic involution θ of G. Let δ be the image of θ under the map Aut(G)→
Out(G)

s
↪→ Aut(G), so δ is distinguished.

Lemma 3.1. After conjugating by G we may assume

θ = int(h)δ for some h ∈ Hδ (2)

(where the superscript denotes the δ-fixed points).

For example, suppose δ = 1 or, equivalently, θ ∈ Int(G). The assertion is that int(x) ◦ θ ◦
int(x−1) = int(h) for some h ∈ H. Since θ is inner write θ = int(g) for some (semisimple) element
g ∈ G. The assertion is then int(xgx−1) = int(h) for some h ∈ H. In other words this is the
standard fact that any semisimple element is conjugate to an element of H.

Proof. By the definition of δ, θ = int(g)δ for some semisimple element g ∈ G.
We claim g is contained in a δ-stable Cartan subgroup H1. Let L be the identity component

of CentG(g). Since θ is an involution, δ(g) = g−1z for some z ∈ Z, and it is easy to see this
implies δ(L) = L. Take H1 to be a δ-stable Cartan subgroup of M . This contains g and is clearly
a Cartan subgroup of G.

2131

https://doi.org/10.1112/S0010437X14007374 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007374


J. Adams

Write H1 = T1A1 where T1 (resp. A1) is the identity component of Hθ
1 (resp. H−θ1 ). Since,

for h ∈ H1, h(gδ)h−1 = hδ(h−1)gδ, we may assume the A1 component of g is trivial, i.e. h ∈ T1.
Let Kδ = Gδ. Use the subscript 0 to indicate the identity component. Then Hδ

0 = (Hδ)0 is
Cartan subgroup of Kδ,0. Now T1 is a torus in Kδ,0, and is therefore Kδ,0-conjugate to a subgroup
of Hδ

0 . Therefore after conjugating by Kδ,0 we may assume θ = int(h)δ for h ∈ Hδ
0 . 2

With this choice of θ, H is defined over R, and H(R) is a fundamental Cartan subgroup of
G(R) (see the introduction). We say H is a fundamental Cartan subgroup of G with respect to θ.

For example, δ = 1 if and only if H(R) is compact. For later use, we single out this class of
groups. We say G(R) is of equal rank if any of the following equivalent conditions hold: G(R)
contains a compact Cartan subgroup; H(R) is compact; rank(K) = rank(G); δ = 1; or θ is an
inner involution.

We now give the proof of Theorem 1.2, which we break up into steps. We first construct an
involution of G(R), restricting to −1 on a fundamental Cartan subgroup.

Lemma 3.2. Let H(R) be a fundamental Cartan subgroup. There is a rational Chevalley
involution of G, satisfying C(h) = h−1 for all h ∈ H(R).

Proof. Choose θ corresponding to σ by the bijection (1). By the lemma, after conjugating σ and
θ, we may assume θ = int(h)δ, where δ is distinguished and h ∈ Hδ.

Let C = CP , the Chevalley involution defined by the splitting P, so C(h) = h−1 for h ∈ H.
We claim C commutes with σ.

First of all θ and σc commute. On the one hand

(θσc)(Xα) = int(h)δ(−X−α) = −int(h)(X−δα) = −(δα)(h−1)X−δα (3a)

and on the other hand

(σcθ)(Xα) = σc(int(h)Xδα) = σc((δα)(h)Xδα) = −(δα)(h)X−δα. (3b)

Since θ = int(h)δ is an involution, hδ(h) ∈ Z(G) (here and elsewhere Z denotes the center).
However, δ(h) = h, so h2 ∈ Z(G). This implies β(h) = ±1 for all roots, so (δα)(h−1) = (δα)(h),
and equations (3a) and (3b) are equal.

Therefore, by the discussion after (1), σ = θσc. Since C commutes with σc (see the beginning
of this section), we just need to show that C and θ commute. This is similar to (3): (θC)Xα =
(δα)(h−1)X−δα, (Cθ)Xα = (δα)(h)X−δα, and these are equal since h2 ∈ Z. 2

Now we show the Chevalley involution just constructed is dualizing (Definition 1.1).

Lemma 3.3. Suppose C satisfies the conditions of Lemma 3.2. Then C is dualizing, i.e. it takes
every semisimple element of G(F ) to a G(F )-conjugate of its inverse.

Proof. This is true for g in the fundamental Cartan subgroup H(R). We obtain the result on
other Cartan subgroups using Cayley transforms.

We proceed by induction, so change notation momentarily, and assume H is any θ and
σ-stable Cartan subgroup, such that C(h) is G(R)-conjugate to h−1 for all h ∈ H(R). Taking h
regular, we see there is g ∈ NormG(R)(H(R)) such that, if τ = int(g) ◦ C, then τ |H(R) = −1.

Suppose α is a root of H. Let Gα be the derived group of the centralizer of the kernel of α,
and set Hα = H ∩Gα. Thus, Gα is locally isomorphic to SL(2), and H = ker(α)Hα.

Now assume α is a non-compact imaginary root, which amounts to saying that Gα is θ, σ
stable, Gα(R) is split, and Hα(R) is a compact Cartan subgroup of Gα(R). Replace Hα with
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a θ, σ-stable split Cartan subgroup H ′α of Gα. Since τ normalizes Gα, and is defined over R,
τ(H ′(R)) is another split Cartan subgroup of Gα(R). Therefore, we can find x ∈ Gα(R) so that
x(τ(h))x−1 = h−1 for all h ∈ H ′α(R).

Let H ′ = ker(α)H ′α. Then (int(x) ◦ τ)(h) = h−1 for all h ∈ H ′(R).
Every Cartan subgroup of G(R) is obtained, up to conjugacy by G(R), by a series of Cayley

transforms from the fundamental Cartan subgroup. The result follows. 2

Finally, the uniqueness statement of Theorem 1.2 comes down to the next lemma.

Lemma 3.4. Suppose τ is an automorphism of G(R) such that the restriction of τ to a
fundamental Cartan subgroup H(R) is trivial. Then τ = int(h) for some h ∈ H(R).

Proof. Since both R and C play a role here we write G(C) to emphasize the complex group.
After complexifying, τ is an automorphism of G(C) which is trivial on H(C). It is well known
that τ = int(h) for some h ∈ H(C) (see for example, [AV12, Lemma 2.4]). It is enough to
show that h ∈ H(R)Z(G(C)).

Since τ normalizes G(R), σ(h) = hz for some z ∈ Z(G(C)). Writing p for the map to the
adjoint group, this says p(h) ∈ Had(R). It is well known that Had(R) is connected (this is where
we use that H(R) is fundamental), so the map p : H(R)→ Had(R) is surjective. Therefore, we
can find h′ ∈ H(R) with p(h′) = p(h), i.e. h = h′z ∈ H(R)Z(G(C)). 2

Lemma 3.5. Any two automorphisms of G(R), restricting to −1 on a fundamental Cartan
subgroup, are conjugate by an inner automorphism of G(R).

Proof. Suppose that τ, τ ′ satisfy the conditions, with respect to a fundamental Cartan subgroup
H(R). By the previous lemma τ ′ = int(h)◦τ for some h ∈H(R). Since H(R) is connected, choose
x ∈ H(R) with x2 = h. Then τ ′ = int(x) ◦ τ ◦ int(x−1). 2

This completes the proof of Theorem 1.2.

Remark 2. It is also possible to deduce Theorem 1.2 from the special case of [BW00, ch. I,
Corollary 7.4], which is essentially about the Lie algebra. According to this result (actually, its
proof), if G(C) is semisimple and simply connected, there is a rational Chevalley C involution
of G(C), whose restriction to G(R) is dualizing.

Since C acts by inverse on the center of G(C), it preserves any subgroup of the center, and
therefore factors to any quotient of G(C). Similarly, any complex reductive group is a quotient
of a simply connected semisimple group and a torus, and a similar argument holds in this case.

4. Groups for which every representation is self-dual

We first consider the elementary question of when every L-packet is self-dual (Proposition 1.5).
Fix a real form G(R) of G(C), choose θ as usual, and let K(C) = G(C)θ (see § 3). Let

g = Lie(G(C)). By an irreducible representation of G(R) we mean an irreducible (g,K(C))-
module, or equivalently an irreducible admissible representation of G(R) on a complex Hilbert
space. See [Vog81, § 0.3].

We now identify G with G(C), K with K(C), and similarly for others. We will always write
R to indicate a real group.

Proof of Proposition 1.5. Suppose an L-packet Π is defined by an admissible homomorphism
φ : WR→

L
G. By [AV12, Theorem 1.3] the contragredient L-packet corresponds to C ◦ φ, where
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C is the Chevalley automorphism of
L
G. Therefore every L-packet is self-dual if and only if this

action is trivial, up to conjugation by G∨, i.e. the Chevalley automorphism is inner for G∨. This

is the case if and only if −1 ∈W (G∨, H∨) 'W (G,H). 2

Remark 3. By the classification of root systems, −1 is in the Weyl group of an irreducible root

system if and only if it is of type A1, Bn, Cn, D2n, F4, G2, E7 or E8. It is worth noting that if G

is simple and simply connected, −1 ∈ W (G,H) if and only if Z(G) is an elementary two-group

(one direction is obvious, and the other is case-by-case).

We are interested in real groups G(R) for which every irreducible representation is self-dual.

By Proposition 1.5 an obvious necessary condition is −1 ∈W (G,H). We first prove Theorem 1.6,

which gives a necessary and sufficient condition, and then give more detail in some special cases.

Let Hf be the centralizer in G of a Cartan subgroup of K0 (the subscript indicates identity

component). Let HK = Hf ∩K. This is an abelian subgroup of the (possibly disconnected) group

K, and HK,0 = HK∩K0 is a Cartan subgroup of K0. Then Hf is a fundamental Cartan subgroup

of G with respect to θ (see [Vog07, Definition 3.1]). For example, choose θ as in Lemma 3.1. Then

Hf is the fixed Cartan subgroup of the pinning P.

Proof of Theorem 1.6. Using standard facts about characters of representations, viewed as

functions on the regular semisimple elements, it is easy to see that every irreducible representation

is self-dual if and only if

every regular semisimple element is G(R)-conjugate to its inverse. (4)

Assume −1 ∈ W (G(R), Hf (R)), so there is an inner automorphism τ of G(R) acting by −1 on

Hf (R). By Theorem 1.2, if g is semisimple, τ(g) is G(R)-conjugate to g−1. Since τ is inner this

gives (4).

Conversely suppose (4) holds. Let h be a regular element of Hf (R). Then h−1 = xhx−1 for

some x ∈ G(R), and by regularity x normalizes Hf (R). Therefore −1 ∈W (G(R), Hf (R)). 2

It is helpful to state this result in terms of the complex group K, rather than the real group

G(R). The groups

W (G(R), Hf (R)) = NormG(R)(Hf (R))/Hf (R). (5a)

and

W (K,Hf ) = NormK(Hf )/HK (5b)

are isomorphic. We reiterate that K, Hf and HK are complex. Also consider

W (K,HK) = NormK(HK)/HK . (5c)

This is defined solely in terms of K; the difference between (5b) and (5c) is whether we consider

an element to be an automorphism of Hf or HK (see the next remark). This is also isomorphic
to (5a) and (5b), and is useful in computing these groups.

Some care is required here due to the fact that K, equivalently G(R), may be disconnected. If

K is connected, then W (K,HK) is the Weyl group of the root system of HK in K, but otherwise

W (K,HK) may not be the Weyl group of a root system.
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A key role is played by the condition −1 ∈W (K,Hf ). We need to keep in mind the following

dangerous bend concerning the meaning of −1.

Remark 4. Suppose −1 ∈ W (K,HK). By definition this means there is an element g ∈
NormK(HK) such that ghg−1 = h−1 for all h ∈ HK . However, although g normalizes Hf , it
is not necessarily the case that ghg−1 = h−1 for all h ∈ Hf ⊃ HK .

In other words, if rank(K) 6= rank(G), −1 ∈ W (K,HK) does not imply −1 ∈ W (K,Hf ),

even though these two groups are isomorphic.

On the other hand, −1 ∈W (G(R), Hf (R)) if and only if −1 ∈W (K,Hf ).

Example 3. Let G = SL(3,C), G(R) = SL(3,R). Then −1 6∈ W (G,Hf ), so a fortiori −1 6∈
W (K,Hf ). On the other hand K = SO(3,C), W (K,HK) is the Weyl group of type A1, and
−1 ∈W (K,HK).

We can choose Hf = {(z, w, 1/zw)} | z, w ∈ C∗}, and HK = {(z, 1/z, 1)} ⊂Hf . The nontrivial
Weyl group element of W (K,HK) acts by exchanging the first two coordinates. This acts by

inverse on HK , but not Hf .

If K is connected, it is an elementary root system check to determine whether −1 ∈
W (K,HK) (see Remark 3). In the equal rank case this is all that is needed, although in the

unequal rank case some care is required to determine whether −1 ∈W (K,H).

By the isomorphism of (5)(a) and (b), Theorem 1.6 can be stated in terms of W (K,Hf ).

Corollary 4.1. Every irreducible representation of G(R) is self-dual if and only if −1 ∈
W (K,Hf ).

Next we prove Corollary 1.7, which gives another condition, in terms of K, for every

representation of G(R) to be self-dual.

Proof of Corollary 1.7. Every irreducible representation µ of K(R) is the unique lowest K(R)-

type of an irreducible representation π of G(R) [Vog07, Theorem 1.2]. Since the lowest K(R)-type

of π∗ is µ∗, π ' π∗ implies µ ' µ∗. This proves one direction.

Conversely, by Corollary 4.1 we need to show every irreducible representation of K(R),

equivalently K = K(C), is self-dual implies −1 ∈W (K,Hf ).
We first show that −1 ∈ W (K,HK) and −1 ∈ W (G,Hf ) implies −1 ∈ W (K,Hf ). This

is obvious if HK = Hf (the equal rank case). Otherwise (here we need the assumption that
−1 ∈W (G,Hf )) choose g ∈G such that ghg−1 = h−1 for all h ∈Hf . Also choose k ∈K satisfying
khk−1 = h−1 for all h ∈ HK . Then gk−1 ∈ CentG(HK) = Hf . This implies khk−1 = h−1 for all

h ∈ Hf .

So it is enough to show that if every irreducible representation of K is self-dual, then −1 ∈
W (K,HK). If K is connected this follows from Corollary 4.1 applied to K.

For λ ∈ X∗(HK,0) (the algebraic characters of the torus HK,0) let πλ be the irreducible

representation of K0 with extremal weight λ. Then π∗λ = π−λ.

Consider the induced representation I = IndKK0
(πλ). The restriction of I to K0 contains πλ.

Since I is self-dual by hypothesis, this restriction also contains π−λ.

It is easy to see that every extremal weight of the restriction of this representation to K0 is

W (K,HK)-conjugate to λ (choose representatives of K/K0 in NormK(HK), and use the fact that

K0 is normal in K). Therefore −λ is W (K,HK)-conjugate to λ. Taking λ generic this implies

−1 ∈W (K,HK).

If every irreducible representation ofK is self-dual then−1 ∈W (K,H). If rank(G) = rank(K)

this implies −1 ∈W (G,Hf ), giving the final assertion. 2
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Remark 5. Here is an example of an unequal rank group for which condition (a) in (1.7) holds,

but not (b). Take G(R) = SL(2n+ 1,R), K = SO(2n+ 1,C). Then −1 ∈W (K,HK), and every

irreducible representation of SO(2n+1,C) is self-dual. However, this is not the case (for example,

for minimal principal series) for SL(2n+ 1,R), since −1 6∈W (G,Hf ).

Here is a practical way to determine whether every irreducible representation of G(R) is

self-dual.

First assume G(R) is of equal rank (see the discussion after Lemma 3.1). Then θ is inner, so
write θ = int(x) for some x ∈ G, with x2 ∈ Z(G).

Assume for the moment that −1 ∈ W (G,Hf ) (recall G and Hf are complex); this implies
Z(G) is an elementary two-group. We say the real form defined by θ is pure if x2 = 1. Since Z(G)

is a two-group, this condition is independent of the choice of x such that θ = int(x). (In other

words, although purity is typically only well-defined as a property of strong real forms [AdC09,

Definition 5.5], it is a well-defined property of real forms provided −1 ∈ W (G,Hf ).) Every real

form is pure if G is adjoint.

Corollary 4.2. Assume G(R) is simple. Every irreducible representation of G(R) is self-dual

if and only if both of these conditions hold:

(i) −1 ∈W (G,Hf );

(ii) if G(R) is of equal rank, it is a pure real form.

Proof. First assume we are in the equal rank case. By Theorem 1.2 we have to show

−1 ∈W (G,Hf ), x2 = 1⇔ −1 ∈W (K,Hf ). (6)

After conjugating by G we may assume x ∈ Hf . Suppose g ∈ G satisfies ghg−1 = h−1 for all
h ∈ Hf . Then θx(g) = xgx−1 = x(gx−1g−1)g = x2g. Therefore, g ∈ K if and only if x2 = 1.

Now suppose G(R) is not of equal rank. We have to show

−1 ∈W (G,Hf )⇔ −1 ∈W (K,Hf ). (7)

The implication ⇐ is obvious.

First assume G(R) = G1(C), i.e. a complex group, viewed as a real group by restriction of
scalars. Then, if H1 is a Cartan subgroup of G1, G = G1×G1, Hf = H1×H1,K = G∆

1 (embedded
diagonally). It follows immediately that −1 ∈W (K,Hf ) if and only if −1 ∈W (G,Hf ).

Finally assume G(R) is unequal rank, but not complex. Then G is of type An (n > 2), Dn or

E6. But then −1 ∈ W (G,Hf ) only in type D2n. This leaves only the groups locally isomorphic
to SO(p, q) with p, q odd and p+ q = 0 (mod 4).

Let G(R) = Spin(p, q) with p + q = 4n. It is enough to show −1 ∈ W (K,Hf ), since W (K,
Hf ) is, if anything, larger if G is not simply connected. Note that K is connected, of type
Br ×Bs, and −1 ∈W (K,HK). The only remaining issue is to check that −1 ∈W (K,Hf ); here
rank(Hf ) = rank(HK) + 1. This is a straightforward check. It essentially comes down to the case
of Spin(3, 1), for which it is easy to see, since Spin(3, 1) ' SL(2,C). 2

Theorem 1.8 is a special case of Corollary 4.2.

Proof of Theorem 1.8. By assumption −1 ∈ W (G(C), H(C)) so Corollary 4.2(a) holds. On the

other hand, Corollary 4.2(b) holds since every real form of an adjoint group is pure. By the

corollary every irreducible representation of G(R) is self-dual. 2
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With a little effort we can deduce the following list from Corollaries 4.1 and 4.2.
First assume G is simple, and G(R) is equal rank. If G is adjoint it is only a question of

whether −1 ∈ W (G,Hf ). If G is simply connected we need to check whether −1 is in the Weyl
group of the root system of K, which is easy, for example by the tables in [OV90, pp. 312–317].
This leaves only the intermediate groups of type Dn, which require some case-by-case checking.

In the unequal rank case, we only need to consider complex groups, and (up to isogeny)
SO(p, q) with p, q odd.

Suppose G(R) is simple. Then every irreducible representation of G(R) is self-dual if and
only if G(R) is on the following list (see below for terminology in type D2n).

(i) An: SO(2, 1), SU(2) and SO(3).

(ii) Bn: Every real form of the adjoint group, Spin(2p, 2q + 1) (p even).

(iii) Cn: Every real form of the adjoint group, all Sp(p, q):

(iv) D2n+1: None.

(v) D2n, equal rank: Spin(2p, 2q) (p, q even); all SO(2p, 2q) (p+q = 2n) SO(2p, 2q) (p, q even);

SO
∗
(4n) when disconnected; all adjoint groups: PSO(2p, 2q) (p+ q = 2n) and PSO∗(4n).

(vi) D2n, unequal rank: all real forms, i.e. all groups locally isomorphic to SO(2p + 1, 2q + 1)
(p+ q odd).

(vii) E6: None.

(viii) E7: Every real form of the adjoint group, the simply connected compact group.

(ix) G2, F4, E8: Every real form.

(x) Complex groups of type A1, Bn, Cn, D2n, G2, F4, E7, E8 (see Remark 3).

In type D2n let SO(4n,C) denote the group Spin(4n,C)/A where A ' Z/2Z is not fixed by the
outer automorphism of Spin(4n,C). For each p + q = 4n this group has a real form denoted
SO(p, q) (locally isomorphic to SO(p, q)). Also it has two subgroups locally isomorphic to

SO∗(4n), which we denote SO
∗
(4n). These are not isomorphic: one of them is connected and the

other is not.

5. Frobenius Schur indicators

Suppose π is an irreducible self-dual representation of a group G. Choosing an isomorphism
T : π→ π∗, 〈v, w〉 := T (v)(w) is a non-degenerate, invariant, bilinear form, unique up to scalar.
It is either symmetric or skew-symmetric. The Frobenius Schur indicator ε(π) of π is defined to
be 1 or −1, accordingly. It is of some interest to compute this invariant. For example, see [PR12].

Now suppose G is a connected, reductive complex group. It is well known that if π is a
self-dual, finite-dimensional representation of G ε(π) is given by a particular value of its central
character [Bou05, ch. IX, §7.2, Proposition 1]. Here is an elementary proof. This is a refinement
of one of the proofs of [Pra99, § 1, Lemma 2]; we use the Tits group to identify the central element
in question.

Let ρ∨ be one-half the sum of any set of positive co-roots, and set

z(ρ∨) = exp(2πiρ∨). (8)

Not only is z(ρ∨) central in G, it is fixed by every automorphism of G. In particular, z ∈ Z(G(R))
for any real form of G. If it is necessary to specify the group in question we will write z(ρ∨G).

Lemma 5.1. Let w0 be the long element of W (G,H) (with respect to any set of positive roots).
There is a representative g ∈ NormG(H) of w0 satisfying g2 = z(ρ∨). Furthermore, if w0 = −1,
this holds for any representative of w0.
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Proof. We use the Tits group. Fix a pinning P = (H,B, {Xα}) for G (see § 2). This defines the
Tits group T , a subgroup of NormG(H) mapping surjectively to W (G,H). Every element w of
the Weyl group has a canonical inverse image σ(w) ∈ T . See [AV12, § 5].

Let g = σ(w0). By [AV12, Lemma 5.4], g2 = z(ρ∨). Any other representative is of the form
hg for some h ∈ H. If w0 = −1, then (hg)2 = h(ghg−1)g2 = (hh−1)g2 = g2. 2

Lemma 5.2. Assume G is a connected, reductive complex group. Suppose π is an irreducible,
finite-dimensional, self-dual representation of G. Let χπ denote the central character of π. Then

ε(π) = χπ(z(ρ∨)). (9)

Proof. For any vectors u,w in the space V of π we have

〈u,w〉 = ε(π)〈w, u〉. (10a)

Suppose g ∈ G, g2 ∈ Z(G), and v ∈ V . Set u = π(g2)v, w = π(g)v:

χπ(g2)〈v, π(g)v〉 = 〈π(g2)v, π(g)v) (since g2 is central)

= 〈π(g)v, v〉 (by invariance)

= ε(π)〈v, π(g)v〉 (by (a)).

(10b)

We conclude
g2 ∈ Z(G), 〈v, π(g)v〉 6= 0⇒ ε(π) = χπ(g2). (10c)

Fix a Cartan subgroup H, and for λ ∈ X∗(H) write Vλ for the corresponding weight space.
It is easy to see 〈Vλ, V−λ〉 6= 0.

Let λ be the highest weight, so Vλ is one-dimensional. Let w0 be the long element of the
Weyl group. Then π∗ has highest weight −w0λ; since π is self-dual this implies −λ = w0λ.

Choose g ∈ NormG(H) as in Lemma 5.1, so g2 = z(ρ∨), and 0 6= v ∈ Vλ. Then π(g)(v) ∈ V−λ.
Since V±λ are one-dimensional 〈v, π(g)v〉 6= 0, so apply (10c). 2

We now consider the Frobenius Schur indicator for infinite-dimensional representations. The
basic technique is the following elementary observation, which appears in [PR12].

Suppose H ⊂ G are groups, π is a self-dual representation of G, πH is a self-dual
representation of H, and πH occurs with multiplicity one in π|H . Then ε(π) = ε(πH). We first
apply this to G and K, and later to K and its identity component.

The next Lemma is a special case of the main result of this section (Theorem 5.8), but it is
worth stating separately since it clearly illustrates the main idea.

We continue to assume G is a connected reductive complex group. Fix a real form G(R), a
corresponding Cartan involution θ, and let K = Gθ.

Lemma 5.3. Suppose every irreducible representation of G(R) is self-dual. Also assume G(R) is
connected. If π is an irreducible representation then ε(π) = χπ(z(ρ∨)).

Proof. By Corollary 4.1, the self-duality assumption implies −1 ∈W (K,Hf ). So −1 ∈W (K,HK)
and this implies every K-type is self-dual (since G(R), and therefore K, is connected).

Let µ be a lowest K-type of π. Then µ has multiplicity one, and is self-dual, so by the
comment above ε(π) = ε(µ). By Lemma 5.2, ε(µ) = χµ(z(ρ∨K)), where z(ρ∨K) is defined by (8)
applied to K. Write ρ∨G in place of ρ∨. Let g ∈ NormG(Hf ) be a representative of −1 ∈W (G,Hf ),
so by Lemma 5.1 g2 = z(ρ∨G). Now view g as a representative of −1 ∈ W (K,Hf ), in which case
(by Lemma 5.1 applied to K) we see g2 = z(ρ∨K).
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Therefore z(ρ∨G) = z(ρ∨K), and since z(ρ∨G) ∈ Z(G), χµ(z(ρ∨G)) = χπ(z(ρ∨G)), independent
of µ. Thus,

ε(π) = ε(µ) = χµ(z(ρ∨K)) = χµ(z(ρ∨G)) = χπ(z(ρ∨G)). 2

A crucial aspect of the proof is that, for K connected, −1 ∈W (K,Hf ) implies z(ρ∨G) = z(ρ∨K).
We need the surprising fact that this is true without the first assumption.

Lemma 5.4. Suppose G is a connected, reductive complex group, θ is a Cartan involution, K =
Gθ and Hf is a fundamental Cartan subgroup. Assume −1 ∈W (K,Hf ). Then z(ρ∨) = z(ρ∨K).

This is a bit subtle, as a simple example shows.

Example 4. Let G(R) = SL(2,R), so K = SO(2,C). Then −1 6∈ W (K,Hf ), and −I = z(ρ∨) 6=
z(ρ∨K) = I.

On the other hand, suppose G(R) = PSL(2,R) = SO(2, 1). Then K = O(2,C), so −1 ∈
W (K,Hf ), and now I = z(ρ∨) = z(ρ∨K).

Proof. We may assume G(R) is simple.
First assume G(R) is equal rank. Recall (see the discussion in § 2) K = CentG(x) for some

x ∈Hf . We will show x is of a particular form. We need a short digression on the Kac classification
of real forms. For details, see [OV90, Hel01].

Let D̃ be the extended Dynkin diagram for G, with nodes 0, . . . ,m; roots α0, . . . , αm (−α0 is
the highest root); and labels n0 = 1, n1, . . . , nm (the multiplicity of the root in the highest root).

The Dynkin diagram of K is obtained from D̃ by deleting node j with label 2, or nodes j, k with
label 1. In the second case, without loss of generality, we may assume k = 0, so both cases may
be combined, as specifying a single node j with label nj = 1 or 2.

Let λ∨j be the jth fundamental weight for G. Then we can take x = exp(πiλ∨j ).

Now set N =
∑m

i=0 ni and let

c =


N

2
, nj = 2,

N − 1, nj = 1.
(11a)

Except in type A2n, which is ruled out since −1 ∈W (G,Hf ), N is even, so c ∈ Z.
It is an exercise in root systems to see that

ρ∨G − ρ∨K = cλ∨j . (11b)

(For i 6= 0, j, both sides are 0 when paired with αi, so this amounts to computing the pairing
with α0 and αj .) Therefore,

x = exp

(
πi

c
(ρ∨G − ρ∨K)

)
. (11c)

Then x2c = z(ρ∨G)/z(ρ∨K).
By (6) we have

−1 ∈W (K,Hf )⇔ x2 = 1⇒ x2c = 1⇒ z(ρ∨G) = z(ρ∨K). (12)

A similar, but more elaborate, argument holds in the unequal rank case. Instead, we proceed
in a more case-by-case fashion. If G(R) is complex, then K is connected, and we have already
treated this case (see the proof of Lemma 5.3). Since −1 ∈ W (K,Hf ) every representation of
G(R) is self-dual. Consulting the list at the end of the previous section, this leaves only type D2n.
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If G is simply connected, then by a case-by-case check (assuming unequal rank), −1 ∈W (K,Hf ),
and K is connected, so again we have z(ρ∨G) = z(ρ∨K). The result is then true a fortiori if G is
not simply connected. This completes the proof. 2

We also need a generalization of Lemma 5.2.

Lemma 5.5. Assume G is a connected, reductive complex group. Let G† = G o 〈δ〉 where δ2 ∈
Z(G) and δ acts on G by a Chevalley involution.

Every irreducible finite-dimensional representation π† of G† is self-dual, and if π is an
irreducible constituent of π†|G, then

ε(π†) =

{
ε(π), π ' π∗,
χπ(δ2), π 6' π∗.

(13)

Proof. The restriction of π† is irreducible if and only if π ' πδ. Since δ acts by the Chevalley
involution, this is equivalent to π ' π∗.

If π ' π∗ the result is clear. Otherwise, let λ be the highest weight of π. Then πδ has
extremal weight −λ, i.e. highest weight −w0λ where w0 is the long element of the Weyl group.
Since π 6' π∗, −w0λ 6= λ, so the λ-weight space of π† is one-dimensional. The proof of Lemma 5.2
now carries through using δ, which interchanges the λ and −λ weight spaces of π†. 2

We need to consider finite-dimensional representations of the possibly disconnected group
K = Gθ. These groups are not badly disconnected, for example the component group is an
elementary abelian two-group (this follows from [KV95, Proposition 4.42(a)], and the fact that
it is true for real tori), and we need the following property of their representations.

Lemma 5.6. Let µ be an irreducible, finite-dimensional, representation of K. Then the restriction
of µ to K0 is multiplicity free.

Proof. Suppose µ0 is an irreducible summand of µ|K0 , and let K1 = StabK(µ0). It is enough to
show that µ0 extends to an irreducible representation µ1 of K1. For then, by Mackey theory,
IndKK1

(µ1) is irreducible, so isomorphic to µ, and restricts to the sum of the distinct irreducible
representations {πx0 | x ∈ S}, where S is a set of representatives of K/K1.

Choose Cartan and Borel subgroups T ⊂ BK0 of K0. (We can arrange that BK0 = B ∩K0

and T = H ∩K0.)

Lemma 5.7. We can choose elements x1, . . . , xn ∈ K such that:

(i) K = 〈K0, x1, . . . , xn〉;
(ii) xi normalizes BK0 and T ;

(iii) the xi commute with each other.

Remark 6. By a standard argument it is easy to arrange points (i) and (ii), the main point is
(iii). Alternatively, it is well known that we could instead choose the xi to satisfy points (i) and
(iii) and that each xi has order two. It would be interesting to prove that one can satisfy all four
conditions simultaneously, and perhaps even that conjugation by xi is a distinguished involution
of K0.

Proof. Choose x ∈ K\K0. Then conjugation by x takes BK0 to another Borel subgroup, which
we may conjugate back to BK0 . So after replacing x with another element in the same coset of
K0 we may assume x normalizes BK0 . Conjugating again by an element of BK0 we may assume
x normalizes T . By induction this gives points (i) and (ii).

2140

https://doi.org/10.1112/S0010437X14007374 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007374


The real Chevalley involution

For point (iii), it is straightforward to reduce to the case when G(R) is simple. Then a
case-by-case check shows that |K/K0| 6 2 except in type Dn. Furthermore the only exception is
the adjoint group PSO(2n, 2n), in which case the result can be easily checked. This is essentially
[Vog82, Proposition 9.7]. 2

Let λ ∈ X∗(T ) be the highest weight of µ0 with respect to BK0 . Then µxi0 has highest weight
xiλ. So, after renumbering, we may write K1 = 〈K0, x1, . . . , xr〉 where xiλ = λ for 1 6 i 6 r.

Let Vλ be the (one-dimensional) highest weight space of µ0. The group T1 = 〈T, x1, . . . , xr〉
acts on Vλ. In the terminology of [Vog87, Definition 1.14(e)], T1 is a large Cartan subgroup of
K1, and [Vog87, Theorem 1.17] implies that there is an irreducible representation µ1 of K1,
containing the one-dimensional representation Vλ of T1. Then µ1|K0 = µ0. 2

Theorem 5.8. Suppose every irreducible representation of G(R) is self-dual (see Corollary 4.1).
If π is an irreducible representation, then

ε(π) = χπ(z(ρ∨)). (14)

Every irreducible representation is orthogonal if and only if z(ρ∨) = 1. This holds if G is adjoint.

Proof. By Corollary 1.7 everyK-type is self-dual, and−1 ∈W (K,Hf ). Choose a minimalK-type
µ. Since µ is self-dual and has multiplicity one, ε(π) = ε(µ).

Let µ0 be an irreducible summand of µ|K0 . By Lemma 5.6 µ0 has multiplicity one. If µ0 is
self-dual, then ε(µ) = ε(µ0), and by Lemma 5.2 ε(µ0) = χµ0(z(ρ∨K)). By Lemma 5.4 this equals
χµ0(z(ρ∨)).

Suppose µ0 is not self-dual. Since −1 ∈W (K,Hf ), choose a representative g ∈ NormK(Hf )

of −1 ∈W (K,Hf ), and let K† = 〈K, g〉. By Lemma 5.5 µ† = IndK
†

K0
(µ0) is irreducible, self-dual,

and of multiplicity one in µ, so ε(µ) = ε(µ†). Since µ0 6' µ∗0, by Lemma 5.2, ε(µ†) = χµ0(g2). We
can also think of g as a representative of −1 ∈ W (G,Hf ). Since G (unlike K) is (necessarily)
connected, by Lemma 5.1, g2 = z(ρ∨G), so again ε(µ) = χµ0(z(ρ∨G)).

As in the proof of Lemma 5.3, since z(ρ∨G) ∈ Z(G(R)), χµ0(z(ρ∨G)) = χπ(z(ρ∨G)). This
completes the proof. 2

Acknowledgements
The author would like to thank Dipendra Prasad, Dinakar Ramakrishnan and George Lusztig
for very useful discussions. He also thanks the referees for a number of helpful suggestions which
have improved the paper.

References

AdC09 J. Adams and F. du Cloux, Algorithms for representation theory of real reductive groups,
J. Inst. Math. Jussieu 8 (2009), 209–259.

AV12 J. Adams and D. A. Vogan Jr, The contragredient, Preprint (2012), arXiv:1201.0496.

BW00 A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of
reductive groups, Mathematical Surveys and Monographs, vol. 67, second edition (American
Mathematical Society, Providence, RI, 2000).

Bor91 A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, second edition
(Springer, New York, 1991).

Bou05 N. Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Springer,
Berlin, 2005), translated from the 1975 and 1982 French originals by Andrew Pressley.

2141

https://doi.org/10.1112/S0010437X14007374 Published online by Cambridge University Press

http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
http://www.arxiv.org/abs/1201.0496
https://doi.org/10.1112/S0010437X14007374


J. Adams

Hel01 S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in
Mathematics, vol. 34 (American Mathematical Society, Providence, RI, 2001), corrected reprint
of the 1978 original.

Hel88 A. G. Helminck, Algebraic groups with a commuting pair of involutions and semisimple
symmetric spaces, Adv. Math. 71 (1988), 21–91.

Hel00 A. G. Helminck, On the classification of k-involutions, Adv. Math 153 (2000), 1–117.

Hum75 J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, vol. 21 (Springer,
New York, 1975).

Kna02 A. W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, second
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