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A primary objective of integral methods, such as the momentum integral method, is to
discern the physical processes contributing to skin friction. These methods encompass
the momentum, kinetic energy and angular momentum integrals. This paper reformulates
existing integrals based on the double-averaged Navier–Stokes equations, and extends their
application to flows over rough walls. Our derivation yields distinct decompositions for
the bottom-wall viscous friction coefficient, denoted as CS, and the roughness element
drag coefficient CR. The decompositions comprise three terms: a viscous term, a turbulent
term and a roughness (dispersive) term – regardless of the flow configuration, be it
channel or boundary layer. Notably, when these integrals are evaluated for laminar flow
scenarios, only the viscous term remains significant. In addition, we elucidate the spatial
distributions of the terms within these decompositions. To demonstrate the practicality
of our formulations, we apply them to analyse data from direct numerical simulations
of turbulent half-channel flows. These flows feature aligned and staggered cubical
roughness at various packing densities. Our analyses, based on kinetic-energy-oriented
decompositions, reveal that when the surface coverage density λp is small, the dominant
terms within the decompositions are the viscous and turbulent terms. With increasing λp,
the viscous dissipation term decreases, while the turbulent production term increases and
then decreases. These variations arise from a subdued near-wall cycle and the development
of a shear layer at the height of the cubes.
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1. Motivation

Pioneered by Fukagata, Iwamoto & Kasagi (2002), integral methods and decompositions
of skin friction have been employed by many as diagnostic tools in their data analyses.
These analyses have subsequently led to new insights into the physical processes that
contribute to the generation of skin friction. This paper explores alternative formulations of
the existing integrals and decompositions for flows above smooth surfaces, and extensions
of these integrals and decompositions for flows above rough surfaces. Considering the
successes of the integral methods thus far (Fukagata, Iwamoto & Hasegawa 2024),
extending the existing methods to previously unexplored flow scenarios promises new
insights, and such endeavours should need no further motivation. This is particularly
true for rough-wall boundary layers, which are common in fluid engineering (Jiménez
2004; Flack & Schultz 2010; Chung et al. 2021). In this first section, we discuss two
considerations that motivate the exploration of alternative integrals for smooth walls and
the need for new formulations for rough walls. In §§ 2 and 3, we will summarize the
equations and review prior integral methods in greater detail.

The first consideration involves distinguishing between effects that are internal and
external to the flow. A theory may focus exclusively on effects that are internal or external.
As an illustrative example, we examine Kármán’s integral (Schlichting & Gersten 2017).
The integral reads

τw

ρU2
r

= 1
U2

r

∂

∂t
(Urδ1)+ ∂δ2

∂x1
+ 2δ2 + δ1

Ur

∂Ur

∂x1
+ vw

Ur
. (1.1)

Here, τw is the wall shear stress, Ur is a reference velocity, δ1 and δ2 are the displacement
and momentum thickness height, vw is the blowing/suction velocity at the wall, and x1 is
the streamwise coordinate. The equation gives the force balance. It focuses on processes
that are external to the boundary layer: given a control volume, the terms on the right-hand
side represent external momentum fluxes to the boundary layer. Notice that their values
depend on the frame of reference. Equation (1.1) is formally a decomposition of the skin
friction. However, such decomposition provides little information on the processes that
contribute to the generation of skin friction – terms such as the Reynolds shear stress that
represents the effect of turbulence are absent.

We now turn to the integral methods. Here, we take the momentum integral in Fukagata
et al. (2002) as an illustrative example. The derivation of their integral begins with the
mean streamwise momentum equation

∂

∂x3

(
ν
∂ ū1

∂x3
− u′

1u′
3

)
= I0 + 1

ρ

∂ p̄
∂x1

+ ∂ ū1

∂t
, (1.2)

where x1 and x3 are the streamwise and wall-normal coordinates, u1 and u3 are the
instantaneous velocities in the x1 and x3 directions, p is pressure, ·̄ denotes time average,
u′

1u′
3 is the Reynolds shear stress, ν is viscosity, ρ is density, and I0 is a term that contains

the streamwise convection term and the streamwise diffusion term:

I0 = ∂u1u1

∂x1
+ ∂ ū1ū3

∂x3
− ν

∂2ū1

∂x2
1
. (1.3)
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Friction decomposition for rough-wall flows

Integrating the above mean momentum equation, one gets the following decomposition of
the skin friction coefficient (henceforth referred to as FIK):

Cf = 4(1 − δ1)

Reδ
+ 4

∫ 1

0

(
1 − x3

δ

) −u′
1u′

3
U2∞

d
x3

δ

− 2δ
U2∞

∫ 1

0

(
1 − x3

δ

)2
(

I0 + 1
ρ

∂ p̄
∂x1

+ ∂ ū1

∂t

)
d

x3

δ
. (1.4)

In this equation, Cf = τw/(0.5ρU2∞) and Reδ = U∞δ/ν, U∞ is the freestream velocity,
and δ is the boundary layer thickness. We examine the terms on the right-hand side of
(1.4). The first two terms are the results of viscous diffusion and turbulent transport. These
two terms do not appear in Kármán’s integral and are internal to the boundary layer. They
redistribute but do not inject or remove momentum from the boundary layer. The last term
contains pressure gradient, flow acceleration/deceleration, and terms that are the result of
the flow’s evolution in the stream direction. It contains external fluxes, which contribute
to the overall force balance. Following the discussion above, it was argued that the integral
method would be more elegant if it contained only internal, Galilean-invariant terms. The
above viewpoint was enunciated in Gao & Wu (2019) and Aghaei-Jouybari et al. (2022).
The discussions in Fukagata et al. (2002) and Elnahhas & Johnson (2022) are also in line
with the logic above, although the argument was less explicit.

To further illustrate this point, we apply the FIK integral to a laminar channel flow. Since
the flow is laminar, u′

1u′
3 = 0, I0 = 0 and ∂ ū1/∂t = 0. It follows that (1.4) reduces to

Cf = 4
Reb

− 2
3
δ

U2
b

1
ρ

∂ p̄
∂x1

, (1.5)

where Cf = τw/(0.5ρU2
b) and Reb = Ubδ/ν, Ub is the bulk velocity, and δ is the

half-channel height. The laminar channel friction coefficient is known and is Cf = 6/Reb.
Equation (1.5) contains an internal term, i.e. the first term, and an external term, i.e. the
second term. The equation suggests that 2/3 of the skin friction in a laminar channel is
due to viscosity, and 1/3 is due to the imposed pressure gradient, which is not physical.
To resolve this issue, one can invoke the following force balance (see (5)–(8) in Fukagata
et al. 2002):

− τw/ρ =
∫ δ

0

(
I0 + 1

ρ

∂ p̄
∂x1

+ ∂ ū1

∂t

)
dx3. (1.6)

By performing the operation∫ δ

0

∫ x3

0

∫ x3

0

(
Eq.(1.2)− α

1
δ

Eq.(1.6)
)

dx3 dx3 dx3, (1.7)

and taking α = 1, one arrives at

Cf = 6
Reb

(1.8)

for laminar channel flow. Equation (1.8) contains one internal term only. It suggests that
the skin friction in a laminar channel is due to the viscosity, which is the right-hand side.

Equation (1.7) also alludes to a longstanding issue of the integral methods. Because
both (1.2) and (1.6) are exact, α in (1.7) is a free parameter, leading to ambiguity in
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the derivation. For example, Fukagata et al. (2002) took α = 1 to eliminate the pressure
gradient force for channel, but took α = 0 and kept the pressure gradient and other external
momentum fluxes for boundary layers. We will elaborate on this issue in § 3.

Above, we delved into the consideration involving distinguishing between effects that
are internal and external to the flow. Another consideration involves having a clear physical
interpretation. Take again Kármán’s integral equation as an illustrative example. Kármán’s
integral has a very clear interpretation. It describes the momentum balance.

We now turn our attention back to the integral methods. The integrals in Fukagata et al.
(2002) and other follow-up works come from the Navier–Stokes equation. Consequently,
the physical interpretations of terms within the Navier–Stokes equation seamlessly transfer
to the integrals and their ensuing decompositions. This linkage is convenient, yet it does
not fully encapsulate the entire narrative. Discussion on the physical interpretations of the
integrals continues. Renard & Deck (2016) raised concerns about the interpretability of
the triple integration in Fukagata et al. (2002), and they derived integrals grounded in
kinetic energy. Yoon et al. (2016) developed integrals grounded in vorticity, linking the
skin friction to the vortices in the flow. Elnahhas & Johnson (2022) interpreted the FIK
integral as the second-order moment of momentum, and they derived integrals based on
the first-order moment of momentum, which they interpret as the angular momentum.
Ricco & Skote (2022) pointed out that the terms in the FIK integral depend sensitively on
the integration limit, which brought uncertainty in the interpretation of the terms in the
FIK integral. In addition to the integration limit, the adjustable parameters in the integrals
are also a source of ambiguity: the prefactor one puts in front of the overall force balance
when deriving the FIK integral, i.e. α in (1.7), the length scale in the angular momentum
integral in Elnahhas & Johnson (2022), and the frame of reference in the kinetic energy
integral in Renard & Deck (2016) are all adjustable parameters.

The preceding discussion outlines the two considerations driving the reformulation of
existing integrals for smooth walls. Next, we explain the need for integrals for rough walls.

The friction on rough walls is different from that on smooth walls, τS. In addition
to the skin friction on the bottom wall, roughness gives rise to roughness element
drag force τR. In most high-Reynolds-number applications, τR is much larger than τS,
therefore having a decomposition of τR in addition to a decomposition of τS is instructive.
However, separate decompositions for τS and τR do not exist. Nikora et al. (2019) derived
decompositions for rough walls. However, the integral involves 2τS − τR − 3

∫ δ
0 ρfD(1 −

x3/δ)
2 dx3, which is hard to interpret (see further details in § 3.2). This motivates us to

seek new decompositions for rough walls. We require that the new decompositions satisfy
the following requirements. First, they should be based on the Navier–Stokes equations,
like the existing decompositions. Second, there should be separate decompositions for
τS and τR. Third, the viscous term should be the only term when the decompositions
are evaluated for laminar flow scenarios. Fourth, the decompositions should contain only
terms that represent effects internal to the flow.

The subsequent sections of the paper are organized as follows. The double-averaged
Navier–Stokes equations and the reformulation of the prior integral methods based
on the double-averaged Navier–Stokes equations are summarized in §§ 2 and 3. New
formulations for rough-wall friction are presented in § 4. The obtained bottom-wall skin
friction coefficient decompositions and roughness drag coefficient decompositions are
applied to flow over cubes with aligned and staggered arrangements. The details of the
direct numerical simulations (DNS) data are presented in § 5, with the results shown in
§ 6. Further extensions of the integral methods are presented in § 7. Finally, we provide
concluding remarks in § 8.
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Friction decomposition for rough-wall flows

2. Double-averaged momentum equation and the force balance

We summarize the double-averaged momentum equation and the overall force balance.
Here, double average refers to averages in time and the wall-parallel directions.

2.1. Momentum equation
The double-averaged streamwise momentum equation for rough-wall flows (Raupach &
Shaw 1982; Nikora et al. 2013, 2019) reads

∂〈ū1〉
∂t

+ 1
φ

∂φ〈ū1〉〈ūj〉
∂xj

+ 1
φ

∂φ〈̃ū1̃ūj〉
∂xj

+ 1
φ

∂φ〈u′
1u′

j〉
∂xj

= − 1
ρ

1
φ

∂φ〈p̄〉
∂x1

+ 1
ρ

1
Af

∮
S

p̄n1 dS + 1
φ

∂

∂xj

(
φ

〈
ν
∂ ū1

∂xj

〉)
− 1

Af

∮
S
ν
∂ ū1

∂xj
nj dS + fx,

(2.1)

where x1, x2, x3 are the streamwise, spanwise and wall-normal directions, u1, u2 and u3
are the instantaneous fluid velocities in the x1, x2, x3 directions, p is the pressure, ρ is
the density, fx is a body force that contains the mean pressure gradient, φ = Af /A0 is the
roughness porosity (with Af the fluid occupied planar area that is a function of x3), A0 is
the total planar area, S marks the boundary of the fluid area, and nj is the unit vector normal
to the solid boundary directed into the fluid. Here, ·̄ denotes time average, 〈·〉 denotes the
intrinsic spatial average, defined as

〈θ〉 = 1
Af

∫∫
Af

θ dx1 dx2, (2.2)

θ ′ = θ − θ̄ is fluctuation about the time average, and ˜̄θ = θ̄ − 〈θ̄〉 is the deviation of the
time average from the double average. Figure 1 is a sketch illustrating these concepts.

We may rewrite the double-averaged x1 momentum equation as

∂

∂x3

(
φ

〈
ν
∂ ū1

∂x3

〉)
− ∂φ〈u′

1u′
3〉

∂x3
− ∂φ〈̃ū1̃ū3〉

∂x3
− Ix + fD + φfx = 0, (2.3)

where the term 〈u′
1u′

3〉 is the Reynolds shear stress, 〈̃ū1̃ū3〉 is the dispersive stress, Ix
contains the horizontal convection and dispersion,

Ix = φ
∂〈ū1〉
∂t

+ ∂φ〈ū1〉〈ūj〉
∂xj

+ ∂φ〈̃ū1̃ū1〉
∂x1

+ ∂φ〈̃ū1̃ū2〉
∂x2

+ ∂φ〈u′
1u′

1〉
∂x1

+ ∂φ〈u′
1u′

2〉
∂x2

− ∂

∂x1

(
φ

〈
ν
∂ ū1

∂x1

〉)
− ∂

∂x2

(
φ

〈
ν
∂ ū1

∂x2

〉)
+ 1
ρ

∂φ〈p̄〉
∂x1

, (2.4)

and fD contains the form drag and viscous drag on the roughness elements per unit volume,

fD = φ
1
Af

1
ρ

∮
S

p̄n1 dS︸ ︷︷ ︸
form drag

−φ 1
Af

∮
S
ν
∂ ū1

∂xj
nj dS︸ ︷︷ ︸

viscous drag

. (2.5)

Consider the rough walls with discrete roughness elements. The friction consists of two
parts: the roughness element drag and the skin friction on the bottom wall. The roughness
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S

Af
A0

x1

x2

x1

x3

Roughness planar area (Ap)

Bottom flat plate

Roughness elements
(b)

(a)

Figure 1. (a) An illustration of the multi-connected area for the spatial integration in the roughness layer.
The planar area A0 is bounded by the dashed line. The fluid area Af is blue and surrounds the white,
roughness-occupied area. Their ratio Af /A0 gives the roughness porosity φ. The fluid boundary S consists
of the outer boundary (dashed) and the inner boundary (solid). (b) An illustration of the roughness planar area
Ap, i.e. the red area under the roughness elements. The ratio Ap/A0 gives the planar coverage density λp.

element drag and the corresponding drag coefficient are defined as

τR = −
∫ h

0
ρfD dx3, CR = 1

λp

τR

0.5ρU2
r
, (2.6a,b)

where h is the roughness height, Ur is some reference velocity, λp = Ap/A0 is the planar
roughness packing density and is not a function of x3, and Ap is the roughness planar area
as shown in figure 1(b) and equals 1 − φ in for cubic roughness. The bottom-wall skin
friction and the corresponding drag coefficient are defined as

τS =
[
ρφ

〈
ν
∂ ū1

∂x3

〉]
x3=0

, CS = τS

0.5ρU2
r
. (2.7a,b)

The common choices of the reference velocity Ur are the freestream velocity U∞,
the centreline velocity U0, and the bulk velocity Ub = ∫ 1

0 φ〈ū1〉 d(x3/δ). Note that
the freestream velocity of boundary layers is an external variable that stays the same
independently of conditions of a boundary layer. In contrast, the centreline and bulk
velocities in internal flows are not independent of the conditions on the wall and thus are
internal variables. The overall drag is given by τR + τS, and the overall friction coefficient
Cf is

Cf = τS + τR

0.5ρU2
r

= CS + λpCR, (2.8)

such that Cf = CS + λpCR can be used to evaluate Cf when CS and CR are available.
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Friction decomposition for rough-wall flows

x1

x3

Ix

fx

τ Ix

τR

τS

Figure 2. Schematic of flow over a rough surface: fx, Ix, τS, τR are the external forces;
τ = φ〈ν ∂ ū1/∂x3〉 − φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉 is the internal fluid stress.

2.2. Force balance
The overall force balance can be obtained by integrating the double-averaged momentum
equation (2.3) from x3 = 0 to x3 = δ:∫ δ

0

[
∂

∂x3

(
φ

〈
ν
∂ ū1

∂x3

〉)
− ∂φ〈u′

1u′
3〉

∂x3
− ∂φ〈̃ū1̃ū3〉

∂x3
− Ix + fD + φfx

]
dx3 = 0. (2.9)

The first term gives the viscous friction on the flat bottom wall:∫ δ

0

∂

∂x3

(
φ

〈
ν
∂ ū1

∂x3

〉)
dx3 = φ

〈
ν
∂ ū1

∂x3

〉∣∣∣∣δ
0

= −τS/ρ, (2.10)

where we have neglected the velocity gradient at x3 = δ. The second and third terms, i.e.
the Reynolds and dispersive stress terms, are internal terms and do not contribute to the
overall force balance. The integration of fD gives the roughness drag −τR/ρ per (2.6a,b).
Hence the overall force balance is

−τS/ρ − τR/ρ +
∫ δ

0
φfx dx3 −

∫ δ

0
Ix dx3 = 0. (2.11)

Figure 2 provides a visual illustration of the force balance. The momentum flux on the left,
right and top boundaries, denoted as Ix in the figure, and the forcing, denoted by fx in the
figure, are balanced by the wall shear stress and the roughness drag force, denoted by τS
and τR in the figure. The viscous force, Reynolds stress and dispersive stress are internal
forces; they redistribute the momentum within the flow, but do not contribute to the overall
force balance at the scale of the whole flow.

3. Prior integrals based on the double-averaged Navier–Stokes equation

In this section, we re-derive the prior integrals, including the mean momentum integral
(Fukagata et al. 2002; Nikora et al. 2019), the angular momentum integral (Elnahhas
& Johnson 2022), and the kinetic energy integral (Renard & Deck 2016), based on the
double-averaged Navier–Stokes equation. It will be clear that the prior integrals do not
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separate τS and τR. We will also review previous applications of these integrals and their
weaknesses to further motivate the present work on rough walls. For brevity, we will utilize
the first letters of the three leading authors’ names when referring to the NSC method as
outlined in Nikora et al. (2019).

3.1. Momentum-based integral
The momentum-based integrals are pioneered by Fukagata et al. (2002). Integrating the
double-averaged momentum equation (2.3), we arrive at the following decomposition of
the wall shear stress:

τS/ρ = 2U2
b

Reb
+ 2

∫ 1

0

(
1 − x3

δ

)
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) d

x3

δ

+
∫ 1

0

(
1 − x3

δ

)2
(φfx + fD − Ix)δ d

x3

δ
. (3.1)

This FIK decomposition proves to be a valuable diagnostic tool, and many have applied
it for flow analysis. Deck et al. (2014) examined the integrals for flat-plate boundaries
for a wide range of Reynolds numbers (3060 ≤ Reθ ≤ 13 650). They found that about
80 % of the skin friction in high-Reynolds-number boundary layers is due to turbulent
motions. Moreover, the large-scale motions with streamwise wavelengths λx > δ and
λx > 2δ account for approximately 60 % and 45 % of the skin friction, respectively. de
Giovanetti, Hwang & Choi (2016) studied the skin friction generated by self-similar
energy-containing motions up to a friction Reynolds number of approximately 4000. Their
findings indicated that the removal of very-large-scale and large-scale motions resulted in
only a minimal 5 %–8 % reduction in skin friction. The utility of the FIK method is not
limited to canonical boundary layer flows; it also serves as a reliable tool for assessing
the effectiveness of drag-reduction techniques. For example, an analysis by Iwamoto et al.
(2005) suggested that eliminating near-wall turbulence within x+

3 < 10 could lead to a
substantial 35 % drag reduction at Reτ = 105. The FIK integral method has also been used
for rough-wall boundary layers (Bannier, Garnier & Sagaut 2015; Nikora et al. 2019; Zhang
et al. 2021) and compressible flows (Gomez, Flutet & Sagaut 2009), where additional
terms emerge due to the complexity of these flow regimes. In § 3.2, we will delve further
into the integral method proposed by Nikora et al. (2019) for rough walls.

The FIK integral has received criticism, and alternative integrals have been explored.
In the following, we review these criticisms and the alternatives integrals. The first
criticism concerns the triple integration. Renard & Deck (2016) found the triple integration
hard to interpret. They argued that the product of a force and a length in the second
integration has the dimension of energy, and developed integrals grounded in kinetic
energy. Elnahhas & Johnson (2022) pointed out that the triple integration gives the second
moment of momentum. They argued that instead of the second moment, the first moment
of momentum is more straightforward to interpret. The second criticism concerns the
integration limit in the case of boundary layer flow. Ricco & Skote (2022) showed that
the value of the terms in the FIK integral depends on the upper integration limit, which
is a source of uncertainty. In addition to the usual δ99, Wenzel, Gibis & Kloker (2022)
compared different choices of the upper integration limit, and found that their results
do not depend qualitatively on the choice of the integration limit. Xu, Wang & Chen
(2022) also noticed that the exact value of the upper integration limit is not critical
for drawing general conclusions, at least in their study of hypersonic boundary layers.
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Nonetheless, to circumvent the issue of the integration limit, Renard & Deck (2016) turned
to the moving reference frame, and Elnahhas & Johnson (2022) resorted to the deficit
equation. In both scenarios, the contributions of the far field to the terms in the integrals
approach 0 as the upper integration limits are approaching infinity. The third criticism
concerns the weighting, i.e. (1 − x3/δ) and (1 − x3/δ)

2 in the integral (Fukagata et al.
2024). This weighting is a result of the triple integration. It emphasizes the wall layer,
and de-emphasizes the logarithmic and outer layers. Whether such weighting is physical is
debated. The existing literature shows that as the Reynolds number increases, the turbulent
motions in the logarithmic and outer layers become increasingly more important (Smits,
McKeon & Marusic 2011; Marusic & Monty 2019). These large-scale and vary-large-scale
motions influence the inner dynamics not only through superposition, but also through
amplitude modulation (Marusic, Mathis & Hutchins 2010; Yang & Howland 2018).
Besides, the weighting in the FIK integral poses challenges to laboratory data, which
usually incur large uncertainties near the wall (Mehdi et al. 2014; Volino & Schultz 2018;
Xia, Zhang & Yang 2021). To overcome this issue, Volino & Schultz (2018) and Xia et al.
(2021) proposed methods that allow one to determine the wall shear stress without access
to the data in the near-wall region. The last criticism concerns the use of the overall force
balance in the derivation, which was already highlighted in § 1.

3.2. The NSC method
The NSC method was introduced in Nikora et al. (2019). The method extends the FIK
integral to rough-wall boundary layers. The integral reads

8τR

ρU2
b

= 1
N

48
Reb

+ 1
N

48
δ2U2

b

∫ δ

0
(δ − x3)(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) dx3

+ 1
N

24
δ2U2

b

∫ δ

0
(δ − x3)

2
(
φfx − Ix − 1

δ

∫ δ

0
(φfx − Ix) dx3

)
dx3, (3.2)

where

N =
(

2τS − τR − 3
∫ δ

0
ρfD(1 − x3/δ)

2 dx3

)
/τR (3.3)

is interpreted as the flow–rough-wall interaction (Nikora et al. 2019). Nikora et al. (2019)
applied the decomposition in (3.2) and analysed the river-bed friction. They found that
both the roughness-induced and large-scale secondary-currents-induced dispersive stress
may play significant roles in generating bed friction at sufficiently high Reynolds numbers.

Equation (3.2) has the same weaknesses as FIK. Additionally, the decomposition in (3.2)
does not distinguish between the skin friction on the bottom wall and the drag force on the
roughness elements.

3.3. Angular momentum integral
The angular momentum integral (AMI) is introduced in Elnahhas & Johnson (2022). To
derive the AMI, we subtract the freestream momentum equation

∂U∞
∂t

+ U∞
∂U∞
∂x1

= − 1
ρ

∂P∞
∂x1

(3.4)
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from the double-averaged streamwise momentum equation (2.3). This gives

∂

∂x3

(
φ

〈
ν
∂ ū1

∂x3

〉)
− ∂φ〈u′

1u′
3〉

∂x3
− ∂φ〈̃ū1̃ū3〉

∂x3

+
(
∂(U∞ − 〈ū1〉)φ〈ūj〉

∂xj
+ (U∞ − φ〈ū1〉) ∂U∞

∂x1

)
− Ix,d + fD + φfx = 0, (3.5)

where Ix,d contains both the streamwise inhomogeneity terms and the freestream terms:

Ix,d = −
(
∂(U∞ − φ〈ū1〉)

∂t
+ 1
ρ

∂(P∞ − φ〈p̄〉)
∂x1

)

+ ∂φ〈̃ū1̃ū1〉
∂x1

+ ∂φ〈̃ū1̃ū2〉
∂x2

+ ∂φ〈u′
1u′

1〉
∂x1

+ ∂φ〈u′
1u′

2〉
∂x2

− ∂

∂x1

(
φ

〈
ν
∂ ū1

∂x1

〉)
− ∂

∂x2

(
φ

〈
ν
∂ ū1

∂x2

〉)
. (3.6)

Integrating the deficit momentum equation (3.5) premultiplied by (x3 − l) directly gives
the AMI:

τS

ρU2∞
= 1

Rel
+

∫ ∞

0

(−φ〈u′
1u′

3〉 − φ〈̃ū1̃ū3〉)
U2∞l

dx3

+
(
∂θl

∂x1
+ θl − θ

l
∂l
∂x1

+ 2θl

U∞
∂U∞
∂x1

)
+ ∂θl2

∂x2
+ θ3

l
+ δ∗l

U∞
∂U∞
∂x1

+ 1
U2∞

∫ ∞

0

(
1 − x3

l

)
(−Ix,d + fD + φfx) dx3. (3.7)

Here, Rel is the Reynolds number based on the freestream velocity U∞ and the origin
location l, θ and θ3 are the momentum thicknesses,

θ =
∫ ∞

0

(
1 − 〈ū1〉

U∞

)
φ〈ū1〉
U∞

dx3, θ3 =
∫ ∞

0

(
1 − 〈ū1〉

U∞

)
φ〈ū3〉
U∞

dx3, (3.8a,b)

and δ∗l , θl, θl2 are the modified displacement and momentum thicknesses:

δ∗l =
∫ ∞

0

(
1 − x3

l

) (
1 − φ〈ū1〉

U∞

)
dx3, (3.9)

θl =
∫ ∞

0

(
1 − x3

l

) (
1 − 〈ū1〉

U∞

)
φ〈ū1〉
U∞

dx3,

θl2 =
∫ ∞

0

(
1 − x3

l

) (
1 − 〈ū1〉

U∞

)
φ〈ū2〉
U∞

dx3. (3.10a,b)

Equation (3.7) holds for arbitrary non-zero l. Elnahhas & Johnson (2022) propose to pick
l such that

1
Rel

= 0.332√
Rex

= 0.221
Reθ

= 0.571
Reδ∗

= 1.63
Reδ

, (3.11)

which is the friction coefficient of a laminar flat-plate boundary layer. Here, Rex, Reθ ,
Reδ∗ , Reδ are the Reynolds numbers based on the streamwise distance, the momentum
thickness, the displacement thickness and the boundary layer thickness, respectively. This
choice allows one to compare the laminar and turbulent boundary layers.
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Friction decomposition for rough-wall flows

3.4. Kinetic energy integral
The triple integration in Fukagata et al. (2002) gives rise to weightings that de-emphasize
the logarithmic layer, which, as Renard & Deck (2016) argued, is undesirable. Attempts
have been made so that fewer integrations are needed. A noteworthy work along this
direction is the kinetic energy integral in Renard & Deck (2016), which requires a single
integration. The ‘trick’ is to integrate the premultiplied mean momentum equation in a
reference frame moving with the freestream. The resulting integral can be interpreted
as the mean kinetic energy. The integral has been applied to study the effects of
compressibility (Li et al. 2019), mean pressure gradient (Fan et al. 2020), chemical
reactions (Passiatore et al. 2021) and the transition (Marxen & Zaki 2019).

Again, we re-derive the integral based on the double-averaged Navier–Stokes equation.
Following Renard & Deck (2016), we premultiply the double-averaged Navier–Stokes
equation by (φ〈ū1〉 − U∞), and integrate the equation. This leads to

U∞τS/ρ =
∫ ∞

0
ν

(
∂φ〈ū1〉
∂x3

)2

dx3 +
∫ ∞

0
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) ∂φ〈ū1〉

∂x3
dx3

−
∫ ∞

0
(φ〈ū1〉 − U∞)(−Ix + fD + φfx) dx3. (3.12)

The first term on the right-hand side is the modified viscous dissipation, the second term is
the modified production of the turbulent and dispersive kinetic energy, and the third term
is the additional energy loss due to (−Ix + fD + φfx). For channel flows, the integration of
(2.3) should be performed by premultiplying (φ〈ū1〉 − Ub) (Renard & Deck 2016), which
gives

UbτS/ρ =
∫ δ

0
ν

(
∂φ〈ū1〉
∂x3

)2

dx3 +
∫ δ

0
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) ∂φ〈ū1〉

∂x3
dx3

−
∫ δ

0
(φ〈ū1〉 − Ub)(−Ix + fD + φfx) dx3. (3.13)

The integral holds for any Ur that one puts in the premultiplier (φ〈ū1〉 − Ur). Like the
prefactor α in the FIK integral, and the length scale l in the AMI, Ur here is an adjustable
parameter.

4. Present work

We see from § 3 that the existing integrals do not separate τS and τR. Furthermore, all of
them contain adjustable parameters, which is a source of ambiguity. In this section, we aim
to reformulate the prior integrals such that they overcome these two issues. Considering
a decomposition that expresses τS and τR as a function of other terms in the overall force
balance equation, we also require that the decompositions that we derive contain only
terms that represent effects internal to the flow. Furthermore, we require that the viscous
term, if present, is the only term surviving when the decompositions are evaluated for
laminar flows.
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4.1. Kinetic-energy-based integral
We multiply the mean momentum equation (2.3) with (φ〈ū1〉 − Uw) and then integrate:

UwτS/ρ +
∫ δ

0
(φ〈ū1〉 − Uw)fD dx3 +

∫ δ

0
(φ〈ū1〉 − Uw)φfx dx3 −

∫ δ

0
(φ〈ū1〉 − Uw)Ix dx3

=
∫ δ

0

[
ν

(
∂φ〈ū1〉
∂x3

)2

− φ〈u′
1u′

3〉
∂φ〈ū1〉
∂x3

− φ〈̃ū1̃ū3〉 ∂φ〈ū1〉
∂x3

]
dx3. (4.1)

Here, the flow type (i.e. whether the flow is a boundary layer or a channel) is left
unspecified. We will see soon that our decompositions do not depend on the flow type.
In the integrals above, δ is the boundary layer height and should be sufficiently high
such that the Reynolds shear stress and the dispersive stress are approximately 0 there.
A convenient definition could be δ = 1.5δ99 (Wenzel et al. 2022; Xu et al. 2022) to enable
qualitative results. Considering that the far-field contribution to these two stresses is 0, the
integration will not depend sensitively on the value of δ as long as it is sufficiently large.
For now, Uw is left undetermined. Equation (4.1) can be interpreted as the kinetic energy
equation in the reference frame that moves at speed Uw in the +x1 direction. The terms
on the left- and right-hand sides are the external energy source terms and internal energy
loss terms, respectively. The external energy source terms are dependent on the choice of
the reference frame. The internal energy loss terms are due to viscosity, turbulence and
mean flow inhomogeneity, and therefore do not depend on the reference frame. The first
two terms on the left-hand side are the terms due to the bottom viscous friction and the
roughness drag force, and they contain the skin friction coefficient and the roughness drag
coefficient information. The third and fourth terms are energy inputs due to the forcing
term and the streamwise evolution of the flow. The terms on the left-hand side are positive
or negative depending on Uw. When a term is positive, it represents a positive source;
and when a term is negative, it represents a negative source. The terms on the right-hand
side are almost always positive, representing energy loss due to mean flow dissipation,
turbulent production, and the production of dispersive kinetic energy.

The next step is to remove terms that represent external effects and isolate the surface
skin friction term and the roughness drag coefficient term. We do that via Uw. Specifically,
the following Uw eliminates the terms representing external effects and isolates the skin
friction term:

Uw ≡ Uw,S =

∫ δ

0
φ〈ū1〉( fD + φfx − Ix) dx3∫ δ

0
( fD + φfx − Ix) dx3

= 1
τS

∫ δ

0
ρφ〈ū1〉( fD + φfx − Ix) dx3, (4.2)

where we have invoked the force balance in (2.11). The values of Uw,S for some specific
flow scenarios are listed in table 1. For a fully developed plane channel flow, fD = 0,
Ix = 0, and (4.2) gives Uw,S = Ub. For a zero pressure gradient flat-plate boundary layer,
fD = 0, fx = 0, and (4.2) gives Uw,S = ∫ δ

0 (ρφ〈ū1〉(−Ix)/τS) dx3. For a fully developed
channel flow in the fully rough regime with h 
 δ, Ix = 0, the integration of φ〈ū1〉fD is
small, and (4.2) gives Uw,S ≈ (τR/τS + 1)Ub. Equations (4.1) and (4.2) together give the

985 A46-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.293


Friction decomposition for rough-wall flows

Flow scenarios Uw,S Uw,R

Plane channel

{
fD = 0,
Ix = 0

Ub N/A

Flat-plate ZPGBL

{
fD = 0,
fx = 0

∫ δ

0

ρφ〈ū1〉(−Ix)

τS
dx3 N/A

Transitionally rough channel

{
h 
 δ,

Ix = 0
(1 + τR/τS)Ub (τS/τR + 1)Ub

Fully rough channel

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

Ix = 0
∞ Ub

Fully rough ZPGBL

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

fx = 0
∞

∫ δ

0

ρφ〈ū1〉(−Ix)

τR
dx3

Table 1. Values of Uw,S and Uw,R for some special flow scenarios. We assume that the flows are fully
developed. ZPGBL is short for zero pressure gradient boundary layer.

following decomposition of the bottom viscous friction coefficient CS:

(0.5Uw,SU2
r )CS =

∫ δ

0

[
ν

(
∂φ〈ū1〉
∂x3

)2

− φ〈u′
1u′

3〉
∂φ〈ū1〉
∂x3

− φ〈̃ū1̃ū3〉 ∂φ〈ū1〉
∂x3

]
dx3,

(4.3)
where Ur is some reference velocity.

Similarly, we can isolate the roughness drag and eliminate the terms that represent
external effects by choosing the following Uw:

Uw ≡ Uw,R = 1
τR

∫ δ

0
ρφ〈ū1〉( fD + φfx − Ix) dx3. (4.4)

Again, we have also invoked the force balance in (2.11). This velocity obviously exists only
for a rough-wall flow, for which τR /= 0. Its values for a few specific flow scenarios are
listed in table 1. For a fully-developed channel flow in the transitionally rough regime with
h 
 δ, the integration of ρφ〈ū1〉fD is small, Ix = 0, and we have Uw,R ≈ (1 + τS/τR)Ub.
For fully developed channels in the fully rough regime with h 
 δ, Ix = 0, the integration
of ρφ〈ū1〉fD is small, τR � τS, and we have Uw,R ≈ Ub. Invoking (4.1) and (4.4), we have
the following decomposition of the roughness element drag coefficient:

(0.5Uw,RU2
r )λpCR =

∫ δ

0

[
ν

(
∂φ〈ū1〉
∂x3

)2

− φ〈u′
1u′

3〉
∂φ〈ū1〉
∂x3

− φ〈̃ū1̃ū3〉 ∂φ〈ū1〉
∂x3

]
dx3.

(4.5)

We now assess whether the decompositions presented in (4.3) and (4.5) meet our
requirements. First and foremost, (4.3) and (4.5) stand as distinct decompositions for the
skin friction coefficient CS and the roughness drag coefficient CR, respectively. Second,
ambiguities in the derivation process are removed, and we have unique choices for Uw.
Third, we have eliminated terms dependent on the reference frame, retaining only those
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effects that are internal to the flow. Finally, the first term in both equations is the sole
surviving term when the two decompositions are evaluated for laminar flows above a flat
plate, regardless of whether the flow occurs in a channel or a boundary layer.

Before we proceed to the next subsection, we comment on the choice of keeping the
terms that represent internal effects and eliminating the terms that represent external
effects in the decompositions in (4.3) and (4.5). First and foremost, we should note that
the external effects are only formally eliminated, as they are still contained in our specific
choices of Uw (or l and α in the following sections). We can also explicitly keep the terms
that represent external effects and eliminate the terms that represent internal effects. To do
that, we divide both sides of (4.1) by Uw, and take Uw to infinity. The resulting expression,
however, reduces to the overall force balance, or Kármán’s equation, which is not very
instructive.

4.2. Angular-momentum-based integral
We premultiply the mean momentum equation with (x3 − l) and integrate:

lτS/ρ +
∫ δ

0
(x3 − l)fD dx3 +

∫ δ

0
(x3 − l)φfx dx3 +

∫ δ

0
(x3 − l)(−Ix) dx3

=
∫ δ

0

(
ν
∂φ〈ū1〉
∂x3

− φ〈u′
1u′

3〉 − φ〈̃ū1̃ū3〉
)

dx3. (4.6)

Here, l is the location of the rotation axis. The terms on the left-hand side encompass the
external sources of angular momentum, which include contributions from the surface skin
friction, the roughness drag force, the evolution of the flow in the streamwise direction,
and external forcing. These terms depend on the location of the axis l. In contrast, the
terms on the right-hand side represent internal losses of angular momentum due to mean
flow gradient, Reynolds shear stress and dispersive stress, and they do not depend on the
axis location.

As before, the next step is to eliminate the terms representing external effects and isolate
the skin friction and drag force terms via the free parameter in the integral l. The following
l isolates τS:

l ≡ lS = 1
τS

∫ δ

0
ρx3( fD + φfx − Ix) dx3. (4.7)

The values of lS for a few specific flow scenarios are listed in table 2. Equations (4.6)
and (4.7) together give the angular-momentum-based decomposition of the skin friction
coefficient

CS = 2
Rel,S

Uδ
Ur

+ 2
U2

r lS

∫ δ

0
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) dx3, (4.8)

where Uδ is the velocity at x3 = δ, and Rel,S = lSUr/ν. The first term on the right-hand
side of (4.8) represents the laminar contribution and is the only term surviving when the
equation is evaluated for laminar-flow and flat-plate scenarios.

Similarly, we can isolate the roughness drag coefficient and eliminate the terms
representing external effects by taking the following l:

l ≡ lR = 1
τR/ρ

(∫ δ

0
x3( fD + φfx − Ix) dx3

)
. (4.9)
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Friction decomposition for rough-wall flows

Flow scenario lS lR

Plane channel

{
fD = 0,
Ix = 0

δ/2 N/A

Flat-plate ZPGBL

{
fD = 0,
fx = 0

∫ δ

0
ρx3(−Ix)/τS dx3 N/A

Transitionally rough channel

{
h 
 δ,

Ix = 0
(1 + τR/τS)δ/2 (τS/τR + 1)δ/2

Fully rough channel

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

Ix = 0
∞ δ/2

Fully rough ZPGBL

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

fx = 0
∞

∫ δ

0
ρx3(−Ix)/τR dx3

Table 2. Examples of lS and lR in extreme cases; ZPGBL is short for zero pressure gradient boundary layer.

The values of lR for a few specific flow scenarios are listed in table 2. Equations (4.6) and
(4.9) together give

λpCR = 2
Rel,R

Uδ
Ur

+ 2
U2

r lR

∫ δ

0

(
−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉

)
dx3, (4.10)

where Rel,R = UrlR/ν. Again, the first term represents the laminar contribution and is the
only surviving term when the equation is evaluated for laminar flow above a flat plate.

Equations (4.8) and (4.10) provide angular-momentum-based decompositions for
the skin friction coefficient CS and roughness drag coefficient CR. Just like the
kinetic-energy-based decompositions in (4.3) and (4.5), the decompositions in (4.8) and
(4.10) fulfil the requirements that we set forth. As before, we have kept the terms that
represent internal effects and eliminated the terms that represent external effects. To keep
the terms that represent external effects and eliminate the terms that represent internal
effects, we need only divide both sides of (4.6) by l, and take l to infinity. The equation
again degenerates to the overall force balance.

4.3. Momentum-based integral
We multiply the force balance equation with α/δ and subtract it from the mean momentum
equation, where α is left undetermined for now. Integrating the resulting equation leads to(

1 − α

3

)
τS/ρ +

(
−α

3

)
τR/ρ

−
∫ δ

0

(
1 − x3

δ

)2
( fD + φfx − Ix) dx3 +

(α
3

) (∫ δ

0
(φfx − Ix) dx3

)
= 2νUb

δ
+ 2
δ

∫ δ

0

(
1 − x3

δ

)
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) dx3. (4.11)
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The next step is to eliminate terms representing external effects, and isolate the skin
friction and drag terms. The following α isolates τS:

αS ≡ α =

∫ δ

0
(1 − x3/δ)

2( fD + φfx − Ix) dx3

(1/3)
∫ δ

0
( fD + φfx − Ix) dx3

= 3
τS/ρ

∫ δ

0
(1 − x3/δ)

2( fD + φfx − Ix) dx3. (4.12)

The resulting decomposition of the skin friction coefficient CS is

(0.5U2
r )CS = 1

1 − αS/3

(
2ν

Ub

δ
+ 2
δ

∫ δ

0

(
1 − x3

δ

)
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) dx3

)
,

(4.13)

where the first term on the right-hand side is the only term surviving when the
decomposition is evaluated for laminar flow above flat plates.

Similarly, we can isolate τR by choosing the following α:

αR ≡ α =

∫ δ

0
(1 − x3/δ)

2( fD + φfx − Ix) dx3 − τS/ρ

(1/3)
(∫ δ

0
(φfx − Ix) dx3 − τS/ρ

)
= 3
τR/ρ

(∫ δ

0
(1 − x3/δ)

2( fD + φfx − Ix) dx3 − τS/ρ

)
. (4.14)

The resulting decomposition of the roughness drag coefficient CR is

(0.5U2
r )λpCR =

(
− 3
αR

) (
2ν

Ub

δ
+ 2
δ

∫ δ

0

(
1 − x3

δ

)
(−φ〈u′

1u′
3〉 − φ〈̃ū1̃ū3〉) dx3

)
,

(4.15)

where Ur is the reference velocity.
The values of αS and αR for some specific flow scenarios are tabulated in table 3 and

are not elaborated here for brevity. Equations (4.13) and (4.15) give momentum-based
decompositions of CS and CR, and they satisfy the requirements that we set forth. Again, if
we were to keep the terms that represent external effects and eliminate terms that represent
internal effects, then we would end up with the overall force balance.

As a final remark for this section, we note that the integrals obtained here should be
viewed as alternatives to the existing ones in Fukagata et al. (2002), Nikora et al. (2019),
Renard & Deck (2016) and Elnahhas & Johnson (2022), and provide useful extensions of
the integral methods to the rough-wall flows.

5. The DNS details

We provide detailed information about the DNS data (Zhang et al. 2023) to which we
apply our decompositions. The flow configuration is depicted schematically in figure 2,
representing a half-channel with periodicity in the two horizontal directions. The flow
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Friction decomposition for rough-wall flows

Flow scenario αS αR

Plane channel

{
τS � τR,

fx � Ix
1 −∞

Plane ZPGBL

{
τS � τR,

fx 
 Ix

∫ δ

0

(
1 − x3

δ

)2
(−Ix)

(1/3)τS/ρ
dx3 −∞

Transitional rough channel

⎧⎪⎨⎪⎩
τS ∼ τR,

h 
 δ,

fx � Ix

1 − 2τR/τS −2 − 2τS/τR

Fully rough channel

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

fx � Ix

−∞ −2

Fully rough ZPGBL

⎧⎪⎨⎪⎩
τS 
 τR,

h 
 δ,

fx 
 Ix

−∞
∫ δ

0

(
1 − x3

δ

)2
(−Ix)

(1/3)τR/ρ
dx3

Table 3. Examples of αS and αR in extreme cases; ZPGBL is short for zero pressure gradient boundary layer.

Lx

Ly s

s

h

h
s

s/2

s

(b)(a)

Figure 3. Schematic of the (a) aligned and (b) staggered arrangements of roughness arrays. The flow is from
left to right.

is driven by a constant pressure gradient in the streamwise direction, while the bottom
wall is characterized by roughness elements in the form of cubes. The domain height is
six times that of the cubes, and we vary the surface coverage density λp from 0.11 % to
11.1 %. Additionally, we explore different arrangements of the cubes, including aligned and
staggered arrangements, illustrated in figures 3(a,b), respectively. The friction Reynolds
number of the flow is Reτ = uτLz/ν = 360, where uτ = √

τw/ρ denotes the friction
velocity (τw is the total rough-wall drag per unit planar area), Lz(= δ) is the height of
the open channel, and ν represents the fluid viscosity.

Our DNS are conducted using the pseudo-spectral code LESGO, which solves the
incompressible Navier–Stokes equations utilizing the fractional-step method with a
second-order Adams–Bashforth scheme for time marching. Horizontal directions employ
a Fourier spectral discretization, and the wall-normal direction uses a second-order
staggered-grid finite difference scheme. The immersed boundary method is employed
to resolve the roughness elements (Chester, Meneveau & Parlange 2007). This code has

985 A46-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.293


W. Zhang, X.I.A. Yang, P. Chen and M. Wan

Case Reτ λp s/h nx × ny Configuration Lx/h × Ly/h × Lz/h Nx × Ny × Nz

A03 360 11.1 % 3 14 × 7 Aligned 42 × 21 × 6 672 × 336 × 160
A04 360 6.25 % 4 10 × 5 Aligned 40 × 20 × 6 640 × 320 × 160
A05 360 4.00 % 5 8 × 4 Aligned 40 × 20 × 6 640 × 320 × 160
A06 360 2.78 % 6 7 × 4 Aligned 42 × 24 × 6 672 × 384 × 160
A08 360 1.56 % 8 5 × 3 Aligned 40 × 24 × 6 640 × 384 × 160
A10 360 1.00 % 10 4 × 2 Aligned 40 × 20 × 6 640 × 320 × 160
A15 360 0.44 % 15 3 × 2 Aligned 45 × 30 × 6 720 × 480 × 160
A20 360 0.25 % 20 2 × 2 Aligned 40 × 40 × 6 640 × 640 × 160
A25 360 0.16 % 25 2 × 2 Aligned 50 × 50 × 6 800 × 800 × 160
A30 360 0.11 % 30 2 × 2 Aligned 60 × 60 × 6 960 × 960 × 160
S03 360 11.1 % 3 14 × 7 Staggered 42 × 21 × 6 672 × 336 × 160
S04 360 6.25 % 4 10 × 5 Staggered 40 × 20 × 6 640 × 320 × 160
S05 360 4.00 % 5 8 × 4 Staggered 40 × 20 × 6 640 × 320 × 160
S06 360 2.78 % 6 8 × 4 Staggered 48 × 24 × 6 768 × 384 × 160
S08 360 1.56 % 8 6 × 3 Staggered 48 × 24 × 6 768 × 384 × 160
S10 360 1.00 % 10 4 × 2 Staggered 40 × 20 × 6 640 × 320 × 160
S15 360 0.44 % 15 4 × 2 Staggered 60 × 30 × 6 960 × 480 × 160
S20 360 0.25 % 20 2 × 2 Staggered 40 × 40 × 6 640 × 640 × 160
S25 360 0.16 % 25 2 × 2 Staggered 50 × 50 × 6 800 × 800 × 160
S30 360 0.11 % 30 2 × 2 Staggered 60 × 60 × 6 960 × 960 × 160

Table 4. The DNS details: Reτ is the friction Reynolds number, λp is surface coverage density, s is the spacing
between two neighbouring roughness elements, h is roughness height, nx and ny are the roughness element
numbers in the streamwise and spanwise directions, Lx, Ly and Lz are the domain sizes in the streamwise,
spanwise and wall-normal directions, respectively, and Nx, Ny and Nz are the grid numbers in the corresponding
directions.

been utilized extensively in simulating turbulent flows over rough surfaces (Graham &
Meneveau 2012; Cheng & Porté-Agel 2015; Giometto et al. 2016; Zhu & Anderson 2018;
Yang et al. 2019; Zhang et al. 2022), and we omit further details here for the sake of
brevity.

Table 4 provides additional specifics of the DNS, including domain sizes, grid sizes,
roughness arrangements, distance between neighbouring cubes, and surface coverage
density. The cases are named based on the [Configuration][Spacing] format, where
‘Configuration’ is denoted by A or S, and ‘Spacing’ ranges from 03 to 30. We chose the
streamwise and spanwise domain sizes Lx and Ly to be such that Lx > 2πLz and Ly > πLz,
following Lozano-Durán & Jiménez (2014) and Sharma & Garcia-Mayoral (2020). The
grid is uniform in the x and y directions, but stretched in the z direction. The grid resolution
satisfies Δx+ = Δy+ = 3.75, with Δz+

min < 0.5 at the wall, and Δz+
max ≈ 3 at the top

of the open channel. The grid resolution is comparable to or finer than that used in the
existing literature (Kim, Moin & Moser 1987; Lee, Sung & Krogstad 2011; Lozano-Durán
& Jiménez 2014; Xu et al. 2021). While a finer grid resolution may be necessary for
high-order statistics (Yang & Griffin 2021; Chen et al. 2023), our current focus is on
low-order statistics.

6. Results

6.1. Drag coefficients
Figure 4 presents the variation of the bottom-wall friction coefficient CS and the element
drag coefficient CR with respect to the surface coverage density λp. For λp � 1 %, the
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10–3
0

0.2

0.4

0.6

CS CR

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(×10–2)

10–2 10–1

Aligned

λp λp

10–3 10–2 10–1

(b)(a)

Staggered

Figure 4. Drag coefficients as functions of the roughness surface coverage density λp: (a) surface skin friction
coefficient CS; (b) element drag coefficient CR. The black squares with solid lines represent the aligned
arrangement, and the red circles with dash-dotted lines represent the staggered arrangement.

bottom viscous friction coefficient CS increases with λp, while for λp � 1 %, CS decreases
with increasing λp. The increase in CS when λp is low is attributed to secondary flows
that transport high-momentum fluid from the bulk to the wall layer (Yang et al. 2019).
These secondary flows manifest as vortex pairs, arising due to the spanwise heterogeneity
in surface roughness (Anderson et al. 2015). Conversely, the decrease in CS when λp is
high is linked to flow sheltering (Raupach 1992), where an upstream roughness element
reduces the incoming flow to a downstream roughness, thereby resulting in reduced drag
on the downstream roughness. As for the element drag coefficient, CR remains insensitive
to λp for λp � 0.4 %, in which range the roughness elements behave as if they are isolated.
However, when λp � 0.4 %, the element drag coefficient starts decreasing with λp due
to the interactions between the roughness elements that lead to mutual flow sheltering.
In this regime, the roughness elements influence one another, resulting in the decrease
of CR with increasing λp. Furthermore, it is worth noting that the staggered arrangement
consistently yields larger values of CR compared to the aligned arrangement for λp �
0.4 %. This is attributed to reduced flow sheltering in rough-wall boundary layers with the
staggered roughness arrangement compared to the aligned roughness arrangement (Cheng
et al. 2007; Hagishima et al. 2009; Leonardi & Castro 2010; Yang et al. 2016).

6.2. Kinetic-energy-based decomposition
In this subsection and the following two subsections, we apply the decompositions to the
rough-wall open channel DNS data presented in § 5. We plot against λp, but the plots here
reflect the effect of decreasing porosity as well.

Figure 5 shows Uw,S/Ub and Uw,R/Ub, where Uw,S approaches Ub and large multiples
of Ub as λp approach 0, i.e. the smooth-wall limit and the fully rough-wall limit, which is
consistent with table 1. On the other hand, Uw,R approaches large multiples of Ub and Ub
as λp approach the smooth-wall and fully rough-wall limits, in accordance with table 1.
Here, we explain the trends in figure 5. Equation (4.3) is an energy equation. The left-hand
side, Uw,SτS, represents the work done by the bottom-wall viscous friction. It balances
the energy loss due to terms on the right-hand side. When λp is large, τS is small, and
Uw,S must be large to balance the terms on the right-hand side. Similarly, (4.5) is also an
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10–3
0

2

4

8

6

U
w
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/
U

b

U
w

,R
/
U

b

10

2

4

8

6

10

0
10–2 10–1

λp λp

10–3 10–2 10–1

(b)(a)

Aligned
Staggered

Figure 5. The wall velocity (a) Uw,S as defined in (4.2), (b) Uw,R as defined in (4.4). The black squares with
solid lines represent the aligned arrangement, and the red circles with dash-dotted lines represent the staggered
arrangement. The horizontal line is at Uw/Ub = 1.

energy equation. The left-hand side, Uw,RτR, is the energy source that balances the energy
loss on the right-hand side. As λp approaches 0, τR is small and Uw,R must be large. The
staggered arrangement leads to a drag partition that is more biased towards the roughness
drag, resulting in a larger (τR + τS)/τS than the aligned arrangement in the fully rough
limit, which subsequently leads to a larger Uw,S/Ub than the aligned arrangement, as per
table 1.

Figure 6 shows the decompositions of the wall friction coefficient and the element drag
coefficient, i.e. (4.3) and (4.5). Here, we define the CS components as

CS,V = 1
0.5Uw,SU2

b

∫ δ

0
ν

(
∂φū1

∂x3

)2

dx3,

CS,T = 1
0.5Uw,SU2

b

∫ δ

0
φ〈u′

1u′
3〉
∂φū1

∂x3
dx3,

CS,D = 1
0.5Uw,SU2

b

∫ δ

0
φ〈̃ū1̃ū3〉 ∂φū1

∂x3
dx3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.1)

which are the contributions from the viscous term, the turbulent production and the wake
production, respectively. The CR components (CR,V , CR,T , CR,D) are defined in a similar
way as in (7.1a–c) by replacing Uw,S with Uw,R. We make the following observations.
First, the wake production is small in both CS and CR for the range of λp investigated
here; at small λp, turbulent production and mean flow dissipation are comparable; as
λp increases, turbulent production becomes the dominant term. Second, we can attribute
the increase in CS as a function of λp when λp is small in figure 4 to the increase in
turbulent production. Considering that this increase in CS is a result of secondary flows
(Yang et al. 2019), we may conclude that the presence of secondary flows increases the
turbulent production, which in turn increases CS. Third, the decrease in CS as a function
of λp when λp is large in figure 4 can be attributed to the decline of both mean flow
dissipation and turbulent production with increasing λp. Considering that this decrease in
Cs is due to flow sheltering, we may conclude that flow sheltering reduces the mean flow
dissipation and turbulent production, which in turn reduces CS. Fourth, flow sheltering also
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V(A) V(S)
T(A) T(S)
D(A) D(S)

λp λp

10–3 10–2 10–1

(b)(a)

Figure 6. Kinetic-energy-based decomposition of drag coefficient: (a) the wall skin friction coefficient CS per
(4.3); (b) the element drag coefficient CR per (4.5). The decompositions contain contributions from the viscous
dissipation (squares, denoted as V in the figure), the turbulent production (circles, denoted as T in the figure),
and the wake production (triangles, denoted as D in the figure). The black symbols with solid lines are for
aligned (A) cube arrays, and the red symbols with dash-dotted lines are for staggered (S) cube arrays.

10–3 10–2 10–1

λp

10–3 10–2 10–1

λp

5

Aligned

Staggered4

3

2

l S
/δ

l R
/δ

0

1

5

4

3

2

0

1

(a) (b)

Figure 7. The location of the rotation axis (a) lS as defined in (4.7), and (b) lR as defined (4.9). The horizontal
lines are at l/δ = 0.5.

impacts CR: it leads to reduced turbulent production and mean flow dissipation, which in
turn results in a decrease of CR. Finally, the roughness arrangement affects the turbulent
production term at relatively large λp values only. At low λp values, roughness elements
do not interact with each other, and the roughness arrangement does not have an impact on
the result. When λp is high, the aligned arrangement incurs more flow sheltering than the
staggered arrangement, resulting in a more pronounced decrease in turbulent production
as a function of λp than the staggered arrangement.

6.3. Angular-momentum-based decomposition
Figure 7 shows lS and lR as in (4.7) and (4.9). Here, lS approaches 0.5δ and large
multiples of 0.5δ at the smooth-wall limit and the fully rough-wall limit, consistent with
our analysis of (4.7) as per table 2; lR, on the other hand, approaches large multiples of
0.5δ and 0.5δ itself at the smooth-wall and the highly rough-wall limit, in accordance
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0.4CS CR
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0
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(×10–2)
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Figure 8. Angular-momentum-based decompositions of (a) the wall skin friction coefficient CS as in (4.8),
(b) the element drag coefficient CR as in (4.10). The decompositions contain contributions from the viscous
stress (squares), the turbulent stress (circles) and the dispersive stress (triangles). The black symbols with solid
lines are for aligned cube arrays, and the red symbols with dash-dotted lines are for staggered cube arrays.

with (4.9) and table 2. Now we explain the trends in figure 7. Equation (4.8) describes
the balance of the angular momentum. The left-hand side, τSls/(U2

r ls), is balanced by the
angular momentum of the stresses on the right-hand side. Hence a large lS is needed to
compensate a small τS when λp is large. In the smooth-wall limit, the sum of the stress
terms equals a linear function of the wall distance, i.e. τS(1 − x3/δ), and its integration
from x3 = 0 to x3 = δ gives τSδ/2. As a result, lS approaches δ/2 in the smooth-wall limit.
A similar analysis applies to lR and is not repeated here for brevity. Figure 8 shows the
decompositions according to (4.8) and (4.10). Compared to the results in figure 6, the
results here are less interesting. The turbulent stress is the dominant term in both CS and
CR, and the contributions due to the viscous stress and dispersive stress are small, at least
within the range of surface coverage densities investigated here. Roughness arrangement
affects the turbulent stress term and dispersive stress term, with the turbulent stress term
generally larger for staggered roughness arrays than for aligned roughness arrays.

6.4. Momentum-based decomposition
Figure 9 shows αS and αR as defined in (4.12) and (4.14). Here, αS approaches 1 and a large
negative value in the smooth-wall and fully rough-wall limits, consistent with table 3; αR
approaches −2 and a large negative value in the fully rough-wall and smooth-wall limits,
also consistent with table 3. The trends in figure 9 can be explained by resorting to the force
balance, as in the previous two subsections, where we resorted to the energy and angular
momentum equations. Figure 10 shows the decompositions of the skin friction coefficient
and the roughness drag coefficient in (4.13) and (4.15). The results are very similar to the
results of angular-momentum-based decompositions. The turbulent stress term dominates,
with it being larger for staggered arrays than for aligned arrays.

7. Further discussion

The analyses presented in § 6 tell us the processes and their contributions to the skin
friction coefficient and the roughness drag coefficient. It has been some 20 years since
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Figure 9. Plots of (a) αS as defined in (4.12), and (b) αR as defined in (4.14). The horizontal lines in (a,b) are
at αS = 1 and αR = −2, respectively.
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Figure 10. Momentum-based decomposition of (a) the wall skin friction coefficient CS per (4.13), and
(b) the element drag coefficient CR per (4.15). The decompositions contain contributions from the viscous
stress (squares), the turbulent stress (circles) and the dispersive stress (triangles). The black symbols with solid
lines are for aligned cube arrays, and the red symbols with dash-dotted lines are for staggered arrays.

Fukagata et al. (2002), and such analyses are somewhat standard. Here we ask: how
do eddies at different heights (x3 locations) contribute to these identified processes, and
subsequently to the drag and skin friction coefficients? The same question could be asked
about eddies at different x1 and x2 locations. For brevity, here we limit the discussion to
the kinetic-energy-based decomposition of the skin friction coefficient. It should be clear
that the discussion in this section applies equally to the roughness element drag coefficient
and other momentum-based, angular-momentum-based decompositions.

Define the viscous dissipation term Dm,S, the turbulent production term Pt,S and the
wake production term Pd,S as

Dm,S = ψν
∂ ū1

∂x3

∂φ〈ū1〉
∂x3

, Pt,S = ψ(−u′
1u′

3)
∂φ〈ū1〉
∂x3

, Pd,S = ψ(−̃ū1̃ū3)
∂φ〈ū1〉
∂x3

,

(7.1a–c)
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where ψ = δ/(0.5Uw,SU2
b). Thus defined terms are functions of the spatial coordinates x1,

x2 and x3. Integrating these terms gives the skin friction coefficient per (4.3):

CS =
∫ 1

0
(φ〈Dm,S〉 + φ〈Pt,S〉 + φ〈Pd,S〉) d

x3

δ
, (7.2)

and the terms φ〈Dm,S〉, φ〈Pt,S〉 and φ〈Pd,S〉, which are functions of x3, tell us the
contributions of the flow at different x3 locations to the various processes that contribute
to CS.

Figure 11 depicts the viscous dissipation term φ〈Dm,S〉, the turbulent production term
φ〈Pt,S〉 and the wake production term φ〈Pd,S〉 as functions of the wall-normal coordinate
x3, for both staggered and aligned cube arrays. When λp is small, the viscous dissipation
term and the turbulent production term are the dominant terms, which is consistent with
the results in figure 6. Both the viscous dissipation term and the turbulent production term
have a peak in the viscous layer. This peak and its neighbourhoods represent the majority
of the contributions to the two terms. As it is located in the viscous layer, we may conclude
that the peak is due to the near-wall cycle and that the skin friction coefficient and the drag
coefficient are due to the near-wall cycle when λp is small. Eddies due to roughness, on
the other hand, do not contribute significantly to the skin friction coefficient CS. As λp
increases, the near-wall peak in the viscous dissipation term and the turbulent production
term weakens and eventually disappears; meanwhile, a second peak emerges at x3 = h,
i.e. the cube height. This second peak can be attributed to the shear layer that forms at
the cube height (Raupach, Finnigan & Brunet 1996; Zhang et al. 2022). Compared to
the first peak in the viscous layer, this second peak is rather narrow and, in the viscous
dissipation term, does not compensate for the losses due to the weakening of the near-wall
peak. Consequently, the viscous dissipation term decreases as λp increases. In contrast, the
second peak in the turbulent production term is accompanied by increased contributions
from the outer layer, which counter and over-compensate the loss due to the weakening
in the near-wall peak. A peak is also found in the wake production term at x3 = h, but
the term remains small. Finally, the aligned and staggered arrangements give rise to rather
similar distributions of the three terms, with the staggered arrangement leading to a higher
and a lower second peak in the turbulent production term and the wake production term,
compared to the aligned arrangement.

We may also rewrite (7.2) as

CS =
∫ Lx

0
〈Dm,S〉23 + 〈Pt,S〉23 + 〈Pd,S〉23

dx1

Lx
, (7.3)

where 〈·〉23 denotes the superficial average (Nikora et al. 2013) in the spanwise and
wall-normal directions, and 〈Dm,S〉23, 〈Pt,S〉23 and 〈Pd,S〉23 are functions of the x
coordinate and tell us how eddies at different x1 locations contribute to the various process
and ultimately to CS. Figures 12(a,c,e) present 〈Dm,S〉23, 〈Pt,S〉23 and 〈Pd,S〉23 as functions
of x1 for case A20, and figures 12(b,d, f ) present the three terms as functions of x1 for case
A05. The two cases correspond to λp = 0.11 % and 11 %. The surface coverage densities
of the other cases are in between, and their results are not shown here for brevity. We
observe the following. First, the magnitudes of the turbulent production term are found
to be similar in cases A05 and A20, but the magnitude of the viscous dissipation term
in A05 is notably smaller compared to that in A20. These findings align with those in
figure 6. Second, both the viscous dissipation term and the turbulent production term
remain approximately constant in the x direction. This constancy implies that the eddies
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Figure 11. Plots of (a,b) φ〈Dm,S〉, (c,d) φ〈Pt,S〉, (e, f ) φ〈Pd,S〉 as defined in (7.1a–c) for the (a,c,e) aligned
and (b,d, f ) staggered cube arrays, with λp increasing from 0.11 % (dark blue) to 11 % (light blue). The terms
are premultiplied such that the area under a curve represents the integral of the terms. The arrows indicate the
direction of increasing λp.

contributing to these terms do not exhibit significant variations along the x direction. This
piece of information, however, is not very useful since the eddies in this flow are mostly
streamwise elongated. Third, the wake production term exhibits considerable variability
near the roughness element. Specifically, it contributes negatively to CS both upstream
and downstream of the roughness element.

Finally, we may write (7.2) as

CS =
∫ Ly

0
〈Dm,S〉13 + 〈Pt,S〉13 + 〈Pd,S〉13

dx2

Ly
, (7.4)
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Figure 12. Plots of (a,b) 〈Dm,S〉23, (c,d) 〈Pt,S〉23, (e, f ) 〈Pd,S〉23, for (a,c,e) results for A20, and (b,d, f )
results for A05. The dashed lines indicate the locations of the cubical roughness. The dash-dotted line is at 0.

where 〈·〉13 denotes the superficial average in the streamwise and wall-normal directions,
and 〈Dm,S〉13, 〈Pt,S〉13, and 〈Pd,S〉13 are functions of the x2 coordinate and tell us how
eddies at different x2 locations contribute to the various process and ultimately to CS.
Figure 13 shows the three terms as functions of x2 in A05 and A20. The viscous term is
approximately a constant in x2, with its magnitude reduced from approximately 0.0035
in A20 to 0.001 in A05. The turbulent production term is also approximately constant.
The results in figures 13(a,b) imply that the eddies contributing to the viscous dissipation
and turbulent production term are evenly distributed in x2. Hence secondary flows and
horseshoe vortices that wrap around roughness elements, which are present only in the
neighbourhood of the surface roughness, cannot contribute significantly to the skin friction
coefficient. Regarding the wake production term, we know from figure 6 that the integrated
wake production term is small. Nonetheless, the term attains large positive values at the
cube location, and large negative values in the neighbourhoods of the roughness element.
Taking the result in figure 11 into account, we can conclude that the secondary flows
contribute significantly to the wake production term.

The discussion here applies equally to the roughness drag coefficient and
angular-momentum-based as well as mean-momentum-based decompositions. These
extensions should be straightforward and therefore are not pursued here for brevity.
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Figure 13. Plots of (a,b) 〈Dm,S〉13, (c,d) 〈Pt,S〉13, (e, f ) 〈Pd,S〉13. The dashed lines indicate the locations of
the cubical roughness. The dash-dotted line is at 0.

8. Conclusions

We extend the mean momentum equation, the kinetic energy equation, and the angular
momentum equation to flow above rough walls. By focusing on effects that are internal to
the flow, we obtain separate decompositions for the bottom-wall skin friction coefficient
CS and the roughness drag coefficient CR, which is a first. These decompositions
consistently contain a viscous term, a turbulence term and a roughness term with no
free parameters. These terms contain only velocity gradient and velocity fluctuation
information, and therefore are Galilean-invariant. The viscous term is the only term
when the decompositions are evaluated for laminar-flow and flat-plate scenarios, and
the turbulent term is the only term when the decompositions are evaluated for flows at
sufficiently high Reynolds numbers and sufficiently small k/δ. In addition, we expand the
terms in the decompositions to elucidate the spatial distribution of the various terms in the
decompositions.

To demonstrate the applicability of our formulation, we apply the obtained
decompositions to DNS data of flow over aligned and staggered cube arrays. The
analyses offer insights into the behaviours of CS and CR. Take the kinetic-energy-based
decompositions as an illustrative example. The analyses show that the viscous dissipation
term and the turbulent production term are the dominant terms in the decompositions when
the surface coverage density λp is small. As λp increases, the magnitude of the viscous
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dissipation term continuously decreases, while the magnitude of the turbulent production
term initially increases and then decreases. Further analyses show that the changes in the
viscous dissipation term and the turbulent production term as a function of λp are a result
of a subdued near-wall cycle and the emergence of a shear layer at the cube height.

Last, but not least, although this paper is limited to the momentum-, kinetic-energy- and
angular-momentum-based methods, this reformulation applies to other integrals as well,
which is left for future investigation.
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