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Abstract

The theory of directed complexes is extended from free <u-categories to arbitrary a)-categories by defining
presentations in which the generators are atoms and the relations are equations between molecules. Our
main result relates these presentations to the more standard algebraic presentations; we also show that
every w-category has a presentation by directed complexes. The approach is similar to that used by Crans
for pasting presentations.

1991 Mathematics subject classification (Amer. Math. Soc): 18DO5.

1. Introduction

There are at present three combinatorial structures for constructing ^-categories:
pasting schemes, defined in 1988 by Johnson [8], parity complexes, introduced in
1991 by Street [16,17] and directed complexes, given by Steiner in 1993 [15]. These
structures each consist of cells which have collections of lower dimensional cells as
domain and codomain; see for example Definition 2.2 below. They also have 'local'
conditions on the cells, ensuring that a cell together with its bounding cells has the form
of an element in an <w-category; see for example Definition 2.4 below. Finally, they
have a 'global' condition called loop-freeness; the various loop-freeness conditions
are however not equivalent because they require the non-existence of different types
of loops.

The w-categories so far constructed from these structures are free on a collection of
generators. In 1995, Crans [5, Chapter 2] described a structure, based on the theory of
pasting schemes, with which one can construct arbitrary a)-categories. His structure,
called a pasting presentation, generalises the earlier approach by including relations
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48 Sjoerd E. Crans and Richard Steiner [2]

between pasting schemes. Here, we develop a similar structure based on the theory
of directed complexes, from which it is also possible to construct all w-categories.
The result is similar to that of [5], but it is new because of the difference in the
loop-freeness conditions. Moreover, our proof here is shorter, because the theory of
directed complexes makes full use of the co-category structure already present. We
should also say that Verity has announced a similar construction, based on parity
complexes. It is useful to have the various results, because different approaches may
be appropriate for the various applications, which include homotopy theory [5,9],
non-abelian homology [14, 7], quantum physics [2,4,6] and computer science [13,
12].

We now outline the approach of the paper. The most important operations in an
co-category are the compositions in various directions. In practice, one often gives a
composition by means of a pasting diagram; see for example [10, 3]. It is therefore
desirable to describe <w-categories in terms of these diagrams. Concretely, one wants
a presentation of an w-category in which the generators are diagrams and the relations
are equations between diagrams. Here we achieve this by using [15]'s directed
complexes to describe the diagrams, using degenerate cells and globularisations in the
same way as [5].

Thus, a generator in a 'presentation of an co-category by directed complexes' will
be an atomic directed complex (a closed cell), and a relation will be an equation
between molecular directed complexes (composites of atoms); some of the atoms in
the molecular directed complexes are copies of generators, and the rest are degenerate.
We show that one can systematically add degenerate atoms to a directed complex, a
process called globularisation, in a way which preserves loop-freeness and facilitates
composition. As a result, we get an co-category in which the elements are equivalence
classes of molecular directed complexes. Our main theorem relates the theory of
presentations developed here to the more standard algebraic presentations; we also
show that every co-category admits a presentation by directed complexes.

We cannot resist a final word on the relationship between directed complexes,
parity complexes and pasting schemes. The theory of directed complexes makes
maximal use of the co-category structure of a diagram; in the theories of pasting
schemes and parity complexes, this structure is derived from other combinatorial
structures. Parity complexes have very simple loop-freeness conditions, which may
however be unnecessarily restrictive; see for example [15, p. 258]. There are also
more geometrical structures: Power's pasting schemes [11] and Al-Agl and Steiner's
globelike sets [1]. We think it is up to the reader to decide which structure is most
suitable for any particular purpose, and we hope that the present paper makes the
choice easier.
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[3] Presentations of omega-categories by directed complexes 49

2. w-categories and directed complexes

In this section we give some preliminary definitions and results, mostly taken from
[15, Section 2]. First we recall the definition of an w-category.

DEFINITION 2.1. An co-category is a set C together with unary operations d^, d£,
d\,", d,+ , . . . and not-everywhere-defined binary operations #0, #1, . . . such that the
following hold:

(i) x #„ y is defined if and only if d+x = d~y;
(ii) for a, fi = ± and for non-negative integers m, n,

l a " if m > n;

(iii) <i~jt #„ x = x = ;t #„ d+x for A; e C and for all rc;
(iv) if x #„ y is defined, then

dB-(* #„ y) = d;x, d^x #„ 3O = ^ + y ,

da
m(x#ny)=da

mx#nd
a
my for m # n;

(v) (JC #„ y) #„ z = x #„ (y #„ z) if either side is defined;
(vi) (V #„ / ) #m (x" #„ y") = (x' #m x") #„ ( / #m j " ) if m ^ n and both sides are

defined;
(vii) for every x € C there exists n such that Jn"jc = d^x = x.

Conditions (i), (iii) and (v) in this definition say that the elements of C form the
morphisms of a category such that #„ is composition and the d°x are the identities
which can be composed with x. Conditions (ii), (iv) and (vi) say that the category
structures commute in such a way that identities under #„ are also identities under #m

for m > n. Condition (vii) (which is sometimes omitted) says that every element is
an identity for some #„.

Next we work towards the definition of a directed complex, which is a higher-
dimensional generalisation of a directed graph.

DEFINITION 2.2. A directed precomplex is a set K together with functions dim, 3~,
3 + on K such that, for a e K,

(i) dim a is a non-negative integer, the dimension of a,
(ii) the daa are subsets of K such that dim r = dim a — 1 for all r € daa.

Thus a directed precomplex is essentially a combinatorial complex in which every
p-dimensional element is provided with two sets of (p — 1)-dimensional faces.
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FIGURE 1. A directed precomplex

As an example for the rest of this section, we shall use the directed precomplex
shown in Figure 1. It consists of three 2-dimensional elements r,, r2 and r3, together
with 1-dimensional elements denoted by lines and 0-dimensional elements denoted
by dots. The arrows run from negative to positive; thus

d T, = CT2, 3+r, = a5, a6) = {p2}.

Let A" be a directed precomplex, and let x be a subset of K. One says that x is
n-dimensional (dim* = n) if n is the maximum of the dimensions of members of x;
the empty set is taken to be (— l)-dimensional. One says that x is closed if dacr c x
for a e x and a = ±; in this way, K receives a topology. The closure of x is denoted
Clx. As a special case, the closure of a singleton {a} is denoted a and is called an
atom.

DEFINITION 2.3. Let K be a directed precomplex. For an integer n, a sign a = ±,
and a subset x of K, the (a, n)-boundary ofx, denoted d"x, is denned by

d°x = \a ex : dimer < n; if a e f with r ex and dimr = n + 1 thencr eCl(30rr)}.

For x, _y closed subsets of K and n a non-negative integer, the n-composite x #„ y
is defined by x #„ y — x U y, but only when x n y — Jn

+x = d~y.
A molecule is a non-empty iterated composite of atoms.
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[5] Presentations of omega-categories by directed complexes 51

Note that d"x is always empty for negative n.
In Figure 1, d^x and d^x are the left and right-hand end-points of x, while d[x

and d*x are the lower and upper edges; for example one has

do~<7i = p , , d^di = p2, d+zx = d~(a4 U f2 U a6) = a4 U a5 U a6.

One can check that the entire directed precomplex is a molecule: it can be expressed
as

f) # | (CT4 #0 f2 #0 Ob) #, f3.

DEFINITION 2.4. A directed complex is a directed precomplex such that for a e K
and for p = dim a the following hold:

(i) if p > 0 then the da
p_xa are molecules;

(ii) < _ 2 ^ _ , a = ^ _ 2 a f o r a

One can check that the directed precomplex in Figure 1 is a directed complex: for
example one has d^a^ = p\ and d^X\ — d\ #0 a2 #0 03, which are molecules, and
d0

+d,~f, = p2 = rf+f,.
We have the following result.

PROPOSITION 2.5 ([15, Proposition 2.9]). The molecules in a directed complex sat-
isfy the axioms for an co-category, except that the condition d+x = d~y may not be
sufficient for x #„ y to be defined.

In particular, if x is a molecule in a directed complex then the subsets d"x are also
molecules.

We can get genuine &>-categories from directed loop-complexes by imposing loop-
freeness conditions. The first such condition that we shall consider is given by the
following definition.

DEFINITION 2.6 ([15, Definition 2.14]). Let K be a directed complex and n be a
non-negative integer. An n-path in K is a sequence cr0,... , ok in K such that, for
1 < i < k, either

dimcr,_i < n, dima, > n and CT,_I € d'a, \ (d~_^dj U d^_lai)

or

dima,_i > n, dima, < n and tr, € dn
+<7,_i \ (rf~_,CT,-_1 U^_,ffM).

A subset x of /T is loop-free if for any n and for any n-path n in x the elements of
n are distinct.
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For example, consider the directed complex in Figure 1. It has dimension 2, so an
m-path for m > 2 consists of at most one element. Also 0-paths must run from left
to right and 1-paths must run from bottom to top, so they have distinct elements too.
Therefore the directed complex in Figure 1 is loop-free.

The other loop-freeness condition that we shall consider is called total loop-
freeness. It is less natural but often easier to deal with.

DEFINITION 2.7. Let K be a directed complex. A total path in A" is a sequence
(To,... , ok in K such that, for 1 < i < k, CT,_J e 3~CT,- or a, e 9+<r,_i.

A subset x of K is totally loop-free if the elements of any total path in x are distinct.

For example, one can verify that the directed complex in Figure 1 is totally loop-
free.

As the terminology suggests, a totally loop-free directed complex is loop-free.
This is a consequence of the following result, which is an improved version of [15,
Proposition 5.2].

PROPOSITION 2.8. If a, x is a two-element n-path in a directed complex K, then
there is a total path in K from a to x.

PROOF. We take the case in which dimcr < n, dim r > n, and a e J^f \ (d~_xx U
d^_x f). We use induction on the positive integer dim r — dim a. There are three cases.

Suppose firstly that dim a = n and dim x = n + 1. Since a e d~x, we must have
a e 3~T. This means that a, x is itself a total path.

Next suppose that d ime = n and dimr = t > n + 1. From Proposition 2.5,
d~x = d~d~_xx, so we must have a e d^xT. It follows that a e v for some u e 3~T.
From the definition of d~, we must have a e dr~v. Since dimcr = n w e also have
a £ {d~_\i> U Jn

+_,u). By the inductive hypothesis, there is a total path o,... ,v,
which extends to a total path a,... , v, r.

Finally, suppose that dimcr = s < n. Using Proposition 2.5, we get

We also have

so a € d~x \ d+d~x. It follows that a e 0 \ Cl(3+u) for some (s + 1)-dimensional
element v e d~x. We must then have a e d~v. Now a £ d~_xx U d^xx and the
d"_xi are closed (they are molecules by Proposition 2.5, so they are finite unions
of atoms), so v £ d~_xx U d^_xx. By the inductive hypothesis, there is a total path
v,... , T, which extends to a total path a, v,... ,x.
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The main result on loop-free directed complexes is as follows.

THEOREM 2.9 ([15, Theorem 2.17]). Let K be a loop-free directed complex. Then
the molecules in K form an co-category with the following presentation: the generators
are the atoms; ifd is a p-dimensional generator then there are relations dpa = a; if
a is a p-dimensional generator and p > 0 then there are relations da

p_xa = ca(a),
where the ca(o) are arbitrarily chosen expressions for the da

p_xa as composites of
atoms.

The a>-category of molecules in a loop-free directed complex K is denoted M(K).
We conclude this section with a remark about morphisms between (^-categories of

molecules in loop-free directed complexes.

PROPOSITION 2.10. Let K and L be loop-free directed complexes, and let f:M(K)
—*• M{L) be an co-category morphism. Then f restricts to a morphism M(x) —>
M (f(x)) for each molecule x in K.

PROOF. What we have to show is that f(y) c / ( * ) if y is a molecule contained in
x. Clearly it suffices to show that / ( f ) c f{&) if f and a are atoms such that r C f f .
From the definition of closure, it suffices to show that / ( f ) c f(a) if r e daa for
some sign a. In this case the dimension of a must be a positive number, p say, and f
must clearly be a factor in the molecule da

p__, a. Since / is a morphism of w-categories,
/ ( f ) is a factor of f{da

p_,d), and we get / ( f ) C f{da
p_td) = d°p_J{d) C f(&) as

required.

3. Directed complex presentations

According to Theorem 2.9, certain co-categories can be realised as the sets of
molecules in loop-free directed complexes; the operations d" are represented by
passing to subsets, and all composites are represented by unions. We now aim to
realise arbitrary ^-categories by generalising this construction: we take a class of
loop-free directed complexes and impose an equivalence relation on their molecules.
The result can be thought of as a combinatorial presentation: the directed complexes
contain copies of members of a given 'generating' set G of atoms, and the equivalence
relation is given by a set of subdivisions of members of G. We shall also need
'degenerate' atoms which are not copies of members of G; these are used to 'fill gaps'
between equivalent molecules. The degenerate atoms help us to represent composites
and to make substitutions.

We begin by formalising the notion of a directed complex in which the atoms are
either copies of members of a generating set G or degenerate. We impose restrictions
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54 Sjoerd E. Crans and Richard Steiner [8]

on G in order to make the copies coherent, but we cannot impose any restrictions on
degenerate atoms until we consider the equivalence relation.

DEFINITION 3.1. Let K and L be directed complexes. An embedding of K in L is
an injective function from K to L which preserves dimensions and the 3" operations.
An embedding f:K—> L is an isomorphism if f(K) = L.

DEFINITION 3.2. A generating set is a set G of loop-free atomic directed complexes
together with a family <I> of embeddings between members of G such that the following
conditions hold.

(i) For each atom 5 in a member of G there is at most one embedding in $ with
image d.

(ii) For each g e G the identity embedding of g in itself belongs to <£>.
(iii) Let <p\ g —> h be an embedding in 3> and let a be an atom ing. If there is an

embedding 6 in <J> with image a then <j> o 9 is an embedding in <t> with image <p(d); if
there is no embedding in <t> with image a then there is no embedding in <J> with image

The members of O are called structural embeddings.

DEFINITION 3.3. Let G be a generating set. A G-complex is a loop-free directed
complex K together with a family X of embeddings of members of G in K such that
the following conditions hold.

(i) For each atom f in K, there is at most one embedding in X with image f.
(ii) Let x- 8 ~^ A" be an embedding in X, and let a be an atom in g. If there is

a structural embedding (j) with image a, then x ° <t> is an embedding in X with image
X(<7); if there is no structural embedding with image a, then there is no embedding
in X with image x(&)-

The embeddings in X are called characteristic embeddings. If x '• g —>• ^ is a
characteristic embedding with image f, then f is a copy of g via x; if * is an atom in
K which is not the image of a characteristic embedding, then f is called degenerate.

The conditions of Definition 3.2 ensure that the members of a generating set G are
themselves G -complexes with the structural embeddings as characteristic embeddings,
and that they are copies of themselves via the identity embeddings.

Given a generating set G, there are natural notions of embedding and isomorphism
for G-complexes.

DEFINITION 3.4. Let G be a generating set, and let K and L be G-complexes. A
G -embedding of K in L is an embedding f:K—>L such that, for o e K:

(i) if a is a copy of g via x, then f(a) is a copy of g via / o x\
(ii) if a is degenerate, then f(o) is degenerate.
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[9] Presentations of omega-categories by directed complexes 55

A G-embedding which is an isomorphism is called a G-isomorphism.

We note that the characteristic embeddings of G -complexes are G-embeddings; in
particular, the structural embeddings of G are G-embeddings.

So far, we have analogues for generators in presentations; we will now consider
analogues for relations. We call a molecular directed complex w a subdivision of an
atomic complex g if w and g are of the same dimension and have isomorphic boundary;
for example, the directed complex in Figure 1 is a subdivision of the directed complex
in Figure 2. A subdivision w of g will be used to represent a relation g = w.

FIGURE 2. Another directed complex

Given a generating set G, the relevant subdivisions are defined as follows.

DEFINITION 3.5. Let g be a p-dimensional member of a generating set G. A G-
subdivision of g is a p-dimensional molecular G-complex w such that that there is a
G-isomorphism

dp-\S U d+_xg = d~_xw U d+_xw

sending d~_xg to d~_xw and d+_xg to d+_xw.

In Definition 3.5, note that d~_xg U d*_xg and d~_xw U d^_xw are G-complexes,
because they are subcomplexes of G-complexes; it therefore makes sense to talk about
a G-isomorphism between them.

Let G be a generating set. If / : K —»• L is a G-embedding between G-complexes,
then it induces an w-category morphism / : M(K) —> M(L) by Theorem 2.9 (recall
that G-complexes are loop-free). Also, if g is a member of G and tins a G-subdivision
of g, then there is an obvious w-category morphism M{g) —> M(w) sending g to w.
We shall use these ideas to get a notion of elementary equivalence between molecular
G-complexes, given a set of G-subdivisions. The idea is that members of G are sent to
copies of themselves or are subdivided, while degenerate atoms are sent to degenerate
atoms or collapsed.
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DEFINITION 3.6. Let P — (G, R) be a pair consisting of a generating set G and a
set R of G-subdivisions, and let x and y be molecular G-complexes. An elementary
P-equivalence from x to y is an w-category morphism / : M{x) —• M{y) such that
f(x) = y and, for each atom o in x, one of the following conditions holds:

(i) a is a copy of a member g of G via x and / ( a ) is a copy of g via / o \\
(ii) <T is a copy of a member g of G via x> there is a G-subdivision w of g in /?,

there is a G-isomorphism #: u> —> /(CT), and the diagram

'

commutes;
(iii) CT is degenerate and f{d) is a degenerate atom of the same dimension;
(iv) a is degenerate and dim f(a)< dimcr.
An elementary F-equivalence between x and y is an elementary F-equivalence

from x to y or from y to x.

Given a generating set G and a set of G-subdivisions, we can now impose conditions
on degenerate atoms.

DEFINITION 3.7. Let P = (G, R) be a pair consisting of a generating set G and
a set /? of G-subdivisions. Then the class of P-molecules is denned by induction
on dimension as follows. A P-molecule is a molecular G-complex x such that the
following conditions hold whenever a is a degenerate atom and p = dim a: firstly,
p > 0; secondly, d~_xa is linked to d^_xa by a chain of elementary F-equivalences
between P-molecules of dimension at most p — 1.

An atomic P-molecule is called a P-atom.

To get a directed complex presentation, we take a pair P = (G, /?) as in Definition
3.7 and require all the molecules involved to be P-molecules.

DEFINITION 3.8. A directed complex presentation is a pair P = (G, R) such that

(i) G is a generating set,
(ii) R is a set of G-subdivisions,

(iii) g is a P-molecule for all g e G,
(iv) w is a P-molecule for all w e R.

If P is a directed complex presentation, then the class of P-molecules is denoted
W(P).
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We note that Definition 3.8 is implicitly inductive: the allowable members of G
and R in any given dimension are determined by the members of G and R in lower
dimensions.

We have now constructed our classes of molecules: they are the classes of the
form W(P) for directed complex presentations P . The equivalence relations are to
be induced by elementary P-equivalence as follows.

DEFINITION 3.9. Let P be a directed complex presentation. Then two P-molecules
x and x' are P-equivalent, (notation x ~ x'), if x and x' are linked by a chain of
elementary P-equivalences between P-molecules.

Let P = (G, R) be a directed complex presentation. It is clear that P-equivalence
is an equivalence relation on the class W(P) of P-molecules. Since a G-isomorphism
between P-molecules is an elementary P-equivalence, there is only a set of P-
equivalence classes. The set of P-equivalence classes will be denoted co(P), and the
P-equivalence class of a P-molecule x will be denoted [JC].

4. Boundaries in a directed complex presentation

In this section, P = (G, R) is a directed complex presentation. We aim to impose
an &>-category structure on co(P), the set of P-equivalence classes of P-molecules.
Here we shall deal with the parts of the structure that do not involve composition;
these parts are simply inherited from the w-categories M(x), where x is a P-molecule.
Indeed, we have the following results.

PROPOSITION 4.1. Every molecule in a P-molecule is a P-molecule.

PROOF. Obvious.

PROPOSITION 4.2. Let x and x' be P-molecules, and let f be an elementary P-
equivalence from x to x'. Then f restricts to an elementary P-equivalence from y to
f(y)for every molecule y in x.

PROOF. This follows from Proposition 2.10.

PROPOSITION 4.3. Forn > 0 there is an operation d^.co(P) - • co(P) well-defined
by the rule that d"[x] = [d"x]for every P-molecule x.

PROOF. If x is a P-molecule, then d"x is a P-molecule by Proposition 4.1. If x
and x' are P-molecules such that [x] = [xr], then [d"x] = [d"xr] by Proposition 4.2,
since a P-equivalence is a chain of elementary P-equivalences.
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PROPOSITION 4.4. Let x be a P-molecule. Then

m n L J I j<v r ~i •£•

[d%[x] ifm>n,

and there exists n such that d~[x] = d+[x] = [x].

PROOF. Since M(x) is an aj-category, this follows from Definition 2.1 (ii) and (vii).

We now have all of the a>-category structure on co(P) that does not involve com-
posites. We conclude this section with two technical results needed in the study of
composites; they also clarify the definition of a P-molecule.

PROPOSITION 4.5. Let x and x' be P -equivalent P -molecules of dimension at most
n. Then x and x' are linked by a chain of elementary P-equivalences between P-
molecules of dimension at most n.

PROOF. Since x and x' are P-equivalent, there is a chain

X — Wo, W\, . . . , Wk = X

of P-molecules linked by elementary P-equivalences. By Proposition 4.2 the P-
molecules

dnx = d~w0, d~Wi, . . . , d;wk = d~x

are also linked by elementary P-equivalences. Since dim* < n and dim*' < n,
it follows from Definition 2.3 that dnx = x and d~x' = x'. It also follows from
Definition 2.3 that dim Jn ID, < n for each i, so x and x' are linked by a chain of
elementary P-equivalences between P-molecules of dimension at most n, as required.

PROPOSITION 4.6. Let x be a molecular G-complex such that the following condi-
tions hold whenever a is a degenerate atom and p = dim a : firstly, p > 0; secondly,
d~_xo andd*_xd are P-equivalent P-molecules. Then x is a P-molecule.

PROOF. This follows from Proposition 4.5.

In other words, the dimensional restriction at the end of Definition 3.7 is unneces-
sary.
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5. Globularisations and fat composites

In this section, P = (G, R) is again a directed complex presentation. We wish
to define composites in co(P). For this purpose, we shall construct a special kind of
molecular directed complex called a fat composite and denoted x #̂  y. We shall also
construct complexes called globularisations and denoted G\s

n(x). These will be used
as building blocks for the fat composites; later, they will also be used to construct
subdivisions.

The symbol s in x #̂  y and Gl*(;t) denotes a 2p-tuple

sp- I

of molecular directed complexes, where p > n; the sequences that can be used are
given by the following definition.

DEFINITION 5.1. Let p be a non-negative integer. An admissible 2p-tuple is a
2p-tuple

S = \SQ , So , . . . , Sp_, , Sp_j)

of disjoint molecular directed complexes such that dims" < / for 0 < i < p.

Before defining globularisations and fat composites in general, we shall describe
the constructions associated to an admissible 4-tuple s = (s^, s£, xf, sf). For any
molecular directed complex x we take GIQ(JC) = x. For x a molecular directed
complex disjoint from s^ and SQ we take Gl* (x) to be as illustrated in Figure 3, where
the v"(x) are 1-dimensional atoms. For x a molecular directed complex disjoint from

FIGURE 3. A 1-globularisation

SQ, SQ, sf, sj1" we take GI^CJ:) to be as illustrated in Figure 4, where the v"(z) are again
/-dimensional atoms. Note that GVn(x) really involves s? only for 0 < i < n.

We see that Gls2(;t) is got from Gl'(sf) U G\\(x) U Gl](sf) by inserting two 2-
dimensional atoms. For x and y molecular directed complexes disjoint from each
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FIGURE 4. A 2-globularisation

other and from SQ, SQ, ... , s~_,, s*_i we similarly construct x #J, y by inserting a
(n + l)-dimensional atom vn+i(x, y) intoGl*0c)UGl*()0; thecase« = 1 is illustrated
in Figure 5.

Again, x #^ y involves sf only for 0 < i < n.
We shall now describe the constructions in general. The basic result on adding

atoms to directed complexes is as follows.

PROPOSITION 5.2. Let n be a positive integer, and let x0, ... ,xk be molecular
directed complexes such that

(i) d° {Xj is a union of (n — 1)-dimensional atoms for 0 < i < k and a = ±,
(ii) d%_2x0 = ••• = d%_2xkfor 0 = ±,

(iii) Xj n Xj C d^xi H d^Xjfor i < j .

Then there is a molecular directed complex of the form

where \>\,... , vk are distinct n-dimensional elements not belonging to XQ U • • • U xk.

PROOF. We use induction on k. For k = 0 the result is trivial. Suppose that k > 0.
By the inductive hypothesis, there is a molecular directed complex

y = x0 #„_, v, #„_, • • • #„_, u^ , #„_, xA_|
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"I

FIGURE 5. A fat composite

with i>i,... , vk_i as required, and it suffices to construct a molecular directed complex

z — y#n-i vk#n-\ xk

with vk an n-dimensional element. Using Proposition 2.5, we see that d*_xy =
d+_\Xk_\; using (i), we deduce that d*_xy and d~_xxk are unions of (n — l)-dimensional
atoms; using (ii), we also deduce that

dn-iy = dn-idn~\y = d$_2d^xk = d*_2xk.

Now let z be the directed precomplex given by

z = yU{vk)Uxk,

with dim vk = n,

3 vk = [a e d*_xy : d ima = n — 1 },

d+vk = [o e d~_xxk : d ima = « — 1}.

To show that z is a directed complex, we must verify the conditions of Definition 2.4
for vk. But d^xy and d~_txk are unions of (n — l)-dimensional atoms, so it follows
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from Definition 2.3 that

d~_, vk = d+_, y and d+_, vt = rf;_, xk;

therefore d~_xvk and d^_xvk are molecules. Also

since D*. = d~_ivk U {v̂ .} U d*_xvk and dim vt > n — 1 it follows from Definition 2.3
that

as well. This shows that z is a directed complex.
Next we show that z = y #„ -1 vk #„_ x xk. We have already seen that J~_, vk = d+_, y

and d*_xvk = d~_xxk, and it is clear that z — y U v̂  U JC*; by Definition 2.3 it suffices
to show that

yr\vk C d+_xy and (y U v*) D xk C C-i-^*-

But this follows from (iii), since

(vk \ d+_xy) D y C **_, n ^ C rfB
+_,Jc*-i = rfB

+_,3'

and

[{y U Dt) n xk] \ d~_xxk C (x, U • • • U jrt_,) f l ^ C d~_xxk.

Finally, z is a molecule, because z = > # , - | i ' i # B - | J t t and y and JĈ  are molecules.

Next we use Proposition 5.2 to construct the globularisations Gl*(;c). The con-
struction is inductive; in order to get the induction to work smoothly, it is convenient
to prove several properties simultaneously.

THEOREM 5.3. There are molecular directed complexes Gl* (x) with the following
properties:

(i) Gl* (x) is defined when n is a non-negative integer, s is an admissible 2p-tuple
for some p > n, andx is a molecular directed complex disjoint from s^, s^,... , s~_x,

(ii) Gl* (x) depends on s° only for i < n;
(iii) GljOc) = x;
(iv) ifn > 0 then

Gln(jc) = v-
n_,
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where the v"(x) are n-dimensional elements depending on a, n, SQ, S Q , . . . , S~_2, S ^ _ 2 ,

C I . d"n_xx;

(v)

: w f G W ) forO<.<n,
m "y \G\\(d°mx) for m>n;

(vi) dimGl*(x) = max(n, dim*);
(vii) if dim x < n then G\s

n (x) is a union of n-dimensional atoms;
(viii) ifx and y are disjoint then

Gi(*)nGlOO f
lGi;_1(Jfl-_1)UGi:_I(^_1) f o r n > l .

PROOF. We use induction on n.

We define G1Q(X) to be JC, and the results for n = 0 are then obvious.
From now on, suppose that n > 0. Let x and s satisfy the conditions of (i). We

shall construct Gl*(;c) by applying Proposition 5.2 to the triple

To verify the hypotheses of Proposition 5.2, let z denote s~_{, x or $+_,. Then, first,
C-i Gl*_, (z) = Gl*_, (d"_\Z) by an inductive application of (v), and this is a union of
(n — l)-dimensional atoms by an inductive application of (vii). Next, the d%_2 Gl*_, (z)
are all empty if n = 1 and are all equal to Gl* 2(sf_2) by an inductive application of
(v) if n > 1. Finally, the intersection of Gl*_, (z) with any other member of the triple
is equal to d~_2 Gl*_,(z) U d+_2 Gl*_, (z) by an inductive application of (v) and (viii);
this intersection is equal to d~_2d"_, Gl*_,(z) U d+_2d

a
n^ Gl*_,(z), and is therefore

contained in d"_x Gl*_, (z) for a = ± .
We have now verified the hypotheses of Proposition 5.2. We therefore have a

molecular directed complex G1*(JC) such that

Gfn(x) = Gi:_,(5;_,) #„_, v;(x) #„_, Gi:_,(x) #„_, O+(JC) #„_, G i :_ , ( .C )

with dim v"(x) = n. It remains to verify parts (ii) and (iv)-(viii).
Part (ii) is clear from the definition and the inductive hypothesis.
Next we prove part (iv). Since dims"_, < « — 1, it follows from an inductive

application of (vi) that dim Gl*_,(*"_,) = n — 1, so Gl*_,(.$"_,) is an identity for
#„_]. The decomposition of Gl*(x) given in its construction therefore simplifies to
the decomposition given in part (iv).

By construction, v"(x) depends only on a, n, Gl*_,(5"_,) and d"_t G1*_,(JC) =
Gl*_,(rf"_|jr). By an inductive application of (ii) and (iv), v"(x) depends only on a,
n, sQ , s0 , ... , sn_2, sn_2, s"_x, d"_xx.
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Next we prove (v). By construction, d"_x Gl*(x) = d"_, Gl*_,(.$"_,), and we have
already seen that this is Gl*_,(.?"_,). For 0 < m < n the inductive hypothesis now
gives

d°m GlJ(x) = « _ , G\\(x) = da
m Gi;_,(Ci) = G\sJsaJ.

Now let wi > n. It follows from (iv) that

#„_, #„_,

Since dimDf(x) = n < m we get <v;?Cr) = vj?(jt). Since dft_,da
mx = d?

n_,x,
it follows from (iv) that v%(x) = v^(d^x). Also, from the inductive hypothesis,
< Gl"_, U) = Gl s

n _ , (d» . Therefore

By (iv), d"m G\\(x) = Gfn{da
mx) as required.

Part (vi) is immediate from part (iv) and the inductive hypothesis.
Next we prove part (vii). Suppose that a is an element of G\s

n(x) not contained in
any n-dimensional atom. By part (vi), dim a < n. By Definition 2.3, a € rf~_, Gl*(x).
From part (iv), d~_x G\s

n(x) = d~_xv~(x), so a is in the n-dimensional atom v~(x).
This contradiction completes the proof of part (vii).

Finally we prove part (viii). By construction, we have

G?n(x) =Glsn_,(C) U (v ;W)UGt ,W U {
Gl'n(y) =G?n_](s;_l) U {v-(y)} U G l ^ O O U [v^x)} U

It follows that Gl'Oc) D Gls
n(y) contains Gl*_,(s~_i) U G l ' . ^ s ^ , ) . Since x and y are

disjoint, it follows from part (iv) that the elements v~(x), v+(x), v~{y), v+{y) are all
distinct. Using the inductive hypothesis, we see that elements of Gl* (x) n Gls

n(y) not
contained in Gl*_, (s~_{) U Gl*_, (s+_x) must be contained in Gl*_2(5~_2) U Gl*_2(xn

+_2)
with n > 2. Since Gi;_2(^_2) = ^_ 2 Gi :_ , (*"_,), we get

G?n(x) n Gls
n(y) = G l ^ , ^ - . , ) U G i ; _ , ( C )

as required.

Next we use Proposition 5.2 to construct fat composites.

THEOREM 5.4. There are molecular directed complexes x #^ y with the following
properties:

(i) x #^ y is defined when n is a non-negative integer, s is an admissible 2p-tuple
for some p > n, and x and y are molecular directed complexes disjoint from SQ,
S0 ' • • • ' Sn-l> Sn-\'
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• % <

i 0 .

TABLE 1. The constituents of Gl! (.*)

(ii) JC #̂  _y depends on s" only for i < n;
(iii) xti^y = Gl*(j:)#n vn+i(jc, j)#nGl*(y), w/jere v,,+1 (jr, j ) is an n-dimensional

element depending onn + 1, s^, SQ, ... , s~_{, s*_{, d+x and d~y.

PROOF. We construct x #J y by applying Proposition 5.2 to the pair Gl* (x), G\s
n(>);

the necessary hypotheses follow from Theorem 5.3 (vii), (v), (viii). Properties (ii) and
(iii) follow straightforwardly from Theorem 5.3.

We shall use Theorems 5.3 and 5.4 to construct P-molecules out of P-molecules.
Since P -molecules are required to be loop-free, we must show that globularisations
and fat composites are loop-free if their constituents are loop-free. We shall use the
following results.

PROPOSITION 5.5. A globularisation G\s
n(x) is the disjoint union of the sets listed

in Table 1.

PROOF. This follows by induction from Theorem 5.3 (iii), (iv) and (viii).

PROPOSITION 5.6. Let o,... , x be an n-path or a total path in a globularisation
Gl*(*). Let S and T be the sets in Table 1 which contain a and r. Then S = T or S
precedes T.

PROOF. It suffices to prove this when a and r are consecutive, and, because of
Proposition 2.8, it suffices to consider total paths. We take the case a e d~r. If
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r e s° or r E x, then a is clearly in the same subset, so that S = T. If r = v~(z)
then a is an (i — l)-dimensional element of

(see Theorem 1 (iv) and (v)), so

by Proposition 5.5, from which it follows that S precedes T. If r = v,+ (z) then
similarly

a e d-^{z) = C Gl'_,(z) c Gl?_,(z),

so a € {v~_x (z)} U z U {v^, (z)}, and again 5 precedes 7\

THEOREM 5.7. Let Gl* (x) be a globularisation. If the molecules s0, s£,... , s~_{,
s*_i andx are all loop-free then Gl* (x) is loop-free. If the molecules s^, s£,... , s~_u

5,|_, and x are all totally loop-free then Gl* (x) is totally loop-free.

PROOF. The proofs are similar in both cases; we take the totally loop-free case. We
must show that a total path in Gl* (x) has no repeated elements. By Proposition 5.6, it
suffices to show that a total path in a set in Table 1 has no repeated elements. But this
is true by hypothesis for the sets s" and x, and it is trivial for the singleton sets.

THEOREM 5.8. Let xW^y be a fat composite. Ifthe molecules SQ, SQ ,... , s~_v s^_it

x and y are all loop-free then x Wny is loop-free. If the molecules s^, s£,... , s~_x,
s*_lt x and y are all totally loop-free then x #>n y is totally loop-free.

PROOF. This is similar to Theorem 5.7; we use the decomposition in Table 2.

So far we have considered globularisations and fat composites as abstract directed
complexes; we shall now consider cases in which they are P-molecules, and we shall
determine their P -equivalence classes.

THEOREM 5.9. Let Gl* (x) be a globularisation which is a G-complex such that the
sf and x are P-molecules, sf ~ dfx for 0 < i < n, and the additional atoms y,(z)
are degenerate. Then:

(i) Gl* (x) is a P-molecule;
(ii) if there are G-isomorphisms s" = dfx for 0 < i < n, then there is an

elementary P-equivalence from Gl* (x) to x which extends these G-isomorphisms and
acts as the identity on x;

(iii) Gl*(x)~x.
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TABLE 2. The constituents of x #?, y

PROOF. We use induction on n. The results are obvious for n = 0, because
G1S(JC) = x.

Suppose that n > 0. From Theorems 5.3 and 5.7 we know that Gl* (x) is a loop-free
molecular directed complex, and we also know that

GIJOO = Gl^,^". , ) U {v;(x)} U Gi;_,(jc) U K+Oc)) U Gi;_,«_i)-

The inductive hypothesis tells us that Gl*_j(x) is a P-molecule. By Proposition 4.4,
s" ~ ^,ai~_, for (' < « — 1, so the inductive hypothesis also tells us that Gl* _,(>"_,)
is a P-molecule. Similarly Gl*_,(^_,) is a P-molecule. To show that Gl*(x) is a
P-molecule it now suffices to show that d~_x v"(x) ~ rfn

+_,y"(A;) (see Proposition 4.6).
From Theorem 5.3 we get

Using the inductive hypothesis and the assumption on the P-equivalence class of s~_x,
we get

GI:_,(V,) ~ *„-_, ~ <_i* ~ cin-ioc.*).
so that d-_,i5-(*) ~ ( d V W . Similarly ^_,v+(x) ~ rf+_,v+(x). Therefore Gl^(x)
is a P-molecule. This proves part (i).

Next we prove part (ii). Because of the inductive hypothesis, it suffices to construct
an elementary /'-equivalence
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which extends the given isomorphisms on the s"_, and acts as the identity on s0,

s j" , . . . ,s;_2,s+_2andx.
The G-isomorphisms s"_, = d"_xx clearly extend to G-isomorphisms

which act as the identity on the sf for i < n — 1. Combining these with the identity
of Gl*_, (x) gives a morphism

We note that d~_,v~(;t) = Gl*_,(s~_,) and Jn
+_,v~(x) = Gl*_,(rfn"_,j:) have the same

image under this morphism, and similarly for v+(x). Using the presentation of
M ( a * 00) of Theorem 2.9, we get a morphism M (G1*(JC)) -* M (Gl*_,(jr)) acting
in the desired way on the sf and *. This morphism is an elementary P -equivalence
as required (see Definition 3.6). This completes the proof of (ii).

Finally we prove (iii). Because of part (ii), it suffices to show that the P-equivalence
class of Gl* (JC) depends only on the />-equivalence classes of s0, SQ,..., S~_{, S+_,

and x. We must therefore consider what happens when the constituents are changed
by chains of elementary P-equivalences. By Proposition 4.5, we may assume that the
chain for sf passes through P -molecules of dimension at most /, so we can work with
admissible 2p-tuples throughout.

It is now clearly sufficient to prove that Gl* (JC) ~ Gl' (y) when there are elementary
P-equivalences M{s") -> M(t") and M(JC) —>• M(y) all going in the same direc-
tion, and we imitate the proof of part (ii). Indeed we get elementary P-equivalences
^ ( G i ; _ , ( C ) ) ~* M ( G 1 ' _ , ( C , ) ) and M(Gl*_,(x)) - • M {G\\_x{y)) by the in-
ductive hypothesis, and these extend to an elementary P-equivalence M (Gl* (JC)) —>
M (GlJ,(>)) as required.

We are now in a position to define composites in co(P).

THEOREM 5.10. Let § and r\ be equivalence classes in co(P) such that d+% = d~t]
for some n. Then there is a well-defined composite % #„ r] defined as follows: let x
and y be disjoint representatives of % and rj; let s be an admissible 2p -tuple of P-
molecules for some p > n such that s° is disjoint from x and y and sf ~ dfx ~ a"*y
forO < i < n; then

$#ari = [x]#n[y] = [x#l
ny],

where the additional atoms v"(z) and vn+l (x, y) in x W*ny are degenerate.

PROOF. We firstly show that there exist x, y and s° as described. For 0 < / < n it
follows from Proposition 4.4 that d"% = d?d+% = d"d~r) = d"r]\ we can therefore
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find P-molecules x, y and s" such that [x] = £, [_y] = t], and sf ~ d°x ~ J">'
for 0 < / < n. Clearly we can assume that all these P-molecules are disjoint and
dims" < / forO < i < n.

It now follows from Theorem 5.4 that there is a fat composite

xrny = G\l(x) #„ vn+l(x, y) #„ G\s
n(y).

We make this into a G-complex by making the additional atoms degenerate. As
in Theorem 5.9, we find that x #^ y is a P-molecule whose P-equivalence class
depends only on the P-equivalence classes of s^, SQ , . . . , s~_,, ^_ , , x and y. Since
s" ~ of"* ~ d"y for 0 < / < n, the P-equivalence class of x #^ j in fact depends only
on the P-equivalence classes of x and y. The P-equivalence class of x Wn y therefore
gives a well-defined composite § #„ r;, as required.

6. Verification of the w-category axioms

In this section, P = (G, /?) is again a directed complex presentation. In the last
two sections, we have defined operations d" and #„ in co(P); we shall now show that
they make &>(P) into an &>-category.

We begin with two results showing that compositions in (o(P) are induced by
compositions in the w-categories of P-molecules.

PROPOSITION 6.1. Let x #„ y be a composite in M(w), where w is a P-molecule.
Then

[x]#n [y] = [x#n y].

PROOF. We note that d"x = d"y for 0 < i < n. We can therefore represent
[x] #„ [y] by a fat composite x' #^ y' such that there are G-isomorphisms x' = x,
y' = y and 5" = dfx = d"y for 0 < i < n. As in the proof of Theorem 5.92,
these G-isomorphisms extend to an elementary P-equivalence from x' #^ >•' to x #„ y.
Therefore

M #„ [y] = [*'#:/] = U #„?].

PROPOSITION 6.2. If z represents a composite % #„ rj in eo(P), then there is a
decomposition z = x #„ y such that x and y represent £ and rj.

PROOF. By construction, z is a fat composite x' #^ y' with x' and y' representing ^

and r/. By Theorem 5.4,

z = Gls
n(x') #„ vn + 1(x ' , y') #„ Gls

n(y').
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Now d+ G\s
n(x) = G\*n(d+x') (Theorem 5.3 (v)) and vn+l(x', / ) depends on x' only

through d+x' (Theorem 5.4 (iii)), so

z = Gll(x')#n{G\s
n(d+x')#nK+](d+x\ y')#nGls

n(y')} = Gl* (*')#„ (<C*/#S«/) = x#ny,

where x = GI'(JC') and y = d+x' #^ / . By Theorem 5.9, [x] = [x1] = | ; it remains
to show that [y] = rj. But [d+x1] = d+% = d~r\ = [d~y'], so v represents the
composite [d~y'] #„ [y1]. Since the composite d~y' #„ y' exists in M(y'), we get
[y] = \d~y' #„ y'] — [y1] = r\ by Proposition 6.1.

We shall also need the following result on the globularisations of composites.

PROPOSITION 6.3. If Gfn{w) is a globularisation and there is a decomposition
w = x #,„ y such that x and y are molecules and m > n, then

G r » = Gi;(ac #m y) = G\s
n(x) #m GVH(y).

PROOF. The proof is by induction on n. The result is obvious for n = 0, since
Glo(tu) = w, etcetera.

Suppose that n > 0. By Theorem 5.3,

Gls
n(w) = v;(w) #„_, Gl'_,(«;) #„_, v+(w),

where v"(w) depends on w only through d"_xw. Since w = x #m y and m >
n - 1, we get da

n_,w = da
n_,x = da

n_,y, so that va
n(w) = va

n(x) = va
n(y). Since

dim v"(w) — n > m, we find that v"(w) acts as an identity for #„; we therefore have
v°(w) = v"(x) #,„ v"(v). Also, by the inductive hypothesis,

It follows that

Grjw) = v;(«;)#„_, Gl*_,(iw)#«_, v+(w),

= {KM # - K(y)) #"-i {Gi;_,(Jc) #m Gl^,(y)} #„_, {y,+ (.v) #m vn

= {v;(x) #„_, Gl'n_,U) #„_, VB
+(JC)} #,„ {^( j ) #„_, Gls

B_,(v) #„_, v+(y)}

= GlBU)#mGln(.v),

as required.

We can now prove the main theorem of this section.

THEOREM 6.4. The operations d" and #„ mafe <w(P) /n?o a« co-category.
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PROOF. We must verify the axioms of Definition 2.1. Axiom (i) holds by Theorem
5.10. Axioms (ii) and (vii) hold by Proposition 4.4. To verify axiom (iii) (d~% #„ £ =
£ = £ #„ d+%) we use Proposition 6.1: if x represents £, then dr~x #„ x = x = x #„ d+x
in M(x), so

</„-£ #„ £ = ft"*] #„ [x] = K"x #„ x] = [x] = £,

and so on.
Next we verify axiom (iv), which gives the value of d% (£ #„ ??). By Proposition 6.2,

£#„ rj is represented by a P-molecule z such that z = x#ny with [x] = § and [y] = r\.
Inside Af (z) we have da

mz = d^x #„ d^y for m ^ n, etcetera. Applying Proposition
6.1 shows that da

m (£ #„ ??) = d.^% #„ d^rj for m ^ n, and so on, as required.

Next we verify axiom (v), the associativity of #„. Consider a product (t;#nr})#nZ; in
co(P). According to Proposition 6.2, £ #„ r? can be represented by a genuine composite;
therefore (£ #„ JJ) #„ £ is represented by a composite of the form

(x #„ y) #* z,

where x, y and z represent £, rj and £. By Theorem 5.4 and Proposition 6.3, this
composite can be expressed as

G?n(x #„ y) #„ vn+l(x #„ y, z) #„ GlJ(z) = G1J(JC) #„ Gl*n(y) #„ vfl+1(y, z) #„ Gl^(z)

= Grn(x)#n(yPnz)

(it follows from Theorem 5.4 that vn+l(x #„ y, z) = vn+i(y, z) because d+(x #„ y) —
d+y). Now G1*(JC) represents § by Theorem 5.9 and y #̂  z represents r] #„ f by
definition, so Gl* (JC) #„ (y #^ z) represents ^ #„ (>j #„ £) by Proposition 6.1. Therefore
(?#„ ??)#„£ = ^ # n (»?#„£).

We conclude by verifying axiom (vi), which states that

<r #„ I?') #m (?" #n i?") = (§' #m n #« (»?' #m»?")

for m ^ n. It suffices to take the case m < n. We argue as for axiom (v). We can
choose representatives x', y', x", y" for ^', rj', %", r)" such that (§' #„ ??') #m (^" #„ /j")
is represented by a composite of the form (x' #„ y') # ,̂ (x" #„ / ' ) . We note that

vm+i(x' #„ y', x" #„ y") = vm+l(x', y') = vm+l(x", y"),

and we write vm+{ for the common value. We also note that vm+[ = vm+1 #„ ym+,
because dim vm+i = m + 1 < n. We now get

= Gl^(x' #„ y') #m ym+1 #,„ Gl^(jt" #„ y")

= {GI^(JC') #„ Gl^(y')} #m {vm+, #„ vm+1} #m {Gl^(x") #„ Gls
m(y")}

= {Gl^(x') #m vm+1 #m Gl^(x")} #„ {Gl^(y') #m vm+1 #m Gl^(y")}

= (*'#•„*") #„(/#•„/).
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and this final composite represents (£' #m £") #„ (?/ #m 17"). Therefore (§' #„ ?/) #m

(§" #„ ,,") = (§' #m | " ) #„ (r/ #m n") as required.

7. An algebraic presentation for co(P)

In this section, P = (G, R) is again a directed complex presentation. We shall find
an algebraic presentation for the a>-category (o(P).

We first aim to show that eo(P) is generated by the P-equivalence classes of
members of G. As well as copies of members of G, there are also degenerate P-
atoms; we use the following result to eliminate the degenerate P-atoms.

THEOREM 7.1. Let a be a degenerate P-atom of dimension p. Then o ~ d~_xa ~

PROOF. Recall from Definition 3.7 that p > 0 and d~_xd ~ d^_xa. Since
&\mda

p_x& < p — 1, the common P-equivalence class acts as an identity for #p_,
in co(P); in other words,

It follows that there is a fat composite x~ #^_! x + with J:" = d"_x&, and we get

*-#•_,*+

It therefore suffices to show that ,̂_,
We note that dfd~_\d = d?o = dfd^a for 0 < i < p - 1. We can therefore

choose the s" to be G-isomorphic to d"d for 0 < i < p — 1 (see Theorem 5.10). Now
consider the decomposition

# „ _ , i5p

According to Theorem 5.9 there are elementary P-equivalences

which extend the given G-isomorphisms sf = dfd. By Theorem 5.9 we can extend
these elementary P-equivalences to a morphism M(x~ # ,̂_, x+) —>• M(d) such
that vp(x~,x+) \-> a, and this extension is clearly an elementary P-equivalence.
Therefore x~ #s

p_] x
+ ~ a, as required.

We now have the following result.
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THEOREM 7.2. Every member ofco(P) is a composite of P-equivalence classes of
members of G.

PROOF. Every P-molecule is a composite of P-atoms. Since composition in P-
molecules induces composition in co(P) (Proposition 6.1), every member of co(P) is
a composite of P-equivalence classes of P-atoms. Now some P-atoms are copies of
members of G and the others are degenerate. It is clear that a copy of a member g of G is
P-equivalent to g, while a degenerate P-atom is P-equivalent to a lower-dimensional
P-molecule by Theorem 7.1. The result follows by induction on dimension.

We now give an algebraic presentation for <w(P).

THEOREM 7.3. The co-category to{P) has the following algebraic presentation:
there is a generator [g]for each member g of G; if[g] is a p-dimensional generator
then there are relations da

p\g\ = [g]; if[g] is a p-dimensional generator and p > 0
then there are relations <^_,[g] = ca(g), where the ca(g) are arbitrarily chosen
expressions for the dp_x[g] as-composites of generators; if vo is a subdivision in R of
a member g of G then there is a relation [g] = c(w), where c(w) is an arbitrarily
chosen expression for [w] as a composite of generators.

PROOF. By Definition 3.8, the members of G are P-molecules, so co(P) does
contain P-equivalence classes [g] for g e G. If w is a subdivision in R of g, then the
morphism M(g) —> M(w) is clearly an elementary P-equivalence, so [g] = [w]. It
is clear that the other relations in the statement of the theorem are valid as well.

It remains to show that the generators and relations are sufficient to determine
the structure of co(P). From Propositions 4.1^4.3, 6.1 and 6.2 we see that co(P)
is generated by the w-categories M(w) (where ID is a P-molecule), subject to the
relations given by elementary P-equivalences. We must show that the generators
and relations are sufficient to determine the structure of the M{w) (where w is a P-
molecule) and also sufficient to account for elementary P-equivalences. Throughout
this argument, we assume that members of co(P) have been expressed as composites
of P-equivalence classes of members of G, as is permitted by Theorem 7.2.

First we consider the structure of M(w), where w is a P-molecule. According to
Theorem 2.9, M(w) is generated by its atoms a, subject to the following relations:
if dimcr = p then d°d = a; if dim a = p > 0 then da

p_xa is equal to some
composite. Let a be an atom in w. If a is a copy of a member g of G, then we
certainly have [a] = [g], so we get the generator [a] and the associated relations
from the presentation given in the statement of the theorem. On the other hand,
if a is degenerate, then we can express [a] as a composite of lower-dimensional
generators by Theorems 7.1 and 7.2, so the generator [a] and the associated relations
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are redundant. This shows that the presentation in the statement of the theorem is
sufficient to give the structure of M(w).

Now we consider an elementary P-equivalence / : M(w) —*• M(w'). We must
show that the relations in the statement of the theorem imply that [x] = [/(*)] for
every molecule x in M(w). We use induction on dimx. Clearly it suffices to take the
case in which x is an atom a. We consider the various cases of Definition 3.6.

First, suppose that o is a copy of a member g of G. If f(a) is a copy of the
same member, then we have expressed both [a] and [/(CT)] in the form [g], so we
get [CT] = [/(cr)] automatically. If f(a) is a subdivision to of g, then the necessary
relation is [g] = c(w) as included in the statement of the theorem.

Now suppose that a is degenerate. Let dim cr = p. If f(a) is a degenerate p-
dimensional atom f, then the expressions for [a] and [f] as composites of generators
equate [a] and [f] with [dp_\d] and [d~_t f ] , so [cr] = [f] by the inductive hypothesis.
If dim / ( a ) < p then /(ex) = d~_lf(a) = /(d~_,cr), SO [CT] = [/(ex)] similarly.

8. A directed complex presentation for an arbitrary w-category

In this section, we shall prove the following result, which says that every w-category
has a directed complex presentation.

THEOREM 8.1. IfCis an co-category, then there is a directed complex presentation
P such that C = co(P).

In the proof of Theorem 8.1 we shall use the subsets Co, Cu ... of C defined by

These subsets have the following properties.

PROPOSITION 8.2. (i) The sets Co, Cu ... are sub-eo-categories of C such that
Co C C, C C2 C • • • and C = \Jp Cp.

(ii) Ifn > p then every element ofCp acts as an identity for #„.
(iii) Let Sbea subset ofCp, where p > 0, and let rbea member of the co-category

generated by Cp^\ U S. For n < p the value of d"r is determined by the structure of
Cp_i and the values ofda

p_x on S.

PROOF. Parts (i) and (ii) follow straightforwardly from Definition 2.1. As to part
(iii), it is clear that d"r is determined by the structure of Cp-\ and the values of d"
on S. But for s e S we have d°s = da

nd
a
p^s with da

p_xs € Cp_,. Therefore da
nr is

determined by the structure of Cp_\ and the values of dp_x on S, as required.
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PROPOSITION 8.3. (i) The co-category Co has an algebraic presentation of the
following form: for every generator x there are relations d^x = d^x — x; every
other relation has the form x = r such that x is a generator and r is a word not
involving the composition operators #„.

(ii) As an extension ofCp_\, the co-category Cp (where p > 0) has an algebraic
presentation of the following form: for every generator x there are relations d~x =
d+x = x and relations equating the d^_xx to elements of Cp_x; every other relation
has the form x = r such that x is a generator and r is a word not involving #„ for
n > p.

PROOF, (i) It follows from Proposition 8.2 (ii) that we can construct an algebraic
presentation of Co without using the operators #„. In this presentation we can replace
every relation r = r' by two relations x = r and x = r', where x is an additional
generator. For every generator x (original or additional) we can add a relation do~x =
dgX = x. This will produce a presentation of the required form.

(ii) This is similar.

PROOF OF THEOREM 8.1. Because of Proposition 8.2 (i) we can construct a directed
complex presentation P for C inductively; that is to say, we construct a directed
complex presentation Po for Co, extend it to a presentation P\ for C\, and so on, and
then take the union of the Pp.

To construct Po, we use an algebraic presentation for Co of the form given in
Proposition 8.3 (i). According to Theorem 7.3, it suffices to take a loop-free 0-
dimensional atom gx for each algebraic generator x, and a subdivision wr of gx such
that wr represents r for each algebraic relation x = r.

For the gx, we can clearly take directed complexes consisting of a single 0-
dimensional element.

Now consider a relation x = r. We get r from some generator y by applying
operations d". Since these operations actually leave y unchanged, we can take
wr = gy. It is then clear that wr is a subdivision of gx; in fact wr is isomorphic to gx.

It remains to construct Pp as an extension of Pp-\ for p > 0. We use an algebraic
presentation for Cp as an extension of Cp-\ of the form given in Proposition 8.3 (ii).
According to Theorem 7.3, it suffices to take a loop-free /^-dimensional atom gx such
that d"_{gx represents da

p_xx for each generator*, and a subdivision wr of gx such that
wr represents r for each algebraic relation x = r.

To construct gx, we take a fat composite s~_, #^_, ŝ "_,, where s is an admissible
2/7-tuple of Pp_i -molecules such that s? represents dfx (it is clear that there are such
2p-tuples). By Theorems 5.4 and 5.8, gx is a loop-free molecular directed complex
and
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where vp(s~_x, sp_{) is a p-dimensional atom. By Theorem 5 . 3 (vi), dimGlp_, = 
p — 1, so gx is actually a /^-dimensional atom. By Theorem 5 . 9 , the molecule 
dp_]gx = Gl*_, (•$•"_,) is a -molecule, so gx is permissible for P p (this being an 
extension of Pp-\). It also follows from Theorem 5 . 9 that G l * ~ sa

p_v so 
dp-[8* represents ^p_, jc . 

Now we consider a relation x = r. Since r does not involve #„ for n > p, the 
compatibility conditions required for r to exist involve the values of d" only for 
n < p. By Proposition 8 . 2 (iii), we have sufficient data to construct a Pp-molecule 
u representing the word r. Since d~ acts as the identity on Cp, the Fp-molecule 
v = d~ w also represents r, and we have dimu < p. Finally, we let wr = Gfp(v), 
where gx = # ,̂_, . Since s" represents dfx = d"r for i < p (we are working 
in co(Pp-i) = Cp-] here), it follows from Theorem 5 . 9 that Gl*(u) is a Pp-molecule. 

It remains to show that wr is a subdivision of the p-dimensional atom gx. But 
dim v < p, so dim wr = p by Theorem 5 . 3 (vi), and 

u d;_xwr = GI;_ ,(.;_,) u GI* _, (*;_, ) = dp_]gx u d;_l8x 

by Theorem 5 . 3 (v). 

REMARK 8 . 4 . In the proof of Theorem 8.1 we have used 0-dimensional molecules, 
globularisations and fat composites. Now 0-dimensional molecules are obviously 
totally loop-free, and globularisations and fat composites are totally loop-free if their 
constituents are totally loop-free (Theorems 5 . 7 and 5 . 8 ) . So the proof of Theorem 
8 .1 actually provides a directed complex presentation in which all the generators and 
subdivisions are totally loop-free. One could therefore develop the theory of directed 
complex presentations with totally loop-free molecules throughout. 
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