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Abstract
In this article, a coupled line diplexer (operating at 2.4 GHz and 3.5 GHz) which can be
used as single-band filter with tunable attenuation characteristics in the pass band has been
designed. Multilayer graphene (MLG) pads are used to achieve tunable features in this circuit.
The graphene pads are placed at each branch of the diplexer. Single-band tunable attenuation
characteristics are achieved by applying bias to graphene pads placed at optimum locations
on the filter. The proposed tunable coupled line attenuating diplexer is realized on FR-4 glass
epoxy substrate of thickness 1.58mmwith a total size of 45 × 75mm2. By varying the bias volt-
age (0 V –6 V) of MLG pads the resistance of graphene pad placed in the circuit gets decreases
thereby attenuating/controlling the transmission power to the other port in the required band.
In lower pass band (2.28–2.55 GHz) the signal is attenuated from 3 to 10.8 dB and in higher
pass band (3.2–3.58GHz) signal is attenuated from5 to 13 dB. Simulations of the structurewith
and without graphene pads have been carried out and are in good agreement with measured
results.

Introduction

One of the most essential components of Radio Frequency (RF) front end systems is a diplexer
which routes signals of different frequencies through separate branches of the circuit. Earlier,
diplexers aremade usingwaveguide technology for high power handling. Later,microstrip tech-
nology enabled planar integration of these components. Various topologies like coupled line
diplexer [1], stepped impedance resonator-based diplexer [2], Coplanar Wave Guide (CPW)
based diplexer with semi lumped elements [3] have been discussed in literature. The crucial
part in designing a diplexer is input matching [4]. Some planar diplexers have been discussed in
references [5–9].This matching is done in such a way that both the frequencies do not interfere
with each other in respective bands. In this paper, coupled line filter-based diplexer is designed
to incorporate tunability feature using graphene pads.

Investigation on graphene-basedmicrowave devices is being carried out by researchers from
past few years. In the initial days researchers found its importance in Terahertz frequency range,
later researchers are trying to push the limits of graphene to check its potential in microwave
band. Graphene is a material having a unique property. Its fermi level is of cone shape [10] and
requires very small energy to transform from valance band to conduction band. During this
transition, conductivity of material varies. This feature has potential applications in microwave
region as well. Exploring the characteristics of graphene in microwave range began by mak-
ing attenuator circuits using tiny graphene pads. Various circuits such as microstrip attenuators
[11–15], CPW based attenuators [16, 17], Substrate Integrated Wave Guide (SIW) based atten-
uators [18], half-mode SIW attenuators [19] have been discussed in literature. In reference [20],
tunable filtering attenuator was made by integration of graphene. Similarly tunable attenuators
with spoof surface plasmon polaritons using graphene have been tested on flexible circuits in
references [21, 22]. Power dividers [23, 24] and antennas [25–28] with tunable attenuation char-
acteristics are also reported.The usage of graphene in microwave range was extended to design
absorbers [29, 30]. The characterization of graphene is discussed in references [31–33].

In this paper, the features of graphene material are used to suppress the signals coming out
of either of the two channels of the diplexer. Due to this, the designer can continuously regulate
the power obtained at two channels of the diplexer. The design is implemented in two bands
with frequencies centered at 2.4 and 3.5 GHz.

Design of coupled line diplexer

Figure 1 shows the parallel coupled line diplexer comprising of two second-order filters con-
nected to 50 Ω line. The top section (Branch 1) in the diplexer is designed to operate at
2.4 GHz and having a pass band ranging from 2.28 to 2.55 GHz.The bottom section (Branch 2)
is designed at a center frequency of 3.5 GHz having a pass band from 3.2 to 3.58 GHz.
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Figure 1. Schematic of coupled line diplexer.

The even- and odd-mode capacitances of the individual fil-
ters have been calculated using equations (1[a] & 1[b]) respec-
tively. Appropriate matching at the input reduces the interference
between the two pass bands. This input matching can be done
by using different lengths of a 50 Ω transmission line. The input
line connecting to branch 1, which is operating at lower band
should provide high impedance for band 2, thereby obstructing the
passage of the signal and vice versa.

Z0e = Z0 [1 + JZ0 + (JZ0)
2] 1(a)

Z0o = Z0 [1 − JZ0 + (JZ0)
2] 1(b)

where, admittance inverter constants can be found using equa-
tions 2(a)–(c).

Z0J1 = √𝜋Δ
2g1

2(a)

Z0Jn = 𝜋Δ
2√gn−1gn

2(b)

Z0JN+1 = √ 𝜋Δ
2gNgN+1

2(c)

The schematic of the diplexer circuit in Fig. 1 is simulated
in advance design systems. Figure 2(a) and (b) shows S11 curves
in smith chart validating matching of the circuit at the input of
branches 1 and 2, respectively.

The relation between the spacing “S” and height of substrate “h”
is given [34] as

0.05 ⩽ s
h ⩽ 2for∈r ⩾ 1 (3)

The lengths (W1,W2,W3, andW4) of coupled microstrip res-
onators are considered approximately as 𝜆g

2
for bandpass regions of

each filter section.

Theoretical calculation of coupled line section even- and
odd-mode impedances for a givenmicrostrip line configuration

Z0o and Z0e of second order coupled line filters are calculated using
equations 4(a)–(a1) [34, 35] and are given in Table 1(a) and (b).The
equivalent widths and lengths ofmicrostrip lines calculated for this
design are also given in Table 2.

For a coupled microstrip line of width W, spacing “s” and
height “h” fabricated on a substrate having 𝜀r = 4.4, the following
equations apply. For the case where,

0.1 ⩽ u(= W
h ) ⩽ 10, 0.1 ⩽ g (= s

h) ⩽ 10, 1 ⩽ 𝜀r ⩽ 18

Z0odd and Z0even are calculated by following equations

Z0odd = Z0surf.
⎡
⎢⎢⎢
⎣

√
𝜀reff

𝜀reff,o

1 − ( Z0surf

𝜂0
.q10.

√𝜀reff)

⎤
⎥⎥⎥
⎦

4(a)

Figure 2. Smith chart showing matching of diplexer for branch 1 & branch 2. 2(a) Branch 1 - high impedance for higher band & 2(b) branch 2 - high impedance for lower
band.
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Table 1. (a) Even- and odd-mode impedances of section 1. (b) Even- and odd-
mode impedances of section 2

Z0e (Ω) Z0o (Ω) Spacing (mm) Width (mm)

68.4 31.6 0.26 2.612

50.53 36.98 1.1 3.664

68.4 31.6 0.26 2.612

For section 2,

65.99 34 0.355 2.713

50.29 40.06 1.688 3.53

65.99 34 0.355 2.713

Table 2. Optimized dimensions of T-CLAD using MLG in mm

L W L1 W1 W2 W3 Lm2 Lm4

45 75 3 17 11.7 16.8 3.71 3.55

W4 S1 S2 S3 S4 Lm1 Lm3

11.3 0.15 0.38 0.65 1.2 2.645 2.765

Z0even = Z0surf.
⎡
⎢⎢⎢
⎣

√
𝜀reff

𝜀reff, e

1 − Z0surf

𝜂0
.q4.

√𝜀reff

⎤
⎥⎥⎥
⎦

4(b)

Where Z0odd,Z0evenare the odd- and even-mode impedances
of the coupled microstrip lines. AndZ0surf is surface impedance,
𝜀reff is the effective dielectric constant, 𝜂0 .is free space impedance,
𝜀reff, o .is static odd-mode effective dielectric constant, 𝜀reff,e is static
even-mode effective dielectric constant. The variables q4 and q10
are constants given by equations 4(n) and 4(o).

For W

h
⩽ 1 the effective dielectric constant is calculated as

𝜀reff = 𝜀r + 1
2 + 𝜀r − 1

2 . (√ W
W + 12h + 0.04(1 − W

h )
2
)

4(c)
When W

h
⩾ 1 the effective dielectric constant is calculated as

𝜀reff = 𝜀r + 1
2 + 𝜀r − 1

2 . (√ W
W + 12h) 4(d)

In our design W

h
⩾ 1.

To calculate surface impedance Z0surf we use the following
equations from 4(e) to 4(g)

Z0surf = 𝜂0
2𝜋

√
2√𝜀reff + 1

.ln(1 + (4. h
Weff

)

. ((4. h
Weff

) .
14.𝜀reff + 8
11.𝜀reff

) + temp) 4(e)

WhereWeff is effective width of the line

Weff = W + t
𝜋.ln

⎛⎜⎜⎜⎜⎜
⎝

4e

√( t

h
)
2

+ ( t

W𝜋+1.1𝜋
)
2

⎞⎟⎟⎟⎟⎟
⎠

.
𝜀reff + 1
2.𝜀reff

4(f)

Where ′temp′ is a constant and given by,

temp = √16( h
Weff

)
2
.(

14.∈reff + 8
11.∈reff

)
2

+ (
∈reff + 1
2.∈reff

) .𝜋2

4(g)
To evaluate 𝜀reff, o and 𝜀reff, ewe use equations 4(h) to 4(q)

𝜀reff,o = (0.5 (𝜀r + 1) + a0 − 𝜀reff.e
−c0.gd0) + 𝜀reff 4(h)

a0 = 0.7287(𝜀reff − 𝜀r + 1
2 ) . (

√
1 − e−0.179u) 4(i)

b0 = 0.747.𝜀r
0.15 + 𝜀r

4(j)

c0 = b0 − (b0 − 0.207) .e−0.414u 4(k)

d0 = 0.593 + 0.694e−0.562u 4(l)

g = s
h 4(m)

𝜀reff,e = 𝜀r + 1
2 + 𝜀r − 1

2 .(1 + 10
v )

−ae(v).be(𝜀r)
4(n)

Where,

v =
u. (20 + g2)
10 + g2 + ge−g 4(o)

ae (v) = 1 +
ln(

v4+( v

52
)
2

v4+0.432
)

49 +
ln(1 + ( v

18.1
)
3
)

18.7 4(p)

be (𝜀r) = 0.564(𝜀r − 0.9
𝜀r + 3 )

0.053
4(q)

To evaluate constants q4, q10 given in equation 4(a) & 4(b) the
following equations are used

q4 =
2 * q1

q2 * (e−g * u−q3 + (2 − e−g) * u−q3) 4(r)

q10 = ( 1
q2) * (q2 * q4 − q5 * e(ln(u)*q6*u−q9)) 4(s)

The constants q1, q9 required to evaluate q4 and q10 are given by

q1 = 0.8695 * u0.194 4(t)

q2 = 1 + 0.7519 * g + 1.89 * g2.31 4(u)

q3 = 0.1975+ (16.6 + (8.4
g )

6
)

−0.387

+ 1
241 ln

⎛⎜⎜⎜
⎝

g10

1 + ( g

3.4
)
10

⎞⎟⎟⎟
⎠

4(v)

q5 = 1.794 + 1.14 * ln(1 + ( 0.638
g + 0.517 * g2.43 )) 4(w)
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q6 = 0.2305 + 1
281.3 * ln

⎛⎜⎜⎜
⎝

g10

1 + ( g

5.8
)
10

⎞⎟⎟⎟
⎠

+ 1
5.1 * ln(1 + 0.598) * g1.154 4(x)

q7 =
10 + 190 * g2

1 + 82.3 * g3
4(y)

q8 = e
(−6.5−0.95*ln(g)−( g

0.15
)
2
)

4(z)

q9 = ln (q7) * (q8 + 1
16.5) 4(a1)

In this design, considering the thickness of the line as
t = 0.035 mm, the height of substrate h = 1.58 mm, 𝜀r = 4.4, the
following values are obtained for odd- and even-mode impedances
are obtained for coupled line sections 1 & 2 designed for f1
and f2 frequencies for a given spacing “s” and width W of the
lines.

Based on the impedances obtained, using microstrip line
theory [34] the width of the lines have been calculated. The
design parameters have been optimized for better results and the
optimized dimensions of the circuit are given in the following
table.

Implementation of the design in 3D EM software

The proposed tunable coupled line attenuating diplexer (T-CLAD)
structure simulated in 3D Electro Magnetic (EM) solver Ansys
HFSS is shown in Fig. 3(a). After optimization, the design is real-
ized on FR-4 substrate of thickness 1.58 mm and having electrical
properties 𝜀r = 4.4 and tanδ = 0.025. Dimensions of the cir-
cuit labelled in Fig. 3(a) are given in Table 1. The measurements
are carried out using Keysight network analyzer PNA N5224B.
Simulated and measured results of circuit without graphene pads
are plotted in Fig. 3(b). Later Graphene pads are placed at loca-
tions shown in Fig. 3(a). As Graphene is lossy material with high
dielectric constant and high loss tangent [31–33], it is effecting
the transmission parameters slightly. Due to the standard losses of
dielectric, there exist some transmission losses initially in both pass
bands.

Characterization of MLG pads

Preparation and testing of MLG pads.

Commercially available high-purity multilayer graphene (MLG)
of flake size 1–5 μm has been chosen for making graphene
pads. Initially, this MLG is mixed with isopropyl alcohol (IPA)
at 10 mg/ml. This mixture is sonicated for 20 minutes to get the
graphene particles dispersed uniformly in the liquid. Now this dis-
persed graphene liquid is transferred to the desired position on
the circuit carefully using a dropper as shown in Fig. 4(a). The
IPA in the mixture gets evaporated after some time leaving the
pure graphene as a resistive sheet. The resistance of the graphene
pad depends on the thickness and area of the pad. Controlled
dropping of graphene liquid is required based on the require-
ment. Applying bias to these pads varies the resistance. Figure 4(b)
shows the plot of current vs applied voltage and resistance vs

Figure 3. Proposed tunable attenuating diplexer using MLG pads. (a) Schematic
with graphene pads & (b) simulated and measured S-parameters of proposed
diplexer without graphene.

applied voltage of the pads placed in the circuit. Further increase
in bias voltage (>6 V) leads to the breakdown of graphene
pads.

Results & discussion

The MLG pads are placed at the edges of the center coupled-
line section of the design for both branches as shown in Fig. 5(a)
(circled). Initial resistance of graphene pads is around 250 Ω.
As graphene is a resistive sheet, the coupling between the sec-
tions is slightly disturbed and the insertion loss in the higher
band has slightly increased. Bias is applied to each of these pads
and the resistance of pads is varied in branch 1 and branch 2
separately.The fabricated prototype of proposed T-CLAD and cor-
responding Measured and simulated S-parameters of the circuit
after placing the graphene pads are shown in Fig. 5(a) and (b),
respectively.

The size of graphene pads placed for branch 1 is 0.65 × 1 mm
and for branch 2 it is 1.2 × 1 mm. A variable three-channel DC
multiple power supply (Model Number: PSD3304) from Scientific
company is used to apply DC bias to the graphene pads as shown
in Fig. 6 (a). As the coupler sections inherently block DC, there
is no need for a bias tee for additional protection while carry-
ing out this experiment. When the graphene pad in branch 1 is
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Figure 4. (a) Preparation of Graphene pads & (b)
Measured resistance of MLG pad and voltage vs current
plot.

Figure 5. Proposed T-CLAD and its S-parameters. (a) Fabricated prototype of T-CLAD with MLG pads & (b) S-parameters without biasing the graphene.

biased with voltage varying from 0 to 6 V, there is a correspond-
ing change in resistance of the graphene pad from 250 to 54 Ω.
Due to this attenuation in branch 1 is varied from 4.6 to 10.3 dB.
Figure 6(b) shows the simulated and measured S-parameters cor-
responding to the biasing of the graphene pad in branch 1. The
graphene pad in branch 2 is also biased similarly, resulting in vari-
able attenuation from 4.8 to 14.1 dB in the second operating band.
Measured and simulated results obtained by biasing graphene pad
in branch 2 are shown in Fig. 6(c). Figure 6(a) shows the test
setup of the circuit and biasing of graphene pads in the fabricated
circuit.

This circuit can be used to control the power levels of sig-
nals appearing at the two branches of the diplexer. By bias-
ing the graphene pads in branch 1 and 2, the power lev-
els of the two operating bands can be controlled simultane-
ously. This circuit has applications in reconfigurable Bluetooth,
WLAN systems. This concept can be applied to any other desired
bands of interest. Multiple graphene pads can also be placed

to obtain additional attenuation. However, insertion loss of cir-
cuit might degrade by using more graphene pads. Table 3 gives
the comparison of proposed attenuating diplexer with existing
literature.

In references [5, 6] tunable diplexers are realized using varac-
tor diodes. In reference [5], a total of nearly 18 varactor diodes are
used to obtain the desired tuning characteristics making the cir-
cuit very complex and power-hungry. In reference [6], a total of
10 varactor diodes are used achieve the desired characteristics. In
both these circuits, the use of several diodes makes these circuits
very cumbersome. In this paper, by using two very tiny graphene
pads we are able to achieve considerable attenuation levels in the
pass band with tolerable insertion loss using extremely low pow-
ers (around 6 mW). In reference [9] the size of the two graphene
pads is almost 10 times larger than the pads used in our design.
The use of such large pads will result in larger surface resistance
leading to higher insertion losses. This work has the advantage
of using a very simple diplexer design and a relatively easier
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Figure 6. (a) Test setup of T-CLAD with graphene pads, (b) variation in lower pass band, & (c) variation in higher pass band.

Table 3. Comparison of proposed attenuating diplexer with existing literature

Ref
Frequency
bands (GHz)

Measured
IL (dB)

Tuning
method

No. of
graphene
pads

Size of
graphene pad

Attenuation
in the

bands(dB)

[5] 0.5–2 4.3/7.7 Varactor
diode tuned

– – 4.35–2.5
7.72–3.6

[6] 1.1/1.62 6.8/7.1 Varactor
diode tuned

– – 6.8–3/2.6–7.1

[9] 1.4/2.4 4 Graphene
pad

2 5.15 mm × 10 mm 7

This work 2.4/3.5 4 Graphene
pad

2 0.65 mm × 1 mm
1.2 mm × 1 mm

5.7 (band 1)
9 (band 2)

bias mechanism which consumes very low power for its tunable
operation.

Conclusion

A diplexer circuit with tunable attenuation characteristics using
MLG pads has been proposed and fabricated. Tiny graphene pads
are placed in between the coupled sections of each filter and biased

from 0 to 6 V correspondingly observed a change in resistance of
graphene pad (from 250 to 54 Ω) is observed.This change in resis-
tance results in reducing the power levels of transmission signal
in two operating bands individually. This concept can be further
extended to multiplexer (more than two operating bands) circuits
for wireless applications.

Competing interests. The authors have no conflict of interest.
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