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In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure
coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk
stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and
60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results
indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°)
and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of
considered parameters. The analysis of spreading factor reveals that a part of the energy is
transferred to the substrate, which is manifested as a weakening of the droplet spreading,
when the substrate deforms downwards due to the droplet impact; the squeezing of the
droplet causes a tendency to flow from the centre of the droplet to the edge, which
is manifested as an enhancement of the droplet spreading, when the substrate recovers
from the downward deformation. The effect of the substrate flexibility on the maximum
spreading factor depends on the competition of the two mechanisms above. Based on this,
a modified scaling law of βmax has been proposed by introducing the effective Weber
number (Wem). The analysis of impact force demonstrates that the peak of the impact
force is related to the deflection of the flexible substrate which is different from that of a
rigid wall; and three typical processes of impact force variation have been summarised.
In addition, unlike the rigid substrate scenario, there is an energy interaction between the
droplet and the flexible substrate after impact occurs, which is classified as three typical
energy transformation processes.
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1. Introduction

The impact of droplets on solid surfaces is a common phenomenon in both nature and
engineering, seen in processes such as inkjet printing (Derby 2010; Lohse 2022), raindrop
impact (Abuku et al. 2009; Gart et al. 2015; Gilet & Bourouiba 2015; Kim et al. 2020),
droplet freezing (Mishchenko et al. 2010; Jung et al. 2012) and pesticide deposition (Wirth,
Storp & Jacobsen 1991; Bergeron et al. 2000). After impact, droplet dynamics can be
divided into two stages: spreading and recoiling. In the spreading stage, the kinetic energy
is converted into surface energy and dissipated through viscosity, until the droplet reaches
its maximum spread. During the recoiling stage, surface tension drives the droplet to
retract, converting the surface energy back into kinetic energy, with some energy lost
through viscous dissipation. Droplets impacting on a dry rigid substrate can exhibit
different modes, including deposition, prompt splashing, corona splashing, receding
break-up, partial rebound or complete rebound (Rioboo, Tropea & Marengo 2001). The
outcome depends on the physical parameters, such as droplet viscosity, impact velocity,
surface tension coefficient, solid surface roughness and surface wettability (Josserand &
Thoroddsen 2016).

Previous research is mainly focused on dynamics of a droplet impacting on rigid
surfaces. However, many real-world surfaces, such as leaves, umbrellas, clothing fabrics,
are flexible. The effects of substrate flexibility on droplet impact dynamics are still less
understood, though the limited studies provide insights. For example, Weisensee et al.
(2016) observed that flexible substrates can rebound, returning kinetic energy to the droplet
and reducing the contact time by up to 50 %, a phenomenon termed the ‘springboard
effect’. Huang et al. (2018) found that flexible, superhydrophobic cotton significantly
reduces the retraction time and overall contact duration once the impact velocity exceeds
a threshold, due to energy stored in the substrate during droplet spreading. Other studies
(e.g. Mangili et al. 2012; Chen et al. 2016; Vasileiou et al. 2016; Vasileiou, Schutzius &
Poulikakos 2017), mostly using experimental methods, explored similar energy storage and
release mechanisms, with flexible substrates enhancing droplet rebound and modifying the
conditions required for various impact behaviours.

The role of flexibility in reducing splashing has also been investigated. Pepper, Courbin
& Stone (2008) and Howland et al. (2016) observed that flexible substrates suppress
droplet splashing, likely due to the early substrate deformation absorbing energy. Their
experiments showed that splashing on the softest substrate requires approximately 70 %
more kinetic energy than on a rigid surface. Further, Pegg, Purvis & Korobkin (2018)
conducted analytical and numerical studies on the splashing dynamics when a droplet
impacts a small flexible plate. They found that the oscillation of the flexible substrate can
amplify the splash jet, a phenomenon not observed on rigid surfaces. Similarly, Dressaire
et al. (2016) investigated droplet impact on a thin flexible fibre and found that the fibre’s
flexibility affects the threshold capture velocity in a nonlinear way.

Although experimental studies provide valuable insights, numerical simulations offer a
more detailed and comprehensive analysis of droplet impact dynamics. However, most
existing research on droplet impacts on flexible substrates is experimental, with very
few numerical studies available. Xiong, Huang & Lu (2020) conducted two-dimensional
(2-D) numerical simulations of droplet impacts on a flexible substrate simply supported
at both ends, investigating the effects of Weber numbers within a limited range on droplet
impact dynamics. However, these 2-D simulations showed significant discrepancies when
compared with actual droplet impact behaviour. In a more recent study, Ma & Huang
(2023) simulated droplet impacts on both 2-D and three-dimensional flexible rectangular
substrates, also simply supported at both ends. Their research focused on the influence
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of Weber number, substrate bending stiffness and solid-to-liquid density ratio on the
maximum spreading factor, proposing a scaling law for it. However, they did not analyse
other dynamic characteristics influenced by substrate flexibility, such as impact forces.
Currently, the dynamic behaviour of droplets impacting a flexible substrate remains
unclear, and the underlying mechanisms governing droplet–flexible substrate interactions
are still not well understood.

In this study, we numerically simulate a droplet impacting a simply supported flexible
circular disk, differing from the rectangular substrates examined by Xiong et al. (2020)
and Ma & Huang (2023). The simulations are conducted within a 2-D axisymmetric
framework across a wide range of Weber numbers (We = 1–500). We focus on the
effects of the Weber number and substrate bending stiffness on droplet impact dynamics,
providing a comprehensive analysis of droplet–flexible substrate interactions. This
includes impact modes, maximum spreading factor (βmax), spreading time, scaling laws
for βmax, impact forces, energy conversion and more. While the primary analysis focuses
on hydrophobic surfaces (contact angle θ = 130°), we also investigate the behaviour of
droplets impacting a hydrophilic flexible substrate (θ = 60°) towards the end of this paper.

The remainder of this paper is organised as follows: § 2 describes the computational
model, including the physical problem, mathematical formulation, numerical methods
and numerical validations. Section 3 presents results and discussions on the dynamics
of droplets impacting on a flexible disk. Finally, concluding remarks are provided in § 4.

2. Computational model

2.1. Physical model and mathematical formulation
The schematic of a droplet impacting on a flexible circular plate is shown in figure 1.
At the initial moment, a spherical droplet with a diameter D0, density ρl and viscosity μl
has a downward impact velocity U0; directly below the droplet at a distance H (= 0.5D0),
a flat flexible disk with thickness h, diameter L, density ρs and Young’s modulus E is
simply supported at its edge. The droplet is surrounded by a gas with density ρg and
viscosity μg. In numerical simulations, the gravity is not considered. After impacting,
the droplet spreads on the deformed substrate. In this process, the droplet impact gives
rise to the deformation and the motion of the substrate, which, in turn, affects the droplet
dynamics. As shown in figure 1(b), the spreading factor (β) is defined. At the centre of
the substrate, the droplet’s thickness and the substrate’s deflection are denoted by y and
d, respectively. A 2-D axisymmetric model is adopted and the gravity is neglected. The
letters r and z represent the radial and axial coordinates, respectively, and the substrate is
initially located at z = 0.

In this system, the fluid flow is governed by the incompressible Navier–Stokes equations,

ρf
∂vf

∂t
+ ρf (vf · ∇)vf = ∇ · [−pI + μ(∇vf + (∇vf )T)] + F st + ρf g, (2.1)

∇ · vf = 0, (2.2)

where ρf is the fluid density, vf is the fluid velocity vector, I is the unit tensor, μf is the
fluid dynamic viscosity, p is the pressure, F st is the surface tension force term of the fluid
and t is the time. The flexible substrate is modelled as a shell, the thickness of which
is negligible. The deformation and motion of the shell are described by the following
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Figure 1. Schematic of a droplet impacting on a flexible circular disk: (a) initial configuration; (b) an instant
of the droplet spreading on the deformed substrate.

structural equations:

ρs
∂2us

∂t2
= ∇ · (FS)T + ρsg, (2.3)

where ρs is the structure density and us is the displacement vector. In our study, gravity is
neglected, i.e. g = 0. The deformation gradient tensor F and the second Piola–Kirchhoff
stress tensor S are defined as

F = I + ∇us, (2.4)

S = JF−1𝞼sF
−T , (2.5)

respectively, where 𝞼s is the Cauchy stress tensor and the volume factor J is given by

J = det(F ) = dV
dV0

, (2.6)

where V0 is the volume before deformation and V is the volume after deformation. The
strain tensor corresponding to the second type of Piola–Kirchhoff stress tensor is the
Green–Lagrangian strain tensor:

E = 1
2 (F

TF − I). (2.7)

The flexible disk in this problem is an isotropic linear elastic material, then S and E satisfy
Hooke’s law:

S = λ(tr E)I + 2GE, (2.8)
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where λ and G are the Lamé coefficient and shear modulus, respectively, which can be
calculated from the Young’s modulus E and Poisson’s ratio v of the material:

λ = vE
(1 + v)(1 − 2v)

, (2.9)

G = E
2(1 + v)

. (2.10)

For the fluid–structure interaction (FSI) boundary, the conditions of velocity
compatibility and stress balance must be satisfied:

∂us

∂t
= vf , (2.11)

n · 𝞼s = n · 𝞼f , (2.12)

where the unit vector n is normal to the solid boundary, and fluid stress 𝞼f is given by

𝞼f = −pI + μf [∇vf + (∇vf )
T] . (2.13)

In the present study, we choose ρl, D0 and σ as characteristic quantities. The
corresponding reference speed Uref = √

σ/(ρlD0). Thus, the following dimensionless
governing parameters are given: the Weber number We = ρlU2

0D0/σ , the Reynolds
number Re = ρlU0D0/μl, the liquid-to-gas density ratio ρr = ρl/ρg, the liquid-to-gas
viscosity ratio μr = μl/μg, the bending stiffness K = Eh3/(ρlU2

ref L3), the thickness
of the flexible disk h* = h/D0, the disk diameter L* = L/D0 and the substrate-to-liquid
density ratio dr = ρs/ρl. The subscripts s, l and g denote the solid, the liquid and the gas,
respectively. The dimensionless time t* = tUref /D0.

2.2. Numerical method
The numerical simulations are performed using software COMSOL Multiphysics
(COMSOL 5.6), which provides a comprehensive platform for simulating FSI phenomena
using the finite element method (FEM). In COMSOL Multiphysics, the governing
equations for fluid and shell dynamics, i.e. (2.1)–(2.3) are converted into their weak form.
The weak form equations are then discretised using FEM, with special attention given to
mesh deformation to accurately capture the evolving interface between fluid and structure.
The mesh for shell and fluid domains in COMSOL are provided in Appendix A. The
fluid region is divided by the triangular elements. In the present model, the thickness of
the shell is negligible. The variables of the shell, e.g. displacement vector, are defined
on the midplane (z = 0). The shell elements are located on the midplane of the shell. In
the simulation, the dynamic mesh deformation is required to account for changes in the
geometry of both fluid and shell domains. We can specify mesh refinement criteria and
employ adaptive meshing techniques to maintain computational accuracy while capturing
complex fluid–structure interactions. Time discretisation is performed using the built-in
backward differentiation formula in COMSOL. All variables are fully coupled using the
constant Newton method (Deuflhard 1974), with a constant damping factor of 0.75. The
Yeoh smoothing method (Yeoh 1993) is employed to constrain the mesh displacement,
allowing for the maximum displacement before the mesh is inverted. The MUMPS solver
is used for solving the linear systems of the coupled equations during the problem
initialisation and transient process. For details regarding finite element discretisation,
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meshing techniques and other technical aspects, please refer to the COMSOL User’s
Guide.

In the present simulations, the phase-field method is used to track the gas–liquid
interface. In the phase-field method, the surface tension force is calculated based on the
following expression:

F st = G∇φ, (2.14)

G = λ
[
−∇2φ + φ(φ2 − 1)

ε2

]
= λ

ε2ψ, (2.15)

where G is the chemical potential, γ is the mobility, λ is the mixing energy density, ε is
the interface thickness parameter and ψ is the phase-field auxiliary variable. The diffusion
interface is defined by a dimensionless phase-field variable φ, ranging from –1 to 1. Here,
φ=−1 and φ= 1 correspond to the gas and liquid, respectively, with densities of ρg and
ρl. To track the diffusion interface of two-phase fluids, the following phase-field equation
(Cahn–Hilliard equation) is used:

∂φ

∂t
+ vf · ∇φ = ∇ · γ λ

ε2 ∇ψ, (2.16)

ψ = −∇ · ε2∇φ + (φ2 − 1)φ. (2.17)

Here, σ , λ and ε have the following relationship:

σ = 2
√

2λ
3ε

. (2.18)

In our simulation, we set the interface thickness ε to 0.75 hm, where hm represents
the maximum grid size in the region through which the droplet passes. Additionally, γ
determines the time scale of diffusion and is closely related to the interface thickness, i.e.

γ = χε2, (2.19)

whereas χ represents the parameter for adjusting the mobility, which needs to be chosen
precisely. If the value is too large, it excessively suppresses the convection term, and if
it is too small, it becomes difficult to maintain the correct interface thickness. In our
simulation, the value of the mobility adjustment parameter is determined by the following
function:

χ = 8Vmax

9
√

2σ
, (2.20)

where Vmax is the maximum velocity in the entire computational domain at the current
moment.

The phase-field method treats two-phase flow as a single-phase flow, where the
properties in the flow domain such as density ρ and viscosity μ vary based on the volume
fractions of different fluid phases,

ρ = ρg + (ρl − ρg)Vl, (2.21)

μ = μg + (μl − μg)Vl. (2.22)
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The volume fractions of the light and heavy fluid phases are related through the phase-field
variable φ, i.e.

Vg = 1 − φ

2
, Vl = 1 + φ

2
. (2.23a,b)

Open boundary conditions are applied to the upper, lower and lateral sides of the
computational domain, while a wetted wall boundary condition is imposed on the
substrate, which sets the mass flow rate passing through the wall to zero and specifies
the contact angle of the liquid on the wall. This is described by the following equations:

n · ε2∇φ = ε2 cos−1 θ |∇φ|, (2.24)

n · σλ
ε2 ∇ψ = 0, (2.25)

where θ is the static contact angle of the droplet on the disk substrate.

2.3. Numerical validation
Numerical simulations for the typical cases are carried out to quantitatively validate
the reliability of the numerical method adopted in the present study. First, we have
conducted the simulations for various contact angles within a realistic hysteresis range (i.e.
100° ± 5°) which is consistent with the experiments of Sikalo et al. (2002). According to
the experiments of Sikalo et al. (2002), the key parameters in the simulations are set as
follows: initial velocity U0 = 1.54 m s−1, surface tension coefficient σ = 0.073 N m−1,
viscosity μl = 1 mPa · s, density ρl = 996 kg m−3, diameter D0 = 2.7 mm. The numerical
simulations using the static contact angle model are conducted. According to the
experiments of Sikalo et al. (2002), three static contact angles (SCA), i.e. 95°, 100° and
105°, are set. In addition, we conducted the numerical simulations using the quasi-dynamic
contact angle model, in which the advancing and receding contact angles are 105° and 95°,
respectively. Figures 2(a) and 2(b) show the variations of the dimensionless spreading
diameter and apex height as a function of dimensionless time, respectively. As shown
in figure 2, it can be observed that within the contact angle hysteresis range considered
(i.e. 100° ± 5°), the experimental results and the numerical results using the static and
quasi-dynamic contact angle models are generally in good agreement. Also, we can see
from the numerical results that the discrepancies in the spreading factor and substrate
deflection caused by using different contact angle models is not significant. In the present
study, we use a static contact angle model for simulations, which is acceptable for some
realistic situations where the contact angle hysteresis effect is not significant (Sikalo et al.
2002).

To validate the reliability of FSI calculations involving flexible structures, we conduct
numerical simulations of the flow around a rigid cylinder with a flexible strip immersed in
a uniform viscous flow. The results are provided in Appendix B. Further, we compared
the present results with those of Ma & Huang (2023). In the simulations of Ma &
Huang (2023), a liquid column impacting on the simply supported flexible plate has been
considered; and the key dimensionless parameters are set as follows: the bending stiffness
KB = EI/(ρlU2

ref L3) = 0.01, 0.05, the stretching stiffness KS = Eh/(ρlU2
ref L) = 100, the

Ohnesorge number Oh = μ/
√
ρlD0σ = 0.01, the liquid-to-gas density ratio ρr = 1000,

the liquid-to-gas viscosity ratio μr = 50, the substrate span length L/D0 = 20, the mass
ratio Mr = ρsh/ρlL = 0.01 and the contact angle θ = 170°. Figure 3 shows the maximum
spreading factor βmax as a function of We. It is seen that for both rigid and flexible
substrate cases, the present results and the results of Ma & Huang (2023) are generally
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Exp. in Sikalo et al. (2002)
CA = 105°/95°

Figure 2. Time variations of (a) the spreading factor β and (b) the apex height y of the droplet impacting on
a rigid wall. The results are obtained from experiments (Sikalo et al. 2002) and the present simulations using
static and quasi-dynamic contact angle models. Three static contact angles (SCA) are set in the static contact
angle model, i.e. SCA = 95°, 100° and 105°. In the quasi-dynamic contact angle model, the advancing and
receding contact angles are 105° and 95°, respectively, which is denoted as ‘CA= 105°/95°’ in panel (a). The
other key parameters in the simulations are set according to the experiments (Sikalo et al. 2002) as follows:
initial velocity U0 = 1.54 m s−1, surface tension coefficient σ = 0.073 N m−1, viscosity μl = 1 mPa · s, density
ρl = 996 kg m−3 and diameter D0 = 2.7 mm.

1

2

3

4

5

6

We
100 101 102

β
m

ax

Rigid, Ma & Huang (2023)

KB = 0.01, Ma & Huang (2023)

Rigid, Present

KB = 0.01, Present

KB = 0.05, Ma & Huang (2023)

KB = 0.05, Present

Figure 3. Maximum spreading factor βmax as a function of We in the present and Ma & Huang’s (2023)
simulations.

in good agreement. This illustrates the reliability of our numerical method in solving this
multiphase FSI problem. It is noted that the 2-D axisymmetric model with the hydrophobic
surfaces (θ = 130°) are considered in the present simulations, which is different from the
study of Ma & Huang (2023) and may cause the data discrepancies.

The grid independence analysis is performed. Figure 4(a,b) shows the time-dependent
d and β calculated under three sets of mesh sizes, i.e. �x = 3D0/200, 1.5 D0/200 and
D0/200. Here, the mesh size�x denotes the maximum mesh size within the refined region
at the initial moment. Correspondingly, the numbers of elements in the refined region are
64 560, 224 158 and 480 072, respectively. Since the unrefined domain is composed of
air, variations in mesh size in this domain have negligible effects on the droplet–substrate
coupling, and thus we limit the maximum size of the rough domain to 0.15D0 in mesh
independence analysis. It is confirmed that �x/D0 = 1.5/200 is sufficient to achieve
accurate results in the present simulations. Based on our convergence studies with different
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–0.6

–0.4

–0.2

0

0.2

0.4

0.2 0.4 0.6 0.8 1.00
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2.0
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3D0/200

1.5D0/200

D0/200

t∗ t∗

Figure 4. Grid independence test for We = 50, K = 0.01, dr = 1.25, h* = 0.03, L* = 6, ρr = 1000, μr = 100,
v= 0.45 and θ = 130°. (a) Substrate centre deflection and (b) spreading factor.

computational domains, the computational domain R × Z is chosen as 3.5D0 × 6.5D0. The
domain is large enough so that the blocking effects of the boundaries are not significant.

3. Results and discussion

Here, we present some typical results of a droplet impacting on a flexible substrate. In
our study, we focus on the effects of We and K on the droplet impact dynamics, while
keeping other parameters constant unless otherwise specified. Specifically, We ∈ [1, 500],
K ∈ [0.01, 1000], Re = 1000, dr = 1.25, h* = 0.03, L* = 6, ρr = 1000, μr = 100, v= 0.45
and θ = 130°. Since the deformation of the substrate can be ignored during impact, the
flexible substrate with K = 1000 is regarded as the rigid wall in the following sections.

3.1. Impact mode and regime map
In this section, we present the dynamics of a droplet impacting on a flexible substrate. It
is found that compared with the rigid case, the droplet impacting on the flexible substrate
has more complex dynamics due to the fluid–structure interaction. Based on a variety of
simulations for a wide range of parameters considered here, we have identified five typical
modes in terms of the droplet shape evolution during the impact, i.e. the ring-shaped
rebound (RSR), the disc-shaped rebound (DSR), the jet-breakup rebound (JBR), the
splashing rebound (SR) and edge-breakup rebound (EBR). It is worth noting that since
the hydrophobic surface is considered in this section, the droplet bounces completely off
the wall in all modes; according to whether the droplets are separated or broken during
the rebound process, we can summarise the impact modes into two categories, namely,
the intact rebound (IR, e.g. RSR and DSR) and breakup rebound (BR, e.g. JBR, SR or
EBR). Note that the splashing phenomenon is considered as a special case of the droplet
separation.

Figure 5 shows snapshots of a drop impacting on the flexible substrate for the cases of
the typical modes. As shown in figure 5(a), for the case where We = 10 and K = 1000,
corresponding to the RSR mode, the droplet spreading factor continues to increase in the
spreading stage, while the apex height continues to decrease, the central part of the droplet
gradually thins to form a liquid film or even breaks, and a liquid ring is formed when
t* = 0.56. Under the action of surface tension, the liquid ring retracts towards the centre.
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Figure 5. Snapshots of a droplet impacting on a flexible substrate for typical cases: (a) We = 10 and K = 1000;
(b) We = 10 and K = 0.01; (c) We = 50 and K = 0.1; (d) We = 500 and K = 1000 and (e) We = 500 and K = 0.1,
corresponding to the RSR, DSR, JBR, SR and EBR modes, respectively.
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Droplet impact on a flexible disk

The contraction of the liquid ring leads to the regeneration and the complete rebound of
the droplet.

For the case where We = 10 and K = 0.01, corresponding to the DSR mode as shown in
figure 5(b), the kinetic energy of the droplet is partially converted into the deformation
energy and kinetic energy of the flexible substrate, which leads to a smaller effective
We number for droplet impact. Therefore, compared with the case where We = 10 and
K = 1000 (figure 5a), the formation of liquid ring is not observed during the droplet
spreading stage; instead, the droplet evolves into a disc-like morphology in the late stage
of spreading. Compared with the rigid case, when the flexible substrate moves upwards,
partial energy of the substrate is converted into the kinetic energy of the droplet, resulting
in a liquid film that has an upward velocity (at t* = 0.65), which does not appear in the
previous example.

For the case where We = 50 and K = 0.1, corresponding to the JBR mode as shown in
figure 5(c), a thin liquid film and thick rim are formed at the centre and the outer edge,
respectively. Due to the lager We, spreading will cause the accumulation of the liquid
medium at the edges of the droplet. As the substrate rebounds, the edges of the droplet
acquire upward velocity, resulting in the conversion of the kinetic energy to the surface
energy. This leads to a slight longitudinal stretching and a contraction of the contact line
at the edges, partially detaching from the substrate and forming a rising thick rim (at
t* = 0.47). After merging, there is a tendency for jetting, resulting in the detachment of
a small satellite droplet from the main body of the droplet at the tip (at t* = 0.81). The
detached satellite droplet has a greater rising velocity than the main body of the droplet
detaching from the substrate.

For the case where We = 500 and K = 1000, corresponding to the SR mode as shown in
figure 5(d), after the impact, a non-wetting thin lamella appears at the edge of the droplet
(at t* = 0.04). Under the effect of high We, the surface tension is not sufficient to restrain
the rapid spreading of the droplet. The capillary instability occurs, making the droplet
experience a prompt splashing (at t* = 0.07).

For the case where We = 500 and K = 0.1, corresponding to the EBR mode as shown
in figure 5(e), due to the absorption of a portion of the droplet’s kinetic energy by the
substrate, splashing does not occur although the Weber number is equal to that for the
case in figure 5(d) (at t* = 0.08). This phenomenon is similar to the findings of Howland
et al. (2016). However, during the subsequent substrate rebound, the thin lamella at the
edge acquires an upward velocity, leading to longitudinal stretching, while the contact line
retracts. When the substrate reaches its maximum height and starts moving downward,
the moving direction of the thin lamella is opposite to that of the central liquid film
(at t* = 0.19). This intensifies the longitudinal stretching of the thin lamella, eventually
leading to the necking phenomenon and the separation of a liquid ring from the main film.
After separation, under the effect of surface tension, the liquid ring begins to contract
towards the centre and merges with the liquid film on the rising substrate (at t* = 0.29).
The merging process creates a local protrusion on the film during retraction (at t* = 0.40),
and the ring-shaped protrusion moves to the centre and finally encloses with an air bubble
trapped (at t* = 0.83). The merged droplet longitudinally stretches and undergoes necking
due to the velocity differences at different heights. Eventually, the liquid column separates
into multiple satellite droplets of varying sizes.

The distribution of the above five modes in a parameter space (We, K) is shown in
figure 6. The intact rebound (IR, e.g. RSR or DSR) occurs at 1 ≤ We ≤ 10, while the
breakup rebound (BR, e.g. JBR, SR and EBR) occurs at 25 ≤ We ≤ 500.
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Figure 6. Five impact modes in a parameter space (K, We) for θ = 130°. Circles and triangles denote the intact
rebound (IR) and breakup rebound (BR), respectively. Green circles, blue circles, red triangles, orange triangles
and black triangles denote the ring-shaped rebound (RSR), the disc-shaped rebound (DSR), the jet-breakup
rebound (JBR), the splashing rebound (SR) and edge-breakup rebound (EBR), respectively.
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Figure 7. Variation of the maximum spreading factor βmax (a) with K for different We and (b) with We for
different K.

3.2. Maximum spreading factor and spreading time
Regarding the droplet impact on a solid surface, the maximum spreading factor has always
been a research hotspot. In the following, we will focus on the effect of the substrate
flexibility on the maximum spreading factor (βmax).

From figure 7(a), it can be observed that as K gradually decreases, βmax exhibits
two opposite trends for We< 10 and 10<We ≤ 250, respectively. For the low-We region
(We< 10), as K decreases from 1000 (rigid) to 0.01 (very flexible), βmax shows a weak
increasing trend. While for the higher We region (10<We ≤ 250), βmax first shows a
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Figure 8. Spreading factor for the cases at (a) We = 5 and K = 0.01 and 1000, (b) We = 100, K = 3 and
1000, and (c) We = 50, K = 0.01 and 1000. The blue dash-dotted line represents the total energy of the
substrate. The orange and green arrows indicate the relative increase and reduction of the spreading factor
during the substrate’s downward and upward motions, respectively. The shaded regions in panels (a), (b) and
(c) correspond to the time interval from the moment when the substrate energy reaches its peak to the moment
when the droplet achieves maximum spreading. (d) Snapshots of the droplet during the shaded region for
K = 0.01 in panel (a). The lower right corner is a snapshot of the droplet at the eve of maximum spread at
K = 1000. The blue and green arrows indicate two different flows.

slight increase when K decreases from 1000 to 1, and then decreases significantly when K
further decreases from 1 to 0.01. The variation trend of βmax with K for 10 ≤ We ≤ 250,
0.01 ≤ K ≤ 1 is consistent with those reported by Ma & Huang (2023). The weakened
spreading induced by the substrate flexibility is attributed to the fact that the disk absorbs
a part of the droplet’s kinetic energy for spreading. In contrast, it is observed in figure 7(a)
that βmax slightly increases as K decreases for 1 ≤ We ≤ 5 and 0.01 ≤ K ≤ 1. This spreading
enhancement due to the substrate flexibility has not been reported by Ma & Huang (2023)
or in other relevant studies. Figure 7(b) shows the βmax as a function of We for the
cases of K = 0.01, 3 and 1000, providing a clearer demonstration of the trends in βmax.
It is obvious that the spreading enhancement (weakness) occurs for K = 0.01, We< 10
(We> 10). Figure 8(a) demonstrates the time variation curves of the spreading factor β for
We = 5 and K = 0.01, 1000. Compared with the rigid case (K = 1000), there is a time lag
in the rise of the curve for the case with K = 0.01, due to the wetting hysteresis caused by
the downward movement of substrate. As the substrate moves downward, the β is smaller
than that for the rigid case in the early stage of droplet spreading. However, as the substrate
moves upward, β reaches the maximum value which is larger than that for the rigid case.
To understand the changing of the spreading factor, figure 8(d) shows the snapshots from
the moment of maximum substrate energy to the moment of maximum spreading factor
for the case with We = 5, K = 0.01, contrasted with the snapshot for the rigid case at the
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certain moment (t* = 0.467) before reaching βmax. At t* = 0.57, due to impacting, the
liquid inside the droplet flows from the top to the edge (marked with a blue arrow in
figure 8d). As the substrate moves upward, it compresses the bottom of the droplet, and
at t* = 0.60 as shown in figure 8(d), both the top and bottom parts of droplet exhibit a
tendency to flow to the edge. The flow at the top part becomes weaker, while the flow at
the bottom part (marked with a green arrow in figure 8d) becomes stronger as the droplet
spreads. After t* = 0.63, the flow to the edge is entirely driven by the upward movement
of the substrate. Therefore, the larger βmax at K = 0.01 compared with the rigid case is
caused by the upward motion of the substrate in the late stage of droplet spreading. In
conclusion, compared with the rigid case, the squeezing effect of substrate on the droplet
caused by the substrate’s upward movement contributes to the droplet spreading, which is
manifested by the extension of spreading time and the increase of the maximum spreading
factor.

Accordingly, the variations of the spreading factor in figure 8(b,c) can be explained.
For figure 8(b), the difference from figure 8(a) is that higher bending stiffness leads to
faster oscillation, resulting in the moment of the first downward and upward movement
of substrate being significantly earlier than the moment of the maximum spreading. In
this case, the squeezing of the substrate on the droplet makes the maximum spreading
factor of the droplet increase, but has no obvious effect on the spreading time. For
figure 8(c), spreading enhancement caused by the substrate’s upward movement is smaller
than spreading weakening caused by the substrate’s downward movement, Therefore, the
net changes in the maximum spreading factor for K = 0.01 are negative, i.e. the maximum
spreading factor decreases compared with that for the rigid case.

It is noted that the differences between the present study and the study of Ma & Huang
(2023) are the vibration behaviour of the substrate. In the present study, the substrate
vibration is affected by both We and K, which is slightly different from that observed by
Ma & Huang (2023). In the present study, the moment of the first valley of the substrate
deflection curve occurs always earlier than the moment of maximum spreading factor.
However, the moment of the first valley of the substrate deflection curve can be earlier
or later than the moment of maximum spreading factor reported by Ma & Huang (2023).
This difference may be attributed to the different types of the substrates. In our study,
a disc-shaped substrate with edge support is used. Additionally, the different parameter
scopes considered may also have an influence.

The analysis above clarifies why βmax is greater or smaller than that for the rigid
substrate cases. However, it does not fully explain the trends of βmax observed in
figure 7(b). To address this point, we quantify the decreasing and increasing effects on
the spreading factor during the downward and upward stage of the substrate. The relative
spreading weakening caused by the downward movement and the relative spreading
enhancement caused by the upward movement, i.e. �β1 (note that �β1< 0) and �β2,
are defined, respectively. These quantities are indicated by the green and orange arrows in
figure 8(a–c), respectively. Thus, the net change in spreading factor, �β =�β1 +�β2.

Figure 9 shows the changes in the spreading factor as a function of We for K = 0.01
and K = 3. As shown in figure 9(a), as We increases, the spreading weakens, i.e.
|�β1|, gradually increases due to the increasing impact energy; however, the spreading
enhancement, i.e. �β2, has no significant change. There are possible reasons for these
observations. As mentioned above, �β2 is caused by the upward movement of the
substrate. Thus, a higher We does not necessarily imply greater �β2 during the upward
movement. Whether the droplet continues to spread or retract during the upward stage of
the substrate depends on the relative magnitude between droplet kinetic energy and surface

1002 A8-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1137


Droplet impact on a flexible disk

We
1.0 2.5 5.0 10.0 25.0 50.0 100.0 250.0

We
1.0 2.5 5.0 10.0 25.0 50.0 100.0 250.0

–0.50

–0.25

0

0.25

0.50

(b)

�β

�β1

�β2

�β  = �β1 + �β2

K = 0.01 K = 3
–0.75

–0.50

–0.25

0

0.25

(a)
C

h
an

g
es

 i
n
 s

p
re

ad
in

g
 f

ac
to

r

Figure 9. Relative weakening (�β1) and enhancement (�β2) of spreading factor caused by substrate’s
downward and upward movement, as well as the net effect (�β), for two bending stiffness: (a) K = 0.01 and
(b) K = 3.

energy. However, it is obvious that as We increases, a larger initial impact energy of the
droplet will promote the downward movement of the substrate, which results in a larger
�β2. The different trends of curves for �β1 and �β2 result in �β being positive when
We< 10 and negative when We> 10, which corresponds to the spreading enhancement
and weakening.

For the cases for K = 3 shown in figure 9(b), both the spreading enhancement and
spreading weakening increase as We increases. The spreading enhancement is slightly
larger than the spreading weakening, resulting in the positive �β which increases with
We. This indicates that the spreading enhancement due to the substrate rebound dominates
the droplet spreading for the high-We region.

Based on the previous analysis, the upward movement of the substrate during the late
spreading stage may prolong the spreading stage. The spreading time, Tβmax , represents the
duration from when the droplet begins to contact the substrate until it achieves maximum
spreading. Figure 10 illustrates the variation of Tβmax with We and K. Only for We ≤ 25, the
spreading time gradually increases with the decreasing K, particularly for K ≤ 10; while
for We> 25, Tβmax remains almost constant with K.

3.3. Scaling law
The maximum spreading factor (βmax) describes the maximum extent of spreading
of a liquid droplet upon impact with a solid surface. It is crucial for understanding
the interaction between the droplet and the surface, making it an important physical
quantity for characterising the dynamics of droplet impact on surfaces. Therefore, how
to theoretically predict βmax is a question of widespread interest.

For the case of a liquid droplet impacting a rigid wall, various theoretical prediction
models for βmax have been developed based on the conversion relationship among droplet
kinetic energy, viscous dissipation and surface energy. For example, in the viscous regime
where inertial and viscous forces dominate, research by Chandra & Avedisian (1991)
indicates βmax ∼ Re1/5; while in the capillary regime where viscosity may be neglected,
Collings et al. (1990) obtain another scaling law, βmax ∼ We1/2, by assuming that all the
kinetic energy is transformed into surface energy at the maximal spreading. However,
an alternative scaling has been suggested for the same regime. Based on momentum
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Figure 10. Effect of K on the spreading time Tβmax for different We.

conservation, Clanet et al. (2004) proposed that βmax ∼ We1/4. In more scenarios, the
influences of viscous dissipation or surface tension on spreading cannot be simply
excluded, otherwise it will result in the breakdown of the above scaling laws. By
interpolating between the We1/2 and Re1/5 scaling, Eggers et al. (2010) showed that in
the cross-over regime between capillary and viscous regimes, βmax ∝ Re1/5fc(P), where fc
is a function of the impact parameter P (= We Re−2/5) that varies between zero (capillary
regime) and infinity (viscous regime). Further, Laan et al. (2014) constructed the smooth
cross-over between these two asymptotes by using a so-called Padé approximant, i.e.
βmax Re−1/5 = P1/2/(A + P1/2), where A is a fitting constant. Lee et al. (2016) extended
Laan’s approach (Laan et al. 2014) by considering wettability. It is found that, after a
correction for dynamic wetting using the maximum spreading ratio at zero velocity βV→0,
the maximum spreading should still scale with We1/2, i.e. (β2

max − β2
V→0)

1/2 ∼ We1/2.
Building on this conclusion, and considering that Re is constant in this study, a universally
applicable prediction model of βmax can be derived by following Laan’s approach:

(β2
max − β2

V→0)
1/2 Re−1/5 = We1/2

B + We1/2 , (3.1)

where B is a fitting coefficient which may vary across different Re cases. However, in the
present study, B is considered a constant coefficient due to the fixed value of Re. Also,
βV→0 can be calculated from the contact angle (Lee et al. 2016),

βV→0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4 sin3 θV→0

2 − 3 cos θV→0 + cos3 θV→0

)1/3

if θV→0 < 90◦,
(

1
(2+cos θV→0) sin4(θV→0/2)

)1/3

if θV→0 > 90◦.
(3.2)

For flexible substrate scenario, theoretical predictions of βmax become more challenging
because vibration and deformation of substrate will significantly affect the spreading of
a droplet. Based on Lee et al.’s (2016) theoretical model for rigid substrate cases, Ma &
Huang (2023) have proposed a scaling law of βmax for a droplet impacting on a flexible
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Figure 11. The βm = (β2
max − β2

0 )
1/2Re−1/5 as a function of Wem for varying stiffness K. (a) Wem is calculated

by the theoretical natural frequency of the Euler–Bernoulli beam f 0; (b) Wem is calculated based on the natural
frequency of the present shell obtained through numerical experiments. The solid line is plotted by (3.1) and B
is 7.6.

plate simply supported at its both edges, by defining an effective Weber number, i.e.

Wem = We
1 + δmax

, (3.3)

where δmax is the substrate deflection. Due to momentum conservation, δmax can be
predicted as

δmax = 1
2π

m
m + Ms/3

U0

f D0
, (3.4)

in which m and M are the mass of the droplet and the flexible substrate, respectively, U0

is the initial velocity of the droplet, f = f0[Ms/(m + Ms)]1/2 is the vibration frequency of
the system, and f0 = π

√
EI/MsL3/2 is the natural vibration frequency of a simple-support

Euler–Bernoulli beam on both ends. The effective Weber number Wem takes all the factors
affecting βmax into account.

Following the prediction model for βmax proposed by Ma & Huang (2023), the
numerical results obtained in the present study have been plotted in the Wem − βm

plane, where βm = (β2
max − β2

0 )
1/2 Re−1/5 and β0 = βV→0, as shown in figure 11. In

figure 11(a), the effective Weber number Wem is calculated by the theoretical natural
frequency of the Euler–Bernoulli beam f 0; the data symbols are spread over the parametric
plane for varying K, indicating a poor data collapse. The reason is that the natural
frequency of the shell in the present study cannot be accurately predicted with f 0. Since
it is difficult to predict the natural frequencies of shells theoretically, we determine the
natural frequencies of shells with different stiffnesses K through numerical experiments.
As shown in figure 11(b), when the numerically measured natural frequencies of the
shells are used to predict Wem by (3.3)–(3.4), the data collapse together. Also, we can
see that all data distribute above the solid line plotted by (3.1), indicating that the Wem is
slightly underestimated. This is because the maximum deflection δmax is no longer the only
characteristic quantity that defines Wem due to the emergence of distinct mechanisms of
shell–droplet coupling in the present problem. In the following, according to the revealed
physical mechanisms, Wem has been modified to seek a better data collapse.

From the analysis of figures 8 and 9, the spreading process of a droplet on a flexible
substrate can be divided into two stages. The first stage is from when the droplet starts
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to contact the substrate until the substrate energy reaches the maximum. In this stage, the
energy is transferred from the droplet to the substrate which continues to dent downward.
In the second stage, from when the substrate energy reaches the peak until the droplet
reaches its maximum spreading, the substrate continues to rebound and the substrate
energy is transferred to the droplet.

During the first stage, the effective Weber number decreases due to the depression
of the substrate and thus the droplet spreading is suppressed; while during the second
stage, the effective Weber number increases due to the rebound of the substrate and the
droplet spreading is promoted. Therefore, the effect of flexible substrate on the maximum
spreading factor depends on the competition of these two mechanisms. Specifically,
when |�β1|<�β2 (see figure 8a,b), �β =�β1 +�β2 =�β2 − |�β1|> 0, indicating
spreading enhancement dominated by the ‘flexible rebound mechanism’; while when
|�β1|>�β2 (see figure 8c),�β =�β1 +�β2 =�β2 − |�β1|< 0, indicating spreading
suppression dominated by ‘flexible compliant mechanism’. It is worth noting that the
spreading suppression dominated by the flexible compliant mechanism has been found in
previous studies (Vasileiou et al. 2016; Xiong et al. 2020; Ma & Huang 2023); however, the
spreading enhancement caused by the flexible rebound mechanism has not been reported
before.

In the scaling law proposed by Ma & Huang (2023), the maximum deflection δmax
has been used to correct the We, that is, (3.3), which is appropriate for the region where
the flexible compliance mechanism dominates. However, in the region where the flexible
rebound mechanism dominates, the effective Weber number increases and is related to the
rebound displacement of the substrate, δreb, and thus (3.3) is no longer applicable. Instead,
δreb has been used to predict the effective Weber number (Wem), i.e. Wem = We/ (1 + δreb)
for �β > 0. Therefore, (3.3) is modified to

Wem = We
1 + δ

, δ =
{
δmax if �β > 0,
δreb if �β < 0,

(3.5)

where δreb (note that δreb< 0) and δmax can be obtained from the numerical results.
Based on the modified Wem calculated by (3.5), it is shown in figure 12 that βm =
(β2

max − β2
0 )

1/2 Re−1/5 as a function of Wem for varying stiffness K. It is seen that all
data are collapsed on the same solid line plotted by (3.1), indicating that the modified
Wem calculated by using (3.5) leads to a better data collapse compared with those in
figure 11(a,b).

3.4. Impact force
According to the study by Zhang et al. (2022) on the impact force for a droplet impacting
on a superhydrophobic rigid surface, an inertial shock will lead to the appearance of the
first peak of the impact force when the maximum droplet diameter is approximately equal
to the initial diameter. The magnitude of this peak is independent of the wettability of the
surface. When the droplet retracts, the momentum conservation results in the formation of
an upward jet as well as an internal downward jet, which leads to the appearance of the
second force peak. However, few studies on the time variation of impact force for flexible
substrate situations have been reported. In this section, we focus on the impact force during
droplet impact on flexible substrates.

Figure 13(a) makes a comparison between the previous experimental and present
numerical results. The parameters in the simulations are identical to those of Zhang et al.’s
(2022) experiments, except for the contact angle of the substrate. For the same reasons
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Eq. (3.1)
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Figure 12. The βm = (β2
max − β2

0 )
1/2Re−1/5 as a function of Wem for varying stiffness K. The modified Wem

is calculated by (3.5).

mentioned as in § 2.3, a static contact angle of 130° is used in the simulations. As shown
in figure 13(a), the timing and amplitude of the first force peak in the simulations coincide
generally with the results from Zhang et al. (2022). The impact force reaches a valley
near the moment of maximum spreading, before the appearance of the second force peak
in the retraction stage of the droplet. The occurrence of the three characteristic moments
(corresponding droplet shape snapshots are given in figure 13a) is consistent with the
report of Zhang et al. (2022). The difference in the contact angle may be responsible for
the difference in the valley value of the impact force and the timing of the second peak.
The impact force for K = 1000 almost overlaps with that for the rigid case, indicating that
the calculation of impact force in our model is reliable.

Further, we select the cases with K = 0.1, We = 5, 50 and 500 for impact force analysis,
which are shown in figures 13(b)–13(d), respectively. For comparison, we calculate the
impact forces on a rigid substrate under the same parameters. However, in some cases with
K = 1000, the substrate exhibits subtle high-frequency vibrations, which result in severe
spikes in the curve of the impact force. Thus, it is not suitable to approximate the substrate
with K = 1000 as a rigid substrate for comparison. In this case, we directly compare the
impact forces on the flexible substrates with that on the rigid wall.

For the case with We = 5 in figure 13(b), the observed slope changes in the deflection
curve in figure 13(b) correspond to the peak and valley of the impact force. Compared
with the rigid substrate cases, the impact force curve for the flexible substrate exhibits
more frequent fluctuations. During the time period from t* = 0.2 to t* = 0.4, the substrate
undergoes the downward movement due to the droplet impact, resulting in a lower impact
force on the flexible substrate compared with the rigid wall at the same time. At the
moment of two deflection valleys, the impact force reaches two prominent peaks, which
are significantly larger than those on the rigid wall.

It can be observed from figure 13(c) that, similar to the case of We = 5, significant
peaks of the impact force occur at the two moments corresponding to the valleys of
the deflection curve for We = 50. However, in this case, the substrate undergoes upward
deflection beyond its initial position during the upward movement stage. As the substrate
moves upward, the impact force rapidly decreases, changing from positive to negative,
and then reaches a valley near the moment of the deflection peak. This indicates that the
effect of the droplet on the substrate gradually shifts from compression to adsorption as the
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Figure 13. (a) Validation of impact force on the substrate: the thick solid black line represents the experimental
results from Zhang et al. (2022), the blue and red solid lines represent the simulation results on the rigid
substrate and the substrate with K = 1000, and the red dashed line represents the spreading factor. Evolution
of impact force for (b) We = 5 and K = 0.1, (c) We = 50 and K = 0.1 and (d) We = 500 and K = 0.1. In panel
(b–d), the blue dashed line represents the deflection curve of the substrate, the thick solid red line represents the
impact force on the flexible substrate and the red dashed line represents the impact force on the rigid substrate.
Each arrow points to the moment corresponding to the snapshot of the droplet.

substrate moves upward beyond its initial position, which is a phenomenon not observed
in the case of impacting on a rigid wall.

As shown in figure 13(d), when We increases to 500, the substrate exhibits strong
oscillations near the equilibrium position at a higher frequency, which leads to alternating
peaks and valleys in the load curve, corresponding to the valleys and peaks of the substrate
deflection curve, respectively.

3.5. Energy conversion
When a droplet impacts on a hydrophobic rigid wall, the conversion of the kinetic
energy of the droplet and its surface energy plays an important role in spreading dynamics
of the droplet. However, when the substrate is flexible, it is evident that the energy of
the substrate (including the elastic strain energy and the kinetic energy) participates in
the energy conversion. In this section, we will discuss the energy conversion in the
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Figure 14. Time evolution of energy for four typical cases: (a) We = 30 and K = 1000; (b) We = 25 and
K = 0.03; (c) We = 50 and K = 0.03 and (d) We = 250 and K = 0.1, and (e) corresponding snapshots at labelled
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the droplet’s kinetic energy (Ek), the droplet’s surface energy (Es) and the total energy of the substrate (Et),
respectively.
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Figure 15. Four impact modes in a parameter space (K, We) for θ = 60°. Black down-pointing triangles,
orange down-pointing triangles, red up-pointing triangles and blue up-pointing triangles denote the complete
deposition (CD), splashing deposition (SD), single-satellite partial rebound (SSPR) and multi-satellites partial
rebound (MSPR) modes, respectively.

droplet–substrate coupling. We focus on the interaction between the kinetic energy of
the droplet (Ek), the surface energy (Es) and the total energy of the substrate (Et). In
the present simulations, Et is calculated by the sum of the substrate kinetic energy and
potential energy, Ek = 1

2

∫
ρv2 dV and Es = σ (ALV − ASL cos θ ), where ALV and ASL are

the liquid–vapor and liquid–solid contact area, respectively (Du et al. 2021).
The typical processes of the energy interaction are summarised in figure 14. For

comparison, figure 14(a) shows the time variations of Ek and Es for K = 1000 (rigid
case), where the substrate energy does not participate in the energy interaction.
Figures 14(b)–14(d) show the three typical energy interaction processes, respectively,
while the corresponding snapshots at key moments are shown in figure 14(e). These energy
interaction processes correspond basically to the three types of changes in impact force in
figure 13. As shown in figure 14(b), after impact, Ek starts to convert into Es and Et.
At t* = b1, the substrate deflection reaches a peak and, subsequently, the upward motion
of the substrate induces an upward velocity of the droplet, resulting in a small increase
of droplet kinetic energy (Ek). Near t* = b3, Es reaches the maximum and the substrate is
near its initial position, leading to Et approaching zero. Subsequently, the droplet starts to
retract and Es is converted back into Ek. At the moment t* = b4, Ek reaches another peak.
During retraction, the downward momentum within the droplet leads to another impact on
the substrate, resulting in the conversion of Ek into Et. At t* = b5, Et reaches the second
peak; meanwhile, the deflection reaches a peak. The occurrences of two peaks of Et (b2 and
b5) are attributed to the initial impact and the subsequent retracting impact, respectively. In
figure 14(c), it is shown that after passing the initial position, the droplet briefly adsorbs the
substrate and moves upward for a distance (see figure 13c), which results in the conversion
of Ek into Et and Es, and the second peak of Et appears at t* = c3. The subsequent changes
in the energies are similar to those in figure 14(b). In this case, Et exhibits three peaks
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Figure 16. Snapshots of typical cases for four impact modes: (a) We = 25 and K = 1000; (b) We = 25 and
K = 0.01; (c) We = 500 and K = 0.05; and (d) We = 500 and K = 1000, corresponding to the CD, SSPR, MSPR
and SD modes, respectively.

due to the short absorption of the droplet to the substrate. Figure 14(d) shows the mutual
conversion between Ek and Es, which corresponds to the results in figure 13(d).

3.6. Impact dynamics on hydrophilic substrates
To investigate the effect of hydrophilic substrates on the droplet impact dynamics, we set
the contact angle to 60°. Figure 15 shows the impact modes in a parameter space (K, We)
for θ = 60°. According to whether the droplet completely deposits on the substrate, the
impact modes are classified into two main types: deposition (DP) and partial rebound (PR),
corresponding to the down-pointing and up-pointing triangles in figure 15, respectively.
Based on the droplet shape evolution, we can subdivide the DP mode into complete
deposition (CD) and splashing deposition (SD). For the PR mode, we can subdivide it
into single-satellite partial rebound (SSPR) and multi-satellites partial rebound (MSPR).
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Figure 16 presents snapshots for the typical case for each mode. For the case where
We = 25 and K = 1000 (see figure 16a), corresponding to the CD mode, the droplet is
ultimately deposited on the substrate (at t* = 1.87) after a period of oscillations.

For the case where We = 25 and K = 0.01 (see figure 16b), corresponding to the SSPR
mode, it is shown that the obvious difference from the case in figure 16(a) is that a satellite
droplet is separated during the droplet retraction stage, which is attributed to the rebound
of the substrate. During the period t* = 1.0–1.38, the droplet is retracting; meanwhile,
the droplet apex height is increasing. Also, in the second rebound stage of substrate,
the momentum transfers from the substrate to the droplet, leading to a greater velocity
in the top part of the droplet. When the substrate moves downward again (t* = 1.38–1.89),
the velocities of the top and bottom parts of the droplet are opposite and the liquid column
continues to deform vertically. Finally, the liquid column begins to neck and eventually
separates a satellite droplet (t* = 1.89–2.04).

For the case where We = 500 and K = 0.05 (see figure 16c), corresponding to the MSPR
mode, multiple satellite droplets are separated from the mother droplet. The vibration of
the substrate is more intense so that an upright liquid ring is formed directly in the region
where the medium is gathered (t* = 0.43). This is followed by the merging of the liquid
ring into the central liquid column. The velocity difference between different parts of
the elongated liquid column leads to the formation of multiple necks and the subsequent
generation of multiple separated satellite droplets (t* = 1.26).

For the case where We = 500 and K = 1000 (see figure 16d), corresponding to the SD
mode, the droplet exhibits a prompt splashing in the initial stage of impact (t* = 0.047),
then experiences a period of oscillations and ultimately deposits on the substrate
(t* = 1.87).

5. Conclusions

We have conducted a series of simulations of droplet impact on a flexible circular disk
and have focused on the effects of Weber number (We ∈ [1, 500]), substrate stiffness
(K ∈ [0.01, 1000]) and contact angle (θ = 130°, 60°) on the droplet–substrate coupling
dynamics. According to whether partial droplet separation occurs during impact process,
we have distinguished two categories of the impacting modes for the hydrophobic flexible
substrate scenario, namely, the intact rebound (IR, e.g. RSR and DSR) and breakup
rebound (BR, e.g. JBR, SR or EBR) modes. The effects of the substrate flexibility on
the droplet spreading dynamics have been discussed through the time-variation curves of
the maximum spreading factor and spreading time, i.e. βmax and Tβmax . It has been revealed
that the substrate rebound will squeeze the fluid at the bottom of the droplet and induces
flows from the bottom to the edges, leading to the enhanced spreading of the droplet. Also,
when We ≤ 25 and K ≤ 10, and the bending stiffness is moderate (K ∼ O(1)) or lower,
the upward movement of the substrate during the late spreading stage will prolongs the
spreading time. Further, the spreading process of a droplet on a flexible substrate has been
divided into two stages, during which the droplet spreading is suppressed or promoted due
to the flexible compliant and rebound mechanisms, respectively; the effect of a flexible
substrate on the maximum spreading factor depends on the competition between the
two mechanisms. Based on this, a modified scaling law of βmax has been proposed by
introducing the effective Weber number (Wem). The impact force on a flexible substrate
is analysed and we summarise three typical impact force variation processes. We have
observed that the extreme values in the deflection curves correspond to the peaks and
valleys of the impact force curves. The effect of the droplet on the substrate gradually shifts
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Figure 17. Mesh for shell and fluid domains. The green solid circles and the green solid lines connecting
them represent the shell elements, which is located on the midplane of the shell.

from compression to adsorption as the substrate moves upward beyond its initial position.
Furthermore, we have performed the analysis of energy and investigated the interaction
among droplet kinetic energy, surface energy and total energy of the substrate, and we
summarise three typical energy interaction processes, which correspond basically to the
three impact force changes, respectively. Finally, the effect of the hydrophilic substrate on
the droplet impact dynamics has been examined. Four typical impact modes, i.e. CD, SD,
SSPR and MSPR modes, have been classified in the parameter space (K, We) for θ = 60°.
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Appendix A. The mesh for shell and fluid domains

Figure 17 illustrates the local mesh for both shell and fluid domains. The fluid domain
is discretised using triangular meshes. To accurately capture the motions of the droplet
and the gas around it, the mesh in the region where the droplet moves is refined. In the
refined fluid region, the sizes of most triangular elements are approximately equal, and the
number and connectivity of elements remain unchanged during the droplet impact process.
Moreover, as shown in figure 17, the red solid circles and the blue solid lines connecting
them represent the shell elements, which are located on the midplane of the shell. In
the simulation, the dynamic mesh deformation is required to account for changes in the
geometry of both fluid and shell domains. We can specify mesh refinement criteria and
employ adaptive meshing techniques to maintain computational accuracy while capturing
complex fluid–structure interactions.

Appendix B. A validation to check the validity of FSI calculations

Figure 18(a) shows the schematic physical model of the fluid–structure interaction
benchmark case, which is consistent with Turek & Hron (2006). The key parameters

1002 A8-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6340-5273
https://orcid.org/0000-0001-6340-5273
https://orcid.org/0009-0007-2552-087X
https://orcid.org/0009-0007-2552-087X
https://orcid.org/0000-0003-0306-9030
https://orcid.org/0000-0003-0306-9030
https://orcid.org/0000-0002-5717-3901
https://orcid.org/0000-0002-5717-3901
https://doi.org/10.1017/jfm.2024.1137


X. Zhou, Y. Xu, Q. Zhang, W. Zhang and Z.-R. Peng

tU/D tU/D
42 44 46 48 50

X

–0.08

–0.06

–0.04

–0.02

0

0.02

Turek & Hron (2006)

Present

42 44 46 48 50

Y

–0.4

–0.2

0

0.2

0.4

Turek & Hron (2006)
Present

(b) (c)

U

4.1D

D2D 3.5D

0.2D

(a)

25D

Figure 18. Numerical verification of fluid-structure interaction benchmark case. (a) Schematic diagram of a
rigid cylinder with a flexible strip in a flow; (b,c) time variations of (b) horizontal and (c) vertical positions
of strip’s trailing edges. The solid and dashed lines represent the results from the present simulations and
Turk & Hron (2006), respectively. The key parameters in the simulation are set as follows: fluid density ρl =
1000 kg m−3, fluid dynamic viscosity μl = 1 Pa ·s, average inflow velocity U = 2 m s−1, cylinder diameter
D = 0.1 m, density of the flexible strip ρs = 1000 kg m−3, the Young’s modulus E = 5.6 Mpa and Poisson’s
ratio = 0.4.

in the simulation are set as follows: fluid density ρl = 1000 kg m−3, dynamic viscosity
μl = 1 Pa · s, average inflow velocity U = 2 m s−1, cylinder diameter D = 0.1 m, density
of the flexible strip ρs = 1000 kg m−3, Young’s modulus E = 5.6 Mpa and Poisson’s
ratio = 0.4. Under these specified values of parameters, the flexible strip will exhibit a
flow-induced vibration. Figures 18(b) and 18(c) shows the time variations of horizontal
and vertical positions of strip’s trailing edges, respectively. It is evident that the present
results are in good agreement with those of Turek & Hron (2006).
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